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Smooth Methods of Multipliers forComplementarity Problems

Jonathan Eckstein Michael C. Ferris
Abstract. This paper describes several methods for solving nonlinear complemen-tarity problems. A general duality framework for pairs of monotone operators isdeveloped and then applied to the monotone complementarity problem, obtainingprimal, dual, and primal-dual formulations. We derive Bregman-function-based gen-eralized proximal algorithms for each of these formulations, generating three classesof complementarity algorithms. The primal class is well-known. The dual class isnew and constitutes a general collection of methods of multipliers, or augmented La-grangian methods, for complementarity problems. In a special case, it correspondsto a class of variational inequality algorithms proposed by Gabay. By appropriatechoice of Bregman function, the augmented Lagrangian subproblem in these meth-ods can be made continuously di�erentiable. The primal-dual class of methods isentirely new and combines the best theoretical features of the primal and dual meth-ods. Some preliminary computation shows that this class of algorithms is e�ectiveat solving many of the standard complementarity test problems.
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RRR 27-96 Page 11 IntroductionThis paper concerns the solution of the nonlinear complementarity problem (NCP). Letl 2 [�1;1)n and u 2 (�1;1]n, with l � u. De�ne W (l; u) = fx 2 <n j l � x � ug,suppose W (l; u) � D � <n, and let F : D ! <n be continuous. Then, the NCP is to �ndsome x 2 <n satisfying the conditionsl � x � u mid(l; x� F (x); u) = x; (1)where mid(a; b; c) denotes the componentwise median of the vectors a, b, and c. This problemis a special case of the standard variational inequality problem: given F and a set C � <n,�nd some x such that x 2 C hF (x); y � xi � 0 8 y 2 C : (2)If we take C = W (l; u), then (2) is identical to (1).The special case of l = 0 and u =1 reduces (1) tox � 0 max(x� F (x); 0) = x;or equivalently x � 0 F (x) � 0 hx; F (x)i = 0: (3)If the mapping F is a�ne, then (3) is the classical linear complementarity problem, or LCP.In the theoretical portion of this paper, we will restrict our attention to the monotonecase in which F satis�es hF (x)� F (y); x� yi � 0 8 x; y 2 <n: (4)This assumption will allow us to model (1) as the problem of �nding a root of the sum oftwo monotone operators (see e.g. [3]), as will be explained in Section 2. To �nd such a root,we then apply generalized proximal algorithms based on Bregman functions [6, 7, 9, 12, 17,18, 33].A number of recent papers [5, 6, 8] have stressed the ability of proximal terms arisingfrom appropriately-formulated Bregman functions to act like barrier functions, giving riseto \interior point" proximal methods for variational inequality problems. Such methods arederived by applying Bregman proximal methods to a primal formulation of (1) or (2).In contrast, we emphasize dual and primal-dual formulations. Applying Bregman proxi-mal methods to such formulations yields augmented-Lagrangian-like algorithms, or \methodsof multipliers." In the dual case, we obtain a class of methods generalizing [21, \ALG1"].By careful choice of Bregman function, we generate methods which involve solving (pro-vided that F is di�erentiable) a once-di�erentiable system of equations at each iteration,as opposed to a nonsmooth system, as in [21]. Therefore, we can use a standard algorithmsuch as Newton's method to solve these subproblems. A similar phenomenon has alreadybeen pointed out for smooth convex programming problems in [24]. That paper notes that



Page 2 RRR 27-96one of the augmented Lagrangian methods proposed in [17] yields a twice-di�erentiable aug-mented Lagrangian, as opposed to the classical once-di�erentiable augmented Lagrangianfor inequality constraints (e.g. [30]).In producing sequences of subproblems consisting of di�erentiable nonlinear equations,our algorithms bear some resemblance to recently proposed smoothing methods for theLCP and NCP [10, 11, 22]. However, such methods are akin to pure penalty methods inconstrained optimization | they have a penalty parameter that must be driven to in�nityto obtain convergence. By contrast, our algorithms are generalized versions of augmentedLagrangian methods: there is a Lagrange multiplier adjustment at the end of each iteration,and we obtain convergence even if the penalty parameter does not approach in�nity.In the course of our derivation, Section 2 develops a simple duality framework for pairs ofset-valued operators. The framework resembles [1], but allows the two mappings in the pairto operate on di�erent spaces. A similar duality structure for pairs of monotone operatorsappears in [20]. The main distinction of our approach, as opposed to [1, 20], is to introducea primal-dual, \saddle-point" formulation, in addition to the standard primal and dualformulations. Towards the end of Section 2, we show how to apply the duality framework tovariational inequalities and complementarity problems, re�ning the framework for variationalinequalities that appears in [21, 27].Section 3 combines the duality framework of Section 2 with Bregman-function-basedproximal theory and shows how to produce new, smooth methods of multipliers for (1). Theprimal-dual formulation yields a new proximal method of multipliers for (1), along the linesof the proximal method of multipliers for convex programming (e.g. [30]). This primal-dualmethod combines the best theoretical features of primal methods in the spirit of [5, 6, 8] withthe best features of the new dual method. Some preliminary computational results on theMCPLIB [14] suite of test problems are given in Section 4. These results show that proximalmethod of multipliers is e�ective even when the underlying problem is not monotone.2 A Simple Duality Framework for Pairs of MonotoneOperatorsIn this paper, an operator T on a real Hilbert space X is a subset of X � Y , where Y isalso a Hilbert space. We call Y the range space of T ; typically, but not always, we will haveX = Y .For every such T � X�Y and x 2 X, T (x) := fy 2 Y j (x; y) 2 T g de�nes a point-to-setmapping from X to Y ; in fact, we make no distinction between this point-to-set mappingand its graph T . Thus, the statements y 2 T (x) and (x; y) 2 T are completely equivalent.The inverse of any operator T is T�1 = f(y; x) 2 Y �X j (x; y) 2 T g, which will alwaysexist. Trivially, (T�1)�1 = T . We de�nedomT := fx j T (x) 6= ;g = fx 2 X j 9 y 2 Y : (x; y) 2 T g ;and similarly imT := dom(T�1) = fy 2 Y j 9 x 2 X : (x; y) 2 T g. When T (x) is necessarily



RRR 27-96 Page 3a singleton set fyg for all x, that is, T is the graph of some function domT ! Y , we saythat T is single-valued, and we may write, in a slight abuse of notation, T (x) = y instead ofT (x) = fyg.Given two operators T and U on X with the same range space Y , their sum T + Uis de�ned via (T + U)(x) = T (x) + U(x) = ft + u j t 2 T (x); u 2 U(x)g. If T is anyoperator on X and U an operator on Z, we de�ne their direct product T 
 U on X � Z via(T 
 U)(x; z) = T (x)� U(z).An operator T on X is said to be monotone if its range space is X andhx� x0; y � y0i � 0 8 (x; y); (x0; y0) 2 T: (5)Note that (5) is a natural generalization of (4): if one takes X = <n and T to be the graph ofthe function F , (5) reduces to (4). Note also that monotonicity of T and T�1 are equivalent,and that it is straightforward to show that if two operators T and U are both monotone,then so is T + U .A monotone operator T is maximal if no strict superset of T is monotone, that is,(x; y) 2 X �X; hx� x0; y � y0i � 0 8 (x0; y0) 2 T ) (x; y) 2 T:Maximality of an operator and maximality of its inverse are equivalent.The fundamental problem customarily associated with a monotone operator T is that of�nding a zero or root, that is, some x 2 X such that 0 2 T (x) (see e.g. [3, 31]).2.1 The Duality FrameworkSuppose we are given an operator A on a Hilbert space X, an operator B on a Hilbert spaceY , and a linear mapping M : X ! Y . We will denote such a triple by P(A;B;M). For thedevelopment in Section 3, we will require only the special case X = Y = <n and M = I,but we consider the general P(A;B;M) in order to make connections to [16, 20] and otherprevious work.We associate with P(A;B;M) a primal formulation of �nding x 2 X such that0 2 A(x) +M>B(Mx); (6)or equivalently 0 2 TP(x) := [A+M>BM ] (x), where M> denotes the adjoint of M .Similarly, we associate with each P(A;B;M) a dual formulation of �nding y 2 Y suchthat 0 2 �MA�1(�M>y) +B�1(y); (7)or equivalently 0 2 TD(y) := [�MA�1(�M>) +B�1] (y). Note that (7) is the primal formu-lation of P(B�1; A�1;�M>), and that twice applying the transformationP(A;B;M) 7! P(B�1; A�1;�M>)



