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Abstract
We are able to collect vast quantities of spatiotemporal data due to recent techno-
logical advances. Exploratory space–time data analysis approaches can facilitate 
the detection of patterns and formation of hypotheses about their driving processes. 
However, geographic patterns of social phenomena like crime or disease are driven 
by the underlying population. This research aims for incorporating temporal popula-
tion dynamics into spatial analysis, a key omission of previous methods. As popula-
tion data are becoming available at finer spatial and temporal granularity, we are 
increasingly able to capture the dynamic patterns of human activity. In this paper, 
we modify the space–time kernel density estimation method by accounting for spa-
tially and temporally dynamic background populations (ST-DB), assess the benefits 
of considering the temporal dimension and finally, compare ST-DB to its purely 
spatial counterpart. We delineate clusters and compare them, as well as their sig-
nificance, across multiple parameter configurations. We apply ST-DB to an outbreak 
of dengue fever in Cali, Colombia during 2010–2011. Our results show that incor-
porating the temporal dimension improves our ability to delineate significant clus-
ters. This study addresses an urgent need in the spatiotemporal analysis literature by 
using population data at high spatial and temporal resolutions.
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1  Introduction

Novel methodologies for spatial and temporal analysis of geographic phenomena 
have emerged due to an abundance of geospatial information at the individual level 
(Anselin 2011). Domain examples include crimes (Wang et al. 2017; Malleson and 
Andresen 2015a; Koo et al. 2020) and disease events (Hohl et al. 2016; Delmelle 
et al. 2014), which typically cluster near city centers or exhibit seasonal cyclic pat-
terns. Knowledge about the intensity, scale, location, and time of such clusters is 
important. In the case of disease outbreaks, this information is critical to inform 
authorities on their decision to allocate resources, such as staff for disease preven-
tion efforts (Casas et al. 2010). Spatial and spatiotemporal statistics are a set of pop-
ular analytical methods for identifying and quantifying inherent patterns in the data, 
as they capture geospatial phenomena and their variability in space and time (Bailey 
and Gatrell 1995; Cressie and Wikle 2015) and across multiple scales (Fothering-
ham et al. 2017). Among the palette of exploratory statistics used to characterize a 
given spatiotemporal point pattern, space–time kernel density estimation (STKDE; 
Nakaya and Yano 2010) stands out. It allows for visualizing the occurrence of events 
in space and time by computing the localized intensity of the point process at hand 
and hence, summarizing the distribution of a spatial variable through time. STKDE 
has been employed as a key analytical procedure for identifying clusters of crime 
(Nakaya and Yano 2010), exploring human mobility patterns (Gao 2015), as well as 
discovering outbreaks of dengue fever (Delmelle et al. 2014).

Disease risk can be understood as the ratio between the number of disease cases 
and the population-at-risk within a given area (Desjardins et al. 2020). Therefore, it 
is imperative to consider density estimates of disease cases in relation to the local 
population-at-risk (a.k.a. ‘the background’). Otherwise, the estimates are a proxy of 
the population distribution and we might observe a cluster of high density merely 
due to a large local population. While conventional STKDE does not consider the 
background at all, several approaches incorporate spatially varying backgrounds 
(Shi 2010; Davies and Hazelton 2010; Davies et  al. 2016; Tiwari and Rushton 
2005). Hence, adjusting for spatial variation of the background is a common prac-
tice to date. However, adjusting for spatial and temporal variation of the background 
is a novelty, to the best of our knowledge. By omitting time in their models, existing 
methods ignore temporal dynamics (temporal variation) of the background, and are 
therefore unable to capture rapid population change.

However, we currently find ourselves in the age of migration (Castles et  al. 
2013), where individuals move from their residential location for many reasons: 
forced migration due to climate change (Martin 2001), conflicts (Mitchell 2011), 
or to find labor (Münz 2007). For instance, cities experience waves of urbaniza-
tion (Meentemeyer et al. 2013), suburbanization (Lang and Simmons 2003), re-
urbanization and counter-urbanization (Champion 2001). Hence, it is no longer 
acceptable to ignore temporal population dynamics, which is especially relevant 
for longitudinal studies. In addition, population data are becoming available at 
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finer spatial and temporal resolutions, and given current technological advances, 
it is foreseeable that this development will continue (Bhaduri et al. 2007; Huang 
et  al. 2020; Kang et  al. 2020). This calls for an extension of the current ker-
nel methods for computing disease risk to address background populations that 
change over space and time.

