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Abstract
geopyter, an acronym of Geographical Python Teaching Resources, provides a hub 
for the distribution of ‘best practice’ in computational and spatial analytic instruc-
tion, enabling instructors to quickly and flexibly remix contributed content to suit 
their needs and delivery framework and encouraging contributors from around the 
world to ‘give back’ whether in terms of how to teach individual concepts or deliver 
whole courses. As such, geopyter is positioned at the confluence of two powerful 
streams of thought in software and education: the free and open-source software 
movement in which contributors help to build better software, usually on an unpaid 
basis, in return for having access to better tools and the recognition of their peers); 
and the rise of Massive Open Online Courses, which seek to radically expand access 
to education by moving course content online and providing access to students any-
where in the world at little or no cost. This paper sets out in greater detail the origins 
and inspiration for geopyter, the design of the system and, through examples, the 
types of innovative workflows that it enables for teachers. We believe that tools like 
geopyter, which build on open teaching practices and promote the development of 
a shared understanding of what it is to be a computational geographer represent an 
opportunity to expand the impact of this second wave of innovation in instruction 
while reducing the demands placed on those actively teaching in this area.
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1 Introduction

Although Donoho (2017) traces the origins of data science back to Tukey’s The 
future of data analysis (1962), it is only recently that this set of previously dispa-
rate practices for working with large data sets has begun to be formalised in a way 
that might allow it to be taught in a university context instead of acquired on the 
job through ‘learning-by-doing’. One of the most profound practical impacts of this 
development has been on the ways in which developers share and execute code: 
although systems for combining code, commentary, and results have been around 
for some time (e.g.   R-Markdown), these were intended primarily for replicating 
research outputs, with teaching and interaction as secondary considerations. The 
emergence of data science—and the overall pace of change in the tools and pro-
gramming libraries that it employs—gave new impetus to the search for lightweight 
ways of sharing code and documentation, and an interactive browser-based platform 
called Jupyter (Kluyver et al. 2016) was the result.

University educators in many disciplines are playing catch-up, but geography—
thanks to its long relationship with computation (Arribas-Bel and Reades 2018)—
has been acutely aware of these developments: changes in the volume and extent 
of spatial data available (e.g.  Graham and Shelton 2013; González-Bailón 2013; 
Reades et  al. 2016), and in the number and range of methods employed to iden-
tify patterns in those data (e.g. Fan et al. 2016; Naik et al. 2017; Santibanez et al. 
2015; Stevens et al. 2015; Arribas-Bel et al. 2017), are allowing us to tackle ques-
tions thought unanswerable just a few years ago. In academia, there has been a ‘turn’ 
towards coding (e.g. Brunsdon and Comber 2020), but this has not been matched by 
changes in our teaching practice and there is evidence of a ‘hollowing out’ of once 
domain-specific skills (Singleton 2014; Singleton et  al. 2016): most of what used 
to be done with specialist Geographic Information Systems (gis) software can now 
be done using free online resources (e.g. Google’s Fusion Tables, MapBox, Carto, 
ArcOnline). However, most countries have actually seen an increase in ‘geospatial 
jobs’ (Solís et al. 2020) indicating unmet demand for graduates who can code using 
the latest (geo)algorithms and techniques. In this article, we present one means of 
bringing the benefits of (spatial) data science approaches to instruction using Jupyter 
‘notebooks’ for the teaching of the Python programming language and geospatial 
analysis.

2  Statement of need

Regardless of whether this is a revolution (Wyly 2014; Torrens 2010) or an evolu-
tion (Barnes 2013, 2014), there is no question that teaching students and research-
ers how to code and how to think computationally (Barba 2015) presents new chal-
lenges (Etherington 2016; Muller and Kidd 2014; Rey 2009) and that there is little 
in the way of a tradition of doing so to a high level within geography (see surveys in 
Bowlick et al. 2017; Bowlick and Wright 2018). Consequently, the majority of spa-
tial data science and analytics resources used in the classroom are being developed 
from scratch at each institution, often by newly appointed lecturers and assistant 
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professors coming from the relatively small number of elite research facilities active 
in this domain (see discussion in Ley et al. 2013). Not only has this led to the dupli-
cation of effort at multiple sites, but it also has an enormous impact on the produc-
tivity of early career researchers, many of whom are in their first teaching post.

The overarching purpose of this software is therefore to address two seemingly 
contradictory issues: the recognition that no two instructors teach in precisely the 
same way and the fact that few instructors have the luxury of both time and ten-
ure to develop compelling new course material in splendid isolation. This is where 
the Geographical Python Teaching Resource (geopyter) comes into play: although 
developed with geographers in mind, it provides a generic means by which instruc-
tors in any discipline can selectively incorporate and remix programming and con-
ceptual content from existing Jupyter notebooks while providing their own ‘gloss’ 
for this content. Our approach therefore seeks to develop a rich community of devel-
opers and teachers who work together on new teaching materials, who make their 
output entirely open to the wider community, and who support instructors in quickly 
adapting existing materials to new delivery formats. It should also be noted that our 
tool is fully compatible with notebooks written in other languages, such as R and its 
powerful geospatial analytics framework (see Bivand 2020 for an overview).