Page 4 RRR 27-96produces the original tripleP(A;B;M); that is, the dual formulation of P(B�1; A�1;�M>) isthe original primal formulation (6). The duality scheme of [1] is similar, with the restrictionsX = Y and M = I.We also associate with P(A;B;M) a primal-dual formulation, which is to �nd (x; y) 2X � Y such that 0 2 A(x) +M>y 0 2 �Mx +B�1(y); (8)or equivalently 0 2 TPD(x; y) := K[A;B;M ](x; y), where K[A;B;M ] is de�ned byK[A;B;M ] xy ! = �A(x)� B�1(y)�+ " 0 M>�M 0 # xy ! : (9)In the special case of convex optimization, we can take A = @f , the subdi�erential map ofsome closed proper convex function f : X ! (�1;+1], and B = @g for some closed properconvex g : Y ! (�1;+1]. Then the primal formulation is equivalent to the optimizationproblem minx2X f(x) + g(Mx): (10)Similarly, the dual formulation is equivalent tominy2y f �(�M>y) + g�(y); (11)where \�" denotes the convex conjugacy operation [28, Section 12]. Furthermore, the sub-di�erential of the generalized Lagrangian L : X � Y ! [�1;+1] de�ned byL(x; y) = f(x) + hy;Mxi � g�(y)is preciselyK[A;B;M ] = K[@f ; @g;M ]. Therefore, the primal-dual formulation is equivalentto �nding a saddle point of L, that is, to the problemminx2X maxy2Y f(x) + y>Mx � g�(y): (12)The standard convex programming duality relations between (10), (11), and (12) may beviewed as a consequence of the higher-level, more abstract duality embodied in the followingelementary proposition, whose proof is omitted.Proposition 1 The following statements are equivalent:(i) (x; y) solves the primal-dual formulation (8).(ii) x 2 X; y 2 Y; (x;�M>y) 2 A; (Mx; y) 2 B.Furthermore, x solves the primal formulation (6) if and only if there exists y 2 Y such that(i)-(ii) hold, and y solves the dual formulation (7) if and only if there exists x 2 X such that(i)-(ii) hold.



RRR 27-96 Page 5Note that for general choices of A, B, and M , this duality framework is slightly weakerthan, for example, linear programming, in that x being a primal solution and y being a dualsolution are not su�cient for (x; y) to be an solution of the primal-dual (\saddle point")formulation, even if A and B are maximal monotone. For an example of this phenomenon,consider the case X = Y = <2, M = I, A(x1 x2) = f(�x2 x1)g, and B(x1 x2) = f(x2 �x1)g.We now turn to the issue of solving (6), (7) or (8), under the assumption that A and Bare maximal monotone.Consider �rst the primal formulation (6). Given that B is monotone, it is straightforwardto show that M>BM is also monotone. The monotonicity of A then gives the monotonicityof TP = A + M>BM . Therefore, the primal formulation is a problem of locating a rootof the monotone operator TP on X. The convergence analyses of root-�nding methods formonotone operators typically require that the operator be not only monotone, but alsomaximal. While TP will typically be maximal if A and B are, such maximality cannotbe guaranteed without imposing additional regularity conditions. Some typical su�cientconditions for TP to be maximal are that A and B be maximal, thatMM> be an isomorphismof Y , thus guaranteeing maximality of M>BM (see [21, Proposition 4.1] or [20, Proposition3.2]), and a condition such as domA \ int dom(BM) 6= ;, in order to ensure maximalityof the sum TP = A +M>BM [29]. This last condition can be weakened somewhat if X is�nite-dimensional.The analysis of the dual formulation is similar. The formulation involves locating theroot of the operator TD = �MA�1(�M>) + B�1 on Y , which is necessarily monotone bythe monotonicity of A and B, but is not guaranteed to be maximal solely by maximality ofA and B. One must impose similar conditions to the primal case, such as M>M being anisomorphism of X, and dom(A�1(�M>)) \ int imB 6= ;.The primal-dual formulation also involves �nding the root of a monotone operator: weestablish in Proposition 2 below that the operator TPD = K[A;B;M ] on X � Y (with thecanonical inner product induced by X and Y ) is monotone if A and B are. The propositionalso shows that the primal-dual is in some sense the \best behaved" of our three formulations,in the sense that K[A;B;M ] is maximal whenever A and B are both maximal.Proposition 2 If A and B are monotone operators on the Hilbert spaces X and Y , respec-tively, and M is any linear map X ! Y , then the operator K[A;B;M ] on X � Y de�nedby (9) is monotone. Furthermore, if A and B are both maximal, K[A;B;M ] is maximal.Proof. Set T1 = A
B�1 T2(x; y) = " 0 M>�M 0 # xy ! :Note that T1 and T2 are both monotone, and K[A;B;M ] = T1+T2. If A and B are maximal,T1 is also maximal. The linear map T2 is also maximal [26], and maximality of T1 + T2 thenfollows from [29, Theorem 1(a)]. 2Note that it is also straightforward to prove the theorem from �rst principles, withoutinvoking the deep analytical machinery of [26, 29].



Page 6 RRR 27-96In summary, given a linearM and monotone A and B, we can formulate the same problemin three essentially equivalent ways: �nding a root of the primal monotone operator TP =A+M>BM on X, �nding a root of the dual monotone operator TD = �MA�1(�M>)+B�1on Y , or �nding a root of the primal-dual monotone operator TPD = K[A;B;M ] on X � Y .Of these operators, TPD is the only one guaranteed to be maximal, given the maximality ofA and B.2.2 Dual and Primal-Dual Formulations of Variational Inequalityand Complementarity ProblemsWe now return to the variational inequality problem (2), where F : D ! <n satis�es themonotonicity condition (4), D � C, and C is a closed convex set. De�ne the operatorNC � C � <n � <n �<n viaNC(x) = ( fd 2 <n j hd; y � xi � 0 8 y 2 C g ; x 2 C;; x 62 C: (13)It is well-known that NC is maximal monotone on <n. Furthermore, the variational inequal-ity (2) is equivalent to the problem 0 2 F (x) +NC(x): (14)We take (14) as our primal formulation in the duality framework of (6), (7), and (8). Con-sequently, we let A = F , B = NC , X = Y = <n, and M = I, whence TP = F + NC . Wethen have TD = �F�1(�I) +NC�1, and the problem dual to (14) is thus0 2 �F�1(�y) +NC�1(y); (15)where \�1" denotes the operator-theoretic inverse. F�1 and NC�1 may both be general set-valued operators on <n, in the sense of Section 2. Although the notation is di�erent, thisdual problem is essentially the same dual proposed in [21, 27]. The formulation (15) mayappear somewhat awkward, but we will not have to work with it directly in a computationalsetting. It will, however, prove very useful in deriving algorithms.It is a simple consequence of Proposition 1 that y solves (15) if and only if y = �F (x)for some solution x of (14), or equivalently of the variational inequality (2).The primal-dual formulation, in this setting, is to �nd a zero of the operator TPD =K[F;NC ; I] de�ned via TPD(x; y) = �F (x)�NC�1(y)�+  y�x ! :Equivalently, x and y solve the systemF (x) = �y NC�1(y) 3 x; (16)
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Figure 1: The operator Ni on < (left), and its inverse Ni�1 (right).that is, x solves the variational inequality (2), and y = �F (x).We now investigate the structure of NC and NC�1 in the case of the NCP (1), whereC = W (l; u) = fx 2 <n j l � x � ug. In this case, NC is the direct product of n simpleoperators on < of the formNi = � � flig � (�1; 0)� [ �[li; ui]� f0g� [ � fuig � (0;+1)�� \ �<� <� ;as depicted on the left side of Figure 1. It then follows that NC�1 is the direct product ofthe n operatorsNi�1 = � �(�1; 0)� flig� [ � f0g � [li; ui]� [ �(0;+1)� fuig�� \ �<� <� ; (17)as depicted on the right side of Figure 1.Since maximality is needed to prove convergence of the solution methods we propose inSection 3, we now address the question of maximality of F , TP = F +NC , TD = �F�1(�I)+NC�1, and TPD = K[F;NC ; I].Proposition 3 Let F be a continuous monotone function on <n with open domain D �C = fx 2 <n j l � x � ug. Then TP = F +NC is maximal monotone.Proof. Let bF be some maximal extension of F into a monotone operator [32, Proposition12.6]. Then we have dom bF � D � C = domNC 6= ;, and therefore ri dom bF \ ri domNC 6=;, where \ri" denotes relative interior [28, Section 6]. From [29] we have that bF +NC mustbe maximal. Now, the openness of D and the analysis of [26, Theorem 4] imply that bFagrees in value with F on D � C = domNC = domTP, so it follows that bF +NC = TP. 2



