
Vol.:(0123456789)

Journal of Geographical Systems (2021) 23:579–597
https://doi.org/10.1007/s10109-021-00346-6

1 3

ORIGINAL ARTICLE

Geographical Python Teaching Resources: geopyter

Jonathan Reades1 · Sergio J. Rey2

Received: 19 October 2019 / Accepted: 8 January 2021 / Published online: 23 April 2021
© The Author(s) 2021

Abstract
geopyter, an acronym of Geographical Python Teaching Resources, provides a hub
for the distribution of ‘best practice’ in computational and spatial analytic instruc-
tion, enabling instructors to quickly and flexibly remix contributed content to suit
their needs and delivery framework and encouraging contributors from around the
world to ‘give back’ whether in terms of how to teach individual concepts or deliver
whole courses. As such, geopyter is positioned at the confluence of two powerful
streams of thought in software and education: the free and open-source software
movement in which contributors help to build better software, usually on an unpaid
basis, in return for having access to better tools and the recognition of their peers);
and the rise of Massive Open Online Courses, which seek to radically expand access
to education by moving course content online and providing access to students any-
where in the world at little or no cost. This paper sets out in greater detail the origins
and inspiration for geopyter, the design of the system and, through examples, the
types of innovative workflows that it enables for teachers. We believe that tools like
geopyter, which build on open teaching practices and promote the development of
a shared understanding of what it is to be a computational geographer represent an
opportunity to expand the impact of this second wave of innovation in instruction
while reducing the demands placed on those actively teaching in this area.

Keywords Open Source · Spatial Analysis · Education

JEL Classification R3

 * Sergio J. Rey
 sergio.rey@ucr.edu

1 University College London, London, UK
2 University of California, Riverside, CA, USA

http://orcid.org/0000-0001-5857-9762
http://crossmark.crossref.org/dialog/?doi=10.1007/s10109-021-00346-6&domain=pdf

580 J. Reades, S. J. Rey

1 3

1 Introduction

Although Donoho (2017) traces the origins of data science back to Tukey’s The
future of data analysis (1962), it is only recently that this set of previously dispa-
rate practices for working with large data sets has begun to be formalised in a way
that might allow it to be taught in a university context instead of acquired on the
job through ‘learning-by-doing’. One of the most profound practical impacts of this
development has been on the ways in which developers share and execute code:
although systems for combining code, commentary, and results have been around
for some time (e.g. R-Markdown), these were intended primarily for replicating
research outputs, with teaching and interaction as secondary considerations. The
emergence of data science—and the overall pace of change in the tools and pro-
gramming libraries that it employs—gave new impetus to the search for lightweight
ways of sharing code and documentation, and an interactive browser-based platform
called Jupyter (Kluyver et al. 2016) was the result.

University educators in many disciplines are playing catch-up, but geography—
thanks to its long relationship with computation (Arribas-Bel and Reades 2018)—
has been acutely aware of these developments: changes in the volume and extent
of spatial data available (e.g. Graham and Shelton 2013; González-Bailón 2013;
Reades et al. 2016), and in the number and range of methods employed to iden-
tify patterns in those data (e.g. Fan et al. 2016; Naik et al. 2017; Santibanez et al.
2015; Stevens et al. 2015; Arribas-Bel et al. 2017), are allowing us to tackle ques-
tions thought unanswerable just a few years ago. In academia, there has been a ‘turn’
towards coding (e.g. Brunsdon and Comber 2020), but this has not been matched by
changes in our teaching practice and there is evidence of a ‘hollowing out’ of once
domain-specific skills (Singleton 2014; Singleton et al. 2016): most of what used
to be done with specialist Geographic Information Systems (gis) software can now
be done using free online resources (e.g. Google’s Fusion Tables, MapBox, Carto,
ArcOnline). However, most countries have actually seen an increase in ‘geospatial
jobs’ (Solís et al. 2020) indicating unmet demand for graduates who can code using
the latest (geo)algorithms and techniques. In this article, we present one means of
bringing the benefits of (spatial) data science approaches to instruction using Jupyter
‘notebooks’ for the teaching of the Python programming language and geospatial
analysis.

2 Statement of need

Regardless of whether this is a revolution (Wyly 2014; Torrens 2010) or an evolu-
tion (Barnes 2013, 2014), there is no question that teaching students and research-
ers how to code and how to think computationally (Barba 2015) presents new chal-
lenges (Etherington 2016; Muller and Kidd 2014; Rey 2009) and that there is little
in the way of a tradition of doing so to a high level within geography (see surveys in
Bowlick et al. 2017; Bowlick and Wright 2018). Consequently, the majority of spa-
tial data science and analytics resources used in the classroom are being developed
from scratch at each institution, often by newly appointed lecturers and assistant

581

1 3

Geographical Python Teaching Resources: geopyter

professors coming from the relatively small number of elite research facilities active
in this domain (see discussion in Ley et al. 2013). Not only has this led to the dupli-
cation of effort at multiple sites, but it also has an enormous impact on the produc-
tivity of early career researchers, many of whom are in their first teaching post.

The overarching purpose of this software is therefore to address two seemingly
contradictory issues: the recognition that no two instructors teach in precisely the
same way and the fact that few instructors have the luxury of both time and ten-
ure to develop compelling new course material in splendid isolation. This is where
the Geographical Python Teaching Resource (geopyter) comes into play: although
developed with geographers in mind, it provides a generic means by which instruc-
tors in any discipline can selectively incorporate and remix programming and con-
ceptual content from existing Jupyter notebooks while providing their own ‘gloss’
for this content. Our approach therefore seeks to develop a rich community of devel-
opers and teachers who work together on new teaching materials, who make their
output entirely open to the wider community, and who support instructors in quickly
adapting existing materials to new delivery formats. It should also be noted that our
tool is fully compatible with notebooks written in other languages, such as R and its
powerful geospatial analytics framework (see Bivand 2020 for an overview).

3 Origins and inspirations

Like many open-source projects, geopyter grew out of a need to scratch an itch: in
our roles as teachers of (geo)computational concepts and methods, we grappled on
an annual basis with the demands of developing and updating instructional mate-
rial with complex interdependencies. And, while the fundamental computing and
analytic concepts may remain fairly stable, the field is highly dynamic in terms
of both the content (i.e. what should be in the curriculum) and the code (i.e. how
applications should be taught). Although, in principle, there should be little inter-
action between curriculum and code, in practice changes to software libraries can
make certain connections much harder, or much easier, to establish in the mind of
the learner. For instance, until the widespread adoption of geopandas in Python
(which itself depended on the widespread adoption of pandas) it was common to
find that each spatial analysis library had its own data structures1 and, consequently,
students needed to be taught to work with spatial data in different ways depending
on the library. Consolidation around a single approach freed up a lot of ‘space’ in
the curriculum for teaching content, not format.

