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Abstract
Dengue disease has become a major public health problem. Accurate and precise 
identification, prediction and mapping of high-risk areas are crucial elements of an 
effective and efficient early warning system in countering the spread of dengue dis-
ease. In this paper, we present the fusion area-cell spatiotemporal generalized geoad-
ditive-Gaussian Markov random field (FGG-GMRF) framework for joint estimation 
of an area-cell model, involving temporally varying coefficients, spatially and tem-
porally structured and unstructured random effects, and spatiotemporal interaction 
of the random effects. The spatiotemporal Gaussian field is applied to determine the 
unobserved relative risk at cell level. It is transformed to a Gaussian Markov random 
field using the finite element method and the linear stochastic partial differential 
equation approach to solve the “big n” problem. Sub-area relative risk estimates are 
obtained as block averages of the cell outcomes within each sub-area boundary. The 
FGG-GMRF model is estimated by applying Bayesian Integrated Nested Laplace 
Approximation. In the application to Bandung city, Indonesia, we combine low-res-
olution area level (district) spatiotemporal data on population at risk and incidence 
and high-resolution cell level data on weather variables to obtain predictions of rela-
tive risk at subdistrict level. The predicted dengue relative risk at subdistrict level 
suggests significant fine-scale heterogeneities which are not apparent when examin-
ing the area level. The relative risk varies considerably across subdistricts and time, 
with the latter showing an increase in the period January–July and a decrease in the 
period August–December.
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1  Introduction

Dengue disease is a major challenge to healthcare worldwide, potentially leading 
to death, especially among the poor in low- and middle-income countries (Ak et al. 
2018). In addition, there are latent costs related to stress, productivity loss, school 
absence, and care taking (Wilastonegoro et al. 2020). To reduce health impacts and 
treatment costs, there have been substantial efforts aimed at the prevention of den-
gue disease outbreaks (Kampen et al. 2014). For these purposes, statistical models 
aimed at identifying the causes, transmission mechanisms, and prediction of out-
breaks at a fine spatiotemporal scale are of crucial importance (Messina et al. 2019).

High-resolution information is needed for research on the etiology of the disease 
and the development of control and prevention strategies (Ak et al. 2018; Jaya et al. 
2017; Jaya and Folmer 2020, 2021a, b; Pokharel and Deardon 2016). Dengue dis-
ease typically involves a spatiotemporal pattern (Jaya and Folmer 2020, 2021a, b; 
Phanitchat et al. 2019; Puggioni et al. 2020); therefore, high-resolution spatiotem-
poral models and maps of the distribution of relative risk are basic elements of an 
early warning system aimed at identifying where and when an outbreak will occur 
(Hanigan et al. 2019; Shi et al. 2013; Xu et al. 2019).

In many areas of spatial research including epidemiology, data are often only 
available at different levels of aggregation (Moraga et  al. 2017; Shi et  al. 2013; 
Utazi et al. 2019). If low-resolution information is available whereas high-resolution 
(cell level) information is needed but lacking, area-to-cell disaggregation through 
joint area-cell estimation can be applied to obtain the missing information (Moraga 
et al. 2017; Utazi et al. 2019; Wang et al. 2018a).1 Data fusion or data assimilation 
(Banerjee et al. 2015) and Bayesian melding (Fuentes and Raftery 2005; Liu et al. 
2011) are terms used to denote integrating multiple data sources of different spa-
tial resolutions.2 The basic concept involves combining area and cell observations in 
a single statistical model. Combining data measured at different levels of aggrega-
tion can improve parameter estimation and increase prediction accuracy (Wang et al. 
2018b). However, it may lead to spatial misalignment (Moraga et  al. 2017; Sahu 
et al. 2010; Truong et al. 2014; Utazi et al. 2019), which induces biased or incon-
sistent estimators (Liu and Bertazzon 2016; Peng and Bell 2010; Saez and López-
Casasnovas 2019).

Several kinds of correction approaches based on regression models have been 
developed to deal with area-to-cell misalignment problems (Banerjee and Gelfand 
2002; Banerjee et  al. 2015). Moraga et  al. (2017) and Utazi et  al. (2019) applied 
Bayesian geostatistical analysis to deal with misalignment in spatial non-Gaussian 

1  Below we use the notion of “cell” to denote spatial units of higher resolution.
2  Joint area-cell estimation is based on the assumption that the same factors at area and cell level drive 
the spatiotemporal process, although usually in various degrees (Banerjee et al. 2015; Utazi et al. 2019). 
In the present case, the same disease risk factors (weather) drive disease incidence at area and cell levels.
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data with linear covariates. However, methods that address area-to-cell misalign-
ment in spatiotemporal non-Gaussian data with nonlinear covariates are less well 
known. This applies especially to Poisson or Negative Binomial (NB) spatiotem-
poral data, which are typically applied in dengue and other disease incidence mod-
eling, but also in other kinds of spatial and regional research.

In this paper, we introduce the Fusion Area-Cell Spatiotemporal Generalized 
Geoadditive (GG)-Gaussian Field (GF) model, abbreviated as FGG-GF model, to 
generate high-resolution (cell) predictions based on observations at lower (area) 
resolution of the variable of interest (i.e., the number of dengue incidences) and the 
population at risk, and high-resolution cell data (i.e., weather variables), while con-
trolling for misalignment. Moraga et al. (2017) and Utazi et al. (2019) have shown 
that the prediction performance of integrated area-cell models can outperform mod-
els that use single level data sources.

Kammann and Wand (2003) introduced the Generalized Geoadditive Model 
(GGM), which has become popular in disease mapping (among other fields) because 
of its suitability for making high-resolution maps (Muleia et al. 2020; Wand et al. 
2011). The model assumes that there is a spatially continuous variable underlying 
all observations which can be modeled using a Gaussian process, usually denoted 
Gaussian Field (GF). A GF is characterized by a first-order autoregressive model 
with spatially correlated innovations. The GGM combines the Generalized Addi-
tive Model (GAM) and the Geostatistical Model (GM). The former was introduced 
by Hastie and Tibshirani (1986) to provide a flexible means of handling nonlinear 
and interacting covariates. GAMs are also suitable for handling complex spatial and 
temporal autocorrelation (French and Wand 2004; Ma et al. 2014). GAMs are non-
parametric because they do not require a priori specification of the regression func-
tion (Wang et al. 2018a). The GM was introduced by Matheron (1963) to construct 
high-resolution maps over a particular geographical region based on cell data on 
(risk) factors associated with a (dependent) variable of interest.

The integrated area-cell observations and the combination of non-Gaussian data, 
a nonlinear predictor and latent model components, in particular the spatiotemporal 
GF, make estimation of FGG-GF model, prediction, and mapping computationally 
complex and time-consuming (Barber et al. 2016) because of the “big n” problem. 
This issue can be handled by transforming a GF with a dense covariance matrix to a 
Gaussian Markov Random Field (GMRF) with a sparse precision matrix3 of Matérn 
covariances (Lindgren et al. 2011).

The objective of this paper is to develop a high-resolution prediction and map-
ping procedure for spatiotemporal Poisson or Negative Binomial data applying a 
Fusion Area-Cell Spatiotemporal Generalized Geoadditive-Gaussian Markov Ran-
dom Field (abbreviated as FGG-GMRF) model. Inference and prediction are han-
dled in a Bayesian framework. The approach will subsequently be applied to dengue 

3  Note that although the precision matrix is sparse, the covariance matrix is dense in general. Specifying 
models in terms of the precision matrix rather than the covariance matrix is useful in many high-dimen-
sional applications because it allows for a sparse representation, typically reducing computational cost 
and memory usage (Sidén et al. 2018).
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disease risk in Bandung city, Indonesia. The purpose is to predict and map the rela-
tive dengue risk at subdistrict level, given observations on dengue incidence and 
population at risk at district level and weather risk factors at cell level.4 Special 
attention is paid to high-risk districts and subdistricts requiring public intervention 
(Aguayo et al. 2020).

The structure of the remainder of this paper is as follows. Section 2 introduces 
the spatiotemporal GG-GF model. Section 3 presents the FGG-GF and FGG-GMRF 
models and the Bayesian inference framework. The link between the GF and GMRF 
models is summarized in Appendix 1. Section 4 applies the methodology to dengue 
incidence in Bandung city, Indonesia, and Sect.  5 summarizes and concludes the 
conducted research.

2 � The spatiotemporal generalized geoadditive‑Gaussian field model

Consider region A ∈ ℝ
2, partitioned into nA areas (e.g., districts in a city), each measured 

for T periods. The areas are labeled 
{

(

A1, 1
)

,… ,
(

A1, T
)

,
(

A2, 1
)

,… ,
(

A
i
, t
)

,… ,

(

A
nA
, T

)}

 , 

where 
(

Ai, t
)

 denotes area i at time t, for i = 1,… , nA and t = 1,… , T . Region A is fur-

ther divided into a finite set of np cells for T periods. The set of np cells over T periods is 

denoted 
{

(

s1, 1
)

,… ,

(

snA1

, T
)

,

(

snA1
+1, 1

)

,… ,
(

sg, t
)

,… ,

(

snp
, T

)}

, with nAi
 denoting the 

number of cells in area Ai for g = 1,… , np and t = 1,… , T and np =
∑nA

i=1
nAi

 . Note that the 

notation 
{

(

s1
(
A1)

, 1

)

,… ,

(

snA1
(
A1)

, T
)

,

(

snA1
+1
(
A2)

, 1

)

,… ,

(

sg
(
Ai)

, t
)

,… ,

(

s
np

(

AnA

), T

)}

 will 

be used to explicitly denote that cell sg(Ai) belongs to area Ai . If the area is not relevant, sg 
will be used. Moreover, the notation g for �g will be incidentally used if there is no risk of 
misunderstanding. Finally, sg,1 and sg,2 denote the latitude and longitude coordinates of its 
centroid, respectively.

Let yit and Nit denote the number of (dengue) incidences and population at risk 
in area Ai at time t , respectively, and ygt and Ngt the number of (dengue) incidences 
and population at risk in cell �g at time t , respectively. Note that both ygt and Ngt are 
unobserved at the cell level. yit and ygt are assumed to follow Poisson distributions5 
with means �it = Eit�it and �gt = Egt�gt , respectively, with Eit and Egt denoting the 
expected number of (dengue) incidences and �it and �gt the relative (dengue) risk for 
area i and cell g at time t , respectively (Jaya and Folmer 2020. The expected rate Eit 
is calculated using external standardization. It is defined based on the overall aver-
age across all areas and periods (Abente et al. 2018; Jaya and Folmer 2020, 2021a, 
b): 

5  A negative binomial distribution is appropriate when there is large overdispersion of zeros (Berk and 
MacDonald 2008; Payne et al. 2017).

4  Although Dengue disease incidence depends on socioeconomic risk factors such as income, family 
size, age, education, and weather variables such as humidity, precipitation, and sunshine, the case study 
presented below only considers the latter, while the socioeconomic risk factors are taken into account by 
the random effects. The reason is that the latter are only available at city level.
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The relative risk is defined as the ratio of the local risk in a spatiotemporal unit 
relative to the average risk across the whole study region over the entire time period 
(Yin et al. 2014). It is centered around one, meaning that the total number of inci-
dences is equal to the expected rate. The maximum likelihood (ML) estimator of the 
relative risk �it is (Jaya et al. 2017; Jaya and Folmer 2020):

This is known as the crude risk or the standardized incidence ratio (SIR).
Following Moraga et  al. (2017), Jaya and Folmer (2020, 2021a, b), and Utazi 

et al. (2019), we model the relative risk as a non-separable Poisson log-linear model 
as follows6:

with �it = log
(

�it
)

 and �gt = log
(

�gt
)

.
In Eqs. (3a) and (3b), �0 is the overall intercept denoting the average risk across 

space and time, i.e., across all i = 1,… , nA , g = 1,… , np , and t = 1,… , T  . The 
latent7 functions fk

(

xk,it
)

 and fk
(

xk,gt
)

 for k = 1,… ,K , represent the (non)linear 
effects of the metrical area and cell risk factors, respectively. The risk factors at cell 
level for a given area Ai and time t are fixed. However, they vary across areas and 
times. The latent (non)linear risk factor functions are based on observations at cell 
level but are predicted at area level. The risk at cell and area levels are assumed to be 
driven by the same factors; therefore, we adopt joint risk factor functions. For this 
purpose, we stack the observations on the risk factors such that risk factor k , at both 

(1)

Eit = Nit

(

1

nAT

nA
∑

i=1

T
∑

t=1

yit∕
1

nAT

nA
∑

i=1

T
∑

t=1

Nit

)

for i = 1,… , nA and t = 1,… , T .

(2)�̂it =
yit

Eit

for i = 1,… , nA and t = 1,… , T .