Page 8 RRR 27-96Proposition 4 Suppose F is a continuous monotone function on <n that is maximal as amonotone operator (some su�cient conditions are im(I + F ) = <n or that F has maximalopen domain). Suppose ri imF contains some point y 2 <n with the property thatyi = 0 8 i : li = �1; ui = +1yi < 0 8 i : li = �1; ui < +1yi > 0 8 i : li > �1; ui = +1 : (18)Then TD = �F�1(�I) +NC�1 is maximal, where C = fx 2 <n j l � x � ug.Proof. Given that F constitutes a maximal monotone operator, it is straightforward to showthat �F�1(�I) is also maximal. Now, dom(�F�1(�I)) = �imF . By appealing to (17), itis clear that the conditions (18) on y are equivalent to �y 2 ri dom(NC�1). Therefore, wehave ri dom(�F�1(�I)) \ ri dom(NC�1) 6= ;. The maximality of NC and [29] then implythe maximality of TD = �F�1(�I) +NC�1. 2Note that if l > �1 and u < +1, the conditions (18) are void, and Proposition 4 re-quires only maximality of F . Finally, we address the maximality of TPD with the followingproposition, which follows immediately from Proposition 2 and the maximality of F and NC .Proposition 5 Suppose F is a monotone function on <n that is maximal as a monotoneoperator. Then, for any closed convex set C � <n, the operator TPD = K[F;NC ; I] ismaximal.3 Bregman Proximal Algorithms for ComplementarityProblemsFor the remainder of this paper, we let C = W (l; u) = fx 2 <n j l � x � ug. We nowhave three formulations of the monotone complementarity problem (1): �nding a root ofthe primal monotone operator TP = F +NC , �nding a root of the dual monotone operatorTD = �F�1(�I) + NC�1, and �nding a root of the primal-dual monotone operator TPD =K[F;NC ; I]. We can attempt to solve (1) by applying any method for �nding the root of amonotone operator to either TP, TD, or TPD. In this paper, we employ only the Bregman-function-based proximal algorithm of [18], and study the algorithms for (1) that result whenit is applied to TP, TD, and TPD.We now describe the algorithm of [18] for solving the inclusion 0 2 T (x), where T is amaximal monotone operator on <n. Earlier treatments of closely related algorithms may befound in [6, 7, 9, 12, 17, 23, 33]The algorithm in [18] requires two auxiliary constructs, a function h and a set S. Giventwo points x, y 2 <n and a function h di�erentiable at y, we de�neDh(x; y) := h(x)� h(y)� hrh(y); x� yi : (19)We then say that h is a Bregman function with zone S if the following conditions hold [18]:



RRR 27-96 Page 9B1. S � <n is a convex open set.B2. h : <n ! < [ f+1g is �nite and continuous on S.B3. h is strictly convex on S.B4. h is continuously di�erentiable on S.B5. Given any x 2 S and scalar �, the right partial level setL(x; �) := fy j Dh(x; y) � �gis bounded.B6. If fykg � S is a convergent sequence with limit y1, then Dh(y1; yk)! 0.B7. If fvkg � S, fwkg � S are sequences such that wk ! w1 and fvkg is bounded,and furthermore Dh(vk; wk)! 0, then one has vk ! w1.Examples of pairs (h; S) meeting these conditions may be found in [9, 13, 17, 33], and manyreferences therein. In particular, [13] gives some general su�cient conditions for (h; S) tosatisfy B1-B7. We now state the main result of [18].Proposition 6 Let T be a maximal monotone operator on <n, and let h be a Bregmanfunction with zone S, where S \ ri domT 6= ;. Let any one of the following assumptionsA1-A3 hold:A1. S � domT .A2. T = @f , the subdi�erential mapping of some closed proper convex functionf : <n ! <[ f+1g.A3. T has the following two properties (see, e.g. [6, 7, 8]):(i) If f(xk; yk)g � T , fxkg � S, and fxkg is convergent, then fykg has alimit point;(ii) T is paramonotone [4, 8], that is, (x; y); (x0; y0) 2 T andhx� x0; y � y0i = 0collectively imply that (x; y0) 2 T .Suppose the sequences fzkg1k=0 � S and fekg1k=0 � <n conform to the recursionT (zk+1) + 1ck �rh(zk+1)�rh(zk)� 3 ek; (20)where fckg1k=0 is a sequence of positive scalars bounded away from zero. Further suppose that1Xk=0 ck 


ek


 <1 (21)



Page 10 RRR 27-96and 1Xk=1 ck Dek; zkE exists and is �nite. (22)Then if bT := T +NS has any roots, fzkg converges to some z1 with bT (z1) 3 0.Proof. By minor reformulation of [18, Theorem 1]. 2Similar forms for the error sequence can be found for example in [25]. Note that thecondition (22) is implied by the more easily-veri�ed condition1Xk=0 ckkekkkzkk <1: (23)Furthermore, when S or domT is bounded, fzkg is necessarily bounded, and (21) implies (23)and (22).One question not addressed in Proposition 6 is whether sequences fzkg1k=0 � S andfekg1k=1 � <n conforming to (20) are guaranteed to exist. The following proposition givessu�cient conditions for the purposes of this paper.Proposition 7 Let T be a maximal monotone operator on <n, let fckg1k=0 be a sequence ofpositive scalars, and let h be a Bregman function with zone S � domT . Then if imrh = <n,sequences fzkg1k=0 � S and fekg1k=0 � <n jointly conforming to (20) exist.Proof. Set ek = 0 for all k, and consult case (i) of [17, Theorem 4]. 2We now consider applying Proposition 6 with either T = TP, T = TD, or T = TPD. Eachchoice will yield a di�erent algorithm for solving the complementarity problem (1).3.1 Primal Application to ComplementarityThe most straightforward application of Proposition 6 to the complementarity problem (1)is to set T = TP = F + NC . Substituting T = F + NC and zk = xk into the fundamentalrecursion (20) and rearranging, we obtain the recursion:�F (xk+1) + 1ck �rh(xk+1)�rh(xk)��+NC(xk+1) 3 ek: (24)In other words, xk+1 is an kekk-accurate approximate solution of the complementarity prob-lem l � x � u mid�l; x� ~Fk(x); u� = x;where ~Fk(x) = F (x) + ck�1(rh(x)�rh(xk)). For general choices of h, there appears to belittle point to such a procedure: to solve a single nonlinear complementarity problem, wemust now (approximately) solve an in�nite sequence of similar nonlinear complementarity



