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COMPLEMENTARITY PROBLEMS

Jonathan Eckstein Michael C. Ferris

Abstract. This paper describes several methods for solving nonlinear complemen-
tarity problems. A general duality framework for pairs of monotone operators is
developed and then applied to the monotone complementarity problem, obtaining
primal, dual, and primal-dual formulations. We derive Bregman-function-based gen-
eralized proximal algorithms for each of these formulations, generating three classes
of complementarity algorithms. The primal class is well-known. The dual class is
new and constitutes a general collection of methods of multipliers, or augmented La-
grangian methods, for complementarity problems. In a special case, it corresponds
to a class of variational inequality algorithms proposed by Gabay. By appropriate
choice of Bregman function, the augmented Lagrangian subproblem in these meth-
ods can be made continuously differentiable. The primal-dual class of methods is
entirely new and combines the best theoretical features of the primal and dual meth-
ods. Some preliminary computation shows that this class of algorithms is effective
at solving many of the standard complementarity test problems.
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1 Introduction

This paper concerns the solution of the nonlinear complementarity problem (NCP). Let
| € [—00,00)" and u € (—o0,00]", with | < u. Define W(l,u) = {z € R" | | < z < u},
suppose W(l,u) C D C R", and let F': D — R™ be continuous. Then, the NCP is to find
some z € R" satisfying the conditions

[<z<u mid(l,x — F(z),u) = x, (1)

where mid(a, b, ¢) denotes the componentwise median of the vectors a, b, and ¢. This problem
is a special case of the standard wvariational inequality problem: given F' and a set C' C R”,
find some x such that

rel (F(zx),y—xz)>0 YyeC . (2)

If we take C' = W(l,u), then (2) is identical to (1).
The special case of [ =0 and u = oo reduces (1) to

x>0 max(x — F(z),0) =z,

or equivalently
x>0 F(z)>0 (x, F(x)) =0. (3)

If the mapping F is affine, then (3) is the classical linear complementarity problem, or LCP.
In the theoretical portion of this paper, we will restrict our attention to the monotone
case in which F' satisfies

(F(z) = F(y),r —y) >0 VuxyecR" (4)

This assumption will allow us to model (1) as the problem of finding a root of the sum of
two monotone operators (see e.g. [3]), as will be explained in Section 2. To find such a root,
we then apply generalized proximal algorithms based on Bregman functions [6, 7, 9, 12, 17,
18, 33].

A number of recent papers [5, 6, 8] have stressed the ability of proximal terms arising
from appropriately-formulated Bregman functions to act like barrier functions, giving rise
to “interior point” proximal methods for variational inequality problems. Such methods are
derived by applying Bregman proximal methods to a primal formulation of (1) or (2).

In contrast, we emphasize dual and primal-dual formulations. Applying Bregman proxi-
mal methods to such formulations yields augmented-Lagrangian-like algorithms, or “methods
of multipliers.” In the dual case, we obtain a class of methods generalizing [21, “ALG1”].
By careful choice of Bregman function, we generate methods which involve solving (pro-
vided that F' is differentiable) a once-differentiable system of equations at each iteration,
as opposed to a nonsmooth system, as in [21]. Therefore, we can use a standard algorithm
such as Newton’s method to solve these subproblems. A similar phenomenon has already
been pointed out for smooth convex programming problems in [24]. That paper notes that
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one of the augmented Lagrangian methods proposed in [17] yields a twice-differentiable aug-
mented Lagrangian, as opposed to the classical once-differentiable augmented Lagrangian
for inequality constraints (e.g. [30]).

In producing sequences of subproblems consisting of differentiable nonlinear equations,
our algorithms bear some resemblance to recently proposed smoothing methods for the
LCP and NCP [10, 11, 22]. However, such methods are akin to pure penalty methods in
constrained optimization — they have a penalty parameter that must be driven to infinity
to obtain convergence. By contrast, our algorithms are generalized versions of augmented
Lagrangian methods: there is a Lagrange multiplier adjustment at the end of each iteration,
and we obtain convergence even if the penalty parameter does not approach infinity.

In the course of our derivation, Section 2 develops a simple duality framework for pairs of
set-valued operators. The framework resembles [1], but allows the two mappings in the pair
to operate on different spaces. A similar duality structure for pairs of monotone operators
appears in [20]. The main distinction of our approach, as opposed to [1, 20], is to introduce
a primal-dual, “saddle-point” formulation, in addition to the standard primal and dual
formulations. Towards the end of Section 2, we show how to apply the duality framework to
variational inequalities and complementarity problems, refining the framework for variational
inequalities that appears in [21, 27].

Section 3 combines the duality framework of Section 2 with Bregman-function-based
proximal theory and shows how to produce new, smooth methods of multipliers for (1). The
primal-dual formulation yields a new prozimal method of multipliers for (1), along the lines
of the proximal method of multipliers for convex programming (e.g. [30]). This primal-dual
method combines the best theoretical features of primal methods in the spirit of [5, 6, 8] with
the best features of the new dual method. Some preliminary computational results on the
MCPLIB [14] suite of test problems are given in Section 4. These results show that proximal
method of multipliers is effective even when the underlying problem is not monotone.

2 A Simple Duality Framework for Pairs of Monotone
Operators

In this paper, an operator 1" on a real Hilbert space X is a subset of X x Y, where Y is
also a Hilbert space. We call Y the range space of T'; typically, but not always, we will have
X=Y.

Forevery suchT C X xY andx € X, T(z) ={y €Y | (z,y) € T} defines a point-to-set
mapping from X to Y; in fact, we make no distinction between this point-to-set mapping
and its graph 7. Thus, the statements y € T'(z) and (z,y) € T are completely equivalent.
The inverse of any operator T is 7! = {(y,z) € Y x X | (z,y) € T}, which will always
exist. Trivially, (T7')~' = T. We define

dom7T ={z |T(x) #0}={reX |FyeY:(v,y) €T},

and similarly im7 = dom(7" ') ={y €Y |dz € X : (z,y) € T}. When T'(x) is necessarily
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a singleton set {y} for all x, that is, 7" is the graph of some function dom7 — Y, we say
that T is single-valued, and we may write, in a slight abuse of notation, 7'(x) = y instead of
T(r) = {y}.

Given two operators 7" and U on X with the same range space Y, their sum T + U
is defined via (T'+ U)(z) = T(z) + U(x) = {t+u |t € T(z),u € U(x)}. If T is any
operator on X and U an operator on Z, we define their direct product T @ U on X X Z via
(TRU)(x,z) =T(x) x U(z).

An operator 7" on X is said to be monotone if its range space is X and

(x—a'y—y) 20 V(ry) (@ y)eT (5)

Note that (5) is a natural generalization of (4): if one takes X = " and T to be the graph of
the function F', (5) reduces to (4). Note also that monotonicity of 7" and T~! are equivalent,
and that it is straightforward to show that if two operators 7" and U are both monotone,
then so is T'+ U.

A monotone operator T' is maximal if no strict superset of T is monotone, that is,

() e X x X, (e —2',y—y) >0V (,y)eT = (z,y)eT.

Maximality of an operator and maximality of its inverse are equivalent.
The fundamental problem customarily associated with a monotone operator 7' is that of
finding a zero or root, that is, some = € X such that 0 € T'(z) (see e.g. [3, 31]).