(3a)

�it = �0 +

K
∑

k=1

fk
(

xk,it
)

+ �i + �i + �t + �t + �it + Φit for i = 1,… , nA and t = 1,… , T ,

(3b)
�gt = �0 +

K
∑

k=1

fk
(

xk,gt

)

+ �g(Ai)
+ �g(Ai)

+ �t + �t + �g(Ai)t
+ Φgt

for g = 1,… , np and t = 1,… , T

6  Spatiotemporal variation (in disease outcomes) consists of the following three components: a spatial 
component capturing the overall spatial distribution, a temporal component capturing the overall tem-
poral pattern, and a space–time component capturing space–time interaction. Spatiotemporal models are 
classified as separable or non-separable (Knorr-Held 2020). A spatiotemporal model is said to be sepa-
rable if it consists of spatial and temporal components without their interaction, while a non-separable 
model comprises all three components (Haining and Li 2020; Knorr-Held 2000; Martinez-Beneito and 
Botella-Rocamora 2019).
7  The regression functions are latent in that they do not have pre-specified functional forms. This feature 
makes latent regression functions suitable to accommodate complicated relationships between the risk 
factors and the dependent variable.
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area and cell level, becomes �k =
(

xk,11,… xk,nAT , xk,11,… , xk,npT

)�

 for k = 1,… ,K 

and latent function fk
(

�k
)

 . The functions fk
(

zk
)

 are commonly centered at the mean, 
i.e., �

[

fk
(

zk
)]

= 0, for identifiability reasons (Fahrmeir and Lang 2001).
Let f (z) be the sum of the functions fk(zk) for k = 1,… ,K:

To account for spatiotemporal variation, Eq.  (4) can be extended to a varying 
coefficients model8:

where the design vector � =
(

�1,… , �K
)

′ contains components of z or additional 
covariates. The vector �k for k = 1,… ,K , modifies the relationship between the 
covariate zk and the log-linear conditional expectation �

[

�|z
]

 . If it is identical to the 
vector 1, i.e., �k = (1,… , 1)� with dimension ( nA + np)T × 1 , then fk(zk) presents the 
overall (main) effect of zk. If it is different from 1, fk

(

zk
)

�k presents the effect of �k 
that varies along with �k . In other words, fk

(

zk
)

�k models the interaction between �k 
and �k (Fahrmeir and Lang 2001). According to Martınez-Bello et al. (2017a; b), the 
varying coefficients model helps refine the association between the regressors (e.g., 
the weather variables) and the response, thus improving predictions at a fine spati-
otemporal scale. For example, if �k denotes the calendar day and �k is the spatiotem-
poral covariate temperature, then fk

(

zk
)

�k represents the temperature effect varying 
by day. In this study, we apply the temporally varying coefficients model to accom-
modate the temporally varying nonlinear effects of risk factors on the response. The 
time-varying effect of, for example, the k-th covariate can be written as (Franco-
Villoria et al. 2019):

where �k(�k,t) for t = 1,… , T  is the time-varying regression coefficient, which can 
be regarded as a stochastic process over �k (Fahrmeir and Lang 2001). For ease of 
notation, we ignore the term �k and write �k,t.

A time-varying coefficient can be conveniently specified as the sum of a fixed 
(global mean) effect and a temporal random effect of the risk factor:�k,t = �k + �k,t 
for k = 1,… ,K and t = 1,… , T  . The fixed effect ( �k ) presents the effect of the risk 
factor that remains constant across space or time, while the temporal random effect 
( �k,t) accounts for the time-varying effect of the risk factor (Song et al. 2020). The 
temporal random effect �k,t can be conveniently specified as a random walk model 

(4)f (z) =

K
∑

k=1

fk
(

zk
)

= f1
(

z1
)

+⋯ + fK
(

zK
)

.

(5)f (z) = f1
(

z1
)

�1 +⋯ + fK(zK)�K

(6)
fk
(

zk,t
)

�k,t = �k
(

�k,t
)

zk,t for every i and g, and for k = 1,… ,K and t = 1,… , T .

8  According to Hall et al. (2016) and Martınez-Bello et al. (2017b), temporally varying coefficients mod-
els can be seen as distributed lag parameters. They allow the visualization and exploration of changes in 
the dependent variable as linear or nonlinear functions of time.
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of order one (RW1) or two (RW2)9 (Bernardinelli et al. 1995; Martinez-Bello et al. 
2017b; Schrödle and Held 2011):

with uk,t ∼ N

(

0, �2
�k

)

 white noise, and �2
�k

 denoting the variance of the RW process 
controlling the smoothness of �k,t . A random walk process of order one needs an 
initial value of �k,1 and a random walk of order two needs initial values of �k,1 and �k,2.

The components �i and �i are the spatially structured and unstructured main 
effects at area level, respectively, whereas �g(Ai)

 and �g(Ai)
 denote the spatially struc-

tured and unstructured main effects for cell sg in the area Ai to which it belongs. The 
components �t and �t are the temporally structured and unstructured main effects. 
For a given time t, they are equal for all areas and cells. �it represents the spati-
otemporal interaction effect of the unobserved risk factors at area level and �g(Ai)t

 
the impact of the interaction effect �it in cell sg in area Ai to which it belongs (see 
Sect. 3.1 for details). We consider four type of space–time interactions (see Table 5 
in Appendix 2).

The final component, Φgt, in Eq.  (3b) is the spatiotemporal GF in cell 
�g for g = 1,… , np at time t , indicating the true but unobserved relative risk (Camel-
etti et al. 2013; Godana et al. 2019). Hence, Φgt is the “own” spatiotemporal interac-
tion effect of cell �g . Because of the large number of cells, it is continuously indexed 
(Blangiardo and Cameletti 2015). The component Φit in Eq.  (3a) denotes the area 
average of Φgt across the cells within Ai . Following Cameletti et  al. (2013) and 
Godana et al. (2019), we assume that Φ

(

sg, t
)

 changes over time following a first-
order autoregressive (AR1) process with coefficient 𝜆1, ||𝜆1|| < 1:

with Φ
(

sg, 1
)

∼ N
(

0, �2
Φ
∕
(

1 − �2
1

))

and �
(

sg, t
)

 defined as a mean square differen-
tiable process10 (Stein 1999) with the temporally independent but spatially corre-
lated innovations following a zero-mean Gaussian distribution with spatiotemporal 
covariance function:

for g ≠ h. �2
Φ

 is the homogeneous variance of �
(

sg, t
)

 , i.e., Var
(

�
(

sg, t
))

= �2
Φ

 for 
every sg and t , and R(d) the spatial autocorrelation matrix as a function of the dis-
tance d between sg and sh at time t (e.g., the Euclidean distance). Under the assump-
tion that the covariance function only depends on d , it is a Matérn covariance 

(7)
�k,t = �k,t−1 + uk,t(RW1) for t = 2,… , T or �k,t = 2�k,t−1 − �k,t−2 + uk,t(RW2) for t = 3,… , T

(8)Φ
(

sg, t
)

= �1Φ
(

sg, t − 1
)

+ �
(

sg, t
)

for t = 2,… , T and g = 1,… , np

(9)Cov
(

�
(

sg, t
)

, �
(

sh, t
�
))

=

{

0 if t ≠ t�

�2
Φ
R(d) if t = t�

9  Random walk models are the Bayesian equivalents of P(enalized) Spline regression models (Wang 
et al. 2018a).
10  A GF �

(

sg, t
)

= �t
(

sg

)

 is mean square differentiable in A , if for every sg inA and for every t, 

� �
t

(

sg

)

= lim
l→0

�t(sg+l)−�t(sg)
l

 exists and lim
l→0

�

[

�t(sg+l)−�(sg)
l

− �
�

t

(

sg

)

]2

= 0 (Stein 1999).
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function satisfying the second-order stationarity and isotropy assumptions. Conse-
quently, the mean of the process is constant and only depends on the locations of 
sg and sh through the Euclidean distance d = ‖sg − sh‖ ∈ ℝ (Song et al. 2008). The 
spatial autocorrelation function R(d) is defined as:

where Γ(.) is the gamma function, Kv(.) the modified Bessel function of the sec-
ond order (Abramovitz and Stegun 1965) and v > 0 the parameter controlling the 
smoothness of the GF (smoothness parameter). In applications, v is commonly fixed 
because it is usually poorly identified (Miller et al. 2019; Utazi et al. 2019). In sev-
eral software packages, including R-INLA (Integrated Nested Laplace Approxima-
tion), the default value is one(v = 1), corresponding to moderate smoothness (Lind-
gren et al. 2011; Utazi et al. 2019). The scale parameter 𝜅, 𝜅 > 0 controls the rate 
of decay of the correlation and is inversely related to the range parameter r of the 
Euclidean distance between �(sg, t) and �

(

sh, t
)

. For large r , � goes to zero. Because 
of a lack of a simple relationship between � and r , Lindgren et al. (2011) proposed 
the empirically derived relationship r =

√

8v∕� for spatial autocorrelation near 0.1. 
Substituting Eq. (10) in Eq. (9), the spatiotemporal Matérn covariance function Σ(d) 
for each time t is:

For the joint latent spatiotemporal GF �t =
(

Φ1t,… ,Φnpt

)�

 at cell level, we 
have:

with �t = (�1,t,… , �np,t)
� and � = �2

Φ
R a Matérn covariance matrix. That is, the joint 

latent spatiotemporal GF is a second-order stationary, isotropic GF with Matérn 
covariance function Eq. (11) and initial value distributed as �1 ∼ N

(

0,
�2
Φ

(1−�21)
R

)

.

3 � Bayesian inference

This section consists of two subsections. In the first, we present the Fusion Area-
Cell Spatiotemporal Generalized Geoadditive-Gaussian Field (FGG-GF) model 
which integrates the sub-models (3a) and (3b) into a single statistical model. The 
section also presents the Bayesian statistical tools. In the second section, we dis-
cuss solving the “big n” problem resulting in the Fusion Area-Cell Spatiotemporal 
Generalized Geoadditive-Gaussian Markov Random Field (FGG-GMRF) model and 
point out that it can be estimated using the R-INLA package. Details on the link 
between the GF and the GMRF through the Linear Stochastic Partial Differential 
Equation (LSPDE) approach are discussed in Appendix 1.

(10)R(d) =
1

Γ(v)2v−1
(�d)vKv(�d) for every t

(11)Σ(d) =
�2
Φ

Γ(v)2v−1
(�d)vKv(�d) for every t.

(12)�t = �1�t−1 + �t and �t ∼ N(0,�) for t = 2,… , T .
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3.1 � The fusion area‑cell spatiotemporal generalized geoadditive‑Gaussian field 
model

As observed above, combining low-resolution and high-resolution data to generate 
high-resolution predictions entails the risk of misalignment (Moraga et  al. 2017; 
Utazi et al. 2019). To handle misalignment, we first stack the corresponding objects 
of the area and cell models in Eqs. (3a) and (3b) to give the FGG-GF model11 which 
is then estimated as a single model (Blangiardo and Cameletti 2015; Kifle et  al. 
2017; Utazi et al. 2019). The FGG-GF model reads:

where �t =
(

�1,t ,… , �nA ,t , �(nA+1),t ,… , �(nA+np
)

,t

)�

 , �0 the global mean defined in Eq.  (3), 

1(nA+np) a vector of ones of dimension 
(

nA + np
)

 , �k,t =
(

�k,1t ,… , �k,nA t , �k,(nA+1)t ,… , �k,(nA+np)t

)�

 
the joint k th risk factor with fixed coefficient �k and temporal random coefficient 
�k =

(

�k,1,… , �k,T
)

�fork = 1,… ,K . Furthermore, �̈ =
(

�,�A

)� , with 

� =
(

�1,… .,�i,… ,�nA

)� and �A =

(

𝜔1(A1),… ,𝜔
g(Ai) … ,𝜔

n
p

(

A
nA

)

)�

, �̈ =
(

�, �A

)� , with 
� =

(

�1,… , �i,… , �nA

)�and �A =

(

�1(A1),… , �
g(Ai),… , �

n
p

(

A
nA

)

)�

 , �̈t =
(

�t, �At

)� , with 
�t =

(

δ1t,… , δit,… , δnAt
)�
, �t and �t defined as in Eq.  (3), and 

�At =

(

δ1(A1)t ,… , δg(Ai)t ,… , δ
np

(

AnA

)

t

)�

, �̈t =
(

�t ,�t

)� , with �t =
(

Φ1t,… ,Φit,… ,ΦnAt

)�

and �t = (Φ1t,… ,Φgt,… ,Φnpt
)′ . Note that the above vectors are ((nA + np) × 1) for 

t = 1,… , T .