Adaptive kernels allow for variation in bandwidth (a.k.a search radius) across 
the study area, while fixed-bandwidth kernels do not. Therefore, fixed-bandwidth 
kernels may not properly capture human dynamics at varying geographic scales 
(Yuan 2018). They tend to oversmooth, leading to a loss of spatial detail (Goodchild 
2001) and conceal regions of interest (Shi 2010), especially when analyzing large-
scale human geographic phenomena, where events like disease cases emerge out of 
the background. While fixed-bandwidth kernels establish constant areal support, a 
kernel that adapts its bandwidth to the background is useful to establish constant 
population support (Carlos et al. 2010). This allows for comparison of disease rates 
across regions, which is especially suited for analyzing chronic diseases, such as 
lung cancer (Shi 2010). On the other hand, a kernel that adapts to surrounding cases 
sacrifices the constant population support property and establishes constant case 
support. This is suited for analyzing communicable disease, as distance between 
cases is a reasonable approximation of interaction between infected individuals, a 
common cause of disease spread (Bhopal 2016). Hence, adaptive kernels allow for 
measuring the scale over which a point process operates (Fotheringham et al. 2017; 
Xu et al. 2017).

It is important to recognize that there are many ways to obtain a representation of 
the background (Fig. 1), i.e. from population data at high spatial and temporal reso-
lution. Apart from census data (Fig. 1a), scientists have used social media posts such 
as tweets (Fig. 1b) as a proxy for population (Malleson and Andresen 2015b). Alter-
natively, trajectories of individuals (Fig. 1c) may be created through retrospective 
activity diaries (Chen et al. 2011; Kwan 2000, 2004), or migration history datasets 
(Shaw et al. 2008). Lastly, residential location may be used to establish the popula-
tion at risk (Fig.  1d). In addition to the spatial coordinates x and y, the temporal 
coordinates t1 and t2 may be known, which represent start and end date of residence. 
In summary, the representations of population in Fig.  1 are profoundly different 
from each other. Besides availability, the following principle should guide the choice 
of population data: The scale of the population data should match the scale of the 
case data. For instance, if we use patient residential locations, we may want to use 
control data, as activity diaries population information would be too detailed. As the 
background can be represented in different ways, adaptations to the kernel density 
method for computing risk estimates are necessary to accommodate such diversity.

In this study, we address spatially and temporally varying backgrounds in ker-
nel density estimation, a key omission of many existing applications. We introduce 
ST-DB, a space–time kernel density estimator that considers a spatially and tem-
porally dynamic background. We compare ST-DB with its purely spatial counter-
part and address the question of whether adding time to our analysis yields different 
estimates of disease risk. While our study focuses on introducing ST-DB and its 
application to spatiotemporal analysis of infectious disease, it can be applied to any 
geographic phenomenon that involves point events that emerge out of a background. 
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This article is organized as follows: We explain our methodology, as well as our 
dataset in Sects. 2–4, illustrate our results in Sect. 5, and finally present discussion 
and conclusions in Sects. 6 and 7.

2 � Methods

2.1 � Kernel density estimation for static backgrounds

Kernel density estimation (KDE) is an essential method for analyzing spatial 
point (a.k.a. ‘event’) patterns (Silverman 1986). It results in a smooth surface 
of density estimates by imposing a regular grid of points (‘pixels’) on the study 

Fig. 1   Different representations of the background: a centroids (e.g. census tracts), b social media posts 
(e.g. tweets), c trajectories of individuals, d residential locations
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area. The density for each grid point is computed based on neighboring events, 
as follows: The kernel, a circular window with radius hs (‘bandwidth’, s denotes 
‘spatial’) is centered on a data point. Any grid point located within the kernel 
receives a contribution (a.k.a. ‘weight’) toward its density estimate. The contri-
bution is determined by their distance to the data point in the center, which is 
plugged into the kernel function (ks, closer proximity results in higher contribu-
tion). Lastly, the weights are summed for each grid point, as multiple data points 
can contribute to a given grid point. We repeat the procedure for each data point 
and hence, create a density surface based on the observed point data. For a given 
grid point (x, y), kernel density f̂ (x, y) is calculated as follows (Eq. 1):

where n is the number of data points within the study area, ks is the kernel function, 
and di(x,y) is the distance between the grid point and data point i. Kernel functions 
like Epanechnikov, Gaussian, or Biweight are widely used and accepted (Bowman 
and Azzalini 1997). We use the Epanechnikov kernel function (Epanechnikov 1969) 
in all of our analyses due to its popularity for spatial- and spatiotemporal analysis.

2.2 � Kernel density estimation for dynamic backgrounds

For many geographical research questions, density as the distance-weighted num-
ber of points per unit area may not provide a suitable answer (Bithell 1990). In 
the case of estimating disease risk, mapping the distance-weighted number of dis-
ease cases per unit population-at-risk rather than per unit area might be more 
realistic. The latter assumes that geographic distance is the sole determinant of 
the contribution of a case to the disease risk at a grid point (Shi 2010). As a 
result, an area of elevated risk identified by KDE might merely reflect a large 
local background population (Bithell 2000). Depending on the phenomenon 
under study, the population-at-risk can exhibit an uneven distribution in space 
and time, include all or only certain segments of the population (i.e. for COVID-
19, elderly individuals and people with comorbidities are at increased mortality 
risk), and may be a sample of the full population-at-risk. This is referred to as 
the background population, or simply ‘the background’ (Carlos et  al. 2010). A 
generic method to deal with a spatially varying background is to compute the 
risk (r̂) at location (x, y) by dividing the density of cases (c) by the density of the 
background population (p), shown in Eq. 2 (Davies and Hazelton 2010).