2.1 The Duality Framework

Suppose we are given an operator A on a Hilbert space X, an operator B on a Hilbert space
Y, and a linear mapping M : X — Y. We will denote such a triple by P(A, B, M). For the
development in Section 3, we will require only the special case X =Y = R" and M = I,
but we consider the general P(A, B, M) in order to make connections to [16, 20] and other
previous work.

We associate with P(A, B, M) a primal formulation of finding x € X such that

0€ A(x) + M"B(Muz), (6)

or equivalently 0 € Tp(x) = [A + M "BM]| (), where M " denotes the adjoint of M.
Similarly, we associate with each P(A, B, M) a dual formulation of finding y € Y such
that
0€ —MA (—M"y)+ B~ '(y), (7)

or equivalently 0 € Th(y) = [-MA ' (—=M")+ B'| (y). Note that (7) is the primal formu-
lation of P(B™1, A7, —MT), and that twice applying the transformation

P(A,B,M)— P(B~' A —MT)
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produces the original triple P(A, B, M); that is, the dual formulation of P(B~*, A™1, — M) is
the original primal formulation (6). The duality scheme of [1] is similar, with the restrictions
X=Yand M =1.
We also associate with P(A, B, M) a primal-dual formulation, which is to find (z,y) €
X x Y such that
0€ A(x)+ My 0€—Mz+ B (y), (8)

or equivalently 0 € Tpp(z,y) = K[A, B, M|(x,y), where K[A, B, M] is defined by

K[A, B, M] ( jj ) = (A(x) X B_l(y)) + l _3\4 J%T ] ( z ) _ (9)

y

In the special case of convex optimization, we can take A = 0f, the subdifferential map of
some closed proper convex function f : X — (—o0, +0oc], and B = g for some closed proper
convex ¢ : Y — (—o00,400]. Then the primal formulation is equivalent to the optimization
problem

mip f(z) + g(Ma). (10)

Similarly, the dual formulation is equivalent to

min f*(=M"y) +¢*(y), (11)

where “*” denotes the convex conjugacy operation [28, Section 12]. Furthermore, the sub-
differential of the generalized Lagrangian L : X x Y — [—o00, +00| defined by

L(z,y) = f(z) + (y, Mz) — g"(y)

is precisely K[A, B, M| = K[0f,0g, M|]. Therefore, the primal-dual formulation is equivalent
to finding a saddle point of L, that is, to the problem

. T Lk
min max f(z) +y" Mz — g°(y). (12)

The standard convex programming duality relations between (10), (11), and (12) may be
viewed as a consequence of the higher-level, more abstract duality embodied in the following
elementary proposition, whose proof is omitted.

Proposition 1 The following statements are equivalent:
(i) (x,y) solves the primal-dual formulation (8).
(i) re X, yeY, (x&,—M"y) € A, (Mz,y) € B.

Furthermore, x solves the primal formulation (6) if and only if there exists y € Y such that
(1)-(ii) hold, and y solves the dual formulation (7) if and only if there exists x € X such that

(i)-(ii) hold.
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Note that for general choices of A, B, and M, this duality framework is slightly weaker
than, for example, linear programming, in that x being a primal solution and y being a dual
solution are not sufficient for (x,y) to be an solution of the primal-dual (“saddle point”)
formulation, even if A and B are maximal monotone. For an example of this phenomenon,
consider the case X =Y =R? M =1, A(x, 7o) = {(—x2 z1)}, and B(zy x2) = {(xy —x1)}.

We now turn to the issue of solving (6), (7) or (8), under the assumption that A and B
are maximal monotone.

Consider first the primal formulation (6). Given that B is monotone, it is straightforward
to show that M " BM is also monotone. The monotonicity of A then gives the monotonicity
of Tp = A+ MT"BM. Therefore, the primal formulation is a problem of locating a root
of the monotone operator 7p on X. The convergence analyses of root-finding methods for
monotone operators typically require that the operator be not only monotone, but also
maximal. While Tp will typically be maximal if A and B are, such maximality cannot
be guaranteed without imposing additional regularity conditions. Some typical sufficient
conditions for Tp to be maximal are that A and B be maximal, that M M " be an isomorphism
of Y, thus guaranteeing maximality of M "BM (see [21, Proposition 4.1] or [20, Proposition
3.2]), and a condition such as dom A N intdom(BM) # (), in order to ensure maximality
of the sum Tp = A+ MTBM [29]. This last condition can be weakened somewhat if X is
finite-dimensional.

The analysis of the dual formulation is similar. The formulation involves locating the
root of the operator Tp = —M A~ (—=M") + B! on Y, which is necessarily monotone by
the monotonicity of A and B, but is not guaranteed to be maximal solely by maximality of
A and B. One must impose similar conditions to the primal case, such as M "M being an
isomorphism of X, and dom(A*(—=MT7)) Nintim B # 0.

The primal-dual formulation also involves finding the root of a monotone operator: we
establish in Proposition 2 below that the operator Tpp = K[A, B, M] on X x Y (with the
canonical inner product induced by X and Y') is monotone if A and B are. The proposition
also shows that the primal-dual is in some sense the “best behaved” of our three formulations,
in the sense that K[A, B, M| is maximal whenever A and B are both maximal.

Proposition 2 If A and B are monotone operators on the Hilbert spaces X and Y, respec-
tiely, and M is any linear map X — Y, then the operator K[A, B, M| on X xY defined
by (9) is monotone. Furthermore, if A and B are both mazimal, K[A, B, M] is mazimal.

Proof. Set

o -1 o 0 MT T

Note that 77 and T3 are both monotone, and K[A, B, M| = T} +T5. If A and B are maximal,
T is also maximal. The linear map 75 is also maximal [26], and maximality of 77 + T then
follows from [29, Theorem 1(a)]. 0

Note that it is also straightforward to prove the theorem from first principles, without
invoking the deep analytical machinery of [26, 29].
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In summary, given a linear M and monotone A and B, we can formulate the same problem
in three essentially equivalent ways: finding a root of the primal monotone operator 1Tp =
A+ M"BM on X, finding a root of the dual monotone operator Tp = —MA "} (—=M")+ B!
on Y, or finding a root of the primal-dual monotone operator Tpp = K[A, B,M]| on X x Y.
Of these operators, Tpp is the only one guaranteed to be maximal, given the maximality of
A and B.

2.2 Dual and Primal-Dual Formulations of Variational Inequality
and Complementarity Problems

We now return to the variational inequality problem (2), where F' : D — R™ satisfies the
monotonicity condition (4), D O C, and C is a closed convex set. Define the operator
N CCO xR CR" x R" via

Nc(x):{q{)f%?ﬁ”l(d,y—@SO VyeC}, i;g (13)

It is well-known that N¢ is maximal monotone on R". Furthermore, the variational inequal-
ity (2) is equivalent to the problem

0 € F(z) + No(x). (14)

We take (14) as our primal formulation in the duality framework of (6), (7), and (8). Con-
sequently, we let A = F, B = Ng, X =Y =R", and M = I, whence Tp = F + Ngo. We
then have Tp = —F~'(—1I) + N¢~', and the problem dual to (14) is thus

0€—F '(—y)+ N '(v), (15)

where “~1” denotes the operator-theoretic inverse. F~! and Ny~ may both be general set-
valued operators on R”, in the sense of Section 2. Although the notation is different, this
dual problem is essentially the same dual proposed in [21, 27]. The formulation (15) may
appear somewhat awkward, but we will not have to work with it directly in a computational
setting. It will, however, prove very useful in deriving algorithms.