The following observations apply. First, the basic components of a high-resolution 
spatiotemporal relative risk model are the covariates and/or the GF at cell level 
(

Φ
(

sg, t
))

 . Either one or both are required for the estimation of the relative risk at cell 
level. Second, the interaction terms �it and Φgt in the non-separable models in Eqs. 
(3a) and (3b), respectively, have as covariance matrices the Kronecker products of the 
spatial and temporal covariance matrices (Blangiardo and Cameletti 2015; Fuentes 
et al. 2008). See Table 5 in Appendix 2 and Sect. 3.2 for further details. For alterna-
tive approaches to handling non-separable models, see among others Bakka et  al. 
(2020), Gneiting (2002), and Sherman (2011). Third, the parameters 

{

�i, �i, �it
}

 are 
estimated at area level. For the cell level, they are the corresponding area level param-
eters, implying that they do not vary among cells within a given area Ai . Fourth, to 
control for misalignment, for each area Ai , the model component Φit and the area 
values of the risk factors xk,it are taken as the block averages of the cells within Ai for 
a given time point t , respectively (Banerjee et al. 2015). That is, for i = 1,… , nA and 
t = 1,… , T , xk,it = |

|

Ai
|

|

−1∫
Ai

xk(�, t)ds for k = 1,… ,K and Φit =
|

|

Ai
|

|

−1∫
Ai

Φ(s, t)ds 

(13)

�t = β01(nA+np) +
∑K

k=1

(

𝛽k + 𝜁k,t
)

�k,t + �̈ + �̈ + 𝜙t1(nA+np)
+ 𝜍t1(nA+np) + �̈t + �̈t

for t = 1,… , T

11  The inla.stack function can be used to define the fusion model framework.
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where |
|

Ai
|

|

= ∫
Ai

1ds denotes the size of Ai . The simplest procedure to estimate xk,it is 

to approximate |
|

Ai
|

|

−1∫
Ai

�k(s, t)ds for each time t by taking the average of the values of 

the cell risk factor xk,g(Ai)t in Ai : xk,it ≈
1

nAi

∑

sg∈Ai
�k
�

sg, t
�

 for k = 1,… ,K , 

i = 1,… , nA, and t = 1,… , T , with nAi
 denoting the number of cells in Ai (Lawson 

et al. 2012; Utazi et al. 2019). Estimation of Φit =
|

|

Ai
|

|

−1∫
Ai

�(s, t)ds is discussed in 

Sect. 3.2.
Bayesian estimation of the FGG-GF model is initiated by defining the estimated param-

eter and hyperparameter vectors. Let � =
(

�0, �1,… , �K , �1,… , �K ,�, �,�, �, �,�
)

 

and � =
(

�2
�0
, �2

�1
,… , �2

�K
, �2

�1
,… , �2

�K
, �2

ω
, �2

�
, �2

�
, �2

�
, �2

δ
, �2

Φ
, �, �1, �2, r

)

� denote the 
parameter and hyperparameter vectors, respectively, of the FGG-GF model in Eq. (13). 
The joint posterior distribution of the FGG-GF model is:

where p(.) denotes the probability density function. Below, we first discuss the 
likelihood function p(�|�,�) and next the joint prior of the GF at cell level. Based 
on the assumption that � follows a Poisson distribution at area and cell levels (see 
Eq. (3a) and (3b)), the likelihood function p(�|�,�) is given by:

The joint prior of the GF at cell level is obtained as follows. Since the GF in 
Eq. (8) at cell level is assumed to follow an AR1 model, the joint prior distribution 
of � = (�1,… ,�T )

�, i.e., p
(

�|�1,�
)

 , is (Godana et al. 2019):

Because of the AR1 process, we have:

Thus, the joint distribution of the latent spatiotemporal Gaussian process � is:

(14)p(�,�|�) ∝ p(�|�,�)p(�|�)p(�)

(15)

p(�|�,�) =

T
∏

t=1

exp
(

−�t exp
(

�t

))(

�t exp
(

�t

))�t

�t!

= exp

(

log

(

T
∏

t=1

exp
(

−�t exp
(

�t

))(

�t exp
(

�t

))�t

�t!

))

= exp

(

T
∑

t=1

log

(

exp
(

−�t exp
(

�t

))(

�t exp
(

�t

))�t

�t!

))

= exp

(

T
∑

t=1

(

�t
(

log
(

�t

)

+ �t

)

− �t exp
(

�t

)

− log
(

�t!
))

)

.

(16)
p
(

�1,… ,�
T
|�1,�

)

= p
(

�
T
|�

T−1,�T−2,… ,�1, �1,�
)

×… × p
(

�2|�1,�
)

× p
(

�1|�1,�
)

.

(17)p
(

�T |�T−1,�T−2,… ,�1, �1,�
)

= p
(

�T |�T−1, �1,�
)

.
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The joint distribution of the GF in Eq. (18) consists of two probability distribu-
tions: p

(

�1|�1,�
)

 and p
(

�t|�t−1, �1,�
)

 for t = 2,… , T  . To obtain the joint distri-
bution of � , we need the joint distributions of p

(

�1|�1,�
)

 for g = 1,… , np and 
t = 1 and p

(

�t|�t−1, �1,�
)

 for g = 1,… , np and t = 2,… ., T  . �1 is an AR1 station-

ary process, i.e., �1|�1,� ∼ N

(

0,
�

1−�2
1

)

. It is called the initial distribution for 
g = 1,… , np and reads as:

Because � = �2
Φ
R , with R defined in Eq. (10), we have:

The joint distribution p
(

�t|�t−1, �1,�
)

 for g = 1,… , np and t = 2,… , T  is given 
by:

(18)p
(

�1,… ,�T |�1,�
)

= p
(

�1|�1,�
)

T
∏

t=2

p
(

�t|�t−1, �1,�
)

.

(19)p
�

�1��1,�
�

=

�

1
√

2�

�np
1

�

�

�

�

�

1−�2
1

�

�

�

�

1∕2
exp

⎛

⎜

⎜

⎝

−
1

2
��

1

�

�

1 − �2
1

�−1

�1

⎞

⎟

⎟

⎠

.

(20)

p
�

�1��1,�
�

=

�

1
√

2�

�np
1

�

�

�

�

�2
Φ

1−�2
1

R
�

�

�

�

1∕2
exp

⎛

⎜

⎜

⎝

−
1

2�2
Φ

�
�

1

�

R

1 − �2
1

�−1

�1

⎞

⎟

⎟

⎠

=

�

1
√

2�

�np
�

�2
Φ

1 − �2
1

�−
np

2

�R�

−
1

2 exp

�

−

�

1 − �2
1

�

2�2
Φ

�
�

1
R

−1�1

�

∝ exp

�

−

�

1 − �2
1

�

2�2
Φ

�
�

1
R

−1�1

�

.

(21)

T
�

t=2

p
�

�t��t−1, �1,�
�

=

T
�

t=2

�

1
√

2�

�np
1

�

�

�

�2

Φ
R
�

�

�

1∕2
exp

�

−
1

2

�

�

�
t
− �1�t−1

�

�
�

�2

Φ
R
�−1�

�
t
− �1�t−1

�

��

=

T
�

t=2

�
√

2�
�

−np

2
�

�2

Φ

�−
np

2
�R�

−1∕2
exp

�

−
1

2

�

�

�
t
− �1�t−1

�

�
�

�2

Φ
R
�−1�

�
t
− �1�t−1

�

��

=
�
√

2�
�

−np (T−1)

2
�

�2

Φ

�−
np (T−1)

2
�R�

−
(T−1)

2 exp

�

−
1

2�2

Φ

T
�

t=2

��

�
t
− �1�t−1

�

�
R

−1
�

�
t
− �1�t−1

��

�

∝ exp

�

−
1

2�2

Φ

T
�

t=2

��

�
t
− �1�t−1

�

�
R

−1
�

�
t
− �1�t−1

��

�

.
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Finally, the joint prior distribution for the AR1 process, denoted as p
(

�|�−1
�

) , is 
given by multiplying Eqs. (20) and (21). It reads:

with �−1
�

= � denoting the covariance matrix of the GF in Eq. (12).
The priors and joint priors of � =

(

�0, �1,… , �K , �1,… , �K ,�, �,�, �, �,�
)

 and 
the hyperpriors of � =

(

�2

�0
, �2

�1
,… , �2

�
K

, �2

�1
,… , �2

�
K

, �2

ω
, �2

�
, �2

�
, �2

�
, �2

δ
, �2

Φ
, �, �1, �2, r

)

� are 
presented in Table  5 in Appendix 2.12 Details can be found in Jaya and Folmer 
(2021a) and the references therein. The prior distributions are assumed to be inde-
pendent, implying that:

The joint hyperparameter distribution is given by13:

Given the likelihood function, the joint prior distributions for the parameter vec-
tors and the joint hyperparameter, the joint posterior distribution in Eq. (14) can be 
written as:

(22)

p
(

�|�−1
�

)

∝ exp

(

−

(

1 − �2
1

)

2�2
Φ

�
�

1
R

−1�1

)

× exp

(

−
1

2�2
Φ

T
∑

t=2

((

�
t
− �1�t−1

)

�
R

−1
(

�
t
− �1�t−1

))

)

∝ exp

(

−
1

2

(

1

�2
Φ

(

�
�

1

(

1 − �2
1

)

R
−1�1 +

T
∑

t=2

((

�
t
− �1�t−1

)

�
R

−1
(

�
t
− �1�t−1

))

)))

∝ exp

(

−
1

2
�

t

����t

)

∝ N
(

0,�−1
�

)

(23)

p(�|�) = N

(

0, �2
�0

)

×N

(

0;�−1
�

)

×

K
∏

k=1

N

(

0;�−1
�k

)

×N
(

0,�−1
ω

)

×N
(

0,�−1
�

)

×N

(

0,�−1
�

)

×N

(

0,�−1
�

)

×N
(

0,�−1
�

)

×N
(

0,�−1
�

)

.

p(�) = p

(

�2

�0

)

p

(

�2

�1

)

… p

(

�2

�
K

)

p

(

�2

�1

)

… p

(

�2

�
K

)

p
(

�2

ω

)

p
(

�2

�

)

p

(

�2

�

)

p

(

�2

�

)

p
(

�2

Φ

)

p
(

�2

δ

)

p(�)p
(

�1
)

p
(

�2
)

p(�)

=

dim (�)
∏

j=1

p
(

Ψ
j

)

for j = 1,… , J.

12  A joint prior may refer to multiple parameters, to the spatial units (area and cell), to multiple time 
periods, or to space–time. The specification of the parameter vector or the subscripts of the precision 
matrices indicate what kind of jointness is in order.
13  The total number of hyperparameters is J = 2K + 11 , where K is the total number of risk factors and 
11 represents the total of the elements of { �2

�0
, �2

ω
, �2

�
, �2

�
, �2

�
, �2

Φ
, �2

δ
, �, �1, �2, r}.
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3.2 � The fusion area‑cell spatiotemporal generalized geoadditive‑Gaussian 
Markov random field model

A continuously indexed GF typically has a dense covariance matrix, such as �� 
in Eq.  (24), leading to complex, time-consuming numerical estimation challenges, 
commonly referred to as the “big n” problem. Lindgren et  al. (2011) proposed to 
solve the big n problem by substituting a sparse, discretely indexed Gaussian Markov 
Random Field (GMRF) for the continuously indexed GF.14 For a GMRF, the full 
conditional distribution for each component γg,t for g = 1,… , np, only depends on a 
set of neighbors N(g) as follows:

where �−g,t denotes all the elements in � except γg,t , and �N(g),t denotes all the ele-
ments of �t in the neighborhood N(g ) of γg,t. The vector of elements of �t not in the 
neighborhood N(g) of γg,t is denoted as �−{g,N(g)},t. γg,t is conditionally independent 
of the elements of �−{g,N(g)},t . The conditional independence relationship is written 
as:

If Eq. (26) holds, the precision matrix � = �−1 of �t is sparse for each t . In other 
words, for a pair g and h with g ≠ h and h ∉ {N(g)} , we have:

implying that the nonzero pattern in the precision matrix � is given by the neigh-
borhood structure. Conversely,

(24)

p(�,� |y) ∝ exp

(

T
∑

t=1

(

yt log
(

Et exp
(

�t

))

− Et exp
(

�t

))

)

× exp

(

−
1

2�2
�0

�2
0

)

× exp
(

−
1

2
�
′�

�
�

)

× exp

(

−
1

2

K
∑

k=1

�

�

k
��k

�k

)

× exp
(

−
1

2
�
′�

�
�

)

× exp
(

−
1

2
�
′���

)

× exp
(

−
1

2
�����

)

× exp
(

−
1

2
�
′�

�
�

)

× exp
(

−
1

2
�����

)

×

dim (�)
∏

j=1

p
(

Ψj

)

.

(25)p
(

γg,t|�−g,t
)

= p
(

γg,t|�N(g),t
)

for g = 1,… , np and t = 1,… , T

(26)γg,t ⟂ �−{g,N(g)},t|�N(g),t for t = 1,… , T and g = 1,… , np.

(27)γg,t ⟂ γh,t|�−(g,h),t ⟺ �(g, h) = 0 for g = 1,… , np and t = 1,… , T

(28)�(g, h) ≠ 0, if h ∈ {N(g)}.