RRR 27-96 Page 11problems. However, the situation is more promising in the special case that l < u, the zoneS of h is intC = fx 2 <n j l < x < ug, and krh(x)k ! 1 as x approaches any x 2 bdC.In this case, we must have xk+1 2 intC for all k � 0. Since NC(x) = f0g for all x 2 intC,we can drop the NC(xk+1) term from the recursion (24), reducing it to the equationF (xk+1) + 1ck �rh(xk+1)�rh(xk)� = ek: (25)So, each iteration requires solving the nonlinear equation F (x)+(1=ck)rh(x) = (1=ck)rh(xk)for x within accuracy kekk. If F is di�erentiable, then F + ck�1rh is di�erentiable onintC. Thus, we can solve a nonlinear complementarity problem by approximately solvinga sequence of di�erentiable nonlinear systems of equations. Since rh approaches in�nityon the boundary of C, it acts as a barrier function that simpli�es the subproblems byremoving boundary e�ects. This phenomenon has already been noted in numerous priorworks, including [5, 8].However, setting S = intC also has drawbacks. First, in attempting to apply Proposi-tion 6, S = intC rules out invoking assumption A1, forcing one to appeal to assumptionsA2 or A3, each of which places restrictions on the maximal monotone operator T . In ap-plying Proposition 6 to the primal formulation, these restrictions on T imply restrictionson the monotone function F . The following result summarizes what we can say about theconvergence of method (25) for complementarity problems:Theorem 1 Suppose the complementarity problem (1) has some solution, where l < u, F ismonotone and continuous on some open set D � C = fx 2 <n j l � x � ug, and F satis�esat least one of the following restrictions:P1. F (x) = rf(x) for all x 2 C, where f is convex and continuously di�erentiableon C.P2. For all x; x0 2 C, hx� x0; F (x)� F (x0)i = 0 implies F (x) = F (x0).Let h be a Bregman function with zone S = intC, where limw!w krh(w)k = 1 for anyw 2 bdS = bdC. Suppose the sequences fxkg1k=0 � S, fekg1k=0 � <n, and fckg1k=0 �[c;1) � (0;1) satisfy the recursion (25) and that P1k=0 ckkekk < 1, while P1k=0 ckhek; xkiexists and is �nite. Then fxkg converges to a solution of the NCP (1).Proof. (25) is equivalent to the fundamental recursion (20) of Proposition 6 with T = TP =F + NC and zk = xk. The conditions on fekg are identical to the error conditions (21)and (22) of Proposition 6. The condition that F be continuous on D ensures that TP willbe maximal, via Proposition 3. Therefore, we may invoke Proposition 6 if we can show atleast one of its alternative assumptions A1-A3 hold.Now consider assumption P1. In this case, we have TP = rf +NC = rf + @�( � jC) =@(f + �( � jC)), where the last equality follows from [28, Theorem 23.8] and dom f � C =dom �( � jC) 6= ;. Therefore, assumption A2 of Proposition 6 is satis�ed.



Page 12 RRR 27-96Alternatively, assume that P2 holds. Since F is continuous on D � C = S and NC(x) =f0g for all x 2 S = intC, assumption A3(i) holds for T = F + NC . P2 implies that A3(ii)holds for T = F . It is also easily con�rmed that A3(ii) holds for T = NC . Finally, it isstraightforward to show that paramonotonicity is preserved under the addition of operators,so A3(ii) also holds for T = F +NC .We may therefore invoke Proposition 6 and conclude that fxkg must converge to a rootof TP +NS = TP +NC = TP, that is, a solution of (1). 2This result represents a minor advance in the theory of primal complementarity methods,in that most prior results have required exact computation of each iteration, that is, ek � 0,the exception being [7]. The approximation condition (25) is much more practical to checkthan the corresponding condition in [7].We cannot apply Proposition 7 to show existence of fxkg in this setting, because S 6�domT . However, suitable existence results may be found in [5, 6, 7, 8].Note that in the case l > �1 and u < +1, the condition on P1k=0 ckhek; xki is animmediate consequence of P1k=0 ckkekk < 1, and becomes redundant. It only comes intoplay when there is a possibility of fxkg being unbounded.While the restriction that F be continuous on D � C seems reasonable, the alternativehypotheses P1 and P2 impose extra restrictions on F . Furthermore, while it is not necessaryto drive ck to in�nity to obtain convergence, as in a true barrier method, the procedure doesinherit some numerical di�culties typical of barrier algorithms. The nonlinear system tobe approximately solved in (25) becomes progressively more ill-conditioned as x approachesbdC, where the solution is likely to lie. This ill-conditioning constrains the numerical meth-ods that may be used. Furthermore, the function on the left-hand side of (25) is not de�nedfor x outside intC; to apply a standard numerical procedure such as Newton's method,one needs to install appropriate safeguards to avoid stepping to or evaluating points outsideintC.3.2 Dual Application to ComplementarityIn situations where the above drawbacks of the primal method are signi�cant, we suggestdual or primal-dual algorithms, as described below. In these approaches, the Bregmanfunction acts through the duality framework to provide a smooth, augmented-Lagrangian-like penalty function, rather than the barrier function one obtains from a primal approach.We �rst consider a purely dual approach, applying Proposition 6 to T = TD.The fundamental Bregman proximal recursion (20) for T = TD and iterates zk = yk takesthe form �F�1(yk+1) +NC�1(yk+1) + 1ck �rh(yk+1)�rh(yk)� 3 ek: (26)Since the domain of TD will in general be unknown, we will choose the Bregman-function/zonepair (h; S) so that S = <n. This choice ensures that bT = T + NS = TD + N<n = TD, andthus that the recursion will locate roots of TD.



RRR 27-96 Page 13In general, it will not be possible to express the inverse operator F�1 in a manner con-venient for computation, so we cannot work directly with the formula (26). Instead, we\dualize" the recursion using Proposition 1. For simplicity, temporarily assume that ek � 0,so that (26) becomes�F�1(yk+1) +NC�1(yk+1) + 1ck �rh(yk+1)�rh(yk)� 3 0 (27)We now take (27) to be the primal problem in the framework of Section 2.1, setting X =Y = <n and M = I. We take A = Ak and B = Bk, where Ak and Bk are de�ned byAk(y) = �F�1(�y) (28)Bk(y) = NC�1(y) + 1ck �rh(y)�rh(yk)� : (29)Note that if F constitutes a maximal monotone operator, A = Ak will be maximal, and NC�1is maximal by the maximality of NC . rh is maximal monotone since it is the subgradientmap of the function h, continuous on <n. The operations of subtracting a constant rh(yk)and scaling by 1=ck preserve this maximality. Finally, since domrh = <n, we also havemaximality of B = Bk from [29].Invoking Proposition 1, the problem dual to (27), or equivalently Ak(y) + Bk(y) 3 0, isof the form �Ak�1(�x) + Bk�1(x) 3 0, where we are interchanging the notational roles of\x" and \y". It is immediate that �Ak�1(�x) = �[�F�1(�I)]�1(�x) = �(�F (�(�x))) =F (x), so �Ak�1(�I) = F .We now consider Bk�1. We know that NC�1 has the separable structure NC�1 = N1�1
: : :
Nn�1, where Ni�1 is given by (17). Further assume that h has the separable structureh(y) = Pni=1 hi(yi), whence (as an operator) rh = rh1 
 : : : 
 rhn. Assume temporarilythat l > �1 and u < +1. Then Bk = Bk1 
 : : :
 Bkn, where each Bki is an operator on< given byBki(
) = 8>>>>>>>>><>>>>>>>>>:
�li + 1ck �rhi(
)�rhi(yki )�� 
 < 0�li + 1ck �rhi(0)�rhi(yki )� ; ui + 1ck �rhi(0)�rhi(yki )�� 
 = 0�ui + 1ck �rhi(
)�rhi(yki )�� 
 > 0:Since Bk�1 = Bk1�1 
 : : :
 Bkn�1, it su�ces to invert Bki, k = 1; : : : ; n. For each Bki, wehave Bki = B�ki [B0ki [ B+ki, whereB�ki = ��
; li + 1ck �rhi(
)�rhi(yki )�� ���� 
 < 0�B0ki = f0g � �li + 1ck �rhi(0)�rhi(yki )� ; ui + 1ck �rhi(0)�rhi(yki )��B+ki = ��
; ui + 1ck �rhi(
)�rhi(yki )�� ���� 
 > 0� :