We use Eq. (2) to compute the risk at any location (x, y) by centering the kernel 
on each data point i (disease case). We then compute i’s contribution to risk at sur-
rounding grid points by factoring in the population within the kernel. Therefore, the 

(1)f̂ (x, y) =
1

nh2
s

n
∑

i=1

ks

(

di(x,y)

hs

)

(2)r̂(x, y) =
c

p
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contribution of i to the risk at (x, y) is determined by the population near i, and not 
by the population near (x, y). In other words, the contribution of a case to the disease 
risk at a particular grid point is controlled by the local population surrounding that 
case, rather than the population surrounding the grid point. This distinction is rel-
evant as it can result in different risk estimates under spatially varying backgrounds 
(Shi 2010).

Fixed kernels have constant bandwidth (search radius), whereas adaptive kernels 
allow the bandwidth to adapt to local conditions (Sain 2002; Brunsdon 1995). In our 
case, the kernel can either adapt to the background (Fig. 2a) or neighboring cases 
(Fig.  2b). While a fixed kernel results in constant areal support for each case, an 
adaptive kernel establishes either a constant population or case support. Areas that 
exhibit a high density of disease events (‘clusters’), for example, are often sought out 
for prevention efforts (Coleman et al. 2009). As infectious diseases spread between 
individuals in close proximity (Salathé et al. 2010), an area where cases cluster may 
be characterized as ‘high risk,’ whereas an area where cases are sparse may be ‘low 
risk’ (Bhopal 2016; Riley 2007). Therefore, we choose a kernel that adapts to neigh-
boring disease cases and adjusts the estimate to the background within.

We achieve this by centering the kernel on a disease case and start increasing the 
bandwidth until it encircles a specified number of neighboring cases (the support 
threshold). Note that as the kernel expands, the case in its center will expand the 
spatial range of its contribution to disease risk. In other words, as the circle grows 
outward, seeking support, more grid points will receive contribution from the dis-
ease case in its center.

Shi (2010) proposes an adaptive bandwidth kernel density estimator (Eq.  3), 
which corresponds to Fig. 2a):

where the bandwidth hs is a function of the local population density p at the location 
(xi, yi) of case i. The weight of i for (x, y) is divided by the population in the kernel. 
This method results in disease risk values that are defensible in health studies, while 
also being more statistically comparable (Carlos et  al. 2010; Shi and Wang 2015; 
Shi 2010).

Equation  (4) denotes S-DB, the purely spatial kernel density estimator for 
dynamic backgrounds that adapts to the neighboring cases, which corresponds to 
Fig. 2b):

Here the bandwidth hs is a function of the local case density c at the location (xi, 
yi) of case i. The density contribution of i to the locations within bandwidth is then 
divided by the population in the kernel. Note that both estimators (Eqs. 3, 4) require 

(3)r̂(x, y) =

n
∑

i=1

ks

(

di,(x,y)

hs
[

p
(

xi, yi
)]

)

(4)r̂S−DB(x, y) =

n
∑

i=1

ks

(

di,(x,y)

hs
[

c
(

xi, yi
)]

)
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choosing the support threshold value. We circumvent this choice by analyzing the 
sensitivity of the resulting risk estimates to the support threshold value.

Fig. 2   Top: adaptive bandwidth kernel with spatially varying background, a kernel adapts to population, 
b kernel adapts to cases. Note that support in a is 5 people and in b is 3 cases (the case in the center of 
the circle is not counted toward the support threshold). Middle: Quantifying the population within the 
kernel, c spatial view, d temporal view. In this example, the population within the kernel is 8 people-
days. Only population columns 3 and 4 are inside the kernel spatially and temporally and the sum of their 
lengths inside the kernel is 5 + 3 = 8. Bottom: spatiotemporal nearest neighbors (NN), e spatial NN, f 
temporal NN, g intersection of spatial and temporal NN
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2.3 � Space–time kernel density estimation for static backgrounds

So far, we have ignored the temporal dimension in the discussion. Many geographic 
studies do not consider the temporal dimension or employ time-flattening: collaps-
ing the temporal dimension into a single 2D map, which represents the entire study 
period (Bach et al. 2016). Another approach discretizes time into a number of time 
slices, which can be displayed as small multiples (Boyandin et al. 2012). However, 
both methods are limited in their ability to depict patterns of spatiotemporal point 
events: Time-flattening ignores any temporal variation in the data, and the small 
multiples approach is not scalable (Delmelle et al. 2014).