It is a simple consequence of Proposition 1 that y solves (15) if and only if y = —F(z)
for some solution x of (14), or equivalently of the variational inequality (2).

The primal-dual formulation, in this setting, is to find a zero of the operator Tpp =
K|[F, N¢, I| defined via

—T

Tin(e.) = (Flo) x Ne™ ) + (2 )

Equivalently, x and y solve the system



RRR 27-96 PAGE 7

Y

Figure 1: The operator N; on R (left), and its inverse N;~" (right).

that is, x solves the variational inequality (2), and y = —F'(x).

We now investigate the structure of Ng and Ng™' in the case of the NCP (1), where
C=W(u)={reR" |l <z <u} In this case, N¢ is the direct product of n simple
operators on R of the form

No = | ({0}  (=00,0)) U (I i) x {0}) U ({us} x (0,+00))] 1 (R x R).

as depicted on the left side of Figure 1. It then follows that No~"' is the direct product of
the n operators

N [((_00,0) < 413) U ({0} x [y ui]) U ((0,+50) {ui})] N <§R x §R> .

as depicted on the right side of Figure 1.

Since maximality is needed to prove convergence of the solution methods we propose in
Section 3, we now address the question of maximality of F', Tp = F+ N¢, Tp = —F~}(=I)+
N¢™t, and Tpp = K[F, N¢, 1.

Proposition 3 Let F be a continuous monotone function on R™ with open domain D D
C={zxeR"|l<z<u}. Then Tp = F + N¢ is mazimal monotone.

Proof. Let F' be some max1mal extension of F' into a monotone operator [32 Proposition
12.6]. Then we have dom F D D > C = dom N¢ # (), and therefore ri dom F' N ridom N¢ #
M, where “ri” denotes relative interior [28, Section 6]. From [29] we have that F' 4+ N must
be maximal. Now, the openness of D and the analysis of [26, Theorem 4] imply that F

agrees in value with ' on D D C' = dom N¢ = dom Tp, so it follows that F'+ No = Tp. 0
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Proposition 4 Suppose F' is a continuous monotone function on R"™ that is mazrimal as a
monotone operator (some sufficient conditions are im(I + F) = R™ or that F' has mazimal
open domain). Suppose riim F' contains some point y € R with the property that

yu = 0 Vi: [; = —oo, u; = +x
vy < 0 Vi: l; = —oo, u; < 400 (18)
y, > 0 Vi: [; > —o00, u; = 40

Then Ty = —F~Y(—1) + N¢ ' is mazimal, where C = {x € R" |1 <z < u}.

Proof. Given that F' constitutes a maximal monotone operator, it is straightforward to show
that —F~!(—T) is also maximal. Now, dom(—F~'(—I)) = —im F. By appealing to (17), it
is clear that the conditions (18) on y are equivalent to —y € ridom(N¢ '). Therefore, we
have ridom(—F~*(—1)) N ridom(Ng ') # 0. The maximality of N¢ and [29] then imply
the maximality of T, = —F (1) 4+ Ng~ ' O

Note that if [ > —oco and u < +oo, the conditions (18) are void, and Proposition 4 re-
quires only maximality of F'. Finally, we address the maximality of Tpp with the following
proposition, which follows immediately from Proposition 2 and the maximality of F' and N¢.

Proposition 5 Suppose F' is a monotone function on R" that is maximal as a monotone
operator. Then, for any closed convex set C O R", the operator Tpp = K[F, N¢, 1] is
mazimal.

3 Bregman Proximal Algorithms for Complementarity
Problems

For the remainder of this paper, we let C' = W(l,u) = {r e R" | [ <z <u}. We now
have three formulations of the monotone complementarity problem (1): finding a root of
the primal monotone operator 7p = F' + N¢, finding a root of the dual monotone operator
Tp = —F~Y(—1I) + N¢ !, and finding a root of the primal-dual monotone operator Tpp =
K|[F,N¢,I]. We can attempt to solve (1) by applying any method for finding the root of a
monotone operator to either Tp, T, or Tpp. In this paper, we employ only the Bregman-
function-based proximal algorithm of [18], and study the algorithms for (1) that result when
it is applied to Tp, Tp, and Tpp.

We now describe the algorithm of [18] for solving the inclusion 0 € T'(x), where 7" is a
maximal monotone operator on R". Earlier treatments of closely related algorithms may be
found in [6, 7, 9, 12, 17, 23, 33]

The algorithm in [18] requires two auxiliary constructs, a function h and a set S. Given
two points z, y € R” and a function h differentiable at y, we define

Dy(z,y) = h(z) — h(y) — (Vh(y),r —y). (19)

We then say that h is a Bregman function with zone S if the following conditions hold [18]:



RRR 27-96 PAGE 9

B1l. S C R" is a convex open set.

B2. h:R" — R U {+o0} is finite and continuous on S.

B3. h is strictly convex on S.

B4. h is continuously differentiable on S.

B5. Given any x € S and scalar «, the right partial level set

L(z,a) ={y | Dn(z,y) < a}

is bounded.
B6. If {y*} C S is a convergent sequence with limit >, then Dj,(y>,y*) — 0.

B7. If {vF} € S, {w*} C S are sequences such that w* — w*> and {v*} is bounded,
and furthermore Dy, (v*, w*) — 0, then one has v¥ — w™.

Examples of pairs (h, S) meeting these conditions may be found in [9, 13, 17, 33], and many
references therein. In particular, [13] gives some general sufficient conditions for (h,S) to
satisfy B1-B7. We now state the main result of [18].

Proposition 6 Let T be a mazimal monotone operator on R", and let h be a Bregman

function with zone S, where S N ridomT # (). Let any one of the following assumptions
A1-A3 hold:

Al1. S O domT.

A2. T = 0f, the subdifferential mapping of some closed proper convex function
fiR" = RU {+00}.

A3. T has the following two properties (see, e.g. [6, 7, 8]):
(i) If {(a*, ")} C T, {2F} C S, and {«*} is convergent, then {y*} has a
limit point;
(ii) T is paramonotone [4, 8/, that is, (z,y), (2',y') € T and
(v —a"y—y)=0
collectively imply that (z,y') € T.

Suppose the sequences {z¥},~, C S and {e*},", C R conform to the recursion

T (A + % (Vh(zk+1) - Vh,(zk)) > e, (20)

where {ck}zozo s a sequence of positive scalars bounded away from zero. Further suppose that

S et < oo (21)

k=0
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and

oo
> <ek, zk> exists and is finite. (22)
k=1

Then if T =T + Nz has any roots, {z*} converges to some 2 with f(z"o) > 0.
Proof. By minor reformulation of [18, Theorem 1]. O

Similar forms for the error sequence can be found for example in [25]. Note that the
condition (22) is implied by the more easily-verified condition

o0

> cxlle®[[Il28]) < oo (23)
k=0

Furthermore, when S or dom 7 is bounded, {z*} is necessarily bounded, and (21) implies (23)
and (22).

One question not addressed in Proposition 6 is whether sequences {z¥},~, C S and
{ek},7 | C R* conforming to (20) are guaranteed to exist. The following proposition gives
sufficient conditions for the purposes of this paper.

Proposition 7 Let T be a mazimal monotone operator on R, let {cy},-, be a sequence of
positive scalars, and let h be a Bregman function with zone S O domT". Then if imVh = R",
sequences {2}, C S and {e*},, C R" jointly conforming to (20) exist.