14  A sparse precision matrix enables the application of computationally efficient numerical methods. For 
instance, for the factorization of a dense covariance matrix of a spatiotemporal GF, the O(n3 ) computa-
tion time is reduced to O(n2 ) for a sparse covariance matrix of a GMRF (Rue and Held 2005).
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Lindgren et al. (2011) proposed the Linear Stochastic Partial Differential Equa-
tion (LSPDE)15 approach based on a mesh of the study area, to transform a dense 
Matérn covariance matrix of a GF, such as in Eq. (11), into a sparse Matérn preci-
sion matrix of a GMRF (see Appendix 1). Specifically, for t = 1,… , T , the GF γg,t in 
Eq. (12) with Matérn covariance function � = �2

Φ
R , is transformed into a GMRF, 

∼
�t(s) ∼ N

(

0,
∼

�
−1

s

)

, with sparse spatial precision matrix 
∼

�s defined in Eq.  (47). 

Consequently, for t = 1,… , T  , the joint latent spatiotemporal GF 
�t =

(

Φ1t,… ,Φnpt

)�

 at cell level in Eq. (12) is transformed into a GMRF 
∼

�t as:

with the initial value distributed as: 
∼

�1 ∼ N

(

0,
∼

�
−1

s
∕
(

1 − �2
1

)

)

 . The joint distribu-

tion of the T × L-dimensional cell level GMRF 
∼

�=

(

∼

�
�

1
,… ,

∼

�
�

T

)

′ is:

with precision matrix � ∼

�
= �T ⊗

∼

�s , i.e., the Kronecker product of the autoregres-
sive temporal covariance matrix ( �T) (see Table 5 in Appendix 2) and the Matérn 
spatial covariance matrix ( 

∼

�s) , respectively.
To facilitate the estimation of �̈t =

(

�t,�t

)�

 , with �t =
(

Φ1t,… ,Φit,… ,ΦnAt

)�

 

and �t = (Φ1t,… ,Φgt,… ,Φnpt
)′ �t = (Φ1t,… ,Φgt,… ,Φnpt

)′ for t = 1,… , T  , 

(Eq.  (13)) as a GMRF ∼

� , we introduce the 
((

nA + np
)

× L
)

—dimensional parti-
tioned or block matrix � =

[

�1 �2

]−1 that maps the GMFRs associated with the L 
triangulation nodes16 to the nA areas and np cells, respectively. The elements of �1 
correspond to the block average |

|

Ai
|

|

−1∫
Ai

Φ(s, t)ds for i = 1,… , nA, t = 1,… , T and s

= (s1(A1)
,… , s

g(Ai),… , s
n
p
(A

nA
))
� . That is, �1 is the (nA × L) sparse matrix with 

H1(i, l) = 1∕Vi if vertex l is in area Ai and zero otherwise and Vi is the number of 
vertices in the area Ai . Hence, matrix H1 reads:

(29)
∼

�t = �1

∼

�t−1 +
∼
�t and

∼
�t(s) ∼ N

(

0,
∼

�
−1

s

)

(30)
∼

�∼ N

(

0,
∼

�
−1
∼

�

)

15  The LSPDE approach uses finite basis functions defined by a triangulation of the study region (see 
Online Resource 1 for application to Bandung city) to transform a GF to a GMRF. Implementation can 
be conveniently handled using INLA (Rue et al. 2009). The LSPDE approach is immediately applicable 
to a large class of spatiotemporal models. For instance, it applies to models with complex hierarchical 
structures or with non-separable covariance functions, as well as non-stationary models with time-vary-
ing parameters (Cameletti et al. 2013).
16  The number of nodes (vertices) L is larger than the number of cells np because we extend the domain 
of interest by an outer area to avoid the boundary effect (see Appendix 1 for details).
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Consequently, Φit ≈
∑L

l=1
H1(i, l)

∼

Φt,lfort = 1,… ,T  with 
∼

Φt,lthe(t, l) th element of 
∼

�.
H2 transforms the ( T × L ) elements of ∼

� into (np × T) elements of � with the 
value of the (g, t) th element � corresponding to the value of (t, l) th of ∼

� . That 
is, H2 is an (np × L) sparse matrix with H2(g, l) = 1 if the vertex l is at loca-
tion sg and zero elsewhere such that for the gth cell Φg,t ≈

∑L

l=1
H2(g, l)

∼

Φt,l for 
i = 1,… , np and t = 1,… , T  . Hence, matrix H2 reads:

Given the partitioned matrix H , the FGG-GF in Eq. (13) can be written as:

Because the FGG-GMRF model in Eq.  (33) belongs to the class of the latent 
Gaussian models, it can be estimated using INLA-LSPDE (Cameletti et  al. 2013; 
Gómez-Rubio et al. 2021). Predictions of the relative risk � for the cells of the trian-
gulated domain can be obtained via the posterior conditional distribution of ∼

� , 
given � ∼

�
 for all the L vertices and the posterior distributions of the parameter and 

hyperparameters in Eq. (24). The FGG-GMRF model setup in Eq. (33) implies that 
INLA generates predictions for the target cells during model-fitting.

4 � Application: relative dengue risk at subdistrict level in Bandung, 
2012–2018

Bandung city is divided into 30 districts and 151 subdistricts. The districts are third 
level administrative units within a province, and the subdistricts are fourth level 
administrative units. Every district in Bandung city consists of a minimum of four 

(31)

(32)

(33)

�t = 𝛽01(nA+np) +

K
∑

k=1

(

𝛽k + 𝜁k,t
)

zk,t + �̈ + �̈ + 𝜙t1(nA+np)
+ 𝜍t1(nA+np) + �̈t +�

∼

�t

for t = 1,… , T .
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subdistricts. While the number of dengue incidences in Bandung city is reported at 
district level, for efficient and effective prevention and control, figures at the subdis-
trict scale are needed. In Sect. 4.1, we discuss and explore the data; in Sect. 4.2, we 
estimate the FGG-GMRF model; and in Sect. 4.3, we use the model to predict the 
relative dengue risk at subdistrict level.

4.1 � Data and exploratory data analysis

The data were obtained from existing databases. Annual observations at district level 
on the population at risk (see Online Resource 1) and monthly dengue incidence at 
district level (see Fig. 1) were obtained from the Bandung Central Statistical Bureau 
(2012, 2013, 2014, 2015, 2016, 2017, 2018)  and the Bandung Health Depart-
ment (2013, 2014, 2015, 2016, 2017, 2018, 2019), respectively. From January 1, 2012, 
until December 31, 2018, a total of 26,095 dengue incidences (1,030 per 100,000 
inhabitants) were reported. The monthly incidence pattern is highly similar from year 
to year and is taken as constant. Particularly, the mean Pearson correlation coefficient 
of monthly dengue incidence for the years 2012–2018 is approximately 0.70. In addi-
tion, there were no major shifts across the years in the annual cycle. Hence, as in Jaya 
and Folmer (2021a), we only consider the monthly cycle for the 30 districts.17 Figure 1 
shows a high number of incidences from January to July, followed by a sharp drop 
in July and a low level of incidences for the remainder of the year. The monthly inci-
dences range from 5 to 265 (0.197–10.461 per 100,000 inhabitants, respectively).

We derived the crude risk rate (i.e., the standardized incidence ratio, SIR) as the 
ratio of the observed to the expected number of incidences (see Eq. (2)). Figure 2 
presents the monthly dengue SIR per district for the period 2012–2018. It ranges 
from 0.229 to 3.132. Most districts, primarily those in northern and southern Band-
ung, have a SIR greater than one from January to July. The districts with the highest 
SIR are Buah Batu ( id = 20 ), Lengkong ( id = 27 ) and Rancasari ( id = 29).

As observed by Ebi and Nealon (2016), Jaya and Folmer (2021a), and Zellweger 
et  al. (2017), among others, socioeconomic and environmental conditions are the 
main factors influencing dengue disease risk over space and time. However, for 
Bandung, socioeconomic risk variables such as income, education, occupation and 
living conditions are unavailable for districts and cells. These factors are accounted 
for by the random effects, thus controlling for omitted variable bias (Jaya and Fol-
mer 2020, 2021a, b). By contrast, the monthly averages of the weather risk variables 
of precipitation (mm), temperature (°C), sunshine duration (kJ/m2day) and water 
vapor pressure (kPa) are available at cell level from the WorldClim2.0 database 
(Fick and Hijmans 2017), obtained from 19 weather stations surrounding Bandung 
in West Java for 1970–2000. We selected cells of resolution 1  km2. Accordingly, 
Bandung city was divided into 179 cells. Table  1 presents the monthly average 
weather variables for the period 1970–2000.

Figure 3 shows that precipitation and water vapor pressure are relatively high in 
the period November–April, temperature is relatively high in the period April–June 

17  The main objective of this research is to find out in which areas and which months Dengue outbreaks 
will occur annually. For this purpose monthly cycle observations suffice.
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and in October, and solar radiation is relatively high in the period August–November. 
Figure 4 indicates that the average temperature varies strongly over space. The mini-
mum average temperature occurs in the northern districts, which are mountainous 
areas at approximately 800 m above sea level. In addition, they are densely covered 
with forests and have relatively high precipitation. The central districts, where the 
governmental facilities and businesses are located, also have high precipitation in the 
period November to April. Moreover, they have higher temperatures than northern 
Bandung because of differences in forest density and elevation. They also have high 
population density, high mobility and high air pollution (Jaya and Folmer 2020). 

In preparation for estimating the FGG-GMRF model in Eq. (33), we calculated 
the variance inflation factor (VIF) of the weather variables to check multicollinear-
ity. Table 2 shows that the maximum VIF is 9.312 (for water vapor pressure) which 
is below the critical (rule of thumb) value of 10, indicating that the correlation 
among variables is unlikely to affect estimation (Montgomery et al. 2012).

4.2 � The estimated generalized Geoadditive‑Gaussian Markov Random Field 
model and prediction

The first step in estimating the FGG-GMRF model given by Eq. (33) is the construc-
tion of a triangle mesh of the study area for the application of the Finite Element 
Method (FEM) and LSPDE approach.

Fig. 1   Monthly dengue incidences at district level (in 1,000), Bandung City, Indonesia, 2012–2018 
(1–30: district codes, see Online Resource 1)
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As described in Appendix 1, the accuracy of the FEM calculations and the pre-
cision of the forecasts, is a function of the number of vertices in the mesh (edge 
length). Blangiardo and Cameletti (2015) and Utazi et  al. (2019) recommended 
varying the edge length between the minimum distance and approximately 5–8% 
of the maximum distance of any two cells (18,681  m). Hence, we considered 
G = {966, 831, 717, 616, 548, 501} vertices, corresponding to edge lengths varying 
from 1000 to 1500 m, with a difference18 of 100 m (see Online Resource 1). The 
data and R code are available in Online Resource 2.

Fig. 2   Monthly dengue standardized incidence ratio (SIR) at district level, Bandung City, Indonesia, 
2012–2018

Table 1   Descriptive statistics for the monthly averages of the weather variablesa

a WorldClim (2020) Global climate and weather data, version 2.1. WorldClim: https://​www.​world​clim.​
org/. Accessed May 2020

Description Mean SD Min Max

Precipitation (mm) 189.024 89.030 52.000 328.000
Average temperature (°C) 22.632 0.896 19.300 24.000
Solar radiation (kJ/m2day) 16,938.484 1,317.538 15,041.000 19,924.000
Water vapor pressure (kPa) 2.095 0.140 1.670 2.300

18  R-INLA contains the routine inla.mesh.2d() for meshing of spatial domains. It contains several sub-
routines, notably loc: for the number and the location of the initial mesh vertices, and max.edge: for the 
maximum edge lengths in the study area and in the outer area.

https://www.worldclim.org/
https://www.worldclim.org/
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Before turning to the estimations of the spatiotemporal FGG-GMRF model, we 
make the following observations. First, as explained in Sect. 3, the covariates and/
or the state process � at cell level are required for high-resolution spatiotemporal 
prediction using the FGG-GMRF model. Hence, either the covariates or � , or both, 
are included in the selected model. Second, for every model, we considered Poisson 
and Negative Binomial model specifications for the number of incidences, a random 
walk of order one (RW1) and two (RW2) for the time-varying coefficients, struc-
tured and unstructured spatial and temporal random effects and their interaction, and 
six different edge lengths. Third, the best model was selected using the deviance 
information criterion (DIC), the Watanabe–Akaike information criterion (WAIC) 
and the marginal predictive likelihood (MPL). As a rule of thumb, the best model is 
the one with the smallest DIC and WAIC, and the largest MPL. Fourth, we started 
the estimation with the simplest models with covariates only (M1), and then, we 
proceeded to the model specifications with covariates and four types of interaction 
(see Table 5 in Appendix 2) at area and cell levels (M2) and, finally, we estimated 
the full models with covariates, four types of interaction at area and cell levels, and 
spatially and temporally structured and unstructured main effects (M3).19 Finally, 

Fig. 3   Monthly variation of the mean annual weather variables a precipitation (mm), b temperature (°C), 
c solar radiation in 1000 (kJ/m2day), and d water vapor pressure (kPa)