Space–time kernel density estimation (STKDE) extends traditional bivariate 
KDE with the temporal dimension and is suited for characterizing spatiotemporal 
patterns of spatial point events with a timestamp (Nakaya and Yano 2010). STKDE 
produces density estimates for a spatiotemporal grid of points (‘voxels’) based on 
the proximity and number of surrounding point data (Delmelle et  al. 2014; Brun-
sdon et al. 2007). We can visualize the density estimates within a space–time cube 
(Hagerstrand 1970; Bach et al. 2016; Hohl et al. 2016; Desjardins et al. 2019; Gao 
2015; Nakaya and Yano 2010; Demšar et al. 2015) that has two spatial (x, y) and a 
temporal dimension (t). STKDE is computed as follows: We center the bottom of 
the kernel, a cylindrical window defined by its circular base with radius hs (spatial 
bandwidth) and height ht (temporal bandwidth) on a data point. Any voxel located 
within the kernel receives a contribution (or weight) toward its density estimate, 
as a case imposes risk only to the time-period after the event. The contribution is 
determined by the distance between voxel and data point in the center, which is 
plugged into the spatial and temporal kernel functions (ks, kt). Lastly, the weights are 
summed for each voxel, as multiple data points can contribute to a given voxel. We 
repeat the procedure for each data point and hence, create a density volume based on 
the observed point data. For a given voxel (x, y, t), density is calculated as follows 
(Eq. 5):

Every voxel s with coordinates (x, y, t) receives a density estimate f̂ (x, y, t) , which 
is determined by distance and number of neighboring data points i. Data points in 
the neighborhood of s are weighted by the spatial and temporal kernel functions, ks 
and kt, which are computed as separate components, and then multiplied to calculate 
the contribution of a given data point to the density estimates on surrounding grid 
points. Lastly, di,(x,y) and di,(t) are the spatial and temporal distances between voxel 
and data point, respectively.

(5)f̂ (x, y, t) =
1

nh2
s
ht

∑

i

ks

(

di,(x,y)

hs

)

kt

(

di,(t)

ht

)
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2.4 � Space–time kernel density estimation for dynamic backgrounds

Here, we discuss the extension of STKDE to account for spatially and temporally 
varying backgrounds (Eq. 6). It is the temporal extension of Shi’s case-side adaptive 
bandwidth kernel density estimator:

The spatial- and temporal bandwidths hs and ht, respectively, are a function of 
the local population density p(xi, yi), p(ti) at space–time location (xi, yi, ti) of data 
point i. The background is assessed within a half cylinder moving through 3D space, 
which means that we consider the population within the kernel until the disease case 
occurs, but not after. A kernel that adapts to the background population is useful to 
establish constant population support (constant p in Eq. 2), rather than constant areal 
support, which is the case with fixed bandwidth kernels.

As seen in Sect. 2.2, it may make sense to adapt the bandwidth to the surround-
ing cases c(xi, yi, ti) instead of the local population p(xi, yi, ti) (Eq. 7). Therefore, 
we define the kernel density estimator for spatially and temporally dynamic back-
grounds (ST-DB) as follows:

Here, the spatial and temporal bandwidths hs and ht expand until a specified num-
ber of neighboring disease cases is found within the cylindrical kernel. The density 
contribution of the disease case i to the voxels within bandwidth is then divided by 
the population in the kernel. As population information might be available in dif-
ferent formats and conceptualizations (see Sect. 1), we pick the population columns 
model (Fig. 1d) to illustrate the utility of our approach. The within-kernel popula-
tion is computed by summation of the segment length of all population columns 
within the cylinder (Fig. 2c, d). The sum represents the number of individuals and 
their length of exposure to the disease case. It is measured in people-days (an anal-
ogy to the term ‘man-hours’ used to quantify the amount of work that can be done 
by one person within this period).

The support can be achieved in multiple ways. In search for neighbors, we could 
either exclusively expand the spatial bandwidth, or exclusively the temporal band-
width, or both in an alternating pattern. Therefore, ambiguity arises by the choice 
of search strategy. To solve this problem, we need to unify the spatial and temporal 
dimensions, allowing us to expand the bandwidths simultaneously. We employ the 
k-nearest neighbors (kNN) method (Jacquez 1996) for this task as follows:

1.	 Generate two ordered sets for each disease case: (1) the spatial k-nearest neighbors 
(Fig. 2e) and (2) the temporal k-nearest neighbors (Fig. 2f) of case i.

2.	 Compute the cardinality card() of the intersection between the two sets (Fig. 2g).

(6)r̂(x, y, t) =
∑

i

ks

(

di,(x,y)

hs
[

p
(

xi, yi
)]

)

kt

(

di,(t)

ht
[

p
(

ti
)]

)

(7)r̂ST−DB(x, y, t) =
∑

i

ks

(

di,(x,y)

hs
[

c
(

xi, yi
)]

)

kt

(

di,(t)

ht
[

c
(

ti
)]
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Starting with k = 1, we increase k and apply the procedure until card() equals 
the support threshold. We then compute the spatial and temporal bandwidths hs, ht, 
respectively, as the spatial and temporal distance of the farthest point in the intersec-
tion set to the case. Using this procedure, we unify the spatial and temporal dimen-
sions, enabling search for the support in adaptive-bandwidth kernel density esti-
mation for spatially and temporally dynamic backgrounds. Therefore, we solve the 
multiway problem for ST-DB.