In spite of this, every time a widely used library is updated a protracted sequence
of revisions ensues as teachers need to decide whether to resist making use of, or
even alerting students to, the new features in order to save updating their materials,
or whether to leap in enthusiastically only to struggle with conflicting dependencies
and unstable feature sets. But on the basis that ‘many hands makes light work’, we
initially explored with other faculty the potential to ‘divide and conquer’: we would

1 A similar effect could be seen in R with the tidyverse and sftools.

582 J. Reades, S. J. Rey

1 3

each focus on different topics using the latest codebase and then combine these con-
tributions to create a full course. Though received with some enthusiasm, this plan
did not survive contact with reality: first, when actually faced with the uncertain
promise of receiving a full course in return for our individual efforts, many of us felt
more secure developing our own material; second, we had underestimated the value
that we each attach to the ability to personalise material to our own style of teaching.
Since the shared materials were being developed according to individual ‘style’, any
rationalisation or personalisation would have to be done by the instructor at a later
date.

Going back to the drawing board, we looked again at our own experiences of
successful programming and instructional efforts. In particular, we took note of two
powerful streams of thought in software and education with which we already famil-
iar: the importance attached by the free and open-source software (foss) movement
to both peer recognition (Raymond 1999) and distributed control; and the rise of
virtual learning environments (vles) and Massive Open Online Courses (moocs)
with their use of rich, online learning experiences (e.g. Trafford and Shirota 2011;
Cabiria 2012). Reflecting on our initial failure, we decided against trying to supply a
single set of polished course materials and instead looked for a way to provide teach-
ers with building blocks from which they could assemble an individualised course
suited to their institutional and pedagogical needs.

We drew inspiration from the original foss iPython project (Pérez and Granger
2007)—expanded into the Jupyter project in 2016 (Kluyver et al. 2016)—and
its transformative impact on the sharing of integrated code, text, and multimedia
resources. And we also looked to the Python Spatial Analysis Library (pysal) pro-
ject (Rey 2019) in which contributors take ownership of particular application areas
through managed collaboration instead of a contributory ‘free-for-all’. The subse-
quent growth of the Jupyter project has produced a rich ecosystem of tools to sup-
port the kinds of interaction needed to make this an effective teaching resource: mul-
tiuser notebooks (jupyterhub), automation of grading (nbgrader), interactive
widgets for visualisation (ipywidgets), and packages to facilitate manipulation
of the notebook itself (nbformat and notebook).

With these criteria and resources in mind, we began looking for ways to lower
the ‘entry costs’ for faculty to both take from, and share into, a corpus of instruc-
tional material, as well as for a way to address the customisation/localisation chal-
lenge. geopyter is our solution: a single, open hub of geographically focussed
teaching concepts and practical programming tasks that can be flexibly assembled
into classes, or entire courses! geopyter recognises that teachers need to be able
to develop their own classroom ‘story’ at their own pace (and in conformance with
their institution’s teaching patterns), while supporting them with a library of up-
to-date materials from which they can pick and choose. So in much the same way
that a computer application is compiled from the contributions of many develop-
ers, geopyter allows individual classes and entire courses to be ‘compiled’ from the
contributions of many skilled teachers and developers. As such, this positions our
work within contextualised programming initiatives (Guzdial 2010; Lukkarinen and
Sorva 2016), of which the CS+X approach is perhaps best known (e.g. Mir et al.
2017); however, geopyter represents an important advance in this area since it not

583

1 3

Geographical Python Teaching Resources: geopyter

only builds in context at the level of individual modules, but at the level of teaching
resources as well!

Without realising it, we were plugging into a larger framework of thinking emerg-
ing from the literature on Open Educational Resources (oer), which began as largely
‘legal and economic concept’ designed to support royalty and license-free access
to educational resources (Butcher 2010). It should be clear from this definition that
there is no necessary link to foss, or to open and reproducible research (Brunsdon
and Comber 2020), since a free e-book can qualify as an oer. However, these two
areas are conceptually aligned in many ways, not least through their shared inter-
est in the ‘4 Rs’: reuse, redistribution, revision, and remixing (Hilton et al. 2010).
Within Du’s (2017) oer typology geopyter is clearly ‘open courseware’, but it is
conceptually distinct from mit’s eponymous OpenCourseWare or Standford’s Cour-
sera since it is designed to promote what Ehlers calls ‘Open Educational Practice’
(2011) in a manner not altogether dissimilar to that the Geographic Science and
Technology Body of Knowledge (University Consortium for Geographic 2018).

In line with Mishra (2017) and with Knox’s (2013) call for a role for pedagogy
in oer, geopyter envisions an essential role for ‘teachers as (co)creators’: they not
only have an active role in selecting components for a Session or Module, and they
can contribute source material as well. The educator and section editors, of which
more later, may therefore also use this process to extend their own understanding in
an applied workplace setting through collaboration (see Littlejohn and Hood 2017;
Eraut 2008 for relevant discussions). Of course, we must also recognise that under
Wiley’s (2009) alms typology, although geopyter provides direct Access to editing
tools, is meaningfully editable, and offers source file access, the level of expertise
required is not insubstantial though we also expect instructors in this domain to be
more comfortable than most with the process. We therefore believe that geopyter is
unique in incorporating the instructor’s domain expertise and pedagogical strategies
by design.

4 System architecture

At least in our experience, the pace of technological and methodological change in
spatial data science is such that the gap between what instructors know and what
students know is substantial, and in many cases might even be growing. But the
differences within individual student cohorts may be greater still, and instructors
need to be able to quickly assemble and update a course that meets students where
they are rather than where the instructor or institution might wish them to be. At
the same time, there is also a strong need to support more open-ended exploration
during ‘practicals’ (Unwin 1980), particularly by more advanced students who may
‘tune out’ if progression is overly structured and rigid or just too slow to keep their
attention.

The guiding insight behind geopyter is that instruction in programming outside
of computer science proceeds from fundamental units of learning typically built
around computing concepts (variables, lists/arrays, dictionaries/hashes, functions/

584 J. Reades, S. J. Rey

1 3

subroutines, etc.) to fundamental units of learning built around analytic concepts
(cluster analysis, point patterns, spatial autocorrelation, etc.). These units must then
be assembled in a way that speaks to the student cohort and its background; we
mean this in two ways: first, the examples used must be domain-specific in order
to speak to budding geographers, political scientists, historians, etc.; and second, it
should be possible to develop courses for different types of cohorts without having
to start over from scratch. In other words, how can we enable teachers to reuse many
of the building blocks employed in an advanced course for masters students in an
introductory course for undergraduates?