19  In Jaya and Folmer (2021a), the order of estimation was reverse. The models with the structurally and 
temporally main random effects were estimated before the models with the interaction effects. The latter 
outperformed the former. Based on this outcome, we estimated the M2 models before the M3 models to 
economize on computation time.
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due to the large number of outcomes, we only present the estimates for interaction 
Type IV (spatially structured ⊗ temporally structured) which, as in Jaya and Folmer 
(2020), performed best among the models with spatiotemporal interaction.20

Fig. 4   The spatiotemporal variation of the weather variables: a precipitation (mm), b temperature (°C), c 
solar radiation in 1000 (kJ/m2day), and d water vapor pressure (kPa)

Table 2   Variance inflation 
factors (VIF) for precipitation, 
average temperature, solar 
radiation and water vapor 
pressure

VIF < 10 indicates that there is no serious multicollinearity

No Variable VIF

1 Precipitation (mm) 3.074
2 Average temperature (°C) 3.234
3 Solar radiation (kJ m−2 day−1) 3.347
4 Water vapor pressure (kPa) 9.312

20  The estimates of the models with other types of interaction are available from the first author upon 
request.
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The estimations are presented in Table 6 (in Appendix 3). The table shows that 
the models21 with covariates only (M1) have the worst fit and predictive perfor-
mance among the three classes of models. They have the highest DICs, WAICs and 
smallest MPLs. Given their relatively poor fit and predictive performance, the M1 
models were not considered further in the selection procedure. Introduction of the 
interaction effect type IV (M2) yielded substantially better predictive performance. 
The full models with covariates, interaction at area and cell levels and spatially and 
temporally structured and unstructured main effects (M3) had fit and predictive 
performance similar to the M2 models. Hence, the main spatially and temporally 
structured and unstructured effects did not improve the model fit and prediction per-
formance, which is consistent with Jaya and Folmer (2020). Based on these observa-
tions, and because the M2 models have a simpler structure, we selected the class of 
M2 models.

Next, we turned to the selection of the best model from the 24 models 
M2.1.1.1–M2.2.2.6. First, we considered the edge length, finding that the models 
M2.1.1.1–M2.2.2.6. have similar DIC, WAIC and MPL values. Based on this obser-
vation, we selected the edge length of 1500 m for reasons of computational time. 
Online Resource 1 presents the mesh. Second, among the M2 models with edge 
length 1500 m, the Poisson model had slightly lower DIC and WAIC and slightly 
higher MPL than the Negative Binomial model. In addition, the models with tempo-
ral trends RW1 and RW2 had similar DIC, WAIC and MPL values. Based on these 
considerations, we selected model M2 with Poisson distribution, RW1 time-varying 
effect, and edge length of 1500 m (denoted as model M2.1.1.6 below).

Figure 5a shows that for model M2.1.1.6, the observed and predicted dengue rel-
ative risks are strongly correlated (Pearson correlation coefficient = 0.986) , indicat-
ing that the model fits the data well. Figure 5b shows that the PIT histogram is close 
to the Uniform distribution, also indicating that model M2.1.1.6 fits the data well.

Table  3 summarizes various components of model M2.1.1.6 which are subse-
quently used to calculate the posterior means of the monthly relative risk at dis-
trict and subdistrict levels. Before doing so, we discuss the components separately. 
To this end, we also make use of Figs. 6 and 7. Before going into detail, we make 
the following remarks. First, as observed in Sect. 2, p.8, the posterior means of the 
time-varying coefficients �k,t = �k + �k,t for k = 1,… ,K and t = 1,… , T  , which are 
presented in Fig. 6, consist of the fixed effect plus the temporal random effect. The 
minimum and maximum posterior means of the temporal random effects present 
the largest negative and largest positive differences of the temporal random effects 
relative to the global effects. Secondly, the contributions of the weather variables 
in explaining the spatiotemporal variation of the dengue risk are conveniently sum-
marized by the posterior means of their hyperparameter variances and their percent-
age contributions as fractions of the total variance (the last column of Table 3). In a 
similar vein, the posterior means and fractions of the hyperparameter variance of the 
random components present their variability and strength in explaining the relative 
risk across space and time.

21  For a precise definition of the models see the note under Table 6, Appendix 3.
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We will begin the discussion of Table  3 with the global mean effects of the 
weather variables. We only consider the posterior means and disregard credible 
intervals. Before going into the detail, it is worth noting that an indirect relationship 
exists between the relative risk of dengue and weather variables via the development 
and survival of the dengue virus and its vector (Jaya and Folmer 2021a).

Precipitation in general has a negative impact, with a posterior global (over-
all) mean of − 0.0041, which is consistent with Jaya and Folmer (2021a). 
For a one mm increase in the global mean, the dengue risk decreases by 
(exp(−0.0041) − 1)100% = −0.41% . The explanation is that heavy rainfall disrupts 
the Aedes-spp mosquito’s reproductive cycle by washing away breeding sites (Abio-
dun et al. 2016; Benedum et al. 2018).

Temperature in general has a positive impact (0.1002), which is consistent with 
Hurtado-Díaz et al. (2007) and Jaya and Folmer (2021a). The relative risk increases 
by (exp(0.1002) − 1)100% = 10.54% for an increase of global mean temperature by 
10C. The explanation is that higher temperatures offer good conditions for mosquito 
development, particularly feeding (Hales et al. 2002; Lambrechts et al. 2012).

Solar radiation has a negative impact (− 0.0001), which is consistent with Ekasari 
et  al. (2018), Jaya and Folmer (2021a) and Martínez-Bello et  al. (2017b). An 
increase of 1 kJ m−2 day−1 of solar radiation decreases the relative dengue risk by 
(exp(−0.0001) − 1)100% = −0.01% . As shown by Rasjid et al. (2019), strong solar 
radiation negatively influences the breeding and spread of Aedes-spp mosquitoes. 
A longer spell of solar radiation implies a shortened spell of dawn and dusk, dur-
ing which the Aedes-spp mosquito preys on animals and humans, particularly 20 to 
30 min after sunset (Ekasari et al. 2018; Jaya and Folmer 2021a).

Water vapor pressure in general has a negative impact, with a posterior global 
mean of 0.5033. An increase of the global mean by 1% increases the relative den-
gue risk by (exp(0.5033) − 1)100% = 65.42% due to an increase in breeding ability 
(Bambrick et al. 2009).

For the temporal random effects of the weather variables, the greatest negative 
temporal random effect of precipitation occurred in June (-0.0248), while the great-
est positive occurred in March (0.0176). For temperature, the largest negative tem-
poral random effect was in February (-0.0713), while the largest positive was in June 
(0.1104). Solar radiation has a temporal random effect close to zero, as indicated by 
its minimum and maximum posterior means of -0.0002 and 0.0003, respectively. 
The greatest negative of temporal random effect of water vapor pressure was in Jan-
uary (− 0.0137), while the greatest positive effect was in June (0.0161).

The variances of the weather variables together account for 31.87% of the total 
variance of the hyperpriors with solar radiation being the most important 
( �2

�3
= 0.023) , explaining 9.88%, while temperature is the smallest, accounting for 

6.2%. The variance of the area level interaction effect ( �2
δ
) ) accounts for the highest 

fraction of the total variance (43.47%), followed by the cell level interaction effect 
( �2

Φ
 ), with a fraction of 24.68%. These fractions indicate that the trend of dengue 

relative risk for each district and subdistrict is strongly affected by neighboring dis-
tricts and subdistricts, respectively. The relatively low fractions of the total variance 
for the other effects imply that they are less important. Specifically, the low fraction 
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of the total variance for the average temperature indicates that only a small part of 
the variability of the relative risk of dengue in districts and subdistricts is explained 
by the average temperature.

The posterior mean of hypermeter of the Leroux CAR spatial autoregressive coef-
ficient ( �) , and the posterior means of the hyperparameters of the temporal autore-
gressive coefficients at area level ( �2 ) and cell level ( �1 ) are substantial (larger than 
0.700), indicating strong spatial and temporal dependency. The estimated range is r 
equals 13.597 km . This implies that beyond the distance r = 13.597 the spatial corre-
lation among any two cells is smaller than 0.1. Hence, the observations are spatially 
strongly correlated. Beyond 13.597km it is negligible.

Based on Table 3, we now discuss the estimated parameters for the time-varying 
effects of the risk factors and, next, the spatiotemporal interaction effects at the area 
and cell levels.

The posterior means of time-varying effects of the weather variables are pre-
sented in Fig.  6. The figure shows that the time-varying effects of precipitation, 
average temperature and solar radiation vary considerably over the year. The time-
varying effect of water vapor pressure, in contrast, is highly constant over time.

The time-varying effect of precipitation is positive for the periods January–April, 
August–September and December and negative for May–July and October–Novem-
ber. The strongest negative effect was in June (− 0.0289), and the strongest positive 
effect was in March (0.0135). The negative impact for the period May–July follows 
after the peak of the rainy season from November–April. The negative impact for 
October–November is caused by the increase in precipitation after the peak of the 
dry season in June–July. The positive impacts for the periods January–April and 
August–September, and the peak in March, correspond to the relatively low rainfall 
one to two months before these periods.

The time-varying effect of temperature is positive for all months and ranges from 
0.0289 (end of August) to 0.2106 (June–July). It increases from January–June, is at 
its peak in June, decreases from July until mid-September, and then starts increas-
ing up to the global mean, where it remains for the rest of the year. Note that the 
monthly temperature has a delayed risk effect in that it increases from January–May, 

Fig. 5   a Scatterplot for model M2.1.1.6 of the predicted versus the observed dengue relative risk and b 
histogram of the probability integral transform (PIT)
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while its impact is largest in June. The delay is due to the mosquito life cycle and 
incubation period (Jaya and Folmer 2021a).

The time-varying coefficient of solar radiation is below zero for almost all 
months, except for November, and varies from − 0.0003 to 0.0002. This is due to the 
fact that tropical countries such as Indonesia receive a lot of solar radiation through-
out the year (Handayani and Ariyanti 2012). The time-varying effect of water vapor 
pressure is positive all year round and hardly varies. The effect varies from 0.4896 to 
0.5194. The strongest effect is in June (0.5194).

Figure  7 presents the estimated parameters of the spatiotemporal interaction 
effects at area and cell level which depend on their hyperparameters in Table 3.

Figure  7a presents the district level spatiotemporal interaction effects (i.e., the 
residual effect after accounting for the weather effects). The figure shows that the 
interaction effect varies across districts and time. In the northern districts, it is posi-
tive and quite high during January and February, followed by a decrease to around 
zero during the period March–May. From June–September it is moderately positive 
followed by a period of high positive interaction for the rest of the year, especially 
in the most north-western districts. The high interaction effect in the period Septem-
ber–February is related to multiple factors, in particular environmental conditions. 
The northern areas are ideal breeding habitats because of dense vegetation and high 
humidity, especially during the rainy season, with low sunshine duration and high 
humidity.

The central districts have high spatiotemporal interaction effects because 
of favorable socioeconomic conditions for the spread of the dengue virus, 

Fig. 6   Time-varying effect ( ̂�
k,t) of a precipitation (mm), b average temperature (°C), c solar radiation 

(kJ m−2 day−1) and d water vapor pressure (kPa)
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Fig. 7   Monthly posterior means of a the area level interaction effect and b the cell level interaction 
effect, January–December
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including high population density and high density of hotels, hostels and stu-
dent apartments. For the northern central districts, there is the additional effect 
of spillover of mosquitoes from the northern districts. As a consequence, the 
interaction effect of the northern central districts follows a time pattern similar 
to time patterns of the northern districts, though less intense. The most central 
districts have high positive interaction effects all year round because they have 
the highest population density and density of hotels and hostels. The two most 
central districts have low interaction effects all year round, indicating that the 
main effects (risk factors) virtually fully explain the dengue risk. These districts 
have no special socioeconomic or environmental conditions affecting the dengue 
incidence rate.

In the southern districts, the spatiotemporal interaction effect is similar to that in 
the most central districts, although for partly different reasons. They have high popula-
tion density with many residential areas that have unhygienic conditions. See Hsu et al. 
(2017) for details on the relationship between hygiene and dengue infection.

The situation in the eastern districts differs from that in the northern, southern and 
central districts. The interaction effect is negative in January and February, highly posi-
tive in March–May, slightly positive in June–August and negative for the rest of the 
year. The negative interaction effect in January–February is probably caused by the 
interaction of the weather variables and the environmental conditions. The absence of 
forests, heavy rainfall, and the short spells of sunshine in the period January–February 
keep the humidity low, which is unfavorable for the presence of dengue mosquitoes. 
The districts are residential areas with inadequate drainage and sanitation. The heavy 
rainfall until March combined with inadequate drainage and sanitation leads to large 
quantities of standing water, which provides favorable breeding habitats, contributing 
to the positive interaction effect in March.