Proof. Set e® = 0 for all k, and consult case (i) of [17, Theorem 4]. [

We now consider applying Proposition 6 with either 7' = Tp, T' = Tp, or T' = Tpp. Each
choice will yield a different algorithm for solving the complementarity problem (1).

3.1 Primal Application to Complementarity

The most straightforward application of Proposition 6 to the complementarity problem (1)
is to set T = Tp = F + N¢. Substituting T = F + N¢ and 2*¥ = ¥ into the fundamental
recursion (20) and rearranging, we obtain the recursion:

1

Pt + = (Vh(zH) - Vh(xk))] + No(@1) 3 e, (24)
k

In other words, 2%*! is an ||e||-accurate approximate solution of the complementarity prob-

lem .
[<z<u mid(l,x—Fk(x),u) =,

where Fy.(z) = F(x) + ¢~ (Vh(z) — Vh(z*)). For general choices of h, there appears to be
little point to such a procedure: to solve a single nonlinear complementarity problem, we
must now (approximately) solve an infinite sequence of similar nonlinear complementarity
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problems. However, the situation is more promising in the special case that [ < u, the zone
SofhisintC ={x € R" |l <z <u}, and ||[Vh(z)|| = oo as = approaches any T € bd C.
In this case, we must have ¥ € int C for all k& > 0. Since N¢(x) = {0} for all x € int C,
we can drop the N (zF*1) term from the recursion (24), reducing it to the equation

F) + = (Vh() - Vh(z*)) = ¢ (25)
k

So, each iteration requires solving the nonlinear equation F(z)+(1/cx)Vh(z) = (1/cx) Vh(z¥)
for z within accuracy ||e¥||. If F is differentiable, then F + ¢,~'Vh is differentiable on
int C. Thus, we can solve a nonlinear complementarity problem by approximately solving
a sequence of differentiable nonlinear systems of equations. Since VA approaches infinity
on the boundary of C', it acts as a barrier function that simplifies the subproblems by
removing boundary effects. This phenomenon has already been noted in numerous prior
works, including [5, §].

However, setting S = int C' also has drawbacks. First, in attempting to apply Proposi-
tion 6, S = int C' rules out invoking assumption Al, forcing one to appeal to assumptions
A2 or A3, each of which places restrictions on the maximal monotone operator 7. In ap-
plying Proposition 6 to the primal formulation, these restrictions on 7" imply restrictions
on the monotone function F'. The following result summarizes what we can say about the
convergence of method (25) for complementarity problems:

Theorem 1 Suppose the complementarity problem (1) has some solution, where | < u, F is
monotone and continuous on some open set D O C ={x € R" || <z <u}, and F satisfies
at least one of the following restrictions:

P1. F(z) =V f(x) for all x € C, where f is convex and continuously differentiable
on C.

P2. Forallz,a' € C, (x —a', F(x) — F(2')) = 0 implies F(x) = F(2').

Let h be a Bregman function with zone S = intC, where lim, 5 |[|Vh(w)|| = oo for any
w € bdS = bdC. Suppose the sequences {z*},-, C S, {e*},, C R*, and {cr}r, C
[c,00) C (0,00) satisfy the recursion (25) and that 52, cxlle¥]| < oo, while 2 cx(eF, 2)
exists and is finite. Then {2*} converges to a solution of the NCP (1).

Proof. (25) is equivalent to the fundamental recursion (20) of Proposition 6 with ' = Tp =
F + N¢ and 2% = 2. The conditions on {ef} are identical to the error conditions (21)
and (22) of Proposition 6. The condition that F' be continuous on D ensures that Tp will
be maximal, via Proposition 3. Therefore, we may invoke Proposition 6 if we can show at
least one of its alternative assumptions A1-A3 hold.

Now consider assumption P1. In this case, we have Tp = Vf + No = Vf + 00(-|C) =
O(f +6(-|C)), where the last equality follows from [28, Theorem 23.8] and dom f O C =
dom §( - |C') # (). Therefore, assumption A2 of Proposition 6 is satisfied.
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Alternatively, assume that P2 holds. Since F' is continuous on D O C' = § and N¢(x) =
{0} for all z € S = int C, assumption A3(i) holds for 7' = F + N¢. P2 implies that A3(ii)
holds for T = F. It is also easily confirmed that A3(ii) holds for T = N¢. Finally, it is
straightforward to show that paramonotonicity is preserved under the addition of operators,
so A3(ii) also holds for T'= F + N¢.

We may therefore invoke Proposition 6 and conclude that {2*} must converge to a root
of Tp + Ng = Tp + NC = Tp, that iS, a solution of (].)

This result represents a minor advance in the theory of primal complementarity methods,
in that most prior results have required exact computation of each iteration, that is, e¥ = 0,
the exception being [7]. The approximation condition (25) is much more practical to check
than the corresponding condition in [7].

We cannot apply Proposition 7 to show existence of {z*} in this setting, because S 2
dom T'. However, suitable existence results may be found in [5, 6, 7, 8|.

Note that in the case | > —oo and u < +o0, the condition on 332, cx(e¥, z¥) is an
immediate consequence of 3.3°, c||e¥|| < oo, and becomes redundant. It only comes into
play when there is a possibility of {#*} being unbounded.

While the restriction that ' be continuous on D D C seems reasonable, the alternative
hypotheses P1 and P2 impose extra restrictions on F'. Furthermore, while it is not necessary
to drive ¢ to infinity to obtain convergence, as in a true barrier method, the procedure does
inherit some numerical difficulties typical of barrier algorithms. The nonlinear system to
be approximately solved in (25) becomes progressively more ill-conditioned as x approaches
bd C', where the solution is likely to lie. This ill-conditioning constrains the numerical meth-
ods that may be used. Furthermore, the function on the left-hand side of (25) is not defined
for = outside int C'; to apply a standard numerical procedure such as Newton’s method,

one needs to install appropriate safeguards to avoid stepping to or evaluating points outside
int C'.

3.2 Dual Application to Complementarity

In situations where the above drawbacks of the primal method are significant, we suggest
dual or primal-dual algorithms, as described below. In these approaches, the Bregman
function acts through the duality framework to provide a smooth, augmented-Lagrangian-
like penalty function, rather than the barrier function one obtains from a primal approach.
We first consider a purely dual approach, applying Proposition 6 to 1" = Tp.

The fundamental Bregman proximal recursion (20) for 7' = T}, and iterates zF = y* takes
the form

—F~H (y™) + No (™) + Ci (VA" = Vh(yh)) 5 €. (26)
k

Since the domain of Tp will in general be unknown, we will choose the Bregman-function/zone
pair (h,S) so that S = R". This choice ensures that T=T+ Ng =1p + Npn =1, and
thus that the recursion will locate roots of 1p.



RRR 27-96 PAGE 13

In general, it will not be possible to express the inverse operator F'~! in a manner con-
venient for computation, so we cannot work directly with the formula (26). Instead, we
“dualize” the recursion using Proposition 1. For simplicity, temporarily assume that e* = 0,
so that (26) becomes

1
P + Ne H ') + = (VA = Vh(yh)) 50 (27)
Ck
We now take (27) to be the primal problem in the framework of Section 2.1, setting X =
Y =R"and M = 1. We take A = Ay and B = By, where A, and By, are defined by

Arly) = —F'(—y) (28)

Bily) = Ne')+ - (Vhw) - VAGY) (29)
Note that if F' constitutes a maximal monotone operator, A = A, will be maximal, and No "
is maximal by the maximality of No. VA is maximal monotone since it is the subgradient
map of the function h, continuous on R*. The operations of subtracting a constant Vh(y*)
and scaling by 1/c¢, preserve this maximality. Finally, since dom VA = R", we also have
maximality of B = By from [29].