4.1 Components

From these constraints, it was clear that our system needed to support a composi-
tional, ‘bottom-up’ approach to instructional design. So although the development of
a course or class should obviously start out with a clear set of learning aims and out-
comes, at a certain point the instructor will be searching for examples and code with
which to teach a particular concept: What is a list or dictionary? What is k-means
clustering? We settled on the term ‘Atoms’ to refer to these basic instructional units,
and much like entries in the atomic table, we felt that they could be grouped together
into sets of related concepts: the fundamentals of programming, point pattern analy-
sis, machine learning, etc (Table 1).

Each Atom would employ domain-specific illustrative examples and code so as
to anchor learning in problems and applications relevant to the learner.2 An Atom
could start by showing how a list can be used to hold data about cities (e.g. name,
country, population), and a subsequent set of ‘cells’ (the basic ‘unit’ of Jupyter a
notebook) could build on this with an illustration of how a list-of-lists allows us to
add location as a latitude and longitude coordinate pair. We will return to some of
the issues that this approach raises in Engagement, but it points to the importance of
ensuring a degree of consistency in how the Atoms for a set of closely related topics
fit together.

Table 1 Overview of system components

Concept Usage

Atom A ‘teachable idea’ combining explanation and code for a core, typically singular, concept
(e.g. variables, lists, projections, robust rescaling, etc.)

Sessions A ‘teachable unit’ combining multiple atoms for delivery in a particular learning context
(e.g. beginner laboratory-based course, intermediate flipped module, online course, etc.)

Modules A sequence of sessions designed to achieve one or more pedagogical objective and/or
required for credit in a particular education context

2 geopyter is intended for geography and planning students, but could quite easily be ‘forked’ to provide
a similar set of domain-specific resources for economics, sociology, or literature students.

585

1 3

Geographical Python Teaching Resources: geopyter

The purpose of the bottom-up approach is that these units can then be flexibly
assembled into Sessions: from the same ingredients (i.e. Atoms), the instructor could
create quite different modules by organising and presenting the elements in differ-
ent ways. Quite simply, we do not want to have to rewrite material for each format
(e.g. lecture/practical, ‘flipped’ classroom, or distance learning), but we also need to
deal with the fact that different types of scaffolding are required and that the amount
of content suitable to a ‘class’ in each of these formats might differ substantially.

Furthermore, sessions designed for experts (e.g. those pursuing continuing online
education) might be able to ‘move’ students through many more Atoms of instruc-
tion in a single Session than a similarly laid out on designed for first-time program-
mers in an undergraduate programme. So Sessions need to be able to incorporate
Atoms in a way that minimises the level of effort involved in finding the ‘best’ way
to, for example, explain the concept of recursion while maximising the ability of the
instructor to relate this concept to the students’ practical experience (e.g. by provid-
ing a ‘context’ that is anchored in a locally relevant ‘story’ or data).

Naturally, Sessions can then be grouped into learning Modules that offer a coher-
ent instructional programme over a period of weeks or months. Modules represent
the highest level of abstraction in the proposed system, but they are also obviously
the starting point from which instructors can organise their (remixed) atomic and
sessional material into something incorporating a set of learning outcomes and a
package of assessment appropriate to their students. However, our design reflects
the expectation that contributions to geopyter at each level of instruction might be
made by different people: a domain expert in Spatial Bayes might be the right person
to develop an Atom on the concept and its application, but not the right person to
develop a module tackling advanced spatial analytic concepts where this is just one
approach amongst many. Similarly, given the global diversity of delivery formats, a
10-week term in Britain enables students to cover a very different ‘volume’ of con-
tent from a 15-week American semester. geopyter recognises and seeks to respond
to that diversity.

4.2 Tools

So we are trying to design a system in which Sessions and Modules are composed
out of Atoms that can be, optionally, surrounded by the instructor’s own ‘narrative’.
We therefore want to produce a set of teaching materials that are highly portable,
easily reused or edited, and that enable the instructor to select only the elements
from which they wish to compose their materials. As intimated above, geopy-
ter operationalises this through the Jupyter project and its ability to provide in-
browser access to the Python interpreter,3 and it also takes advantage of the domi-
nance of the Git version control tool—and the GitHub service/website—as a means
of tracking authorship across edits.

3 Other languages are also possible using different kernels; there is no reason that geopyter could not be
used to create instructional materials in these languages as well.

586 J. Reades, S. J. Rey

1 3

In theory, thanks to the combination of Jupyter and GitHub is not even necessary
for the novice user to have Python installed on their own computer: since all inter-
action with Python is via the browser, the environment could be hosted on a server
halfway round the world. In practice, however, there are few such services and most
users simply download and install a free version of Python (e.g. Anaconda) that will
run on their system. In our field, many people are already using this approach: note-
books can be found covering everything from introductory concepts (Millington and
Reades 2017) to advanced spatial analysis methods (Arribas-Bel 2016), and com-
bined for both complete courses or workshops (Rey 2016).

Jupyter notebooks are written as a mix of executable code cells and non-execut-
able text formatted with the widely used ‘markdown’ syntax. Notebook structure
is provided through headers in markdown cells: a ‘#’ pre-pended to a line of text is
generally taken to be the title of the notebook; ‘##’ at the start of a line provides a
second level of structure (i.e. Level 2 headers); ‘###’ indicates Level 3 headers; etc.
For our purposes, what is relevant is that these headers naturally yield a semantic
hierarchy that corresponds closely to the h1 ... h6 model used by the HTML markup
language that lies at the heart of the World Wide Web. This hierarchy allows us to
‘abstract out’ the problem of inferring the meaning of cells in different sections of
the notebook since the instructor does it for us through their use of headers.

4.3 Approach

In order to assemble Atoms into Sessions and Modules, geopyter necessarily
requires a compositional syntax. We have noted the conceptual mapping between
markdown and html formatting above, but how do we select some mix of code and
markdown material in one notebook to be incorporated into another? And how do
we do this in a way that is both simple to express and able to resolve ambiguity?

Fig. 1 Illustration of a single
atom’s structure

Lists Example

Source.1
Lists

Creating Lists

Sorting Lists

List Operators

Extending Lists

Concatenation

h1.Lists > h2.Creating Lists > h3.Lists Example

h1.Lists > h2.Creating Lists

h1.Lists

h1.Lists > h2.Sorting Lists

h1.List Operators

h1.List Operators> h2.Extending Lists

h1.List Operators> h2.Concatenation

587

1 3

Geographical Python Teaching Resources: geopyter

Fortunately, such a model already exists and was hinted at in Fig. 1: cascading style
sheets (css) uses well-understood ‘selectors’ to specify one or more elements on a
web page to which a set of presentational styles should be applied.