3  Origins and inspirations

Like many open-source projects, geopyter grew out of a need to scratch an itch: in 
our roles as teachers of (geo)computational concepts and methods, we grappled on 
an annual basis with the demands of developing and updating instructional mate-
rial with complex interdependencies. And, while the fundamental computing and 
analytic concepts may remain fairly stable, the field is highly dynamic in terms 
of both the content (i.e. what should be in the curriculum) and the code (i.e. how 
applications should be taught). Although, in principle, there should be little inter-
action between curriculum and code, in practice changes to software libraries can 
make certain connections much harder, or much easier, to establish in the mind of 
the learner. For instance, until the widespread adoption of geopandas in Python 
(which itself depended on the widespread adoption of pandas) it was common to 
find that each spatial analysis library had its own data structures1 and, consequently, 
students needed to be taught to work with spatial data in different ways depending 
on the library. Consolidation around a single approach freed up a lot of ‘space’ in 
the curriculum for teaching content, not format.

In spite of this, every time a widely used library is updated a protracted sequence 
of revisions ensues as teachers need to decide whether to resist making use of, or 
even alerting students to, the new features in order to save updating their materials, 
or whether to leap in enthusiastically only to struggle with conflicting dependencies 
and unstable feature sets. But on the basis that ‘many hands makes light work’, we 
initially explored with other faculty the potential to ‘divide and conquer’: we would 

1 A similar effect could be seen in R with the tidyverse and sftools.
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each focus on different topics using the latest codebase and then combine these con-
tributions to create a full course. Though received with some enthusiasm, this plan 
did not survive contact with reality: first, when actually faced with the uncertain 
promise of receiving a full course in return for our individual efforts, many of us felt 
more secure developing our own material; second, we had underestimated the value 
that we each attach to the ability to personalise material to our own style of teaching. 
Since the shared materials were being developed according to individual ‘style’, any 
rationalisation or personalisation would have to be done by the instructor at a later 
date.

Going back to the drawing board, we looked again at our own experiences of 
successful programming and instructional efforts. In particular, we took note of two 
powerful streams of thought in software and education with which we already famil-
iar: the importance attached by the free and open-source software (foss) movement 
to both peer recognition (Raymond 1999) and distributed control; and the rise of 
virtual learning environments (vles) and Massive Open Online Courses (moocs) 
with their use of rich, online learning experiences (e.g. Trafford and Shirota 2011; 
Cabiria 2012). Reflecting on our initial failure, we decided against trying to supply a 
single set of polished course materials and instead looked for a way to provide teach-
ers with building blocks from which they could assemble an individualised course 
suited to their institutional and pedagogical needs.

We drew inspiration from the original foss iPython project (Pérez and Granger 
2007)—expanded into the Jupyter project in 2016 (Kluyver et  al. 2016)—and 
its transformative impact on the sharing of integrated code, text, and multimedia 
resources. And we also looked to the Python Spatial Analysis Library (pysal) pro-
ject (Rey 2019) in which contributors take ownership of particular application areas 
through managed collaboration instead of a contributory ‘free-for-all’. The subse-
quent growth of the Jupyter project has produced a rich ecosystem of tools to sup-
port the kinds of interaction needed to make this an effective teaching resource: mul-
tiuser notebooks (jupyterhub), automation of grading (nbgrader), interactive 
widgets for visualisation (ipywidgets), and packages to facilitate manipulation 
of the notebook itself (nbformat and notebook).

With these criteria and resources in mind, we began looking for ways to lower 
the ‘entry costs’ for faculty to both take from, and share into, a corpus of instruc-
tional material, as well as for a way to address the customisation/localisation chal-
lenge. geopyter  is our solution: a single, open hub of geographically focussed 
teaching concepts and practical programming tasks that can be flexibly assembled 
into classes, or entire courses! geopyter  recognises that teachers need to be able 
to develop their own classroom ‘story’ at their own pace (and in conformance with 
their institution’s teaching patterns), while supporting them with a library of up-
to-date materials from which they can pick and choose. So in much the same way 
that a computer application is compiled from the contributions of many develop-
ers, geopyter allows individual classes and entire courses to be ‘compiled’ from the 
contributions of many skilled teachers and developers. As such, this positions our 
work within contextualised programming initiatives (Guzdial 2010; Lukkarinen and 
Sorva 2016), of which the CS+X approach is perhaps best known (e.g. Mir et al. 
2017); however, geopyter represents an important advance in this area since it not 
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only builds in context at the level of individual modules, but at the level of teaching 
resources as well!