Page 14 RRR 27-96By the de�nition of the operator-theoretic inverse, Bki�1 = (B�ki)�1 [ (B0ki)�1 [ (B+ki)�1.Now,(B�ki)�1 = ��li + 1ck �rhi(
)�rhi(yki )� ; 
� ���� 
 < 0�= n��; (rhi)�1 �rhi(yki ) + ck (� � li)�� ��� (rhi)�1 �rhi(yki ) + ck (� � li)� < 0o= ���; (rhi)�1 �rhi(yki ) + ck (� � li)�� ��� � < li + 1ck �rhi(0)�rhi(yki )�� ;where the �rst equality is obtained by solving for 
 in terms of � in� = li + 1ck �rhi(
)�rhi(yki )� ;and the second by solving (rhi)�1(rhi(yki ) + ck (� � li)) < 0 for �.Similarly, we obtain(B+ki)�1 = ���; (rhi)�1 �rhi(yki ) + ck (� � ui)�� ��� � > ui + 1ck �rhi(0)�rhi(yki )�� :(B0ki)�1 is simply the function that yields 0 on the interval�ki := �li + 1ck �rhi(0)�rhi(yki )� ; ui + 1ck �rhi(0)�rhi(yki )�� : (30)Combining these three results and using the monotonicity of rh and (rh)�1, we obtainBki�1(�) = 8>>>>>>><>>>>>>>: (rhi)�1 �rhi(yki ) + ck (� � li)� � < li + 1ck �rhi(0)�rhi(yki )�(rhi)�1 �rhi(yki ) + ck (� � ui)� � > ui + 1ck �rhi(0)�rhi(yki )�0 otherwiseBki�1(�) = (rhi)�1 �mid�rhi(yki ) + ck (� � li);rhi(0);rhi(yki ) + ck (� � ui)�� : (31)Note that this operator is single-valued, so we have dropped extraneous braces.We have not considered the possibility that li = �1 and/or ui = +1. In these cases,B�ki and/or B+ki, respectively, are absent from the calculations. In all cases, however, it maybe seen that (31) continues to hold.Combining our results for i = 1; : : : ; n, we obtain that Bk�1 = Pk, where Pk : <n ! <nis given byPk(x) = (rh)�1 �mid�rh(yk) + ck(x� l);rh(0);rh(yk) + ck(x� u)�� : (32)The dual problem �Ak�1(�x) + Bk�1(x) 3 0 of the exact recursion formula (27) thensimpli�es to the equation F (x) + Pk(x) = 0: (33)



RRR 27-96 Page 15Let xk+1 be a solution to this equation. Invoking part (ii) of Proposition 1, the solution yk+1of the original recursion (27) is simply given byyk+1 = Pk(xk+1): (34)Now, solving (33) for x is a considerably more familiar and tractable computation thanits dual, the inclusion (27). We now address a number of issues relating to this computation:�rst, we would like F + Pk to be di�erentiable, so that we can employ standard smoothnumerical methods; second, we would like to solve (33) approximately, rather than exactly.We address di�erentiability of F + Pk �rst.For a start, it seems reasonable to require that F be di�erentiable. Therefore, the questionreduces to that of the di�erentiability of Pk. Let us further suppose that (rh)�1 is everywheredi�erentiable. In this case, non-di�erentiabilities in Pk can only occur at \breakpoints"satisfying any of the equationsrhi(yki ) + ck (xi � li) = rhi(0) i = 1; : : : ; nrhi(yki ) + ck (xi � ui) = rhi(0) i = 1; : : : ; nthat is, at x 2 <n that have components xi at the endpoints of any of the intervals �ki,i = 1; : : : ; n. Now, Pk(x) is constant as xi moves within any of these intervals, all othercoordinates being constant, that is, [rPk(x)]i = 0 for xi 2 int�ki. Thus, to have Pk becontinuously di�erentiable, it must have zero derivative as xi approaches �ki from eitherabove or below. Appealing to (32), this requirement is equivalent to the condition that(rhi)�1 must have zero derivative at rhi(0) for all i. Compactly, but somewhat opaquely,we require r �(rh)�1� (rh(0)) = 0: (35)To clarify this condition, we invoke the standard chain-rule based formula for the gradientof an inverse function, which in this case givesr �(rhi)�1� (xi) = 1r2h((rhi)�1(xi))for all i. Therefore, we can restate the requirements that (rh)�1 be di�erentiable andthat (35) hold as r2hi(yi) > 0 8 yi 6= 0 i = 1; : : : ; nlimyi!0r2hi(yi) = +1 i = 1; : : : ; n : (36)One possible choice of a Bregman function meeting these conditions [17, Example 2] ish(y) = 1q nXi=1 jyijq ; 1 < q < 2: (37)
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Figure 2: Taking the inverse of NC , adding a perturbation with an in�nite slope at 0, andthen inverting once again produces the smoothed exterior function Pk.In this case, rhi(yi) = (sgn yi)jyijq�1, andr2hi(yi) = (q�1)jyijq�2 has the desired properties.We then obtainPk(x) = mid�(yk)hq�1i + ck(x� l); 0; (yk)hq�1i + ck(x� u)�h 1q�1i ;where whpi := ((sgnw1)jw1jp : : : (sgnwn)jwnjp). The case q = 3=2 leads to an expressionresembling the convex programming cubic augmented Lagrangian discussed in [24].Figure 2 illustrates, in the one-dimensional case n = 1, how dual application of theBregman proximal method smoothes the set-valued, nonsmooth NC term in the originalproblem F (x) +NC(x) 3 0 into the di�erentiable term Pk of the subproblem computation.First, we take NC , and \dualize" it to obtain its inverse NC�1. To NC�1, we add theproximal perturbation function �k : y 7! (1=ck)(rh(y) �rh(yk)), which has in�nite slopeat 0, and �nite positive slope elsewhere. This operation yields the operator Bk; because ofthe in�nite slope of the perturbation �k at zero, the \corners" in the graph of NC�1 are nowsmoothly \rounded o�." We now dualize once more by taking the inverse of Bk, obtainingthe function Pk. Because of the rounded corners of Bk, Pk is a di�erentiable function. Notethat the smoothing is applied to the exterior of C, whereas in the primal approach it isapplied to the interior.