Invoking Proposition 1, the problem dual to (27), or equivalently Ax(y) + Bi(y) 2 0, is
of the form —A;~'(—x) + B, () 3 0, where we are interchanging the notational roles of
“r” and “y”. It is immediate that —A, ' (=2) = —[-F~'(=1)]"}(~2) = —(—=F(~(~2))) =
F(z), so —A, Y (=I)=F.

We now consider By, '. We know that No ! has the separable structure No ' = N, ' ®
... ® N, ™', where N;~! is given by (17). Further assume that h has the separable structure
h(y) = >, hi(y;), whence (as an operator) Vh = Vh; ® ... ® Vh,. Assume temporarily
that [ > —oo and u < +00. Then By = By ® ... ® By,, where each Bjy; is an operator on
R given by

, {li + % (Vhi(7) - Vh,i(yf))} v <0
Byi(v) = [zi + % (Vhi(0) = Vhi(yF)) , us + % (Vhi(0) - Vhi(yf))] v =0
\ {“l + i (Vhi(’Y) - th(yzk))} v > 0.

Since B, ' = By ' ®...® By, ', it suffices to invert By;, k = 1,...,n. For each By;, we
have By; = By; U Bp, U By, where

B = {(wti o (Fhitn - vhh)) | 7 <0}
By = {0} x {li + % (Vhi(0) = Vhi(yF)) ,u; + k= (Vhi(0) - Vh,i(yf))}

Ck

By, = { <% u; + % (Vhi(’)’) - th(yf))> ‘ v > 0}.
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By the definition of the operator-theoretic inverse, By, ' = (B;;)~' U (BY)™' U (B)
Now,

(Br) ™ { (li + % (Vhi(y) = Vhi(uh)) m) ‘ v < 0}

= {(& (VR (Vhilwl) + e (€= 1)) | (V)" (Thalwl) + e (€ = 1)) < 0]
= {6 (Vm) 7 (i) +a e 1)) | € <lit % (Vha(0) = Thilyt) }

where the first equality is obtained by solving for 7 in terms of £ in

1
Ck

and the second by solving (V)™ (Vhi(y¥) + ¢ (€ = 1;)) < 0 for &.
Similarly, we obtain

=L+ — (Vh(y) = Vhi(yh)),

(Bi)™ = { (& (Vh) ™ (Vhaylh) + i (6 —wa))) | €> ui + i (Vhi(0) - vm(yf))} :

(Bp;) ! is simply the function that yields 0 on the interval
1

P = [li + —
Ck

1
(Vh4(0) = Fhuh)) s+ — (Thu(0) = Vha(y)] (30)
k
Combining these three results and using the monotonicity of Vh and (Vh)™!, we obtain
( -1 k 1 k
(V)™ (Vhilyh) + e (€= 1)) & <lit — (VAi(0) = Vhi(y)))

B (= () (Vo) + (€ - ) €3 it (Thi(0) - Thi(u)

0 otherwise

\

Bi™' (&) = (Vh) ' (mid(Vhi(yf) + o (€ = 1), Vhi(0), Vhi(yl) + e (€ = u))) . (31)
Note that this operator is single-valued, so we have dropped extraneous braces.

We have not considered the possibility that [; = —oo and/or u; = +oo. In these cases,
B, and/or B}, respectively, are absent from the calculations. In all cases, however, it may
be seen that (31) continues to hold.

Combining our results for i = 1,...,n, we obtain that B, ' = P,, where P, : R* — R"
is given by
Py(x) = (Vh) ™" (mid(VA(y®) + cx(x = 1), VA(0), VR(Y®) + cx(z — u))). (32)

The dual problem —A; '(—z) + By *(z) > 0 of the exact recursion formula (27) then
simplifies to the equation
F(z) + Pi(z) =0. (33)
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Let 2**1 be a solution to this equation. Invoking part (ii) of Proposition 1, the solution y**!
of the original recursion (27) is simply given by

yk+1 — Pk(.%'k+1). (34)

Now, solving (33) for z is a considerably more familiar and tractable computation than
its dual, the inclusion (27). We now address a number of issues relating to this computation:
first, we would like F' + P, to be differentiable, so that we can employ standard smooth
numerical methods; second, we would like to solve (33) approximately, rather than exactly.
We address differentiability of F' + P first.

For a start, it seems reasonable to require that F' be differentiable. Therefore, the question
reduces to that of the differentiability of P;. Let us further suppose that (Vh) ™! is everywhere
differentiable. In this case, non-differentiabilities in FPj can only occur at “breakpoints”
satisfying any of the equations

Vhi(yf) + o (2 — 1) = VR (0) i=1,...,n
Vhi(y¥) + e (i —w;) = VR (0) i=1,...,n

that is, at x € R"™ that have components z; at the endpoints of any of the intervals ®;,
i =1,...,n. Now, Py(z) is constant as z; moves within any of these intervals, all other
coordinates being constant, that is, [VPg(x)]; = 0 for x; € int ;. Thus, to have Py be
continuously differentiable, it must have zero derivative as x; approaches ®j; from either
above or below. Appealing to (32), this requirement is equivalent to the condition that
(Vh;)~' must have zero derivative at Vh;(0) for all i. Compactly, but somewhat opaquely,
we require

V ((Vh)™) (Vh(0)) = 0. (35)

To clarify this condition, we invoke the standard chain-rule based formula for the gradient
of an inverse function, which in this case gives

1
V2h((Vhi) (1))

V ((Vh) ) () =

for all i. Therefore, we can restate the requirements that (Vh)™! be differentiable and
that (35) hold as

VZhi(yi) > 0 Vyzaé() i:1,...,n

) (36)
lim Vh;(y;) = +oo i=1,...,n
y;—0

One possible choice of a Bregman function meeting these conditions [17, Example 2] is

1 n
h(y)=52|y¢|‘1, 1<g<2 (37)
=1
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Invert

1€

Figure 2: Taking the inverse of N¢, adding a perturbation with an infinite slope at 0, and
then inverting once again produces the smoothed exterior function P.

In this case, VA;(y;) = (sgnyi)|ys|?", and V2h;(y;) = (q—1)|ys|* 2 has the desired properties.
We then obtain

where w® = ((sgnw;)|wi’ ... (sgnwy,)|w,|?). The case ¢ = 3/2 leads to an expression
resembling the convex programming cubic augmented Lagrangian discussed in [24].