In css, an ‘h1’ in a style sheet indicates that all html Level 1 Headers (e.g. <h1>A
Title</h1>) should observe the styling rules declared immediately afterwards,
while ‘h1.important’ specifies that only a Level 1 Header of the class ‘important’
should be selected (e.g. <h1 class=“important”>A Title</h1>) and all
other Level 1 headers ignored (e.g. <h1 class=“unimportant”>A Title</
h1>). In fact, css also allows for nested selectors in which ‘child’ element(s) of a
‘parent’ can be selected in turn. This is normally used to do things like specify mou-
seover behaviours for a menu: that all anchors (i.e. links) that are within a division
of class menu should act in this way when the mouse passes over them (e.g. div.
menu a.hover). What is particularly elegant about css is that it provides a means
for selecting multiple pieces of content in the document in one declaration (where
this is desirable) and a means for disambiguating content with the same name, but in
different locations within a document hierarchy (where it is not).

Conceptually, geopyter adapts this syntax to allow us to select some or all of
a Jupyter notebook using the structure imparted by the instructor: all cells coming
after a Level 1 Header are considered to be part of that element’s semantic field until
another Level 1 Header is encountered or the end of the document is encountered,
whichever comes first. And a Level 2 Header coming ‘after’ (a ‘child’, if you prefer)
a Level 1 Header is considered part of that ‘parent’ element’s semantic field, but
we can select it uniquely within the notebook using the standard css form of h1.
content h2.subcontent. This is illustrated in schematic form in Fig. 1, but
note that the > is simply make clear the hierarchical relationship. With this, we have
essentially repurposed css as a means of selecting and importing content from one
notebook into another!

Unfortunately, the nature of Jupyter notebooks does not allow this to happen
dynamically at run-time, but it does allow something similar to happen when an
instructor is ‘compiling’ new Sessional and Module content. In short, the instructor
writes whatever content they wish but, using syntax similar to the examples below,
wherever they want to incorporate contributed content from geopyter (or elsewhere)
they have only to ‘include’ it by specifying both a source and a selection. And this
approach works recursively: a notebook can include content from a notebook that
itself includes content from another notebook.

4.4 Syntax

To recap, we typically envision an Atom as a short notebook focussing on a core
concept or method (e.g. lists, object-oriented design, or spatial autocorrelation);
some or all of each Atom can then be selected and imported into a Session, which
is itself a notebook; and the sessions can then be selected and managed through a
Module, which can also be a notebook or a set of notebooks. This process is initi-
ated by the instructor creating a blank text cell in a Jupyter notebook and writing

588 J. Reades, S. J. Rey

1 3

an ‘include’ statement. The statement should be the only content in the cell since
geopyter will be replacing the cell with an unknown number of whole text and code
cells from the referenced notebook.

Crucially, include statements can be freely intermingled with the instructor’s
own content (as shown in Fig. 2, allowing the instructor to ‘frame’ the concepts in a
way that suits their teaching style but which saves them having to reinvent the wheel
for each class. A Session tackling standardisation could include elements of the rel-
evant Atom from geopyter while still allowing the instructor to interject comments,
observations, questions, and additional tasks to ground the learning experience in
the local context (individual, institutional, etc.). To illustrate this more clearly, an
Atom on Python’s approach to dealing with lists could be incorporated into a longer
Session as follows:

Here, nb is a path—local or remote—to a valid Jupyter notebook from which
the instructor wants to import content. The select parameter specifies a selector
for which the geopyter tool will search within the source notebook. All content
from that point onwards up to the next selector at the same level will the then be
copied into the compiled notebook. In the above example, if there were a follow-
ing h1 covering, for example, ‘List Operators’ then this would not be included
because, from a structural standpoint, it is at the same level in the hierarchy as
‘Lists’ but has not been selected. Furthermore, any h2 or h3 subsections within
the ‘Lists’ section would be included since they are presumed to be providing ped-
agogical and logical structure to the Lists section and so should be carried over.

Clearly, an instructor might want to import only part of a section, or to suppress
a subsection falling in the middle of a larger resource. In anticipation of this need,
more complex ‘include’ statements with no equivalent in css are also possible:

� �
Session 2: Lists

Module leader : Associate Prof . X
Contact information : prof . x@foo. bar . uk

� �
� �
@include {

' nb' = ' http :// geopyter . org / atoms/ fundamentals / l ists . ipynb ' ,
' select ' = ' h1. Lists '

}
� �
� �
All Done?

For next week please read the fol lowing : ...
� �

Fig. 2 Illustrative Jupyter notebook content

589

1 3

Geographical Python Teaching Resources: geopyter

In this second example, two Level 1 sections are imported at the same time and a
Level 3 subsection from within each of those sections is suppressed using the ‘-’
syntax to indicate that the section should be removed. We diverged from the css
standard since that selectors are not separated with commas: we wanted to allow for
this punctuation to be part of a section heading and felt that semicolons are rather
more rare in that context. An additional point of difference from true css is that
we allow spaces in the ‘selector’ because we felt that asking teachers to translate
between a natural language header (‘List Operators’) and what css would consider a
safe header (‘List_Operators’) would detract from ease of use.

4.5 Putting it all together

Jupyter notebooks use a format called JavaScript Object Notation (json) that is not
particularly easy for most humans to read, but as it is nonetheless highly structured
we can interact with it programmatically. The extensible nature of the json format
also allows us to read and write both data and metadata not only to each notebook,
but also to each and every cell in a notebook. Since metadata that is not understood
by Jupyter is simply ignored, we can add our own fields to provide useful informa-
tion related to instruction such as who should be given credit for contributing and
any dependencies or requirements for installed libraries.

@������� {

���������� = ����� ∶ ∕∕��������.���∕�����∕������������∕�����.�����.

�������� = ���.����� -�
.����� 	�������; ��.���� ��������� -��.��������������

}

Fig. 3 Illustration of geopyter notebook ‘compilation’ process

590 J. Reades, S. J. Rey

1 3

Taken together, this provides the foundation for remixing/mashing up content
while still enabling to add an institutional or course-specific gloss wherever nec-
essary. Each notebook might start with the instructor’s contact information or by
providing instructions for setting up the computing environment, but then make use
of material developed by others for actual instruction. This process may seem quite
abstract—and probably quite convoluted as well—but an illustration (Fig. 3) may
help to clarify why this process is so useful.