Without realising it, we were plugging into a larger framework of thinking emerg-
ing from the literature on Open Educational Resources (oer), which began as largely 
‘legal and economic concept’ designed to support royalty and license-free access 
to educational resources (Butcher 2010). It should be clear from this definition that 
there is no necessary link to foss, or to open and reproducible research (Brunsdon 
and Comber 2020), since a free e-book can qualify as an oer. However, these two 
areas are conceptually aligned in many ways, not least through their shared inter-
est in the ‘4 Rs’: reuse, redistribution, revision, and remixing (Hilton et al. 2010). 
Within Du’s (2017) oer typology geopyter  is clearly ‘open courseware’, but it is 
conceptually distinct from mit’s eponymous OpenCourseWare or Standford’s Cour-
sera since it is designed to promote what Ehlers calls ‘Open Educational Practice’ 
(2011) in a manner not altogether dissimilar to that the Geographic Science and 
Technology Body of Knowledge (University Consortium for Geographic 2018).

In line with Mishra (2017) and with Knox’s (2013) call for a role for pedagogy 
in oer, geopyter envisions an essential role for ‘teachers as (co)creators’: they not 
only have an active role in selecting components for a Session or Module, and they 
can contribute source material as well. The educator and section editors, of which 
more later, may therefore also use this process to extend their own understanding in 
an applied workplace setting through collaboration (see Littlejohn and Hood 2017; 
Eraut 2008 for relevant discussions). Of course, we must also recognise that under 
Wiley’s (2009) alms typology, although geopyter provides direct Access to editing 
tools, is meaningfully editable, and offers source file access, the level of expertise 
required is not insubstantial though we also expect instructors in this domain to be 
more comfortable than most with the process. We therefore believe that geopyter is 
unique in incorporating the instructor’s domain expertise and pedagogical strategies 
by design.

4  System architecture

At least in our experience, the pace of technological and methodological change in 
spatial data science is such that the gap between what instructors know and what 
students know is substantial, and in many cases might even be growing. But the 
differences within individual student cohorts may be greater still, and instructors 
need to be able to quickly assemble and update a course that meets students where 
they are rather than where the instructor or institution might wish them to be. At 
the same time, there is also a strong need to support more open-ended exploration 
during ‘practicals’ (Unwin 1980), particularly by more advanced students who may 
‘tune out’ if progression is overly structured and rigid or just too slow to keep their 
attention.

The guiding insight behind geopyter is that instruction in programming outside 
of computer science proceeds from fundamental units of learning typically built 
around computing concepts (variables, lists/arrays, dictionaries/hashes, functions/
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subroutines, etc.) to fundamental units of learning built around analytic concepts 
(cluster analysis, point patterns, spatial autocorrelation, etc.). These units must then 
be assembled in a way that speaks to the student cohort and its background; we 
mean this in two ways: first, the examples used must be domain-specific in order 
to speak to budding geographers, political scientists, historians, etc.; and second, it 
should be possible to develop courses for different types of cohorts without having 
to start over from scratch. In other words, how can we enable teachers to reuse many 
of the building blocks employed in an advanced course for masters students in an 
introductory course for undergraduates?

4.1  Components

From these constraints, it was clear that our system needed to support a composi-
tional, ‘bottom-up’ approach to instructional design. So although the development of 
a course or class should obviously start out with a clear set of learning aims and out-
comes, at a certain point the instructor will be searching for examples and code with 
which to teach a particular concept: What is a list or dictionary? What is k-means 
clustering? We settled on the term ‘Atoms’ to refer to these basic instructional units, 
and much like entries in the atomic table, we felt that they could be grouped together 
into sets of related concepts: the fundamentals of programming, point pattern analy-
sis, machine learning, etc (Table 1).

Each Atom would employ domain-specific illustrative examples and code so as 
to anchor learning in problems and applications relevant to the learner.2 An Atom 
could start by showing how a list can be used to hold data about cities (e.g. name, 
country, population), and a subsequent set of ‘cells’ (the basic ‘unit’ of Jupyter a 
notebook) could build on this with an illustration of how a list-of-lists allows us to 
add location as a latitude and longitude coordinate pair. We will return to some of 
the issues that this approach raises in Engagement, but it points to the importance of 
ensuring a degree of consistency in how the Atoms for a set of closely related topics 
fit together.

Table 1  Overview of system components

Concept Usage

Atom A ‘teachable idea’ combining explanation and code for a core, typically singular, concept 
(e.g. variables, lists, projections, robust rescaling, etc.)

Sessions A ‘teachable unit’ combining multiple atoms for delivery in a particular learning context 
(e.g. beginner laboratory-based course, intermediate flipped module, online course, etc.)