RRR 27-96 Page 17Summarizing, if we choose a separable h with zone <n and having the properties (36), thenthe system of nonlinear equations (33) to be solved at each iteration will be di�erentiable.Note that the domain of de�nition of this system will be the same as F 's, since P k is �niteand de�ned everywhere. Therefore, unlike the primal method, there is no need for stepsizeguards, except for those required for F .To make our dual procedure practical, we need only allow for approximate solution of (33).In the following two theorems, we summarize the above development, incorporating analysisof approximate forms of the iteration; however, the approximation criteria take a somewhatstrange form due to the subtleties of working in the dual. We let dist(x; Y ) := infy2Y kx�yk.Theorem 2 Let F , l, and u describe a monotone NCP of the form (1), conforming tothe hypothesis of Proposition 4, and possessing some solution. For i = 1; : : : ; n, let hi bea Bregman function with zone <, and let fckg1k=0 � (0;1) be bounded away from zero.Suppose that the sequences fykg1k=0; fxk[1]g1k=1; fxk[2]g1k=1 � <n and f�kg1k=0 � [0;1) meet theconditions 1Xk=0 ck�kmax�1; 


yk


� <1 (38)


xk+1[1] � xk+1[2] 


 � �k 8 k � 0 (39)� F (xk+1[1] ) = yk+1 = Pk(xk+1[2] ) 8 k � 0; (40)where Pk is de�ned as in (32). Then yk ! y� = �F (x�), where x� is some solution to (1).All limit points x1 of fxk[1]g and fxk[2]g are also solutions of (1), with F (x1) = �y� = F (x�).If imrhi = < for all i, then such sequences are guaranteed to exist.Proof. Invoking Proposition 4, TD = �F (�I) + NC�1 is maximal monotone. Also h(x) :=Pni=0 hi(xi) is a Bregman function with zone <n. We claim that fykg con�rms to the re-cursion (26), where fekg1k=0 � <n is such that kekk � �k for all k � 0. The recursioncan be rewritten Ak(yk+1) + Bk(yk+1) 3 ek, where Ak and Bk are de�ned by (28)-(29).From (40), we have (xk+1[1] ;�yk+1) 2 F and (xk+1[2] ; yk+1) 2 Pk, which yield (yk+1;�xk+1[1] ) 2 Akand (yk+1; xk+1[2] ) 2 Bk, courtesy of (28) and Pk = Bk�1, as established above. Settingek := xk+1[1] �xk+1[2] for all k � 1, whence kekk � �k by (39), we have Ak(yk+1)+Bk(yk+1) 3 ek,and the claim is established.Appealing to (38), (21) must hold with our choice of fekg, and also (23). All the hypothe-ses of Proposition 6 are thus satis�ed, and so fykg converges to a root of TD + N<n = TD.The �nal statement follows from Proposition 7, even if we were to require �k � 0, so it onlyremains to show that all limit points of fxk[1]g and fxk[2]g are primal solutions.From (38) and fckg being bounded away from zero, �k ! 0 and ek ! 0. Therefore, fxk[1]gand fxk[2]g have the same limit points. Let x1 be such thatxk[1]; xk[2] !k2K x1



Page 18 RRR 27-96for some in�nite set K � f0; 1; 2; : : :g. Since F is continuous and yk = �F (xk[1]) for allk � 1, taking limits over k 2 K yields y� = �F (x1). From yk+1 = Pk(xk+1[2] ), we also havexk+1[2] 2 Bk(yk+1), and hence�xk[2] + 1ck �rh(yk)�rh(yk+1)� ; yk+1� 2 NCfor all k � 0. NC , being maximal monotone, is a closed set in <n � <n, while rh mustbe continuous at y�, and fckg is bounded away from zero. So, taking limits over k 2 Kyields (x1; y�) 2 NC . Proposition 1 then gives that x1 must solve the primal problemF (x) +NC(x) 3 0. 2Theorem 3 In Theorem 2, su�cient conditions assuring (39)-(40) areF (xk+1) + Pk(xk+1) = 0 (41)yk+1 = Pk(xk+1) (42)or dist�xk+1; F�1(�Pk(xk+1))� � �k (43)yk+1 = Pk(xk+1) (44)or dist�xk+1; Bk(�F (xk+1))� � �k (45)yk+1 = �F (xk+1); (46)where Bk and Pk are de�ned as in (29) and (32), respectively. If one of these alterna-tives holds at each k � 0, all limit points of fxkg solve the complementarity problem (1).If F is continuously di�erentiable, r2hi(yi) exists and is positive for all yi 6= 0, whilelimyi!0r2hi(yi) = +1, then the function F+Pk on the left-hand side of (41) is continuouslydi�erentiable.Proof. First consider the exact iteration (41)-(42). Then we can set xk+1[1] = xk+1[2] = xk+1,and (39)-(40) will hold for any �k � 0. The continuous di�erentiability of F + Pk followsfrom the discussion above.Now consider (43)-(44). In this case, we let xk+1[2] = xk+1. Since F and hence F�1constitute maximal monotone operators, the set F�1(y) must be closed and convex for everyy 2 <n (see e.g. [3]). Thus, (43) guarantees the existence of some xk+1[1] 2 F�1(�Pk(xk+1))such that kxk+1[1] � xk+1[2] k � �k. Thus, (39)-(40) can be satis�ed.The analysis of (45)-(46) is similar, except that we have xk+1[1] = xk+1, and (45) guaranteesthe existence of xk+1[2] .Since either xk = xk[1] or xk = xk[2] for every k, the assertion about limit points of fxkgfollows from the limit point properties of fxk[1]g and fxk[2]g 2



RRR 27-96 Page 19(41)-(42) constitute a generalized method of multipliers iteration for the complementarityproblem (1), and by appropriate choice of h, the subproblem function F +Pk of (41) can bemade di�erentiable, if F is di�erentiable. Of course, such an exact procedure may not bepractical. (45)-(46) is implementable in the general case and is likely to be the most usefulinexact version of (41)-(42). However, in special cases where F�1 may be easily computed,(43)-(44) might also �nd application. To attempt to meet either set of approximate con-ditions, one would apply a standard iterative numerical method to (41) until (43) or (45)holds.The dual method set forthin Theorems 2 and 3 has several advantages over the primalmethod of Section 3.1. Most crucially, the supplementary requirements P1 or P2 imposedon F in Theorem 1 may be dropped in place of the far weaker hypotheses of Proposi-tion 4. Furthermore, the stepsize limit and ill-conditioning issues associated with the primalsubproblem F (xk+1) + ck�1(rh(xk+1) � rh(xk)) � 0 do not arise in the dual subproblemF (xk+1) + Pk(xk+1) � 0.On the other hand, the dual method also has some disadvantages. First, the Jacobianof the primal subproblem takes the form rF + ck�1r2h, and can be forced to be positivede�nite by requiring that r2h be everywhere positive de�nite. The Jacobian rF + rPkof the dual subproblem, however, is only guaranteed to be positive semide�nite, unless onerequires rF to be positive de�nite. Second, the primal method has the simple, residual-based approximation rule (33), whereas the dual method requires formulas such as (43)or (45). Depending on the problem, these conditions might be di�cult to verify. Finally, thedual method's theory does not guarantee convergence of the primal iterates fxkg, fxk[1]g, orfxk[2]g, but only makes assertions about limit points.3.3 Primal-Dual Application to ComplementarityThe primal-dual method obtained by applying Proposition 6 to T = TPD = K[F;NC ; I]combines and improves upon the best theoretical features of the primal and dual methods.We now consider the basic recursion (20), as applied to T = TPD. First, we need a Bregmanfunction ĥ on <n � <n, which we construct viaĥ(x; y) = ~h(x) + nXi=1 hi(yi); (47)where the hi are as in the dual method, and ~h is a Bregman function with zone ~S � dom F .We partition the error vector ek of (20), which in this case lies in <n � <n, into subvectorsek[1]; ek[2] 2 <n. Then the fundamental recursion (20), with iterates zk = (xk; yk), Bregmanfunction ĥ, and operator TPD, takes the formF (xk+1) + yk+1 + 1ck �r~h(xk+1)�r~h(xk)� = ek[1] (48)�xk+1 +NC�1(yk+1) + 1ck �rh(yk+1)�rh(yk)� 3 ek[2]; (49)