5 Use cases

To illustrate how this approach offers a substantively new way to think about teach-
ing programming material more generally, we here present two schematic use cases:
an online module of eight sessions and an in-person module lasting one semester.
It is important to stress that we envision both of these modules being built out of
the same Atoms and that, because they are drawing from version-controlled source
code, the content can be fixed on a particular release (i.e. version).

5.1 Distance learning module

There has been increasing interest at universities in Massive Open Online Courses,
or moocs, as vehicles for expanding access to higher education through online deliv-
ery. For managers in higher education (he), the mooc promises both enhanced rev-
enue and enhanced access to underserved groups. Our own experience suggests sub-
stantial student interest in ‘computational social science’ (Lazer et al. 2009), with
international students being the most keen on such modules as they are seen to pro-
vide marketable skills (programming) for graduates from a discipline (geography)
with generally high employment rates (see: Royal Geographical Society with IBG
n.d.).

Associate Professor X wishes to offer a Foundations of Spatial Data Science
module to second year undergraduates, but anticipates high demand exceeding her
capacity to teach in a computer cluster and high attrition since many students will
decide that programming is ‘not for them’. Consequently, the decision is made to
offer this module on a distance learning basis with pre-recorded video content and
other rich media to support student learning. However, the ‘remote desktop’ envi-
ronment that will support this module is only updated every 18 months, often in the
middle of term.

geopyter significantly reduces the overhead of several of these stages: rather
than focussing on tasks such as how to explain or illustrate a particular concept, the
instructor can focus on developing the multimedia content. The similarity between
learning to code and learning a language is noted, and each ‘lesson’ is designed to
be completed in under an hour so that students can proceed at their own pace with-
out being overwhelmed. As well, using Git tags Prof. X can ‘fix’ the version of the

591

1 3

Geographical Python Teaching Resources: geopyter

code and explanations used to one that is appropriate to the computing environment
while continuing to update her teaching materials.

5.2 In‑class delivery

Associate Professor X also teaches a module for Masters students that follows the
more traditional lecture+practical format. Although these students are also new to
programming, they have already completed a required gis module. Here, geopy-
ter could be employed differently: since the instructor is able to interactively pro-
vide the ‘frame’ or ‘scaffold’ (see relevant discussion of ‘hypermedia’ in Azevedo
and Jacobson 2008) upon which the learning is built, there is less need for a narra-
tive around each task or weekly session.

The instructor might therefore simply import the same group of Atoms as above,
but use a Session and Module template that leaves out the rich media and more
detailed explanations since these will be discussed in class with the students. The
Sessions then wrap up with an additional mini-project or mini-assessment that
requires the students to translate the concepts into a new problem domain or inves-
tigate the process in more detail: ‘we’ve seen how we can use pandas and bokeh
to explore and compare the distribution of demographic groups in London, here’s a
link to equivalent open data for Phoenix, Arizona...’.4

In addition, since students are working on their own machines, the instructor can
update to the latest-and-greatest much more rapidly. To enable Professor X to man-
age these competing requirements, we make use of Git and the GitHub web plat-
form not only to monitor, approve, and roll back alterations to any submitted revi-
sions, but also to provide release ‘tags’ to which an instructor can bind a particular
instance of a Session or Module. This ‘fixes’ their course to a particular version of
an Atom such that development of the Atom by others can continue without the
instructor having to worry that the explanation or code upon which they rely will
suddenly change!

6 Engagement

In effect, in both of the example use cases the role of the instructor is to provide an
integrative narrative that guides the students and contextualises their choice of com-
ponents. We think that this has the potential to free up instructors to focus on where
they can most effectively ‘add value’; not in developing yet another way to show
how a list or dictionary works, but in explaining why they matter to a geography,
political science, or literature major (see Bort et al. 2015 for an application in the
literature).

4 Interactive examples that demonstrate these use cases are available online at https:// mybin der. org/ v2/
gh/ pysal/ GeoPy TeR/ master.

https://mybinder.org/v2/gh/pysal/geopyter/master
https://mybinder.org/v2/gh/pysal/geopyter/master

592 J. Reades, S. J. Rey

1 3

And because it builds on foss approaches to software development, we expect
geopyter to benefit from network effects: the more people use it, the more useful it
becomes, and the more people use it. The open-source, peer-generated approach is
also, however, likely to present something of a challenge over time: as more people
seek both to use and to contribute to geopyter we would expect to see the emergence
and use of divergent norms, examples, and data across Atoms, Sessions, and Mod-
ules. Although the emergence of difference styles of coding is actually quite natural
in programming and could be seen as a benefit to students in terms of teaching them
about this aspect of programming, it also the case that geopyter could become a vic-
tim its own success if it ceases to be coherent.

6.1 Coordination

Here, we believe that the pysal project offers a useful template. Although pysal is
a foss project, it is not a free-for-all: domain specialists tend to gravitate towards
those parts of the project to which they have the most to contribute and, over time,
those who coordinate and enable the most substantive contributions to the code-
base in terms of features and performance are ‘invited’ to help manage individual
components of the tool (e.g. lib, model, explore, viz). Overall coherence is
maintained via regular calls and online discussion boards, as well as a synchronised
release schedule so that changes can be coordinated, tested, and knock-on effects
resolved.

In general, we would expect to see a relatively small number of committed educa-
tors and developers creating and maintaining groups of Atoms that align with their
areas of expertise, interests, and teaching responsibilities. However, unlike a tradi-
tional software project there is an important role here for teachers, not just develop-
ers. We think that this represents a really exciting opportunity for innovative new
approaches to rise to the surface. There may be only a few who can write the Python

Table 2 Indicative groups of atoms

Atomic group Indicative content

auto Approaches to spatial autocorrelation analysis
context Why learn to program? Example applications. Interviews
networks Working with network data and costs
describe Simple descriptive statistics
statistics More advanced methods of comparing data
clustering Non-spatial and spatial clustering analysis
foundations Foundations of programming and computer science
os Basic aspects of interacting with operating systems programmatically
viz Visualising data and making maps
ml Approaches to Machine Learning in a spatial context
points Point pattern generation and analysis
zones Zonal statistics and relationship
models From regression to gwr

593

1 3

Geographical Python Teaching Resources: geopyter

code to conduct a geographically weighted regression analysis, but it will be inter-
esting to see how many creative, insightful ways there are to explain it!

So although we also expect interested educators to begin almost immediately
picking holes in the organisational structure proposed in Table 2, some kind of start-
ing point is needed. Moreover, as we have mentioned elsewhere, in the event of seri-
ous disagreement other instructors are free ‘fork’ the repository and begin changing
material as they see fit. Indeed, there is nothing to prevent geopyter Sessions and
Modules drawing on content spread across multiple repositories following different
organisational and developmental strategies: all that’s need is a url!