Figure 2 illustrates, in the one-dimensional case n = 1, how dual application of the
Bregman proximal method smoothes the set-valued, nonsmooth N¢ term in the original
problem F'(x) + N¢(x) 2 0 into the differentiable term Py of the subproblem computation.
First, we take N¢, and “dualize” it to obtain its inverse No '. To No ', we add the
proximal perturbation function II; : y — (1/c)(Vh(y) — Vh(y¥)), which has infinite slope
at 0, and finite positive slope elsewhere. This operation yields the operator By; because of
the infinite slope of the perturbation I, at zero, the “corners” in the graph of N ™! are now
smoothly “rounded off.” We now dualize once more by taking the inverse of By, obtaining
the function P,. Because of the rounded corners of By, P is a differentiable function. Note
that the smoothing is applied to the exterior of ', whereas in the primal approach it is
applied to the interior.
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Summarizing, if we choose a separable h with zone R" and having the properties (36), then
the system of nonlinear equations (33) to be solved at each iteration will be differentiable.
Note that the domain of definition of this system will be the same as F’s, since P* is finite
and defined everywhere. Therefore, unlike the primal method, there is no need for stepsize
guards, except for those required for F'.

To make our dual procedure practical, we need only allow for approximate solution of (33).
In the following two theorems, we summarize the above development, incorporating analysis
of approximate forms of the iteration; however, the approximation criteria take a somewhat
strange form due to the subtleties of working in the dual. We let dist(z,Y") = inf ey ||z —y||.

Theorem 2 Let F, I, and u describe a monotone NCP of the form (1), conforming to
the hypothesis of Proposition 4, and possessing some solution. For i1 = 1,...,n, let h; be
a Bregman function with zone R, and let {c;},-, C (0,00) be bounded away from zero.
Suppgge that the sequences {y*}, {xﬁ}}zil, {xfg}}:’:l CR" and {0}, C [0,00) meet the
conditions

io: CrOk max(l, |ka) < 0o (38)
k=0

- tl<a v =

~ Pk = = R V20 (a0

where Py is defined as in (32). Then y* — y* = —F(z*), where x* is some solution to (1).
All limit points x> of {xf”} and {xfﬂ} are also solutions of (1), with F(z*®) = —y* = F(z*).
If imVh; = R for all i, then such sequences are guaranteed to exist.

Proof. Invoking Proposition 4, Ty = —F(—1I) + N¢ ' is maximal monotone. Also h(z) =

" o hi(z;) is a Bregman function with zone R". We claim that {y*} confirms to the re-
cursion (26), where {ef},~, C R" is such that ||e*|| < & for all & > 0. The recursion
can be rewritten Ag(y**!) + Bi(y**!) > eF, where A; and By are defined by (28)-(29).
From (40), we have (xml, —y**t1) € F and (xfg]“, y**1) € Py, which yield (y**+, —xﬁ“l) € A,
and (y’““,:rfi’l) € By, courtesy of (28) and P, = B ™', as established above. Setting
b =zt —afyt forall k > 1, whence [|ef|| < 65 by (39), we have A(y**") + Bi(y**') 5 €F,
and the claim is established.

Appealing to (38), (21) must hold with our choice of {e*}, and also (23). All the hypothe-
ses of Proposition 6 are thus satisfied, and so {y*} converges to a root of T + Ng» = T.
The final statement follows from Proposition 7, even if we were to require 5 = 0, so it only
remains to show that all limit points of {xfl]} and {xfﬂ} are primal solutions.

From (38) and {c;} being bounded away from zero, 6, — 0 and €* — 0. Therefore, {zf;;}

and {:rfg}} have the same limit points. Let £° be such that

k k 00
Ty Py e ¥
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for some infinite set K C {0,1,2,...}. Since F' is continuous and y* = —F(af;) for all
k > 1, taking limits over k € K yields y* = —F(2*®). From y**! = P, (xfg]“), we also have
:rf;}rl € By(y*), and hence

1
(et + = (Th") = VRWHD) ") € No
for all £ > 0. N¢, being maximal monotone, is a closed set in R" x R", while VA must
be continuous at y*, and {c,} is bounded away from zero. So, taking limits over k € K
yields (z*°,y*) € N¢g. Proposition 1 then gives that x* must solve the primal problem
F(z) 4+ Ne¢(z) 2 0. O

Theorem 3 In Theorem 2, sufficient conditions assuring (39)-(40) are

F(a*th) + Py(z"t) =0 (41)

yk+1 — Pk(karl) (42)

" dist (2", P (= P(a*1))) < 6 (43)
yk+1 _ Pk(karl) (44)

" dist ("1, By (—F («"))) < 4 (45)
Yy = —F (), (46)

where B* and Py are defined as in (29) and (32), respectively. If one of these alterna-
tives holds at each k > 0, all limit points of {x*} solve the complementarity problem (1).
If F is continuously differentiable, V?h;(y;) exists and is positive for all y; # 0, while
limy, 0 V2h;(y;) = 400, then the function F+ Py, on the left-hand side of (41) is continuously
differentiable.

Proof. First consider the exact iteration (41)-(42). Then we can set :rff}’l = :rf;}’l = gkt

and (39)-(40) will hold for any é; > 0. The continuous differentiability of F' + Py follows
from the discussion above.

Now consider (43)-(44). In this case, we let ap " = #**'. Since F' and hence F~'
constitute maximal monotone operators, the set F'~1(y) must be closed and convex for every
y € R" (see e.g. [3]). Thus, (43) guarantees the existence of some xfﬁ’l € FY(—Py(z*th))

such that [lzf" — %5 || < 6. Thus, (39)-(40) can be satisfied.

The analysis of (45)-(46) is similar, except that we have xff]rl = z**1 and (45) guarantees

the existence of ™.
Since either 2" = uf,; or 2* = afy for every k, the assertion about limit points of {z"}

follows from the limit point properties of {f;;} and {afy} O
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(41)-(42) constitute a generalized method of multipliers iteration for the complementarity
problem (1), and by appropriate choice of h, the subproblem function F' + Py of (41) can be
made differentiable, if F' is differentiable. Of course, such an exact procedure may not be
practical. (45)-(46) is implementable in the general case and is likely to be the most useful
inexact version of (41)-(42). However, in special cases where F~! may be easily computed,
(43)-(44) might also find application. To attempt to meet either set of approximate con-
ditions, one would apply a standard iterative numerical method to (41) until (43) or (45)
holds.

The dual method set forthin Theorems 2 and 3 has several advantages over the primal
method of Section 3.1. Most crucially, the supplementary requirements P1 or P2 imposed
on F'in Theorem 1 may be dropped in place of the far weaker hypotheses of Proposi-
tion 4. Furthermore, the stepsize limit and ill-conditioning issues associated with the primal
subproblem F(z**1) + ¢ Y(Vh(2FTt) — Vh(2*)) ~ 0 do not arise in the dual subproblem
F(z*1) + P (2% 1) = 0.

On the other hand, the dual method also has some disadvantages. First, the Jacobian
of the primal subproblem takes the form VF + ¢,~'V2h, and can be forced to be positive
definite by requiring that V?h be everywhere positive definite. The Jacobian VF + VP
of the dual subproblem, however, is only guaranteed to be positive semidefinite, unless one
requires VF' to be positive definite. Second, the primal method has the simple, residual-
based approximation rule (33), whereas the dual method requires formulas such as (43)
or (45). Depending on the problem, these conditions might be difficult to verify. Finally, the
dual method’s theory does not guarantee convergence of the primal iterates {z*}, {:rﬁ]}, or

{:rfg}}, but only makes assertions about limit points.