The western districts have medium to strong negative interaction effects all year 
round, reducing the effects of the weather variables. The majority of the western dis-
tricts have good drainage and sanitation, and the lifestyle and health behavior of the 
population is substantially better than in the other parts of Bandung, reducing dengue 
infection (Bandung Health Profile 2019). For example, the district with the highest 
healthy behavior index, Cicendo, is located in the western region. The negative effects 
also indicate that there is limited spillover of mosquitoes from the other districts.

Figure 7b presents contour maps of the cell level interaction effects. In contrast with 
Fig. 7a, the cell level interaction effects are almost the same across the months. Hence, 
after accounting for the weather variables, the cell level residual varies over space but is 
relatively constant over time, implying that it is related more to a topographical dimen-
sion, such as elevation, than to time. Positive cell level interaction effects are found 
in the northern part of Bandung, which is at 800 m above sea level and has high pre-
cipitation and dense vegetation, providing an ideal breeding ground and habitat for the 
Aedes-spp mosquito (Arboleda et al. 2009).
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4.3 � Posterior mean of the relative risk

Figure 8a shows the posterior means of the relative risk estimates (based on the pos-
terior means of the time-varying coefficients of the risk factors and the posterior 
means of the spatiotemporal interaction effects) at district level. The posterior means 
of the relative risk at subdistrict level (see Fig. 8b) are obtained as the block average 
of the cell values within each subdistrict boundary and the cell values that are partly 
outside its boundary.22 Accordingly, Bandung city is divided into 30 districts, 151 
subdistricts and 179 cells.

Comparing Figs.  8a and 8b shows similar temporal trends, in particular, an 
increase in January–July and a decrease in August–November. This applies espe-
cially to the spatial units with the highest risk, notably the districts in southern 
Bandung. For the spatial dimension, however, we notice substantial differences. For 
example, according to Fig. 8a, the entire central district of Lengkong (surrounded 
area in Fig. 8) is categorized as a high-risk area in the period January–July, whereas 
Fig. 8b shows that this only applies to parts of the district. The explanation is that 
categorization based on the model given by Eq.  (3a) ignores within-district het-
erogeneity, while this is taken into account when categorization is based on the 
model given by Eq. (3b). To explore this issue further, we calculated the high-risk 
and low-risk districts and subdistricts based on the posterior exceedance probabil-
ity for the two approaches, denoted as the top-down and the bottom-up approaches, 
respectively. Following Sparks (2015) and Osei and Stein (2017), we fixed the pos-
terior exceedance probability threshold for �

it
at 1.25 . The exceedance probability 

�Pr
(

𝜃it > 1.25|�
)

 over space and time is presented in Fig.  9. Table  4 presents the 
classification of the subdistricts into high and low risk based on the bottom-up and 
top-down approaches, respectively.

Table  4 shows substantial misclassification for the top-down approach for the 
period January–July. The overall misclassification rate is 15.6% for all periods (Jan-
uary–December) and 26.7% for the high-risk period (January–July). The table fur-
thermore shows that all the misclassifications occurred in the period January–July, 
which partly overlaps with the rainy season in November–May, whereas there is no 
misclassification from August–December. The explanation for the misclassification 
as such is that the bottom-up approach averages out the differences in risk factors, 
and consequently the number of incidences, over a set of relatively small number 
of relatively homogenous cells within a subdistrict. The top-down approach, on the 
other hand, averages out the differences over a substantially larger number of rela-
tively heterogeneous cells in a district (a district contains at least four subdistricts; 
see Sect. 4.1).

The misclassification is obviously concentrated in the rainy period January–July 
with local variation in the risk factors due variation in local characteristics such as 
elevation or vegetation density. Although the rainy season is from November to May, 
there are positive rates of misclassification in June–July and unexpected zero rates in 
November–December. These misclassifications and unexpected rates are due to the 

22  The reason that some cells are partly outside some subdistrict boundaries is that the cells are squares.
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Fig. 8   Monthly posterior means of the relative risk at a area (district) level and b subdistrict level (sur-
rounded area: Lengkong district)
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delayed responses of mating, breeding and hunting by Aedes-spp mosquitos. Mating 
and breeding occur mainly during the rainy season. Following this, it takes approxi-
mately two weeks to one month for the eggs to develop into adult mosquitoes and for 

Fig. 9   Monthly posterior exceedance probability of the relative risk at a district and b subdistrict levels 
(surrounded area: Lengkong district)



558	 I. G. N. M. Jaya, H. Folmer 

1 3

the virus to multiply and reach the salivary glands before it is transmitted to humans. 
If an individual is infected, the symptoms can be observed approximately four to 
seven days after being bitten (Ehelepola et al. 2015). Accordingly, there is a delayed 
infection response with respect to the weather conditions (Jaya and Folmer 2021a).

5 � Summary and conclusions

Effective and efficient control of a variety of spatial problems, including dengue dis-
ease abatement, requires data at a fine spatiotemporal scale. However, data availability 
at the same (especially fine) spatial scale is quite rare (Moraga et al. 2017; Utazi et al. 
2019). A major challenge in spatial sciences, including modeling of infectious diseases 
such as dengue and COVID-19, is how to align data bases of different resolutions con-
sistently. In this study, we presented the Fusion Area-Cell Spatiotemporal Generalized 

Table 4   Misclassification 
of the subdistricts based on 
the bottom-up and top-down 
approaches

Month Bottom-up 
approach

Top-down approach Misclas-
sification 
(%)Low High

January Low 92 53 35.1
High 0 6

February Low 97 48 31.8
High 0 6

March Low 105 36 24.5
High 1 9

April Low 111 29 19.9
High 1 10

May Low 59 54 35.8
High 0 38

June Low 93 30 19.9
High 0 28

July Low 119 29 19.9
High 1 2

August Low 151 0 0
High 0 0

September Low 151 0 0
High 0 0

October Low 151 0 0
High 0 0

November Low 151 0 0
High 0 0

December Low 151 0 0
High 0 0

Average (%) 15.6
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Geoadditive-Gaussian Markov Random Field model as a solution to this problem. This 
model combines observations on the dependent variable and population at risk at the 
area level and covariates at the cell level to generate predictions of relative risk at the 
subdistrict level. Special attention was paid to the model setup to generate predictions for 
the target cells during model-fitting, using Bayesian Integrated Nested Laplace Approxi-
mation (INLA). The methodology was applied to monthly dengue disease data for 30 
districts in the city of Bandung, Indonesia, for the period January 2012 to December 
2018. The risk factors consisted of the monthly averages of precipitation, temperature, 
solar radiation and water vapor pressure. The analysis showed that the effects of precipi-
tation, temperature and solar radiation varied considerably across space and time, while 
the effect of water vapor pressure was highly constant over time. Solar radiation was 
found to be the most important risk factor. The spatiotemporal interaction effect, captur-
ing the effects of omitted variables at area level, also varied across districts and time. In 
contrast, the cell level interaction effect was almost constant over the months but varied 
substantially over space, indicating a strong spatial spillover effect.

Based on the posterior means of the relative risk at cell level, we obtained the rela-
tive risk estimates at subdistrict level. We found a similar temporal pattern for district 
and subdistricts. Relative dengue risk was relatively high in the period January–July 
and relatively low during the period August–December. We further compared the risk 
estimates per subdistrict based on: (i) the bottom-up approach using the cell level esti-
mates and (ii) the top-down approach assigning the district value to its subdistricts. 
Using the posterior exceedance probability of the relative risk, we identified high-risk 
and low-risk districts to find that during the high-risk period of January–July, the top-
down approach misclassified 26.4% of the subdistricts as high risk, which according to 
the bottom-up approach was low risk. The overall misclassification rate was 15.6%.

The main conclusions of the paper are the following. First, effective and efficient 
policy intervention, such as the control of infectious diseases, requires data at the 
right level of resolution. In particular, low-resolution maps may misclassify regions. 
If regions are incorrectly misclassified as high-risk, unnecessary policy interven-
tion with undue financial, social and environmental costs may result. In contrast, 
if regions are incorrectly misclassified as low-risk, opportunities for policy inter-
vention may be missed which may also have costs of various kinds. Secondly, the 
proposed FGG-GMRF model adjusts data and maps of different resolutions consist-
ently, and allows more data to be utilized, thus improving the statistical efficiency. 
Third, application of the FGG-GMRF model to the dengue disease data for Bandung 
from 2012 to 2018 shows that the relative infection risk is high in various cells, 
subdistricts and districts from January–July. The strong spatiotemporal interaction 
indicates that the occurrence of the dengue disease vector is highly contagious and 
must be detected early in order to prevent its spread. Rapid response measures such 
as fogging are critical in areas with high dengue incidence. Finally, based on the 
experiences in the present paper, it is worthwhile to investigate the suitability of the 
FGG-GMRF model for a variety of other spatiotemporal problems, including other 
infectious diseases such as COVID-19 (see Jaya and Folmer 2021b), vaccination 
coverage (Utazi et al. 2019), particulate matter concentration (Cameletti et al. 2013; 
Lee et al. 2016), and social issues such as unemployment and crime.
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Appendix 1: The linear stochastic partial differential equation 
approach

A GF with dense covariance matrix can be transformed to a GMRF with sparse 
covariance matrix by means of a Linear Stochastic Partial Differential Equation 
(LSPDE) (Lindgren et al. 2011) which reads:

where �t(s) is a temporally independent GF, Wt(s) a Gaussian white noise process, � 
a positive integer related to the smoothness parameter of the Matérn covariance 
function in Eq. (11) by � = v + 1, and ∇2 the Laplace operator, i.e., ∇2 =

(

�2

�s2
1

+
�2

�s2
2

)

 . 
Using spectral decomposition, Whittle (1954, 1963) showed that for � > 1, the only 
exact stationary solution to Eq. (34) is the isotropic Matérn field, i.e., the stationary 
GF �t(s) with the Matérn covariance function in Eq. (11).

A closed-form solution for the LSPDE in Eq.  (34) is restricted to regular lat-
tices (Lindgren et al. 2011). For an irregular lattice, it can be approximated through 
a basis function representation using the Finite Element Method (FEM) defined on 
the domain A ∈ ℝ

2 . The basis function representation is defined on a mesh, that is, 
a collection of (i) vertices, (ii) the edges between the vertices, and (iii) the polygons 
described by the edges. A mesh consists of a minimum of three connected edges con-
forming to the shape of the domain. It subdivides a continuous geometric space into 
a finite set of discrete geometric or topological elements such as triangles or rectan-
gles (for a two-dimensional geometric space) or tetrahedral or rectangular prisms (for 
three-dimensional spaces). It reduces the degrees of freedom from infinite to finite. 
Because the FEM calculations are based on a finite number of cells and the results 
are generalized through interpolation for the entire domain, the accuracy of the global 
solution is a function of the number of elements of the mesh (Bohn and Feischl 2021).

Triangulation is a common FEM meshing scheme (Sloan 1993) because of its 
flexibility for irregular domains (Lindquist and Gilest 1989) and accuracy (due to 
the minimization of the discretization error)23 (Ahmadian et  al. 1998). Triangula-
tion divides the domain into a set of non-intersecting triangles, where any two trian-
gles meet in, at most, a common edge or vertex. The popular Delaunay triangulation 
scheme (Cheng et al. 2013) ensures that the triangulation maximizes the minimum 
angle of the triangles, thus avoiding sliver (i.e., long and thin) triangles and rendering 
the transitions between small and large triangles smooth (Lindgren et al. 2011). The 
restricted Bowyer–Watson algorithm, which is designed to conform to the domain’s 
boundary, is a popular Delaunay triangulation algorithm (Cheng et al. 2013).

A drawback of applying an algorithm with boundary conditions is that the vari-
ance near the boundary is inflated by a factor of two (Lindgren et al. 2011). To avoid 
the boundary effect, Lindgren and Rue (2015) proposed to extend the domain of 
interest by an outer area at a distance of at least r , corresponding to a correlation of 

(34)

(

�2 − ∇2
)�∕2

�t(s) = Wt(s) for t = 1,… , T and s = (s1,… sg,… , snp)
� with sg = (sg,1, sg,2)

23  The errors are due to the difference between the exact solution of the model equations and the numeri-
cal solution (Tu et al. 2018).
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approximately 0.1 between two points in the inner and outer areas. The edge length 
of the triangles of the outer area should be at least equal to the edge length of the 
triangles of the inner area (Blangiardo and Cameletti 2015). To find the appropriate 
mesh for the data at hand, meshes of different sizes are usually considered, which 
can be evaluated using the DIC and WAIC (Righetto et al. 2018).