The educational focus of geopyter implies that it may well be the most commit-
ted teachers who end up as ‘section editors’ who coordinate and review contribu-
tions. The editorial approach also aligns with the obvious benefits of grouping sets
of Atoms together into basic sections such as foundations (the basics of vari-
ables and data structures); describe (describing data). The section editor ensures
that examples, style, and other features are consistent across individual Atoms to
make it easy to generate a set of Sessions introducing the Unix file system or Local
Indicators of Spatial Autocorrelation.

geopyter therefore seeks to balance the benefits of code sharing with those of
local expertise: the instructor is free to write their own exegesis, if you will, of the
code and its relevance to a particular Session or Module, but the burden of develop-
ing a cogent, domain-specific demonstration can be shared with others and com-
pelling examples more widely adopted without the effort of reinventing the wheel.
Where irreconcilable differences arise between pedagogical approaches or models,
then we might expect to see small groups of collaborators ‘fork’ the codebase and
offer their own models; this is, of course, a valid approach with open-source code
and one from which all instructors can ultimately benefit!

6.2 Credit

The use of Git/GitHub also gives us access to contributor information in the ‘com-
mit’ (i.e. editing) logs that we can propagate into notebooks so that all contributors
are recognised in the final output. Although the open nature of the project means
that we cannot strictly enforce attribution, geopyter seeks to make this the easier to
do ‘by default’ through the insertion of metadata into the compiled notebook which
is then used to append a list of contributors to the end of each notebook, along with
any other relevant acknowledgments or copyright notices.

To facilitate reuse while protecting contributions from unacknowledged exploita-
tion textual content in geopyter is covered by a creative commons license; however,
to deal with the fact that geopyter relies extensively on open-source contributions
which are incompatible with some cc licenses (see discussion in Wilson 2013), code
blocks are licensed under the mit license. The manner in which contributions from
authors at different institutions can be combined also ‘pollutes’ the materials in ways
that inhibit institutional assertions of ownership over geopyter content.

geopyter also recognises the reality of the need for peer and professional recogni-
tion by incorporating attribution mechanisms directly into the compilation process.

594 J. Reades, S. J. Rey

1 3

Digital object identifiers (dois) can be created and curated by the ‘section editors’,
but authorship of geopyter components—be they Atoms, Sessions, or Modules—
provides the contributors with peer-evaluated, impactful materials to add to promo-
tion applications. Our intention is that both users and institutions come to better
understand the extent to which open educational resources can be a joint project
relying on the contributions of many teachers and developers.

7 Limitations

As we noted above in connection with Table 2, it is rather unlikely that our first
attempt to divide up the entire field into discrete units of instruction will be entirely
successful. We would also expect to draw on reference documents such as the Body
of Knowledge (University Consortium for Geographic 2018) and Subject Benchmark
Statement (QAA, 2014) for the ‘why’ and ‘what’ of instruction, leaving geopyter to
deal with the ‘how’. Moreover, the open, contributory nature of the project positions
us to build geopyter on top of the shared understanding of many specialists with a
range of ideas about how to break apart, and put back together, the constituent ele-
ments of our domain’s knowledge in ways that speak to different types of students.

For the time being, we have also deliberately hobbled geopyter in one important
way: an include command must be in a cell that does not contain any other text
or code. This was done primarily for simplicity: it is a lot easier to look for whole
(text) cells that match a target pattern than to have to try to parse long blocks of text
or code on the off-chance that an include might be found; it also avoids any ambi-
guity as to whether the include is a geopyter or ‘native’ command. Not coinci-
dentally, it is also a good deal easier to replace an entire cell (the one containing an
include) with one or more entire cells, than to try to work out if a cell needs to be
‘closed out’ first.

8 Conclusion and future directions

From practical experience, conference presentations, and code, we tend to already know
who is a good programmer or theorist, geopyter provides a mechanism for discover-
ing who is a good teacher. Sometimes these abilities may reside in the same person,
but more often we expect that they will not: the strongest developers tend to be people
who have been practicing software development for many years and, consequently, may
have difficulty communicating their ideas to beginner- or intermediate-level students or
teachers (see: Chapman 2010)! For this reason we see the broad-based community-of-
practice aspect of geopyter as integral at all stages of the project: system enhancement,
content development, expanding coverage, and instructional design.

Consequently, geopyter has a lot in common—both philosophically and practi-
cally—with the Software Carpentry movement (Wilson 2016), and although we seek
to tackle a slightly narrower set of issues with a more reusable set of resources, we
can take both inspiration and warning from their experience. The benefit, we think,

595

1 3

Geographical Python Teaching Resources: geopyter

is that while it is possible to design Sessions and Modules that follow the popular
‘bootcamp’ approach to instruction (though see critique in Feldon et al. 2017), we
want to enable the same content to be employed in a carpentry format as well as a
‘normal’ classroom or mooc as required, or even to enable the instructor to mash all
of those formats together such that they use a ‘bootcamp’ format for the introduction
to Unix and the command line, an online-formatted resource for foundational con-
cepts in computer science, and a traditional course format for the (geo)data analysis
instruction. All pulled from the same set of source Atoms!

Ultimately, although geopyter was developed with teaching needs in mind there
is, of course, no reason why it could not be put to other uses: in combination with
with nteract (https:// github. com/ ntera ct/ ntera ct) it would allow developers or
researchers to build full-fledged applications as scripts assembled from a collection
of notebooks; or as an addition to Netflix’s notebook ecology to allow for enhanced
resource sharing and standardisation during the development phase before features
and interfaces are ‘fixed’ as libraries (Ufford et al. 2018). Nonetheless, our focus
for the time being remains the cohort of university teachers at all levels tasked with
introducing programming material to their students and wondering where to begin.
We hope that geopyter makes a valuable contribution to this application domain and
look forward to working with others to roll out a rich, reusable teaching framework.