3 � Data

3.1 � Case data

For the case study we use dengue virus data from the city of Santiago de Cali, 
Colombia (‘Cali’). Cali is located in the southwest of Colombia, which exhibits very 
suitable conditions for the Aedes Aegypti mosquito (the principal mosquito vector 
for dengue virus). The city of Cali has a population of around 2.5 million and it is 
considered an endemic area for dengue fever (Cali 2010). The dengue fever dataset 
includes individual case records, for which x- and y-coordinates of the patient resi-
dential address, as well as the time of diagnosis are available (Delmelle et al. 2014). 
A total of 11,056 cases were observed in our 2010–2011 study period. Figure 3 pre-
sents the spatial distribution of cases within the city (a) and the temporal distribu-
tion through the two years of study (b).

3.2 � Population Data

Population data are obtained from the Administrative Planning Department from the 
city of Cali (Cali 2019), which include population projections by neighborhood from 
2006 to 2036. We eliminated six neighborhoods that had zero population (parks, 
sports complexes, military facilities), which resulted in a total of 334 neighborhoods 
in our study area. We computed summary statistics for dengue fever case counts and 
population at the neighborhood level, as well as their change, for the years 2010 and 
2011 (Table 1) and mapped the 2010 population density by neighborhood (Fig. 3c). 
Peripheral areas, especially to the east of the city, have a high concentration of popu-
lation, while neighborhoods in the central part of the city which constitute an exten-
sion of the city core have lower population density levels.

We put forward a simple procedure to disaggregate population data from their 
spatial and temporal units (neighborhoods, years) to individual level (Fig.  4), 
similar to Jacquez and Jacquez (1999), Shi (2009) and Luo et al. (2010):

1.	 We distribute the population of the first year (2010, ‘the initial population’) within 
each of the 334 neighborhoods at random locations, which are noted in our popu-
lation table as [x, y, t1, t2]-tuple (x-coordinate, y-coordinate, first day of residence, 
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and last day of residence). For instance, a person who lived in Cali from 1/1/2010 
to 31/12/2011 would have t1 = 1 and t2 = 730. Every neighborhood receives a 
number of [x, y, t1, t2]-tuples commensurate with its total population of 2010.

Fig. 3   The dengue fever dataset: a spatial and b temporal distributions. c Population density of Cali, 
Colombia in 2010

Table 1   Summary statistics 
of neighborhood-level dengue 
fever case counts and population 
2010–2011

Dengue fever cases Population

2010 2011 2010 2011

Min 0 0 59 58
Max 143 34 49,978 50,581
Mean 28.4 4.6 6,556.9 6,629.3
Standard deviation 25.3 4.4 6,369.2 6,478.8
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Fig. 4   Flowchart for population disaggregation
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2.	 Using the yearly neighborhood population counts 2010–2011, we compute annual 
population change (increase/decrease) for each neighborhood. We scale down the 
annual change to daily values, assuming linear change. Hence, we compute the 
daily change in population by dividing the annual change by 365.

3.	 For each day within 2010–2011 (which amounts to 730 timesteps), we add ran-
dom points commensurate with the population increase and set their t1 to the 
current day. In case of population decline, we randomly pick existing points 
commensurate with the population decline and set their t2 to the current day.

Hence, we create a spatiotemporal, individual-level population dataset, equivalent 
to the population ‘columns’ in Fig. 1d.

4 � Analysis

We conduct analyses within our methodological framework (Fig. 5) that summarizes 
our analytical steps. It also contains references to sections in the text where the cor-
responding steps are detailed, as well as to figures that show the results.

4.1 � Uncertainty from population disaggregation

We quantify uncertainty from population data disaggregation (Sect. 3.2), as the pro-
cess includes random elements. Therefore, we create 99 disaggregated population 
datasets, leaving the disease data unchanged, and compute 99 grids of risk estimates, 
which allows us to extract upper and lower envelopes as the maximum and mini-
mum value for each grid point (Fig. 5a). This results in variance of risk, which is a 
measure of the uncertainty resulting from the random elements involved in disaggre-
gating population data. To quantify the uncertainty, (1) we compute a histogram of 
the differences between the upper and lower envelope, and (2) visualize them within 
the space–time cube. If the histogram indicates that the difference is mostly small, 
we conclude that uncertainty from population disaggregation is small. In addition, 
the depiction within the space–time cube enables for detecting patterns of where and 
when the results may be subject to high uncertainty.

4.2 � Benefit of considering time

In this study, we compare ST-DB (Eq.  7) with its purely spatial counterpart, 
S-DB (Eq. 4) and assess whether incorporating a temporally dynamic background 
improves the ability to detect areas/periods of high disease risk (a.k.a. ‘clusters’, 
Fig.  5b). We apply the following procedure using both approaches (ST-DB and 
S-DB):
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Fig. 5   Unified methodological framework. Case study (a–c), simulation study (d, e). Black boxes denote 
data items while arrows in between denote processes on the data items; multiple overlapping boxes 
denote multiple simulated datasets; dashed line boxes are parameters; gray boxes are methods
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Step 1: We compute disease risk estimates.
Step 2: We denote the grid points with n-th percentile of risk or higher as clusters 
(percentile threshold).
Step 3: We compute the strength of the clustering using odds ratios (within-clus-
ter risk vs. out-of-cluster risk).
Step 4: We compute cluster significance using Monte Carlo simulation.