Modules A sequence of sessions designed to achieve one or more pedagogical objective and/or 
required for credit in a particular education context

2 geopyter is intended for geography and planning students, but could quite easily be ‘forked’ to provide 
a similar set of domain-specific resources for economics, sociology, or literature students.
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The purpose of the bottom-up approach is that these units can then be flexibly 
assembled into Sessions: from the same ingredients (i.e. Atoms), the instructor could 
create quite different modules by organising and presenting the elements in differ-
ent ways. Quite simply, we do not want to have to rewrite material for each format 
(e.g. lecture/practical, ‘flipped’ classroom, or distance learning), but we also need to 
deal with the fact that different types of scaffolding are required and that the amount 
of content suitable to a ‘class’ in each of these formats might differ substantially.

Furthermore, sessions designed for experts (e.g. those pursuing continuing online 
education) might be able to ‘move’ students through many more Atoms of instruc-
tion in a single Session than a similarly laid out on designed for first-time program-
mers in an undergraduate programme. So Sessions need to be able to incorporate 
Atoms in a way that minimises the level of effort involved in finding the ‘best’ way 
to, for example, explain the concept of recursion while maximising the ability of the 
instructor to relate this concept to the students’ practical experience (e.g. by provid-
ing a ‘context’ that is anchored in a locally relevant ‘story’ or data).

Naturally, Sessions can then be grouped into learning Modules that offer a coher-
ent instructional programme over a period of weeks or months. Modules represent 
the highest level of abstraction in the proposed system, but they are also obviously 
the starting point from which instructors can organise their (remixed) atomic and 
sessional material into something incorporating a set of learning outcomes and a 
package of assessment appropriate to their students. However, our design reflects 
the expectation that contributions to geopyter at each level of instruction might be 
made by different people: a domain expert in Spatial Bayes might be the right person 
to develop an Atom on the concept and its application, but not the right person to 
develop a module tackling advanced spatial analytic concepts where this is just one 
approach amongst many. Similarly, given the global diversity of delivery formats, a 
10-week term in Britain enables students to cover a very different ‘volume’ of con-
tent from a 15-week American semester. geopyter recognises and seeks to respond 
to that diversity.

4.2  Tools

So we are trying to design a system in which Sessions and Modules are composed 
out of Atoms that can be, optionally, surrounded by the instructor’s own ‘narrative’. 
We therefore want to produce a set of teaching materials that are highly portable, 
easily reused or edited, and that enable the instructor to select only the elements 
from which they wish to compose their materials. As intimated above, geopy-
ter  operationalises this through the Jupyter project and its ability to provide in-
browser access to the Python interpreter,3 and it also takes advantage of the domi-
nance of the Git version control tool—and the GitHub service/website—as a means 
of tracking authorship across edits.

3 Other languages are also possible using different kernels; there is no reason that geopyter could not be 
used to create instructional materials in these languages as well.
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In theory, thanks to the combination of Jupyter and GitHub is not even necessary 
for the novice user to have Python installed on their own computer: since all inter-
action with Python is via the browser, the environment could be hosted on a server 
halfway round the world. In practice, however, there are few such services and most 
users simply download and install a free version of Python (e.g. Anaconda) that will 
run on their system. In our field, many people are already using this approach: note-
books can be found covering everything from introductory concepts (Millington and 
Reades 2017) to advanced spatial analysis methods (Arribas-Bel 2016), and com-
bined for both complete courses or workshops (Rey 2016).

Jupyter notebooks are written as a mix of executable code cells and non-execut-
able text formatted with the widely used ‘markdown’ syntax. Notebook structure 
is provided through headers in markdown cells: a ‘#’ pre-pended to a line of text is 
generally taken to be the title of the notebook; ‘##’ at the start of a line provides a 
second level of structure (i.e.  Level 2 headers); ‘###’ indicates Level 3 headers; etc. 
For our purposes, what is relevant is that these headers naturally yield a semantic 
hierarchy that corresponds closely to the h1 ... h6 model used by the HTML markup 
language that lies at the heart of the World Wide Web. This hierarchy allows us to 
‘abstract out’ the problem of inferring the meaning of cells in different sections of 
the notebook since the instructor does it for us through their use of headers.

4.3  Approach

In order to assemble Atoms into Sessions and Modules, geopyter  necessarily 
requires a compositional syntax. We have noted the conceptual mapping between 
markdown and html formatting above, but how do we select some mix of code and 
markdown material in one notebook to be incorporated into another? And how do 
we do this in a way that is both simple to express and able to resolve ambiguity? 

Fig. 1  Illustration of a single 
atom’s structure

### Lists Example

Source.1
# Lists

## Creating Lists

## Sorting Lists

# List Operators

## Extending Lists

## Concatenation

h1.Lists > h2.Creating Lists > h3.Lists Example

h1.Lists > h2.Creating Lists

h1.Lists

h1.Lists > h2.Sorting Lists

h1.List Operators

h1.List Operators> h2.Extending Lists

h1.List Operators> h2.Concatenation
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Fortunately, such a model already exists and was hinted at in Fig. 1: cascading style 
sheets (css) uses well-understood ‘selectors’ to specify one or more elements on a 
web page to which a set of presentational styles should be applied.