Given the triangular mesh, the FEM of the solution of the LSPDE in Eq. (34) is:

with 
{

� l(s)
}L

l=1
 the set of piecewise linear basis functions, L the number of vertices 

in the triangulation and l the l th vertex. For location sg , the piecewise linear basis 
function � l(sg) is:

The 
{∼
γ
tl

}L

l=1
 are zero mean Gaussian-distributed weights determining the value 

of �t(s) for vertex l at location sg . Hence, �t(s) is uniquely defined by its values at the 
vertices l, l = 1, 2,… , L of the mesh. The values in the interior of the triangles are 
estimated by linear interpolation. Hence, the Gaussian-distributed weights deter-
mine the values of the GF at the vertices such that the distribution of �t(s) is deter-
mined by the joint distribution of the weights 

∼
�t =

(∼
γ
t1,… ,

∼
γ
t

)

′ with sparse preci-
sion matrix 

∼

�s (Lindgren et al. 2011).
To show that Eq. (34) approximates the GF �t(s) , we take24 � = 2 corresponding to 

v = 1, define the LSPDE in Eq. (34) as a variational problem, i.e., multiply it by an 
arbitrary test function �(s) for s = (s1,… sg,… , snp)

� with sg = (sg,1, sg,2) , and inte-
grate it by parts over the domain A using Green’s first identity theorem25 (Langtangen 
and Logg 2016). Multiplying the LSPDE in Eq. (34) by a test function �(s) gives:

(35)

�t(s) ≈

L
∑

l=1

� l(s)
∼
γ
tl for t = 1,… , T , s = (s1,… sg,… , snp)

� and sg = (sg,1, sg,2)

(36)� l

(

sg
)

=

{

1 if the vertex l is at location sg
0 elsewhere.

24  For s ∈ ℝ
2 , two different values of � are commonly applied, viz. � = {1,2} corresponding to v = {0,1} 

(Lindgren et  al. 2011). For � = 2 , 
(

�2 − ∇2
)�∕2

�t(s) is a linear differential operator which is easier to 
solve than a fractional differential operator when � is an odd number, e.g. �= 1 (Miller et al. 2019).
25  Green’s first identity theorem is a multidimensional generalization of integration by parts to reduce 
the order of derivatives (Langtangen and Logg 2016). Applied to Eq. (37), it reads:

with �γt (s)
��

 the directional derivative:

∫
A

�(s)∇2�t(s)ds = ∫ �A

��t(s)

��
�(s)ds − ∫

A

∇�(s)∇�t(s)ds

��t(s)

��
= ∇��t(s) = lim

�→0

�t(s + ��) − �t(s)

�
=

��t(�)

��
= � ∙ ∇�t(s)
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where A is the entire spatial domain over which Eq.  (37) is to be solved and ds 
is shorthand for ds1ds2 of the two-dimensional integral. Partial integration of 
−∫

A
�(s)∇2�t(s)ds gives:

where ��t(s)
��

= � ∙ ∇�t(s) is the directional derivative of �t(s) in outward normal 
direction � on the boundary �A (i.e., the subset of points which can be approached 
both from A and from the outside of A ) (Langtangen and Logg 2016) and d

∼
s is 

shorthand for d
∼
s1d

∼
s2 of the two-dimensional integral along the boundary �A . Sub-

stituting Eq. (38) in Eq. (37), we have:

with the Neumann boundary condition:

where | denotes the boundary (Bakka 2019). Hence, Eq. (39) can be written as:

Because the set of the test functions is infinite (Langtangen and Logg 2016), it is 
not possible to test Eq. (40) for every test function �(s) . As a solution, the FEM can 
be applied to construct a finite set of test functions 

{

�h(s)
}L

h=1
for h = 1,… , L and 

tested against Eq. (40). Using Eq. (35) and substituting 
{

� l(s)
}L

l=1
for l = 1,… ,L in 

Eq. (40), we obtain the system of linear equations:

∫
A

�(s)
(

�2 − ∇2
)

�
t
(s)ds = ∫

A

�(s)W
t
(s)ds

(37)∫
A

�2
�(s)�t(s)ds − ∫

A

�(s)∇2�t(s)ds = ∫
A

�(s)Wt(s)ds

(38)−∫
A

�(s)∇2�t(s)ds = ∫
A

∇�(s)∇�t(s)ds − ∫ �A

��t(s)

��
�(s)d

∼
s

(39)
∫

A

�2
�(s)�t(s)ds + ∫

A

∇�(s)∇�t(s)ds − ∫ �A

��t(s)

��
�(s)ds = ∫

A

�(s)Wt(s)ds

��t(s)

��

|

|

|

|�A

= 0,

(40)�2∫
A

�(s)�t(s)ds + ∫
A

∇�(s)∇�t(s)ds = ∫
A

�(s)Wt(s)ds.

∫
A

�2
�h(s)

L
∑

l=1

� l(s)
∼
γ
tlds + ∫

A

∇�h(s)∇

L
∑

l=1

� l(s)
∼
γ
tlds = ∫

A

�h(s)Wt(s)ds,

(41)

L
∑

l=1

(

�2∫
A

�h(s)� l(s)ds + ∫
A

∇�h(s)∇� l(s)ds

)

∼
γ
tl = ∫

A

�h(s)Wt(s)ds.
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The test functions are commonly taken to be equal to the basis functions, i.e., 
�h(s) = � l(s)

26 for h = 1,… , L . Hence:

The integral on the right-hand side of Eq. (42) is the Gaussian white noise distri-
bution N

(

0, ∫
A
�

2
l
(s)ds

)

 , with mean zero and covariance matrix27:

We can write Eq. (42) in matrix form as (Simpson et al. 2012):

where Ks = κ2�s +Ms , 
∼
�t =

(∼
γ
t1,… ,

∼
γ
tL

)�

 , Cs,lh = ∫
A
� l(s)�h(s)ds, and 

Ms,lh = ∫
A
∇� l(s).∇�h(s)ds.

Because of the highly local nature of the piecewise linear basis functions, �s 
and �s are sparse matrices. However, �−1

s
 is a dense matrix and will generally 

not be a GMRF. Lindgren et  al. (2011) proposed to solve this issue by reducing 
the integration order of the inner product of the piecewise linear basis functions 
� l(s) and �h(s) for vertices l = 1,… , L and h = 1,… .L on the interval A (i.e., 
⟨� l(s),�h(s)⟩A = ∫

A
� l(s)�h(s)ds)28 by taking �h(s) as the constant function 1 

yielding ⟨� l(s), 1⟩A = ∫
A
� l(s)ds =

∑L

h=1
Clh . The result is an approximate diagonal 

�s matrix, 
∼

�s, with diagonal elements 
∼

Cs,ll =
∑L

h=1
Clh . Replacing �s with 

∼

�s yields

(42)

L
∑

l=1

(

�2∫
A

� l(s)�h(s)ds + ∫
A

∇�h(s)∇� l(s)ds

)

∼
γ
tl = ∫

A

� l(s)Wt(s)ds

(43)Cov

(

∫
A

� l(s)Wt(s)ds,∫
A

�h(s)Wt(s)ds

)

= ∫
A

� l(s)�h(s)ds.

(44)Ks

∼
�t ∼ N

(

0,�s

)

(45)�s

∼
�t ∼ N

(

0,
∼

�s

)

26  This procedure is known as the Galerkin finite element method (Langtangen and Logg 2016).
27  By definition, a generalized GF, for example, �(s) , in a domain A is a random L2(A) general-
ized function, with L2(A) a vector space of square-integrable functions in two-dimensional space 
A (i.e., L2(A) = {�(s) ∶ A → ∫

A
|�(s)|2ds < ∞} ) such that for every finite set of test functions 

{

�h ∈ L2(A), h = 1,… ,H
}

 , the inner product ∫
A
�h�(s)ds for h = 1,… ,H is jointly Gaussian. Because 

Gaussian white noise Wt(s) is an L2(A)-bounded generalized GF in the domain A , the distribution of 
∫

A
� lWt(s)ds is Gaussian, with expectation and covariance given by (Lindgren et al. 2011):

�

(

∫
A

� l(s)Wt(s)ds

)

= 0

Cov

(

∫
A

� l(s)Wt(s)ds,∫
A

�h(s)Wt(s)ds

)

= ∫
A

� l(s)�h(s)d(s).

28  The inner product of two arbitrary functions � l(s) and �h(s) is approximately the same as the summa-
tion of the product of pairwise values, with summation replaced by integration (Langtangen and Mardal 
2019).
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and

with 
∼

�� the precision matrix

where κ =
√

8v∕r. Because of the serial independence assumption in Eq. (9), 
∼

�� is 
constant over time.

Bolin and Lindgren (2009) compared the exact FEM approach (using �s with all 
the elements of �s calculated as a Hilbert space wavalet model such as a B-spline 
or a Daubechies wavalet model), and the Markov approximation (replacing �s with ∼

�� ) for spatial prediction and found that the differences between both approaches in 
terms prediction errors are negligible.

Appendix 2

This appendix consists of three parts. The first part is Table 5. which presents the priors 
and hyperpriors for the FGG-GMRF model given by Eq. (33). The second part consists 
of comments on the priors and hyperpriors and the final part deals with identification.

Priors, joint priors and hyperpriors for the FGG‑GMRF model

See Table 5.

Comments on the priors and hyperpriors

The following observations apply for the parameters and hyperparameters of the 
FGG-GMRF. Due to the lack of strong prior knowledge, we used a vague Gauss-
ian prior distribution with a zero mean and a very large variance for the parame-
ters �0 ∶ �0 ∼ N

(

0, 106
)

 and �k ∶ �k ∼ N
(

0, 106
)

 for k = 1,… ,K(Blangiardo and 
Cameletti 2015; Martinez-Beneito and Botella-Rocamora 2019). A weakly inform-
ative prior29 was assigned to the log-odds of the spatial autoregressive parameter 
� ∶ log(�∕(1 − �)) ∼ N(0, 0.45) (Utazi et al. 2019). Note that the transformation is 

(46)
∼
�t ∼ N

(

0,
∼

�
−1

�

)

∼

�� = ��

� ∼

�
−1

�
�� =

(

κ2
∼

�� +��

)
� ∼

�
−1

�

(

κ2
∼

�� +��

)

(47)
∼

�� =

(

κ4
∼

�� + 2κ2�� +��

∼

�
−1

�
��

)

for every t,

29  This prior represents a situation where we are not completely ignorant about the values of a param-
eter, but have no firm prior information about them (Simpson et al. 2017).
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used to ensure that � takes values between 0 and 1 (Bivand et al. 2015; Martinez-
Beneito and Botella-Rocamora 2019).

For the scale hyperparameters (variance and standard deviation) of the tempo-
rally varying coefficients, spatially and temporally structured and unstructured ran-
dom effects, spatiotemporal interaction of the random effects, and the Gaussian field 
(GF), the Inverse Gamma (IG), half-Cauchy (HC), Uniform and Penalized Com-
plexity (PC) are common hyperpriors. The IG distribution is a well-known, easy to 
use, conjugate hyperprior for the variance (Coly et al. 2021; Hamura et al. 2021).30 
The HC is a Cauchy distribution truncated at zero. Gelman (2006) recommended the 
HC with scale parameter 25 as an alternative to the IG when the variance hyperpa-
rameter is close to zero. The HC is also a frequently used hyperprior for the stand-
ard deviation (Gómez-Rubio 2020). When the limit of the scale parameter goes to 
infinity, the HC converges to the Uniform hyperprior (Gelman 2006; Gómez-Rubio 
2020). However, for the Uniform hyperprior, it is difficult to set ranges of values for 
the standard deviation using R-INLA. The reason is that R-INLA assumes that the 
standard deviation is unbounded (above) (Gelman et al. 2017; Gómez-Rubio 2020), 
whereas a fixed upper bound on the standard deviation is frequently needed to avoid 
overfitting31 (Simpson et al. 2017). As an alternative to the HC and Uniform hyper-
priors for the standard deviation, Simpson et al. (2017) proposed the PC hyperprior. 
The PC allows using probability statements on values for the parameters such as 
the standard deviation, autocorrelation and range parameters (Franco-Villoria et al. 
2019). The parameters can be restricted using either an upper bound or a lower 
bound but not both. The PC is frequently used for autoregressive processes (Sørbye 
and Rue 2017), varying coefficients models and high-resolution prediction models 
(Franco-Villoria et al. 2019).