We run both methods with the same data but ignore the temporal dimension for 
S-DB (Step 1). After computing disease risk estimates (ST-DB produces a 3D grid, 
S-DB a 2D grid), we delineate disease clusters as follows (Step 2): We apply the 
percentile threshold and pick the grid points with the nth-percentile of risk or higher 
and label them as disease cluster. We measure cluster strength by computing odds 
ratios (Step 3), which is the ratio between risk inside and outside of the clusters 
(Bland and Altman 2000; Kulldorff 1997). A high odds ratio means that high-risk 
disease areas/periods have been delineated well from low-risk ones, as the ratio 
between cases and controls inside the cluster is much higher than outside. When 
comparing any two methods A and B, we say that method A delineates clusters better 
than method B if it produces a higher odds ratio. Lastly, we use Monte Carlo simu-
lation to measure the statistical significance of clusters (Step 4). Method A is only 
better than B if it produces a higher odds ratio that is statistically significant. For 
each Monte Carlo simulation run, we randomize the locations of the observed dis-
ease cases by sampling from an inhomogeneous Poisson distribution with intensity 
that follows the population distribution of Cali, while using one realization of the 
population disaggregation procedure (as it turns out, uncertainty from population 
disaggregation is small). We compute odds ratios by applying Steps 1–3 for each 
simulation run, as well as for the observed dataset. The rank of the observed odds 
ratio among the simulated ones constitutes its p-value for testing the null hypothesis 
of Poisson distributed cases. We chose 99 simulation runs, which strikes a balance 
between computational feasibility and level of statistical confidence.1

To address the sensitivity of the resulting odds ratios to various parameter con-
figurations, we apply Steps 1–4 for all combinations of different percentile threshold 
values for cluster delineation, and support threshold values for bandwidth selection 
(see Sect. 2.2). The support values are {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 
65, 70, 75, 80, 85}, whereas the percentile values are {90, 91, 92, 93, 94, 95, 96, 
97, 98, 99, 99.9, 99.99}. This allows us to draw odds ratio surfaces across different 
parameter configurations, and to compute the difference between ST-DB and S-DB. 
With the goal of illustrating the utility of our approach, we perform significance 
testing for all parameter configurations (ST-DB only).

4.3 � Benefit of considering a dynamic background

We illustrate the utility of adjusting kernel density estimates to a dynamic back-
ground by comparing ST-DB with space–time kernel density estimation for static 

1  Note that we would need to increase the number of simulations substantially to achieve confidence lev-
els acceptable in health studies (1,000 – 10,000 simulations).
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background (ST-SB), where the background is ignored or assumed to be distributed 
homogeneously in space and time (Fig.  5c). We visualize density estimates from 
ST-DB and ST-SB within the space–time cube and expect high density areas/times 
to differ between the methods: while ST-SB allows for identifying clusters of high 
case density, ST-DB allows for identifying clusters of high disease risk.

4.4 � Simulation study

As Cali had little change in population during our study period, we conduct a simu-
lation study in addition to our case study in Cali, Colombia, to compare ST-DB and 
S-DB (Fig. 5). In our simulation study, we implement a hypothetical 10% popula-
tion growth within two scenarios. Each scenario consists of one realization of a ran-
dom process, where we distribute the 2010 population (initial population) within the 
neighborhoods of Cali, but add the additional population (population increase) in 
different ways: (1) dispersed population increase following the existing population 
distribution, (2) concentrated population increase, where we distribute the popula-
tion increase within a circle of radius of 3.5 km in the southern part of the city. The 
temporal signature of the population increase is a homogeneous Poisson process 
with λ = 2 for both scenarios. The results from the simulation study illustrate the 
benefits of ST-DB under a high population increase scenario. To reduce the com-
putational cost, we use a random subset (N = 550) of the original case data in our 
simulation study. As with our case study, we assess the uncertainty from population 
disaggregation (Fig. 5d), as well as the benefit of considering time (Fig. 5e), while 
using the following parameter configurations: support = {9, 12, 15, 18, 21}, and per-
centile = {90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99.9, 99.99}.

5 � Results

5.1 � Uncertainty from population disaggregation

In our case study, using the observed population change and the entire dengue 
fever dataset, the 99 population simulations resulted in 99 risk estimates for each 
grid point. To illustrate the uncertainty from these simulations, we computed the 
difference between maximum and minimum risk value for each grid point (upper 
and lower envelope, support = 5) and plotted their frequency within a histogram 
(Fig. 6a). The range of differences is 0.0–0.00037, which is a very small deviation, 
considering a range of risk values within 0.0–0.27. Therefore, the uncertainty from 
population simulation is rather small.