Page 20 RRR 27-96where h(x) = Pni=1 hi(xi), as before. If we set ek[2] � 0, then (49) is equivalent to Bk(yk+1) 3xk+1, where Bk is de�ned as in (29) for the dual method. Using the prior de�nition of Pk,this condition is in turn equivalent to yk+1 = Pk(xk+1), with Pk as in (32). Substituting thissimple formula into (48), we obtainF (xk+1) + Pk(xk+1) + 1ck �r~h(xk+1)�r~h(xk)� = ek[1]:At this point, application of Proposition 6 is straightforward.Theorem 4 Let F be a continuous monotone function that is maximal when considered asa monotone operator, with maximal open domain D � <n. Suppose (F; l; u) describes acomplementarity problem of the form (1), and that this problem has some solution. Let ~hbe a Bregman function with (open) zone ~S � D, and let the hi, i = 1; : : : ; n be Bregmanfunctions with zone <. Let fckg1k=0 � (0;1) be a sequence of positive scalars bounded awayfrom zero, and suppose that the sequences fxkg1k=0 � ~S, fykg1k=0 � <n, and fdkg1k=0 � <nconform to the recursion formulaeF (xk+1) + 1ck �r~h(xk+1)�r~h(xk)�+ Pk(xk+1) = dk (50)yk+1 = Pk(xk+1) (51)for all k � 0, where Pk is de�ned by (32). Suppose also that P1k=0 ckkdkk < 1, whileP1k=0 ckhdk; xki exists and is �nite. Then fxkg converges to a solution x� of the the com-plementarity problem (1), and yk ! �F (x�). If imhi = < for all i and im ~h = <n, suchsequences are guaranteed to exist. If F is continuously di�erentiable and r2hi(yi) exists andis positive for all yi 6= 0, while limyi!0r2hi(yi) = +1, then the function F + ck�1r~h + Pkin the equation system (50) is continuously di�erentiable. If, in addition, r2~h is everywherepositive de�nite, then the Jacobian rF + ck�1r2~h + rPk of this function is everywherepositive de�nite.Proof. Proposition 5 asserts that TPD is maximal monotone. Let ek = (dk; 0) 2 <n � <nfor all k � 1. Then, similarly to the above discussion, (50)-(51) are equivalent to theBregman proximal recursion (20) with iterates zk = (xk; yk) and the Bregman function ĥ,which has zone ~S � <n. Now, P1k=0 ckkdkk < 1 is equivalent to P1k=0 ckkekk < 1, andhdk; xki = hek; (xk; yk)i = hek; zki, so P1k=1 ckhek; zki exists and is �nite.We can then apply Proposition 6 to give that fzkg = f(xk; yk)g converges to a rootz� = (x�; y�) of TPD +N ~S�<n = TPD:So, x� solves (1) and y� = �F (x�) by the analysis of Section 2.2. The claim of existencefollows directly from Proposition 7. The remaining statements follow from arguments likethose of Section 3.2. 2



RRR 27-96 Page 21Note that the primal-dual method (50)-(51) requires neither the primal method's restric-tions P1 or P2 of Theorem 1, nor the dual method's regularity conditions of Proposition 4.The stepsize limit and ill-conditioning issues of the primal approach are also absent, be-cause we choose the primal-space Bregman function ~h to have zone containing the domainof F , as opposed to having zone intC. At the same time, the approximation criterion of(50) is based on simple measurement of a residual, as in the primal method. The JacobianrF + ck�1r2~h + rPk of the primal-dual subproblem function F + ck�1r~h + Pk combinesthe desirable existence/continuity and positive de�niteness features of the primal and dualmethods. Unlike the dual method, convergence of the primal iterates fxkg is fully guaran-teed.Thus, the iteration (50)-(51) has all the theoretical advantages of the primal and dualapproaches, and the disadvantages of neither. The three methods bear much the samerelationship as the proximal minimization algorithms, methods of multipliers, and proximalmethods of multipliers presented for convex optimization in [30] (for the special case h(x) =(1=2)kxk2) and later in [17] (for general h). We therefore refer to the dual method as a\method of multipliers," and the primal-dual method as a \proximal method of multipliers."4 Computational Results on the MCPLIB Test SuiteWe conclude with some preliminary computational results for the proximal method of mul-tipliers. We coded a version of the algorithm (50)-(51) in MATLAB, and used it to solvethe problems in the MCPLIB collection [14], exploiting the interface developed in [19]. Wenote that most of the problems in the collection do not satisfy the monotonicity condition(5) postulated in our theory. In fact, only the problems cycle and optcont31 are de�nitelyknown to be monotone. However, for the method to be practical, we believe it must robustlysolve a large number of the problems from this standard test suite.In our initial implementation, we set kdkk < 10�6 for all k, that is, we solved (50)essentially exactly at all iterations. With later work, we intend to re�ne this approach,starting from a larger tolerance and gradually decreasing it. We chose h as in (37) withq = 3=2, and set ~h(x) = (1=2)x>Dx, D being a diagonal matrix determined viaDii = 1:0max (0:1 krFii(x0)k ; 10:0) :This choice corresponds to standard problem scaling mechanisms that have proven successfulin [10, 15]. In the interest of further improving scaling, we also de�ne the function Pk slightlydi�erently from (32). Instead, we use Pk(x) = P (x; yk) whereP (x; y) := (rh)�1 �mid�rh(y) + ckD�1(x� l);rh(0);rh(y) + ckD�1(x� u)�� ; (52)D being the diagonal matrix de�ned above. This change corresponds to a simple rescalingof the overall Bregman function ĥ of (47).



Page 22 RRR 27-96By way of illustration, consider the special case of minimization over the nonnegativeorthant, where we have F = rf for some di�erentiable convex function f , l = 0, andu = +1. Then the version of (50)-(51) we implemented would correspond to the followingcubic augmented Lagrangian method, with a quadratic proximal term:xk+1 = argminx2<n 8<:f(x) + 12ck (x� xk)>D(x� xk) + nXj=1max0@13  qykj + ck xjDjj!3 ; 01A9=;yk+1j = max qykj + ckxk+1jDjj ; 0!2:The initial values x0 of the primal variables are speci�ed in the MCPLIB test suite [14].For the initial multipliers, we used the formulay0 = ( P (x0;�F (x0)); kP (x0;�F (x0))k � 10�6�F (x0); otherwise,where P is de�ned by (52).The major work involved in each step of the algorithm is in solving the system of nonlinearequations (50), for which we use a simple backtracking variant of Newton's method. We startby computing a \pure" Newton step for (50), with dk replaced by zero. If this step does notyield a reduction in the residual of (50), we repeatedly halve the step size until a reductionis obtained, or the step is less than 1=1000th of its original magnitude. In the former case,we then attempt another Newton step, repeating the process until the residual of (50) fallsbelow 10�6. We then update the multiplier vector via (51), and check the global residualrk := kF (xk) + ykk. If rk < 10�6, we successfully terminate. Otherwise, if k < 100, we loop,increment k, and execute another \outer" iteration. If k � 100 we quit and declare failure.When the Newton line search fails, that is, a reduction of the step by a factor of 1=1024fails to yield any improvement in the residual of (50), we update the proximal stepsizeparameter ck. In fact, we separately maintain a primal ck (\pck") and a dual ck (\dck"),corresponding to the usage of ck in the equations (50) and (32)/(52), respectively. Allowingfor additional rescaling of ~h, the convergence theory above stipulates that pck and dck beheld in a �xed ratio to one another throughout the algorithm. In practice, we allow a limitednumber of independent adjustments of these two parameters. Assuming monotonicity of F ,our convergence theory applies after the last such independent adjustment.We start by setting pc0 = maxf10; kx0kg and dc0 = 10. Upon failure of the line search,pck is reduced by a factor of 10 and dck is set to 1. After successful solution of (50) to thetolerance of 10�6, both pck and dck are multiplied by 1.05; this adjustment is consistentwith our theory and also with standard techniques for accelerating convergence of proximalmethods. We then calculate yk+1, and if kxk+1 � xkk > 100kyk+1 � ykk, dck is doubled,whereas if 100kxk+1 � xkk < kyk+1 � ykk then dck = kykk.Tables 1 and 2 summarize our computational results. \Iterations" is the total number of\outer" iterations, that is, the value of k necessary to obtain rk < 10�6. \Newton steps" is the