In the application, we assigned the IG (1, 0.01) hyperprior to the variance of the 
autoregressive AR1 model of the temporally structured effects ( �2

�
 ) and to the vari-

ances of the exchangeable (iid) priors of the spatially ( �2
�
) and temporally ( �2

�
) 

unstructured random effects, respectively. Following Lawson et  al. (2010), we 
assigned the HC hyperprior with scale parameter to the standard deviation of the 
Leroux prior (Leroux et al. 2000) of the spatially structured random effect 

(

�2
�

)

.
Regarding the hyperpriors to the variances of the RW1 and RW2 priors the follow-

ing applies. The marginal variances of the RW1 and RW2 priors reflect the smoothness 
of the k th vector of the temporal random effect �k =

(

�k,1,… , �k,T
)�
for k = 1,… ,K.32 

However, before assigning hyperpriors we need to render the marginal variances as 
smoothness indicators comparable as they are affected by their temporal structures and 
the scale of the risk factors which render them inadequate as smoothness indicators 
(Sørbye and Rue 2014; Blangiardo and Cameletti 2015; Gómez-Rubio 2020; Kang 
et al. 2015). The temporal structure matrices carry over to the hyperpriors. To over-
come the incomparability problem, Sørbye and Rue (2014) proposed to scale the 

30  Note that in the present setting we are dealing with the latent Gaussian model (LGM) for which the IG 
distribution is a conjugate hyperprior for the variance of the Gaussian prior (Hamura et al. 2021).
31  The Uniform distribution becomes an increasingly uninformative prior as the upper bound increases 
(Lemoine 2019). Hence, it is unclear what upper bound is appropriate for a Uniform prior.
32  The smaller the marginal variance, the smoother the time-varying regression coefficient.
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temporal structure matrices by the geometric means of the diagonal elements of their 
inverses. However, the random walk models of order one (RW1) and two (RW2) are 
intrinsic Gaussian Markov random fields (IGMRFs).33 They have zero mean and gener-
alized covariance matrices �RW1

�k
= �2

�k
�RW1−

�k
 and �RW2

�k
= �2

�k
�RW2−

�k
 , respectively with 

�RW1−
�k

 and �RW2−
�k

 the generalized inverses of the temporal structure matrices varying 
along with RW1 and RW2, respectively.

Sørbye and Rue (2014) proposed to scale the temporal structure matrices of the 
RW1 and RW2 priors by the geometric mean of the corresponding diagonal ele-
ments of their generalized inverses �−

�k
:

with �2
GV

 called the generalized variance of the diagonal elements of �−
�k

 (see Sørbye 
and Rue (2014) for details). Scaling of R�k

 gives the scaled temporal structure matrix 
∼

R�k
= R�k

�2
GV

 and scaled generalized covariance matrix as 
∼

��k
= �2

�k

∼

R
−

�k
 with scaled 

generalized variance 
∼
�
2

GV
= 1.

Scaling the RW1 and RW2 priors can be straightforwardly done in R-INLA by 
using the option scale.model = TRUE (Blangiardo and Cameletti 2015; Sørbye 
2013). After scaling, the same hyperprior IG (1, 0.01) can be assigned to the vari-
ance �2

�k
 of the IGMRF priors RW1 and RW2.34 We followed this procedure in the 

application.
To avoid overfitting, we followed Fuglstad et  al. (2020) and applied a weakly 

informative PC hyperprior to the range (r) and the standard deviation ( �Φ ) of the 
LSPDE model. Particularly, we applied Pr

(

𝜎Φ > 𝜎Φ0

)

= 𝛼𝜎Φ with �Φ0 and ��Φ denot-
ing the lower limit and lower tail probability of the PC hyperprior for �� , respec-
tively. The actual value for the standard deviation was 1 and 0.001 for the tail prob-
ability, i.e., Pr

(

𝜎Φ > 1
)

= 0.01 . For the range r we selected Pr
(

r < r0
)

= 𝛼r with r0 
and �r denoting the upper limit and upper tail probability, respectively. We took prior 
information r0 = 5km which is the distance beyond which dengue disease risk is no 
longer spatially correlated (Sedda et al. 2018). It corresponds to the median distance 

exp

(

1

T

T
∑

t=1

log
(

diag
(

�−
�k

))

)

= �2
GV

33  An IGMRF has a sparse precision matrix which is not of full rank. According to Rue and Held (2005), 
the order of an IGMRF is the rank deficiency of its precision matrix, i.e., the number of its zero eigenval-
ues. Hence, a zero-mean IGMRF of order s is:

where ��k
 is the (T × T) the semi-positive definite precision matrix of the parameters �k given by 

��k
=

1

�2
�k

��k
 with ��k

 the ( T × T) temporal structure matrix. ||
|

��k

|

|

|

∗
 denotes the generalized determinant 

which is equal to the product of the T − s non-zero eigenvalues of ��k
(s = {1,2} for a RW1 and RW2, 

respectively). The generalized inverse of the precision matrix ( �−
�k

 ) is the generalized covariance matrix 
��k

= �2
�k
�−

�k
.

p
(

�k|�
−
�k

)

= (2�)−
T−s

2

(

|

|

|

��k

|

|

|

∗)

exp

(

−
1

2
�
�
k
��k

�k

)

34  Sørbye and Rue (2014) pointed out that scaling of the RW1 and RW2 variances reduces the sensitivity 
of the estimated marginal variance to changes in the scale parameter of the IG hyperprior and re-scaling 
of the covariates.
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between the grid cells. For the prior belief we took �r = 0.5 , i.e., Pr(r < 5) = 0.5 . 
Note that the two preceding decisions imply that we know the true limits ahead of 
the analysis.

Identification

Because the ICAR, Leroux, AR1, RW1, and RW2 priors are specified conditionally 
on neighboring observations and their parameters are unique up to an additive con-
stant, their specifications implicitly include the overall intercept. Consequently, if 
the model would also include an additional intercept, it would not be identified due 
to the perfect collinearity (Goicoa et  al. 2018). To solve this identification prob-
lem, the explicit intercept can be excluded or sum-to-zero constraints on the ran-
dom effects can be imposed (Goicoa et al. 2018). When sum-to-zero constraints are 
imposed, the random effects become orthogonal to the explicit overall intercept.

To achieve identifiability, we imposed the following sum-to-zero constraints 
on the temporal random of effects of the risk factors, the spatial and temporal ran-
dom effects and their spatiotemporal interaction effects components:

The above-mentioned sum-to-zero constraints are imposed in INLA by setting 
the constr = TRUE argument to the function f (.) which defines the temporal ran-
dom effects of the risk factors, the spatial, temporal, and spatiotemporal interac-
tion effect components.

Appendix 3

The best specification of the FGG-GMRF model in Eq. (33) was selected using the 
deviance information criterion (DIC), the Watanabe–Akaike information criterion 
(WAIC), and the marginal predictive likelihood (MPL). The results are presented in 
Table 6.35 As a rule of thumb, the best model is the one with the smallest DIC and 
WAIC, and the largest MPL.

T
∑

t=1

�k,t = 0 for every i and g and for k = 1,… ,K,

nA
∑

i=1

�i + �i = 0 and

nA
∑

i=1

�it = 0 for t = 1,… , T ,

T
∑

t=1

�t + �t = 0 and

T
∑

t=1

�it = 0 for i = 1,… , nA.

35  The estimates were obtained using the software package R-INLA (R-version 4.0.3, Integrated Nested 
Laplace Approximation-INLA). The code is presented in Online Resource 2.
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Table 6   Deviance information criterion (DIC), Watanabe–Akaike information criterion (WAIC) and 
marginal predictive likelihood (MPL) of a subset of models of the FGG-GMRF model in Eq. (33)a

Model specificationb Likelihood Time-
varying 
effect

Edge length (m) DIC WAIC MPL

M1.1.1.0 Poisson RW1 – 5184.089 5623.433  − 2850.213
M1.2.1.0 NB RW1 – 3281.386 3283.865  − 1778.259
M1.1.2.0 Poisson RW2 – 5229.130 5616.038  − 2893.252
M1.2.2.0 NB RW2 – 3380.390 3381.260  − 1941.200
M2.1.1.1 Poisson RW1 1000 2657.428 2640.887  − 1582.563
M2.2.1.1 NB RW1 1000 2676.950 2671.954  − 1583.277
M2.1.1.2 Poisson RW1 1100 2663.998 2660.371  − 1579.446
M2.2.1.2 NB RW1 1100 2676.937 2671.849  − 1582.548
M2.1.1.3 Poisson RW1 1200 2663.953 2660.405  − 1580.599
M2.2.1.3 NB RW1 1200 2680.719 2676.344  − 1582.903
M2.1.1.4 Poisson RW1 1300 2658.124 2642.776  − 1583.341
M2.2.1.4 NB RW1 1300 2681.375 2675.452  − 1582.484
M2.1.1.5 Poisson RW1 1400 2663.895 2661.152  − 1580.897
M2.2.1.5 NB RW1 1400 2680.761 2676.639  − 1582.581
M2.1.1.6 Poisson RW1 1500 2664.065 2661.030  − 1580.177
M2.2.1.6 NB RW1 1500 2680.761 2676.639  − 1582.581
M2.1.2.1 Poisson RW2 1000 2658.819 2644.598  − 1597.562
M2.2.2.1 NB RW2 1000 2669.423 2653.978  − 1599.671
M2.1.2.2 Poisson RW2 1100 2658.947 2642.814  − 1599.163
M2.2.2.2 NB RW2 1100 2658.947 2642.814  − 1599.163
M2.1.2.3 Poisson RW2 1200 2665.287 2663.565  − 1594.933
M2.2.2.3 NB RW2 1200 2681.804 2677.917  − 1597.695
M2.1.2.4 Poisson RW2 1300 2659.083 2643.993  − 1598.382
M2.2.2.4 NB RW2 1300 2683.923 2679.331  − 1596.700
M2.1.2.5 Poisson RW2 1400 2665.050 2662.933  − 1595.102
M2.2.2.5 NB RW2 1400 2683.923 2679.331  − 1596.700
M2.1.2.6 Poisson RW2 1500 2664.968 2662.321  − 1595.516
M2.2.2.6 NB RW2 1500 2683.821 2679.441  − 1596.753
M3.1.1.1 Poisson RW1 1000 2660.567 2644.342  − 1586.289
M3.2.1.1 NB RW1 1000 2667.208 2659.532  − 1588.466
M3.1.1.2 Poisson RW1 1100 2658.277 2641.471  − 1585.928
M3.2.1.2 NB RW1 1100 2667.213 2659.537  − 1588.420
M3.1.1.3 Poisson RW1 1200 2658.277 2641.472  − 1585.928
M3.2.1.3 NB RW1 1200 2667.213 2659.537  − 1588.419
M3.1.1.4 Poisson RW1 1300 2660.667 2644.078  − 1586.228
M3.2.1.4 NB RW1 1300 2667.213 2659.536  − 1588.410
M3.1.1.5 Poisson RW1 1400 2660.510 2644.422  − 1586.429
M3.2.1.5 NB RW1 1400 2667.191 2659.512  − 1588.405
M3.1.1.6 Poisson RW1 1500 2660.598 2644.207  − 1586.461
M3.2.1.6 NB RW1 1500 2667.191 2659.512  − 1588.400
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not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

Table 6   (continued)

Model specificationb Likelihood Time-
varying 
effect

Edge length (m) DIC WAIC MPL

M3.1.2.1 Poisson RW2 1000 2661.441 2647.045  − 1600.555
M3.2.2.1 NB RW2 1000 2668.788 2663.003  − 1602.876
M3.1.2.2 Poisson RW2 1100 2659.836 2645.165  − 1599.883
M3.2.2.2 NB RW2 1100 2659.836 2645.165  − 1599.883
M3.1.2.3 Poisson RW2 1200 2659.544 2645.097  − 1599.448
M3.2.2.3 NB RW2 1200 2668.788 2663.003  − 1602.876
M3.1.2.4 Poisson RW2 1300 2661.572 2646.658  − 1599.695
M3.2.2.4 NB RW2 1300 2668.788 2663.003  − 1602.871
M3.1.2.5 Poisson RW2 1400 2661.619 2647.490  − 1600.489
M3.2.2.5 NB RW2 1400 2668.803 2663.020  − 1602.851
M3.1.2.6 Poisson RW2 1500 2661.708 2647.171  − 1600.532
M3.2.2.6 NB RW2 1500 2668.803 2663.020  − 1602.847

The second number refers to the likelihood: 1: Poisson and 2: Negative Binomial, the third to the time 
varying effect of the coefficients, 1: random walk of order 1 (RW1) and 2: random walk of order 2 
(RW2), the fourth digit defines the edge length, 0: edge length not relevant, 1: 1000 m, 2: 1,100 m, 3: 
1,200 m, 4: 1,300 m, 5: 1,400 m, and 6: 1,500 m. Note that there is no edge length for the M1 models 
because they do not need meshing. M1 contains 4 sub-models, and M2 and M3 contain 24 sub-models 
each
a The FGG-GMRF models are specified as �

[

�
t
|�

t
��
]

b The following notation applies. M denotes Model. M1 is the sub-model with covariates only, i.e., 
�t = β01(nA+np)

+
∑4

k=1

�

�k + �k,t
�

�k,t , M2 the model with covariates plus area and cell level interaction, i.e., 

�t = β01(nA+np ) +
∑K

k=1

�

�k + �k,t
�

�k,t + �t +�t
(Area interaction type IV with precision matrix �𝛿 = 𝜏𝛿�𝜔 ⊗ �𝜙), . 

M3 the full model, i.e., �t = β01(nA+np) +
∑K

k=1

�

𝛽k + 𝜁k,t
�

�k,t + �̈ + �̈ + 𝜙t1(nA+np)
+ 𝜍t1(nA+np) + �t +�t

https://doi.org/10.1007/s10109-021-00368-0
https://doi.org/10.1007/s10109-021-00368-0
http://creativecommons.org/licenses/by/4.0/
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