We plotted the upper envelope within the space–time cube (Fig. 6b) to provide 
a spatiotemporal depiction of the risk estimates. The lower envelope is not distin-
guishable from the upper envelope when viewing the scene at full extent, because 
the differences are very small. We can clearly see the two clusters of increased dis-
ease risk within the southwestern part of the city (Fig. 6b, points 1 & 2), commensu-
rate with findings of Delmelle et al. (2014) and Hohl et al. (2016). These clusters are 
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Fig. 6   a Histogram of differences between upper and lower envelope (support = 5); b spatiotemporal 
distribution of the upper simulation envelope (uncertainty from population simulation); c difference 
between upper and lower simulation envelope
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active from the very beginning of the study period and remain so for the first quarter 
of the study period. We also see another risk zone within the more central part of 
the city (Fig. 6b, point 3) which exhibits elevated disease risk estimates for approxi-
mately the first half of the study period.

The spatiotemporal distribution of the difference between upper and lower enve-
lopes shows higher values where risk estimates are high as well (Fig. 6c). Hence, 
the differences follow the distribution of risk estimates. This result is expected and 
confirms that the uncertainty from population simulation is relatively small while 
following the spatiotemporal distribution of risk.

5.2 � Benefit of considering time

Using the actual population of Cali during our study period (2010–2011), we com-
pare S-DB and ST-DB and find that ST-DB performs better for the parameter space 
we assessed. Figure  7 indicates the difference between odds ratios produced by 
S-DB and ST-DB. The entire parameter space in Fig. 7 shows positive values, i.e. 
ST-DB has a higher odds ratio than S-DB. The differences range from 2.4 to 26.9 
and increase toward higher percentile and lower support threshold values. Signifi-
cance testing of clusters generated using ST-DB shows that all parameter combina-
tions are significant except toward lower percentile and higher support values, i.e. 
percentile = 91 & support ∈ {65, 70, 75, 80, 85}, as well as percentile = 90 & sup-
port ∈ {25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85}.

Fig. 7   Difference between odds ratios S-DB—ST-DB. Y-axis: percentile threshold values. X-axis: sup-
port parameter values
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We found clusters of elevated dengue fever risk that are significant at the 0.01-
level. Here, we illustrate an example using the parameter values of support = 45 and 
percentile = 95 (Fig. 8). The clustered voxels are distributed within the center of the 
city and within the first 314 days of the study period. The cluster has a large base at 
the beginning of the study period, which becomes thinner as time progresses. There-
fore, distinct patterns of cluster shape are visible toward the upper end of the 314-
day period. For instance, the cluster seems to consist of two parts: one in the South 
(Fig. 8, point 1) and in the North (Fig. 8, point 2). The Northern section of the clus-
ter lasts substantially longer than its Southern counterpart. We are also able to make 
out detached ‘clouds’ of voxels that have been identified as clusters (Fig. 8, point 3). 
These ‘clouds’ indicate regions that experienced a resurgence of dengue risk after a 
period of little activity.

5.3 � Benefit of considering a dynamic background

The density estimates produced by ST-SB exhibit an interesting pattern (Fig. 9). The 
isovalues are chosen to equalize the volume enclosed by the isosurfaces between 
the density grids of ST-DB and ST-SB. Figure 9 shows that there are three distinct 
areas: Point 1 has high values for both, ST-DB and ST-SB. This area corresponds 
to the well-known dengue clusters in the southwestern part of the city during the 
first 200 days of our study period (Delmelle et al. 2014). It means that these areas 
have high case density and a high population density, and therefore, conform to the 
expected spatiotemporal pattern of a disease epidemic. Point 2 is found just north 
of Point 1, where we observe high values for ST-DB, but not for ST-SB. It means 
we observe more cases than we would expect given the lower population density. 
Lastly, areas belonging to Point 3 are located in the central part of the city at around 
50–200 days and exhibit high values for ST-SB, but not for ST-DB. They are on the 

Fig. 8   Voxels that form a significant cluster at the 0.01-level. Support = 45, percentile = 95
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fringe of the high population density areas in the eastern part of the city. As they 
are not visible when adjusting for the underlying population (ST-DB), these areas 
are within or below the expected pattern, yet using ST-SB alone, one would identify 
them as high-density areas.

5.4 � Simulation study

The simulation study uses a random subset of the original dengue fever dataset of 
550 points (Fig. 10a). We employ two scenarios that differ in the spatial pattern of 
population increase: dispersed (Fig. 10b), and concentrated (Fig. 10c). The temporal 
signature of population change is the same for both scenarios (Fig. 10d), exhibiting 
the strongest growth in the first half of the first year of our study period (2010).

It is apparent that the risk estimates of dengue fever cases resulting from ST-DB 
differ between the two simulation scenarios (Fig. 11). Figure 11 includes an isosurface 
for each scenario, where we chose isovalues in such a way that both isosurfaces enclose 
the same volume. This is different from choosing the same isovalue because the ranges 
of risk values differ. The concentrated population increase leads to lower risk estimates 
in the southwestern part of the city (see Fig. 11, Point 1) as compared to the estimates 
of the dispersed population increase scenario. This is evident from the isosurface of 
the dispersed scenario in Point 1, while the isosurface of the concentrated scenario is 
absent in that location. For both scenarios, the highest densities are found during the 
first 100 days of the study period, with a spatial concentration on the western parts of 
the city. Notable exceptions are two detached clusters in the central area of Cali, one 
emerging around day 100 (Fig. 11, point 2), one around day 200 (Fig. 11, point 3).