In css, an ‘h1’ in a style sheet indicates that all html Level 1 Headers (e.g. <h1>A 
Title</h1>) should observe the styling rules declared immediately afterwards, 
while ‘h1.important’ specifies that only a Level 1 Header of the class ‘important’ 
should be selected (e.g. <h1 class=“important”>A Title</h1>) and all 
other Level 1 headers ignored (e.g. <h1 class=“unimportant”>A Title</
h1>). In fact, css also allows for nested selectors in which ‘child’ element(s) of a 
‘parent’ can be selected in turn. This is normally used to do things like specify mou-
seover behaviours for a menu: that all anchors (i.e. links) that are within a division 
of class menu should act in this way when the mouse passes over them (e.g. div.
menu a.hover). What is particularly elegant about css is that it provides a means 
for selecting multiple pieces of content in the document in one declaration (where 
this is desirable) and a means for disambiguating content with the same name, but in 
different locations within a document hierarchy (where it is not).

Conceptually, geopyter  adapts this syntax to allow us to select some or all of 
a Jupyter notebook using the structure imparted by the instructor: all cells coming 
after a Level 1 Header are considered to be part of that element’s semantic field until 
another Level 1 Header is encountered or the end of the document is encountered, 
whichever comes first. And a Level 2 Header coming ‘after’ (a ‘child’, if you prefer) 
a Level 1 Header is considered part of that ‘parent’ element’s semantic field, but 
we can select it uniquely within the notebook using the standard css form of h1.
content h2.subcontent. This is illustrated in schematic form in Fig. 1, but 
note that the > is simply make clear the hierarchical relationship. With this, we have 
essentially repurposed css as a means of selecting and importing content from one 
notebook into another!

Unfortunately, the nature of Jupyter notebooks does not allow this to happen 
dynamically at run-time, but it does allow something similar to happen when an 
instructor is ‘compiling’ new Sessional and Module content. In short, the instructor 
writes whatever content they wish but, using syntax similar to the examples below, 
wherever they want to incorporate contributed content from geopyter (or elsewhere) 
they have only to ‘include’ it by specifying both a source and a selection. And this 
approach works recursively: a notebook can include content from a notebook that 
itself includes content from another notebook.

4.4  Syntax

To recap, we typically envision an Atom as a short notebook focussing on a core 
concept or method (e.g.  lists, object-oriented design, or spatial autocorrelation); 
some or all of each Atom can then be selected and imported into a Session, which 
is itself a notebook; and the sessions can then be selected and managed through a 
Module, which can also be a notebook or a set of notebooks. This process is initi-
ated by the instructor creating a blank text cell in a Jupyter notebook and writing 
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an ‘include’ statement. The statement should be the only content in the cell since 
geopyter will be replacing the cell with an unknown number of whole text and code 
cells from the referenced notebook.

Crucially, include statements can be freely intermingled with the instructor’s 
own content (as shown in Fig. 2, allowing the instructor to ‘frame’ the concepts in a 
way that suits their teaching style but which saves them having to reinvent the wheel 
for each class. A Session tackling standardisation could include elements of the rel-
evant Atom from geopyter while still allowing the instructor to interject comments, 
observations, questions, and additional tasks to ground the learning experience in 
the local context (individual, institutional, etc.). To illustrate this more clearly, an 
Atom on Python’s approach to dealing with lists could be incorporated into a longer 
Session as follows:

Here, nb is a path—local or remote—to a valid Jupyter notebook from which 
the instructor wants to import content. The select parameter specifies a selector 
for which the geopyter  tool will search within the source notebook. All content 
from that point onwards up to the next selector at the same level will the then be 
copied into the compiled notebook. In the above example, if there were a follow-
ing h1 covering, for example, ‘List Operators’ then this would not be included 
because, from a structural standpoint, it is at the same level in the hierarchy as 
‘Lists’ but has not been selected. Furthermore, any h2 or h3 subsections within 
the ‘Lists’ section would be included since they are presumed to be providing ped-
agogical and logical structure to the Lists section and so should be carried over.

Clearly, an instructor might want to import only part of a section, or to suppress 
a subsection falling in the middle of a larger resource. In anticipation of this need, 
more complex ‘include’ statements with no equivalent in css are also possible: 

� �
# Session 2: Lists

Module leader : Associate Prof . X
Contact information : prof . x@foo. bar . uk

� �
� �
@include {

' nb' = ' http :// geopyter . org / atoms/ fundamentals / l ists . ipynb ' ,
' select ' = ' h1. Lists '

}
� �
� �
## All Done?