9 Supplemental

Demonstration notebooks can be found in the ‘sessions’ directory of the geopy-
ter project on GitHub: github. com/ pysal/ GeoPy TeR/ tree/ master/ sessi ons.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Arribas-Bel D (2016) Geographic data science’15. Retrieved 2016-02-19, from http:// darri bas. org/ gds15.
https:// doi. org/ 10. 5281/ zenodo. 46313

Arribas-Bel D, Patino J, Duque J (2017) Remote sensing-based measurement of living environment depri-
vation: improving classical approaches with machine learning. PLoS ONE 12(5):e0176684

Arribas-Bel D, Reades J (2018) Geography and computers: past, present, and future. Geogr Compass.
https:// doi. org/ 10. 1111/ gec3. 12403

Azevedo R, Jacobson MJ (2008) Advances in scaffolding learning with hypertext and hypermedia: a sum-
mary and critical analysis. Educ Technol Res Dev 56(1):93–100

https://github.com/nteract/nteract
https://github.com/pysal/geopyter/tree/master/sessions
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://darribas.org/gds15
https://doi.org/10.5281/zenodo.46313
https://doi.org/10.1111/gec3.12403

596 J. Reades, S. J. Rey

1 3

Barba LA (2015) Computational thinking and the pedagogy of computable content. Lecture Berkely Insti-
tute for Data Science. Retrieved from https:// bids. berke ley. edu/ resou rces/ videos/ compu tatio nal- think
ing- and- pedag ogy- compu table- conte nt

Barnes TJ (2013) Big data, little history. Dial Hum Geogr 3(3):297–302
Barnes TJ (2014) What’s old is new, and new is old: History and geography’s quantitative revolutions. Dial

Hum Geogr 4(1):50–53
Bivand RS (2020) Progress in the R ecosystem for representing and handling spatial data. J Geogr Syst.

https:// doi. org/ 10. 1007/ s10109- 020- 00336-0
Bort H, Czarnik M, Brylow D (2015) Introducing computing concepts to non-majors: a case study in gothic nov-

els. In: Proceedings of the 46th ACM technical symposium on computer science education, pp 132–137
Bowlick FJ, Goldberg DW, Bednarz SW (2017) Computer science and programming courses in geography

departments in the United States. Profess Geogr 69(1):138–150
Bowlick FJ, Wright DJ (2018) Digital data-centric geography: implications for geography’s frontier. Profess

Geogr 70(4):687–694
Brunsdon C, Comber A (2020) Opening practice: supporting reproducibility and critical spatial data sci-

ence. J Geogr Syst. https:// doi. org/ 10. 1007/ s10109- 020- 00334-2
Butcher N (2010) Open educational resources and higher education (Tech. Rep.). OER Africa. Retrieved 22

February 2020, from https:// www. oeraf rica. org/ FTPFo lder/ under stand ing/ OER% 20in% 20HE% 20con
cept% 20pap er. pdf

Cabiria J (2012) Connectivist learning environments: massive open online courses. In: The 2012 world con-
gress in computer science computer engineering and applied computing, pp 16–19

Chapman L (2010) Dealing with maths anxiety: How do you teach mathematics in a geography depart-
ment? J Geogr Higher Educ 34(2):205–213

Donoho D (2017) 50 years of data science. J Comput Graph Stat 26(4):745–766. https:// doi. org/ 10. 1007/
978-3- 642- 23430-9_ 71

Du Y (2017) Knowledge creation and information sharing through open education resources. Technical
report. University of North Texas. Retrieved 22 February 2020, from https:// digit al. libra ry. unt. edu/
ark:/ 67531/ metad c1036 562/

Ehlers U (2011) Extending the territory: from open educational resources to open educational practices. J
Open Flex Dist Learn 15(2):1–10

Eraut M (2008) How professionals learn through Work. Technical report. University of Surry. Retrieved
22 February 2020, from http:// surre yprof essio naltr aining. pbwor ks. com/w/ file/ fetch/ 11505 951/ How%
20Pro fessi onals% 20Lea rn% 20thr ough% 20Work. pdf

Etherington TR (2016) Teaching introductory GIS programming to geographers using an open source
python approach. J Geogr Higher Educ 40(1):117–130

Fan C, Rey SJ, Myint S (2016) Spatially filtered ridge regression (SFRR): a regression framework to under-
standing impacts of land cover patterns on urban climate. Trans GIS

Feldon DF, Jeong S, Peugh J, Roksa J, Maahs-Fladung C, Shenoy A, Oliva M (2017) Null effects
of boot camps and short-format training for PhD students in life sciences. Proc Natl Acad Sci
114(37):9854–9858

González-Bailón S (2013) Big data and the fabric of human geography. Dial Hum Geogr 3(3):292–296
Graham M, Shelton T (2013) Geography and the future of big data, big data and the future of geography.

Dial Hum Geogr 3(3):255–261
Guzdial M (2010) Does contextualized computing education help? ACM Inroads 1(4):4–6
Hilton J, Wiley D, Stein J, Johnson A (2010) The four ‘r’s of openness and alms analysis: frameworks for

open educational resources. Open Learn J Open Dist e-Learn 25(1):37–44. https:// doi. org/ 10. 1080/
02680 51090 34821 32

Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, . Jupyter Development Team
(2016) Jupyter notebooks—a publishing format for reproducible computational workflows. In:
Loizides F, Schmidt B (eds) Positioning and power in academic publishing: players, agents and agen-
das, pp 97–90. IOS Press, London

Knox J (2013) Five critiques of the open educational resources movement. Teach Higher Educ 18(8):821–
832. https:// doi. org/ 10. 1080/ 13562 517. 2013. 774354

Lazer D, Pentland A, Adamic L, Aral S, Barabási AL, Brewer D, Van Alstyne M (2009) Life in the network:
the coming age of computational social science. Science 323(5915):721–723

Ley D, Braun B, Domosh M, Elliott S, Le Heron R, Peake L, Yeoh B (2013) International Benchmarking
Review of UK Human Geography. Online. Retrieved 19 September 2018, from https:// esrc. ukri. org/ files/
resea rch/ resea rch- and- impact- evalu ation/ inter natio nal- bench marki ng- review- of- uk- human- geogr aphy/

https://bids.berkeley.edu/resources/videos/computational-thinking-and-pedagogy-computable-content
https://bids.berkeley.edu/resources/videos/computational-thinking-and-pedagogy-computable-content
https://doi.org/10.1007/s10109-020-00336-0
https://doi.org/10.1007/s10109-020-00334-2
https://www.oerafrica.org/FTPFolder/understanding/OER%20in%20HE%20concept%20paper.pdf
https://www.oerafrica.org/FTPFolder/understanding/OER%20in%20HE%20concept%20paper.pdf
https://doi.org/10.1007/978-3-642-23430-9_71
https://doi.org/10.1007/978-3-642-23430-9_71
https://digital.library.unt.edu/ark:/67531/metadc1036562/
https://digital.library.unt.edu/ark:/67531/metadc1036562/
http://surreyprofessionaltraining.pbworks.com/w/file/fetch/11505951/How%20Professionals%20Learn%20through%20Work.pdf
http://surreyprofessionaltraining.pbworks.com/w/file/fetch/11505951/How%20Professionals%20Learn%20through%20Work.pdf
https://doi.org/10.1080/02680510903482132
https://doi.org/10.1080/02680510903482132
https://doi.org/10.1080/13562517.2013.774354
https://esrc.ukri.org/files/research/research-and-impact-evaluation/international-benchmarking-review-of-uk-human-geography/
https://esrc.ukri.org/files/research/research-and-impact-evaluation/international-benchmarking-review-of-uk-human-geography/