3.3 Primal-Dual Application to Complementarity

The primal-dual method obtained by applying Proposition 6 to 7" = Tpp = K[F, N¢, 1]
combines and improves upon the best theoretical features of the primal and dual methods.
We now consider the basic recursion (20), as applied to T = Tpp. First, we need a Bregman
function h on R™ x R", which we construct via

n

ha,y) = h(x) + 3 hi(y), (47)

1=1

where the h; are as in the dual method, and & is a Bregman function with zone S O dom F.
We partition the error vector e* of (20), which in this case lies in 2" x ", into subvectors

eﬁ},eﬁ] € R*. Then the fundamental recursion (20), with iterates z¥ = (z¥, y*), Bregman

function A, and operator 1pp, takes the form

1 - ~
P+ 4 = (VAEH) = VhE")) = o (48)
k
B 1
_$k+1 +NC 1(yk+1) 4+ = (Vh(yk+1) . Vh,(yk)) =) ef’"é], (49)

Ck
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where h(z) = XI; hi(2;), as before. If we set efy = 0, then (49) is equivalent to By, (y**!) >
2FTL where By is defined as in (29) for the dual method. Using the prior definition of P,
this condition is in turn equivalent to y*™1 = Py (2**!), with Py as in (32). Substituting this
simple formula into (48), we obtain

F(aY) + Pyt + = (VA1) — Vh(ah)) = b,

Ck

At this point, application of Proposition 6 is straightforward.

Theorem 4 Let F' be a continuous monotone function that s maximal when considered as
a monotone operator, with mazimal open domain D C R™. Suppose (F,l,u) describes a
complementarity problem of the form (1), and that this problem has some solution. Let h
be a Bregman function with (open) zone S DD, and let the h, i = 1,...,n be Bregman
functions with zone R. Let {ci},-, C (0,00) be a sequence of positive scalars bounded away
from zero, and suppose that the sequences {z*};" , C S, {y*} oo, C R, and {d*},_, C R"
conform to the recursion formulae

F(l‘k+1) + % (V;L(l‘k—l_l) B Vil(.ib’k)) + Pk(l‘k+1) _JF (50)

yk+1 — Pk(frk+1) (51)

for all k > 0, where Py is defined by (32). Suppose also that Y32, ci||d¥|| < oo, while
S0 cr(dh, a¥) exists and is finite. Then {z*} converges to a solution z* of the the com-
plementarity problem (1), and y* — —F(z*). If imh; = R for all i and imh = R, such
sequences are guaranteed to exist. If F is continuously differentiable and V*h;(y;) exists and
is positive for all y; # 0, while lim,, ,¢V?h;(y;) = +o0, then the function F + e, 'Vh+ P,
in the equation system (50) is continuously differentiable. If, in addition, V2h is everywhere
positive definite, then the Jacobian VF + ¢,~*V2h + VP, of this function is everywhere
positive definite.

Proof. Proposition 5 asserts that Tpp is maximal monotone. Let efF = (d*,0) € R" x R"
for all & > 1. Then, similarly to the above discussion, (50)-(51) are equivalent to the
Bregman proximal recursion (20) with iterates 2* = (2%, y*) and the Bregman function h,
which has zone S x R". Now, ¥, cx||d*|| < oo is equivalent to 2% cx|le?|| < oo, and
(d¥, 2%y = (eF, (2, y*)) = (eF, 2F), so 3222, cr(eF, 2F) exists and is finite.

We can then apply Proposition 6 to give that {zF} = {(2*,y*)} converges to a root
z* = (z*,y*) of

TPD + N§><§R"

= Tpp.
So, * solves (1) and y* = —F(z*) by the analysis of Section 2.2. The claim of existence
follows directly from Proposition 7. The remaining statements follow from arguments like

those of Section 3.2. U]
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Note that the primal-dual method (50)-(51) requires neither the primal method’s restric-
tions P1 or P2 of Theorem 1, nor the dual method’s regularity conditions of Proposition 4.
The stepsize limit and ill-conditioning issues of the primal approach are also absent, be-
cause we choose the primal-space Bregman function h to have zone containing the domain
of F', as opposed to having zone int C'. At the same time, the approximation criterion of
(50) is based on simple measurement of a residual, as in the primal method. The Jacobian
VFE + ¢, 'V2h + VP, of the primal-dual subproblem function F + ¢, *Vh + P, combines
the desirable existence/continuity and positive definiteness features of the primal and dual
methods. Unlike the dual method, convergence of the primal iterates {z*} is fully guaran-
teed.

Thus, the iteration (50)-(51) has all the theoretical advantages of the primal and dual
approaches, and the disadvantages of neither. The three methods bear much the same
relationship as the proximal minimization algorithms, methods of multipliers, and proximal
methods of multipliers presented for convex optimization in [30] (for the special case h(z) =
(1/2)]|z]|*) and later in [17] (for general h). We therefore refer to the dual method as a
“method of multipliers,” and the primal-dual method as a “proximal method of multipliers.”

4 Computational Results on the MCPLIB Test Suite

We conclude with some preliminary computational results for the proximal method of mul-
tipliers. We coded a version of the algorithm (50)-(51) in MATLAB, and used it to solve
the problems in the MCPLIB collection [14], exploiting the interface developed in [19]. We
note that most of the problems in the collection do not satisfy the monotonicity condition
(5) postulated in our theory. In fact, only the problems cycle and optcont31 are definitely
known to be monotone. However, for the method to be practical, we believe it must robustly
solve a large number of the problems from this standard test suite.

In our initial implementation, we set ||d¥]] < 107® for all k, that is, we solved (50)
essentially exactly at all iterations. With later work, we intend to refine this approach,
starting from a larger tolerance and gradually decreasing it. We chose h as in (37) with
¢ =3/2, and set h(x) = (1/2)z" Dz, D being a diagonal matrix determined via

1.0
D;; = :
max (0.1 ||[VF;(x)]|,10.0)

This choice corresponds to standard problem scaling mechanisms that have proven successful
in [10, 15]. In the interest of further improving scaling, we also define the function Py slightly
differently from (32). Instead, we use Py (z) = P(z,y*) where

P(z,y) = (Vh) ™" (mid(Vh(y) + D (x — 1), VA(0), Vh(y) + oD (z — u))),  (52)

D being the diagonal matrix defined above. This change corresponds to a simple rescaling
of the overall Bregman function h of (47).
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By way of illustration, consider the special case of minimization over the nonnegative
orthant, where we have F' = V f for some differentiable convex function f, [ = 0, and
u = +00. Then the version of (50)-(51) we implemented would correspond to the following
cubic augmented Lagrangian method, with a quadratic proximal term:

TER™ j=1 3 Dj;

n 3
2P = argmin{f(:r)+%k(x—:rk)TD(x—xk)+Zmax <1< yf‘i‘ckﬂ) 70)}

! 2
k+1 k j
Y; = max( yj—i-cij',O) .

The initial values z° of the primal variables are specified in the MCPLIB test suite [14].
For the initial multipliers, we used the formula

o _ | P’ —F(@%), [P’ —F()] = 107°
"7 =F@), otherwise,

where P is defined by (52).

The major work involved in each step of the algorithm is in solving the system of nonlinear
equations (50), for which we use a simple backtracking variant of Newton’s method. We start
by computing a “pure” Newton step for (50), with d* replaced by zero. If this step does not
yield a reduction in the residual of (50), we repeatedly halve the step size until a reduction
is obtained, or the step is less than 1/1000th of its original magnitude. In the former case,
we then attempt another Newton step, repeating the process until the residual of (50) falls
below 1075, We then update the multiplier vector via (51), and check the global residual
re = ||F(2F) + 9. If rp < 1078, we successfully terminate. Otherwise, if k < 100, we loop,
increment k, and execute another “outer” iteration. If £ > 100 we quit and declare failure.