For next week please read the fol lowing : ...
� �

Fig. 2  Illustrative Jupyter notebook content
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In this second example, two Level 1 sections are imported at the same time and a 
Level 3 subsection from within each of those sections is suppressed using the ‘-’ 
syntax to indicate that the section should be removed. We diverged from the css 
standard since that selectors are not separated with commas: we wanted to allow for 
this punctuation to be part of a section heading and felt that semicolons are rather 
more rare in that context. An additional point of difference from true css is that 
we allow spaces in the ‘selector’ because we felt that asking teachers to translate 
between a natural language header (‘List Operators’) and what css would consider a 
safe header (‘List_Operators’) would detract from ease of use.

4.5  Putting it all together

Jupyter notebooks use a format called JavaScript Object Notation (json) that is not 
particularly easy for most humans to read, but as it is nonetheless highly structured 
we can interact with it programmatically. The extensible nature of the json format 
also allows us to read and write both data and metadata not only to each notebook, 
but also to each and every cell in a notebook. Since metadata that is not understood 
by Jupyter is simply ignored, we can add our own fields to provide useful informa-
tion related to instruction such as who should be given credit for contributing and 
any dependencies or requirements for installed libraries.

@������� {

���������� = ����� ∶ ∕∕��������.���∕�����∕������������∕�����.�����.

�������� = ���.����� -�
.����� 	�������; ��.���� ��������� -��.��������������

}

Fig. 3  Illustration of geopyter notebook ‘compilation’ process
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Taken together, this provides the foundation for remixing/mashing up content 
while still enabling to add an institutional or course-specific gloss wherever nec-
essary. Each notebook might start with the instructor’s contact information or by 
providing instructions for setting up the computing environment, but then make use 
of material developed by others for actual instruction. This process may seem quite 
abstract—and probably quite convoluted as well—but an illustration (Fig.  3) may 
help to clarify why this process is so useful.

5  Use cases

To illustrate how this approach offers a substantively new way to think about teach-
ing programming material more generally, we here present two schematic use cases: 
an online module of eight sessions and an in-person module lasting one semester. 
It is important to stress that we envision both of these modules being built out of 
the same Atoms and that, because they are drawing from version-controlled source 
code, the content can be fixed on a particular release (i.e. version).

5.1  Distance learning module

There has been increasing interest at universities in Massive Open Online Courses, 
or moocs, as vehicles for expanding access to higher education through online deliv-
ery. For managers in higher education (he), the mooc promises both enhanced rev-
enue and enhanced access to underserved groups. Our own experience suggests sub-
stantial student interest in ‘computational social science’ (Lazer et al. 2009), with 
international students being the most keen on such modules as they are seen to pro-
vide marketable skills (programming) for graduates from a discipline (geography) 
with generally high employment rates (see: Royal Geographical Society with IBG 
n.d.).

Associate Professor X wishes to offer a Foundations of Spatial Data Science 
module to second year undergraduates, but anticipates high demand exceeding her 
capacity to teach in a computer cluster and high attrition since many students will 
decide that programming is ‘not for them’. Consequently, the decision is made to 
offer this module on a distance learning basis with pre-recorded video content and 
other rich media to support student learning. However, the ‘remote desktop’ envi-
ronment that will support this module is only updated every 18 months, often in the 
middle of term.

geopyter  significantly reduces the overhead of several of these stages: rather 
than focussing on tasks such as how to explain or illustrate a particular concept, the 
instructor can focus on developing the multimedia content. The similarity between 
learning to code and learning a language is noted, and each ‘lesson’ is designed to 
be completed in under an hour so that students can proceed at their own pace with-
out being overwhelmed. As well, using Git tags Prof. X can ‘fix’ the version of the 
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code and explanations used to one that is appropriate to the computing environment 
while continuing to update her teaching materials.

5.2  In‑class delivery

Associate Professor X also teaches a module for Masters students that follows the 
more traditional lecture+practical format. Although these students are also new to 
programming, they have already completed a required gis module. Here, geopy-
ter could be employed differently: since the instructor is able to interactively pro-
vide the ‘frame’ or ‘scaffold’ (see relevant discussion of ‘hypermedia’ in Azevedo 
and Jacobson 2008) upon which the learning is built, there is less need for a narra-
tive around each task or weekly session.

The instructor might therefore simply import the same group of Atoms as above, 
but use a Session and Module template that leaves out the rich media and more 
detailed explanations since these will be discussed in class with the students. The 
Sessions then wrap up with an additional mini-project or mini-assessment that 
requires the students to translate the concepts into a new problem domain or inves-
tigate the process in more detail: ‘we’ve seen how we can use pandas and bokeh 
to explore and compare the distribution of demographic groups in London, here’s a 
link to equivalent open data for Phoenix, Arizona...’.4

In addition, since students are working on their own machines, the instructor can 
update to the latest-and-greatest much more rapidly. To enable Professor X to man-
age these competing requirements, we make use of Git and the GitHub web plat-
form not only to monitor, approve, and roll back alterations to any submitted revi-
sions, but also to provide release ‘tags’ to which an instructor can bind a particular 
instance of a Session or Module. This ‘fixes’ their course to a particular version of 
an Atom such that development of the Atom by others can continue without the 
instructor having to worry that the explanation or code upon which they rely will 
suddenly change!