597

1 3

Geographical Python Teaching Resources: geopyter

Littlejohn A, Hood N (2017) How educators build knowledge and expand their practice: the case of open
education resources. Br J Educ Technol 48(2):499–510. https:// doi. org/ 10. 1111/ bjet. 12438

Lukkarinen A, Sorva J (2016) Classifying the tools of contextualized programming education and forms
of media computation. In: Proceedings of the 16th koli calling international conference on computing
education research, pp 51–60

Millington J, Reades J (2017) Python lessons: code Camp. Retrieved from https:// kings geoco mputa tion. org/
teach ing/ code- camp/ code- camp- python/ lesso ns/

Mir DJ, Mishra S, Ruvolo P, Pollock L, Engen S (2017) How do faculty partner while teaching interdiscipli-
nary cs+ x courses: models and experiences. J Comput Sci Coll 32(6):24–33

Mishra S (2017) Open educational resources: removing barriers from within. Dist Educ 38(3):369–380.
https:// doi. org/ 10. 1080/ 01587 919. 2017. 13693 50

Muller CL, Kidd C (2014) Debugging geographers: teaching programming to non-computer scientists. J
Geogr Higher Educ 38(2):175–192

Naik N, Kominers S, Raskar R, Glaeser E, Hidalgo C (2017) Computer vision uncovers predictors of physi-
cal urban change. Proc Natl Acad Sci 114(29):7571–7576

Pérez F, Granger BE (2007) IPython: a system for interactive scientific computing. Comput Sci Eng
9(3):21–29

QAA (2014) Subject benchmark statement for geography. Online. Retrieved 24 September 2018, from
https:// www. qaa. ac. uk/ docs/ qaa/ subje ct- bench mark - state ments/ sbs- geogr aphy- 14. pdf

Raymond ES (1999) The cathedral and the bazaar. O’Reilly
Reades J, Zhong C, Manley E, Milton R, Batty M (2016) Finding pearls in London’s oysters. Built Environ

42(3):365–381
Rey SJ (2009) Show me the code: spatial analysis and open source. J Geogr Syst 11:191–207
Rey SJ (2016) Spatial data analysis with PySAL. Retrieved from https:// github. com/ sjsrey/ narsc 16
Rey SJ (2019) PySAL: the first 10 years. Spat Econ Anal 14(3):273–282. https:// doi. org/ 10. 1080/ 17421 772.

2019. 15934 95
Royal Geographical Society with IBG. (n.d.) Careers with geography: employability. Retrieved 19 Septem-

ber 2018, from https:// www. rgs. org/ geogr aphy/ study ing- geogr aphy- and- caree rs/ caree rs/ emplo yabil ity/
Santibanez S, Kloft M, Lakes T (2015) Performance analysis of machine learning algorithms for regression of

spatial variables: a case study in the real estate industry. In: Geocomputation papers, pp 292–297. Dallas
Singleton AD (2014) Learning to code, Geogr Mag 77
Singleton AD, Spielman S, Brunsdon C (2016) Establishing a framework for o1pen geographic information

science. Int J Geogr Inf Sci 30(8):1507–1521
Solís P, Anderson J, Rajagopalan S (2020) Open geospatial tools for humanitarian data creation, analy-

sis, and learning through the global lens of youthmappers. J Geogr Syst. https:// doi. org/ 10. 1007/
s10109- 020- 00339-x

Stevens F, Gaughan A, Linard C, Tatem A (2015) Disaggregating census data for population mapping using
random forests with remotely-sensed and ancillary data. PloS One 10(2):e0107042

Torrens P (2010) Geography and computational social science. GeoJournal 75(2):133–148
Trafford P, Shirota Y (2011) An introduction to virtual learning environments. Gakushuin Econ Pap

48(10):143–51
Tukey J (1962) The future of data analysis. Ann Math Stat 33(1):1–67
Ufford M, Pacer M, Seal M, Kelley K (2018) Beyond interactive: notebook innovation at Netflix. Retrieved

19 September 2018, from https:// medium. com/ netfl ix- techb log/ noteb ook- innov ation- 591ee 32212 33
University Consortium for Geographic Information Science. (n.d.). Gis&t body of knowledge. Retrieved 24

September 2018, from http:// gistb ok. ucgis. org/
Unwin D (1980) Make your practicals open-ended. J Geogr Higher Educ 4(2):39–42
Wiley D (2009) Creating open educational resources. Technical report. Materials prepared for an independ-

ent study class on open educational resources
Wilson G (2016) Software carpentry: lessons learned [version 2; referees: 3 approved]. F1000Res 3(62),

1–24. https:// doi. org/ 10. 12688/ f1000 resea rch.3- 62. v2
Wilson R, Wilson S (2013) Creative commons and open content. Retrieved 19 September 2018, from http://

oss- watch. ac. uk/ resou rces/ cclic ensing
Wyly E (2014) The new quantitative revolution. Dial Hum Geogr 4(1):26–38

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1111/bjet.12438
https://kingsgeocomputation.org/teaching/code-camp/code-camp-python/lessons/
https://kingsgeocomputation.org/teaching/code-camp/code-camp-python/lessons/
https://doi.org/10.1080/01587919.2017.1369350
https://www.qaa.ac.uk/docs/qaa/subject-benchmark%20-statements/sbs-geography-14.pdf
https://github.com/sjsrey/narsc16
https://doi.org/10.1080/17421772.2019.1593495
https://doi.org/10.1080/17421772.2019.1593495
https://www.rgs.org/geography/studying-geography-and-careers/careers/employability/
https://doi.org/10.1007/s10109-020-00339-x
https://doi.org/10.1007/s10109-020-00339-x
https://medium.com/netflix-techblog/notebook-innovation-591ee3221233
http://gistbok.ucgis.org/
https://doi.org/10.12688/f1000research.3-62.v2
http://oss-watch.ac.uk/resources/cclicensing
http://oss-watch.ac.uk/resources/cclicensing

	Geographical Python Teaching Resources: geopyter
	Abstract
	1 Introduction
	2 Statement of need
	3 Origins and inspirations
	4 System architecture
	4.1 Components
	4.2 Tools
	4.3 Approach
	4.4 Syntax
	4.5 Putting it all together

	5 Use cases
	5.1 Distance learning module
	5.2 In-class delivery

	6 Engagement
	6.1 Coordination
	6.2 Credit

	7 Limitations
	8 Conclusion and future directions
	9 Supplemental
	References