RRR 27-96 Page 23total number of Newton steps taken, accumulated over all outer iterations. We also report thenumber of times that pck and dck are updated independently of one another; these counts donot include the simultaneous multiplications by 1.05. Note that there were no independentupdates required for the two guaranteed monotone problems, as our convergence theorywould suggest. For the remaining problems, independent updates were infrequent. Since ourimplementation is preliminary and MATLAB is an interpreted language, we do not list runtimes. The \primal residual" column gives the �nal value of kxk �mid�l; xk � F (xk); u�k.As can be seen from the tables, and by comparison with the results in [2], the algorithmis fairly robust. For all but 3 of the 79 instance/starting point combinations attempted, itterminates within 100 iterations with a primal residual of 10�6 or less, indicating convergenceto a solution. Two of the failures were for the pgvon10* problems; since these problems areknown to be poorly de�ned at the solution, we do not consider these failures to be a seriousliability. The other failure, on hydroc20, seems to be due to convergence di�culties in themultiplier space. Hydroc20 contains a large number of nonlinear equations, and we speculatethat (37) with q = 3=2 may not be an ideal penalty kernel to use in such cases.References[1] H. Attouch and M. Th�era. A general duality principle for the sum of two operators.Journal of Convex Analysis. 3:1{24, 1996.[2] S. C. Billups, S. P. Dirkse, and M. C. Ferris. A comparison of large scale mixed com-plementarity problem solvers. Computational Optimization and Applications, 7:3{25,1997.[3] H. Br�ezis. Op�erateurs Maximaux Monotones et Semi-Groupes de Contractions dans lesEspaces de Hilbert. North-Holland, Amsterdam, 1973.[4] R. E. Bruck. An iterative solution of a variational inequality for certain monotoneoperators in Hilbert space. Bulletin of the American Mathematical Society, 81:890{892,1975.[5] R. S. Burachik and A. N. Iusem. A generalized proximal point algorithm for the nonlin-ear complementarity problem. Working paper, Instituto de Matem�atica Pura e Aplicada,Rio de Janeiro, 1995.[6] R. S. Burachik and A. N. Iusem. A generalized proximal point algorithm for the varia-tional inequality problem in a Hilbert space. Working paper, Instituto de Matem�aticaPura e Aplicada, Rio de Janeiro, 1995.[7] R. S. Burachik, A. N. Iusem, and B. F. Svaiter. Enlargement of monotone operatorswith applications to variational inequalities. Set-Valued Analysis, to appear, 1997.
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Problem Newton Updates Updates Primal(Starting Point) Iterations Steps of pck of dck Residualbertsekas (1) 15 40 0 0 5:4� 10�7bertsekas (2) 15 47 0 0 6:3� 10�7bertsekas (3) 6 59 0 0 1:2� 10�8billups (1) 47 350 3 21 4:9� 10�7choi (1) 5 8 0 1 9:3� 10�7colvdual (1) 9 29 1 1 7:2� 10�8colvdual (2) 7 36 0 0 2:4� 10�7colvnlp (1) 9 28 1 1 7:4� 10�8colvnlp (2) 7 25 0 0 2:3� 10�7cycle (1) 4 11 0 0 8:3� 10�7ehl kost (1) 4 15 0 0 5:5� 10�7ehl kost (2) 4 15 0 0 5:5� 10�7ehl kost (3) 4 15 0 0 5:5� 10�7explcp (1) 6 21 0 0 5:6� 10�7freebert (1) 15 39 0 0 4:0� 10�7freebert (2) 9 24 0 0 8:4� 10�7freebert (3) 15 39 0 0 3:7� 10�7freebert (4) 15 40 0 0 5:4� 10�7freebert (5) 9 24 0 0 8:4� 10�7freebert (6) 15 40 0 0 5:0� 10�7gafni (1) 9 23 0 0 2:7� 10�7gafni (2) 9 26 0 0 3:0� 10�7gafni (3) 9 28 0 0 3:3� 10�7hanskoop (1) 5 30 0 0 1:4� 10�7hanskoop (2) 11 108 1 1 8:0� 10�7hanskoop (3) 5 17 0 0 1:1� 10�7hanskoop (4) 5 26 0 0 1:4� 10�7hanskoop (5) 11 78 1 1 7:0� 10�7hydroc06 (1) 5 9 0 0 5:8� 10�7hydroc20 (1) failedjosephy (1) 13 105 2 2 6:3� 10�7josephy (2) 8 90 1 1 5:6� 10�8josephy (3) 7 138 1 1 8:7� 10�7josephy (4) 5 14 0 0 8:9� 10�9josephy (5) 4 10 0 0 4:4� 10�7josephy (6) 8 166 1 1 1:9� 10�7Table 1: Primal-dual smooth multiplier method applied to MCPLIB problems (part 1).



RRR 27-96 Page 25Problem Newton Updates Updates Primal(Starting Point) Iterations Steps of pck of dck Residualkojshin (1) 56 248 3 3 5:3� 10�7kojshin (2) 9 151 1 1 8:4� 10�8kojshin (3) 43 357 4 4 8:6� 10�7kojshin (4) 19 214 2 2 8:4� 10�7kojshin (5) 20 227 2 2 5:5� 10�7kojshin (6) 52 391 3 3 7:6� 10�7mathinum (1) 5 9 0 0 4:1� 10�8mathinum (2) 5 8 0 0 1:3� 10�8mathinum (3) 5 13 0 0 2:4� 10�8mathinum (4) 5 9 0 0 4:5� 10�8mathisum (1) 4 9 0 0 2:5� 10�7mathisum (2) 5 11 0 0 1:9� 10�8mathisum (3) 5 19 0 0 3:9� 10�8mathisum (4) 4 8 0 0 9:8� 10�7methan08 (1) 4 7 0 1 2:9� 10�7nash (1) 5 10 0 0 1:2� 10�8nash (2) 4 9 0 0 5:2� 10�8opt cont31 (1) 6 85 0 0 4:7� 10�7pies (1) 7 29 1 1 6:5� 10�7pgvon105 (1) failedpgvon106 (1) failedpowell (1) 4 12 0 0 4:2� 10�7powell (2) 6 21 0 0 1:0� 10�7powell (3) 14 176 2 2 2:8� 10�7powell (4) 6 21 0 0 8:2� 10�8powell mcp (1) 5 10 0 0 2:2� 10�7powell mcp (2) 5 10 0 0 3:8� 10�7powell mcp (3) 5 14 0 1 1:6� 10�7powell mcp (4) 5 13 0 0 6:7� 10�7scarfanum (1) 6 24 0 0 3:0� 10�7scarfanum (2) 6 28 0 0 3:0� 10�7scarfanum (3) 7 28 0 0 1:5� 10�7scarfasum (1) 6 25 0 0 1:4� 10�7scarfasum (2) 6 21 0 0 1:4� 10�7scarfasum (3) 10 36 0 0 2:9� 10�7scarfbnum (1) 43 133 0 0 5:9� 10�7scarfbnum (2) 89 393 0 21 9:0� 10�7scarfbsum (1) 18 81 0 0 5:7� 10�7scarfbsum (2) 18 66 0 0 5:8� 10�7sppe (1) 6 21 0 0 5:8� 10�8sppe (2) 5 22 0 0 6:9� 10�9tobin (1) 6 30 0 0 3:5� 10�8tobin (2) 6 47 0 0 3:3� 10�8Table 2: Primal-dual smooth multiplier method applied to MCPLIB problems (part 2).
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