6  Engagement

In effect, in both of the example use cases the role of the instructor is to provide an 
integrative narrative that guides the students and contextualises their choice of com-
ponents. We think that this has the potential to free up instructors to focus on where 
they can most effectively ‘add value’; not in developing yet another way to show 
how a list or dictionary works, but in explaining why they matter to a geography, 
political science, or literature major (see Bort et al. 2015 for an application in the 
literature).

4 Interactive examples that demonstrate these use cases are available online at https:// mybin der. org/ v2/ 
gh/ pysal/ GeoPy TeR/ master.

https://mybinder.org/v2/gh/pysal/geopyter/master
https://mybinder.org/v2/gh/pysal/geopyter/master
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And because it builds on foss approaches to software development, we expect 
geopyter to benefit from network effects: the more people use it, the more useful it 
becomes, and the more people use it. The open-source, peer-generated approach is 
also, however, likely to present something of a challenge over time: as more people 
seek both to use and to contribute to geopyter we would expect to see the emergence 
and use of divergent norms, examples, and data across Atoms, Sessions, and Mod-
ules. Although the emergence of difference styles of coding is actually quite natural 
in programming and could be seen as a benefit to students in terms of teaching them 
about this aspect of programming, it also the case that geopyter could become a vic-
tim its own success if it ceases to be coherent.

6.1  Coordination

Here, we believe that the pysal project offers a useful template. Although pysal  is 
a foss project, it is not a free-for-all: domain specialists tend to gravitate towards 
those parts of the project to which they have the most to contribute and, over time, 
those who coordinate and enable the most substantive contributions to the code-
base in terms of features and performance are ‘invited’ to help manage individual 
components of the tool (e.g.  lib, model, explore, viz). Overall coherence is 
maintained via regular calls and online discussion boards, as well as a synchronised 
release schedule so that changes can be coordinated, tested, and knock-on effects 
resolved.

In general, we would expect to see a relatively small number of committed educa-
tors and developers creating and maintaining groups of Atoms that align with their 
areas of expertise, interests, and teaching responsibilities. However, unlike a tradi-
tional software project there is an important role here for teachers, not just develop-
ers. We think that this represents a really exciting opportunity for innovative new 
approaches to rise to the surface. There may be only a few who can write the Python 

Table 2  Indicative groups of atoms

Atomic group Indicative content

auto Approaches to spatial autocorrelation analysis
context Why learn to program? Example applications. Interviews
networks Working with network data and costs
describe Simple descriptive statistics
statistics More advanced methods of comparing data
clustering Non-spatial and spatial clustering analysis
foundations Foundations of programming and computer science
os Basic aspects of interacting with operating systems programmatically
viz Visualising data and making maps
ml Approaches to Machine Learning in a spatial context
points Point pattern generation and analysis
zones Zonal statistics and relationship
models From regression to gwr
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code to conduct a geographically weighted regression analysis, but it will be inter-
esting to see how many creative, insightful ways there are to explain it!

So although we also expect interested educators to begin almost immediately 
picking holes in the organisational structure proposed in Table 2, some kind of start-
ing point is needed. Moreover, as we have mentioned elsewhere, in the event of seri-
ous disagreement other instructors are free ‘fork’ the repository and begin changing 
material as they see fit. Indeed, there is nothing to prevent geopyter Sessions and 
Modules drawing on content spread across multiple repositories following different 
organisational and developmental strategies: all that’s need is a url!

The educational focus of geopyter implies that it may well be the most commit-
ted teachers who end up as ‘section editors’ who coordinate and review contribu-
tions. The editorial approach also aligns with the obvious benefits of grouping sets 
of Atoms together into basic sections such as foundations (the basics of vari-
ables and data structures); describe (describing data). The section editor ensures 
that examples, style, and other features are consistent across individual Atoms to 
make it easy to generate a set of Sessions introducing the Unix file system or Local 
Indicators of Spatial Autocorrelation.

geopyter  therefore seeks to balance the benefits of code sharing with those of 
local expertise: the instructor is free to write their own exegesis, if you will, of the 
code and its relevance to a particular Session or Module, but the burden of develop-
ing a cogent, domain-specific demonstration can be shared with others and com-
pelling examples more widely adopted without the effort of reinventing the wheel. 
Where irreconcilable differences arise between pedagogical approaches or models, 
then we might expect to see small groups of collaborators ‘fork’ the codebase and 
offer their own models; this is, of course, a valid approach with open-source code 
and one from which all instructors can ultimately benefit!