When the Newton line search fails, that is, a reduction of the step by a factor of 1/1024
fails to yield any improvement in the residual of (50), we update the proximal stepsize
parameter c;. In fact, we separately maintain a primal ¢, (“pep”) and a dual ¢ (“deg”),
corresponding to the usage of ¢, in the equations (50) and (32)/(52), respectively. Allowing
for additional rescaling of B, the convergence theory above stipulates that pcy and dc¢g be
held in a fixed ratio to one another throughout the algorithm. In practice, we allow a limited
number of independent adjustments of these two parameters. Assuming monotonicity of F,
our convergence theory applies after the last such independent adjustment.

We start by setting pcp = max{10, ||z°||} and dey = 10. Upon failure of the line search,
pey, is reduced by a factor of 10 and dey is set to 1. After successful solution of (50) to the
tolerance of 107%, both pc, and de, are multiplied by 1.05; this adjustment is consistent
with our theory and also with standard techniques for accelerating convergence of proximal
methods. We then calculate y**1, and if ||2%T! — 2¥|| > 100]|y**! — y¥||, dcx is doubled,
whereas if 100[|z%T! — 2| < ||y* — ¢*|| then dcj, = ||y¥||.

Tables 1 and 2 summarize our computational results. “Iterations” is the total number of
“outer” iterations, that is, the value of k necessary to obtain 7, < 107%. “Newton steps” is the
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total number of Newton steps taken, accumulated over all outer iterations. We also report the
number of times that pc, and de¢g are updated independently of one another; these counts do
not include the simultaneous multiplications by 1.05. Note that there were no independent
updates required for the two guaranteed monotone problems, as our convergence theory
would suggest. For the remaining problems, independent updates were infrequent. Since our
implementation is preliminary and MATLAB is an interpreted language, we do not list run
times. The “primal residual” column gives the final value of ||2* — mid (l, xk — F(2F), u) |

As can be seen from the tables, and by comparison with the results in [2], the algorithm
is fairly robust. For all but 3 of the 79 instance/starting point combinations attempted, it
terminates within 100 iterations with a primal residual of 1075 or less, indicating convergence
to a solution. Two of the failures were for the pgvon10#* problems; since these problems are
known to be poorly defined at the solution, we do not consider these failures to be a serious
liability. The other failure, on hydroc20, seems to be due to convergence difficulties in the
multiplier space. Hydroc20 contains a large number of nonlinear equations, and we speculate
that (37) with ¢ = 3/2 may not be an ideal penalty kernel to use in such cases.
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Problem Newton | Updates | Updates Primal
(Starting Point) | Iterations | Steps of peg, of dey, Residual
bertsekas (1) 15 40 0 0]54x10~7
bertsekas (2) 15 47 0 0] 6.3x1077
bertsekas (3) 6 59 0 0] 12x1078
billups (1) 47 350 3 21 [ 4.9x 1077
choi (1) 5 8 0 1[93x10°7
colvdual (1) 9 29 1 1]72x1078
colvdual (2) 7 36 0 0] 24x1077
colvnlp (1) 9 28 1 1[74x10°8
colvnlp (2) 7 25 0 0]23x10°7
cycle (1) 4 11 0 0]83x10~"7
ehl kost (1) 4 15 0 0]55x1077
ehl kost (2) 4 15 0 0] 5.5x1077
ehl kost (3) 4 15 0 0] 5.5x1077
explcp (1) 6 21 0 0] 5.6x10"7
freebert (1) 15 39 0 0| 4.0x1077
freebert (2) 9 24 0 0| 84x1077
freebert (3) 15 39 0 0]37x10°7
freebert (4) 15 40 0 0] 54x1077
freebert (5) 9 24 0 0| 84x10~7
freebert (6) 15 40 0 0] 5.0x1077
gafni (1) 9 23 0 0]27x107"7
gafni (2) 9 26 0 0| 3.0x1077
gafni (3) 9 28 0 0] 3.3x1077
hanskoop (1) 5 30 0 0] 14x1077
hanskoop (2) 11 108 1 1|80x1077
hanskoop (3) 5 17 0 0| 1.1x1077
hanskoop (4) 5 26 0 0| 14x1077
hanskoop (5) 11 78 1 1|70x10°7
hydroc06 (1) 5 9 0 0] 58x10~7
hydroc20 (1) failed
josephy (1) 13 105 2 2[63x10°7
josephy (2) 8 90 1 1|56x10°8
josephy (3) 7 138 1 1]87x107"
josephy (4) 5 14 0 0|89x107°
josephy (5) 4 10 0 0| 44x1077
josephy (6) 8 166 1 119x10°7
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Table 1: Primal-dual smooth multiplier method applied to MCPLIB problems (part 1).
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Problem Newton | Updates | Updates Primal
(Starting Point) | Iterations | Steps of peg, of dey, Residual
kojshin (1) 56 248 3 3[153x1077
kojshin (2) 9 151 1 1|84x108
kojshin (3) 43 357 4 4| 86x1077
kojshin (4) 19 214 2 2| 8.4 %1077
kojshin (5) 20 227 2 2| 5.5x 1077
kojshin (6) 52 391 3 3]76x1077
mathinum (1) 5 9 0 0] 41x1078
mathinum (2) 5 8 0 0] 13x1078
mathinum (3) 5 13 0 0]24x1078
mathinum (4) 5 9 0 0|45x10°8
mathisum (1) 4 9 0 0]25x10~7
mathisum (2) 5 11 0 0] 1.9x10°8
mathisum (3) 5 19 0 0]39x1078
mathisum (4) 4 8 0 0]9.8x1077
methan08 (1) 4 7 0 1]29x1077
nash (1) 5 10 0 0[12x10°%
nash (2) 4 9 0 0]52x10°8
opt_cont31 (1) 6 85 0 0| 4.7x1077
pies (1) 7 29 1 1]65x1077
pgvon105 (1) failed
pgvon106 (1) failed
powell (1) 4 12 0 0] 42x1077
powell (2) 6 21 0 0| 1.0x 1077
powell (3) 14 176 2 2 28x1077
powell (4) 6 21 0 0|82x10°%
powell mcp (1) 5 10 0 0]22x1077
powell mcp (2) 5 10 0 0| 3.8x1077
powell mcp (3) 5 14 0 1]1.6x10°7
powell mcp (4) 5 13 0 0]6.7x10°7
scarfanum (1) 6 24 0 0] 3.0x107"7
scarfanum (2) 6 28 0 0]3.0x10°7
scarfanum (3) 7 28 0 0] 15x10°7
scarfasum (1) 6 25 0 0] 14x10°7
scarfasum (2) 6 21 0 0| 14x1077
scarfasum (3) 10 36 0 0] 29x1077
scarfbnum (1) 43 133 0 0]59x10°7
scarfbnum (2) 89 393 0 21 | 9.0 x 1077
scarfbsum (1) 18 81 0 0] 5.7x1077
scarfbsum (2) 18 66 0 0| 58x1077
sppe (1) 6 21 0 0[58x10°%
sppe (2) 5 22 0 0]6.9x107°
tobin (1) 6 30 0 0]35x10°%
tobin (2) 6 47 0 0]33x10°8

PAGE 25

Table 2: Primal-dual smooth multiplier method applied to MCPLIB problems (part 2).
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