6.2  Credit

The use of Git/GitHub also gives us access to contributor information in the ‘com-
mit’ (i.e. editing) logs that we can propagate into notebooks so that all contributors 
are recognised in the final output. Although the open nature of the project means 
that we cannot strictly enforce attribution, geopyter seeks to make this the easier to 
do ‘by default’ through the insertion of metadata into the compiled notebook which 
is then used to append a list of contributors to the end of each notebook, along with 
any other relevant acknowledgments or copyright notices.

To facilitate reuse while protecting contributions from unacknowledged exploita-
tion textual content in geopyter is covered by a creative commons license; however, 
to deal with the fact that geopyter  relies extensively on open-source contributions 
which are incompatible with some cc licenses (see discussion in Wilson 2013), code 
blocks are licensed under the mit license. The manner in which contributions from 
authors at different institutions can be combined also ‘pollutes’ the materials in ways 
that inhibit institutional assertions of ownership over geopyter content.

geopyter also recognises the reality of the need for peer and professional recogni-
tion by incorporating attribution mechanisms directly into the compilation process. 
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Digital object identifiers (dois) can be created and curated by the ‘section editors’, 
but authorship of geopyter  components—be they Atoms, Sessions, or Modules—
provides the contributors with peer-evaluated, impactful materials to add to promo-
tion applications. Our intention is that both users and institutions come to better 
understand the extent to which open educational resources can be a joint project 
relying on the contributions of many teachers and developers.

7  Limitations

As we noted above in connection with Table  2, it is rather unlikely that our first 
attempt to divide up the entire field into discrete units of instruction will be entirely 
successful. We would also expect to draw on reference documents such as the Body 
of Knowledge (University Consortium for Geographic 2018) and Subject Benchmark 
Statement (QAA, 2014) for the ‘why’ and ‘what’ of instruction, leaving geopyter to 
deal with the ‘how’. Moreover, the open, contributory nature of the project positions 
us to build geopyter on top of the shared understanding of many specialists with a 
range of ideas about how to break apart, and put back together, the constituent ele-
ments of our domain’s knowledge in ways that speak to different types of students.

For the time being, we have also deliberately hobbled geopyter in one important 
way: an include command must be in a cell that does not contain any other text 
or code. This was done primarily for simplicity: it is a lot easier to look for whole 
(text) cells that match a target pattern than to have to try to parse long blocks of text 
or code on the off-chance that an include might be found; it also avoids any ambi-
guity as to whether the include is a geopyter or ‘native’ command. Not coinci-
dentally, it is also a good deal easier to replace an entire cell (the one containing an 
include) with one or more entire cells, than to try to work out if a cell needs to be 
‘closed out’ first.

8  Conclusion and future directions

From practical experience, conference presentations, and code, we tend to already know 
who is a good programmer or theorist, geopyter provides a mechanism for discover-
ing who is a good teacher. Sometimes these abilities may reside in the same person, 
but more often we expect that they will not: the strongest developers tend to be people 
who have been practicing software development for many years and, consequently, may 
have difficulty communicating their ideas to beginner- or intermediate-level students or 
teachers (see: Chapman 2010)! For this reason we see the broad-based community-of-
practice aspect of geopyter as integral at all stages of the project: system enhancement, 
content development, expanding coverage, and instructional design.

Consequently, geopyter has a lot in common—both philosophically and practi-
cally—with the Software Carpentry movement (Wilson 2016), and although we seek 
to tackle a slightly narrower set of issues with a more reusable set of resources, we 
can take both inspiration and warning from their experience. The benefit, we think, 
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is that while it is possible to design Sessions and Modules that follow the popular 
‘bootcamp’ approach to instruction (though see critique in Feldon et al. 2017), we 
want to enable the same content to be employed in a carpentry format as well as a 
‘normal’ classroom or mooc as required, or even to enable the instructor to mash all 
of those formats together such that they use a ‘bootcamp’ format for the introduction 
to Unix and the command line, an online-formatted resource for foundational con-
cepts in computer science, and a traditional course format for the (geo)data analysis 
instruction. All pulled from the same set of source Atoms!

Ultimately, although geopyter was developed with teaching needs in mind there 
is, of course, no reason why it could not be put to other uses: in combination with 
with nteract (https:// github. com/ ntera ct/ ntera ct) it would allow developers or 
researchers to build full-fledged applications as scripts assembled from a collection 
of notebooks; or as an addition to Netflix’s notebook ecology to allow for enhanced 
resource sharing and standardisation during the development phase before features 
and interfaces are ‘fixed’ as libraries (Ufford et  al. 2018). Nonetheless, our focus 
for the time being remains the cohort of university teachers at all levels tasked with 
introducing programming material to their students and wondering where to begin. 
We hope that geopyter makes a valuable contribution to this application domain and 
look forward to working with others to roll out a rich, reusable teaching framework.

9  Supplemental

Demonstration notebooks can be found in the ‘sessions’ directory of the geopy-
ter project on GitHub: github. com/ pysal/ GeoPy TeR/ tree/ master/ sessi ons.
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