Fig. 9   Difference between ST-DB and ST-SB
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Comparing odds rations between ST-DB and S-DB, we find that ST-DB out-
performs S-DB for the entire parameter space assessed (Fig.  12), as indicated 
by the positive difference all throughout. Significance testing shows that most 

Fig. 10   Simulation study—population simulation. a 550 cases (random sample from dengue fever 
dataset), b Simulated population dataset with initial population (black dots) and dispersed population 
increase (red dots), c Simulated population dataset with initial population (black dots) and concentrated 
population increase (red dots), d temporal signature of population increase, common to both population 
increase scenarios
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clusters are significant, with few exceptions i.e. for extreme values of the percen-
tile threshold parameter (percentile = 99.99).

Fig. 11   Risk estimates from ST-DB (support = 9). Isosurfaces of concentrated (gray color) and distrib-
uted population increase (mesh). View from a top, b West, c Southeast (elevated viewpoint). One simula-
tion run out of 99 (population simulation)

Fig. 12   Simulation study—case simulation. Heatmap of difference between odds ratios of ST-DB and 
S-DB. Large dots indicate parameter configurations that resulted in significant clusters, small dots denote 
insignificant clusters. a Concentrated population increase, b dispersed population increase. X-axis: sup-
port parameter values. Y-axis: percentile threshold values
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6 � Discussion

Our experiments indicate that ST-DB yields higher odds ratios than S-DB for the 
parameter configurations assessed in both, our simulation and case studies (Figs. 7, 
12). This is a positive result, suggesting a benefit of considering the temporal dimen-
sion in spatial analysis, as it may better allow us to capture the scale at which a 
point process operates. This implies that ST-DB, the key innovation of this study, 
improves our ability to delineate clusters of disease occurrence under spatially and 
temporally dynamic backgrounds. It is important to note that the ‘winner’ of the 
comparison between ST-DB and S-DB is not ‘better’ in a universal sense as it may 
merely result in different conclusions.

The choice of parameters is admittedly subjective, but we confirmed the validity 
of the resulting clusters by significance testing. Therefore, we created two measures 
of describing clusters: (1) We quantify the strength of a cluster by its odds ratio. The 
higher the ratio, the greater the difference in odds of contracting the disease inside 
vs. outside the cluster. (2) We quantify the significance of the cluster by its p-value. 
Therefore, the clustering of observed dengue cases by arbitrary parameter values 
generates higher odds ratios compared to all the Poisson distributed simulated data-
sets. The ability of choosing parameter values allows for ‘tuning’ the resulting sig-
nificant clusters (Fig. 8). This way, authorities can choose the case support and risk 
threshold based on their needs and resources. If resources for disease prevention and 
mitigation are scarce, the risk threshold can be increased to produce smaller areas/
periods of significant clusters.

We clearly saw that uncertainty from population disaggregation was low in our 
case study (Fig.  6a, c). This result is due to the small rates of population change 
within the study period (Table 1). To clearly illustrate the utility of ST-DB we car-
ried out a simulation study with two different scenarios of rapidly changing back-
ground population (concentrated vs dispersed population increase). The results of 
the simulation study demonstrate that the spatiotemporal distribution of the back-
ground does have a substantial effect on the resulting risk estimates. This effect is 
visually detectable and apparent from Fig.  11. In addition, the distribution of the 
background has an effect on the benefit of considering the temporal dimension in 
our analysis: In both simulation scenarios, ST-DB produces higher odds ratios than 
S-DB across all parameter configurations, where the difference between odds ratios 
increases toward extreme parameter values. However, while differences increase 
toward higher percentile and lower support threshold values in the concentrated sce-
nario, they increase toward higher percentile and higher support in the dispersed 
scenario. This shows us which parameter configuration we may choose to maximize 
the benefit of considering the temporal dimension of our data for different distribu-
tions of the background.

The comparison between space–time kernel density estimation for dynamic (ST-
DB) and static (ST-SB) backgrounds underlines the usefulness of ST-DB. Health 
officials may be interested in the ability to identify areas that conform to the expec-
tation of high population density equals high case density versus areas that do not. 



412	 A. Hohl et al.

1 3

High risk areas/times identified through ST-DB could be targeted for interventions 
like mosquito control or awareness campaigns in the case of dengue fever.

The results obtained here point toward the following weaknesses and discussion 
points, some of which need to be addressed in the future. First, the observed popula-
tion change in the city of Cali was moderate, therefore we simulated two high popu-
lation growth scenarios to show how ST-DB performs under such conditions. How-
ever, more simulation studies are needed to demonstrate the benefit of considering 
the temporal dimension, e.g., under a population decrease scenario. Second, ST-DB 
assumes that cases and population are distributed on an infinitely continuous planar 
space, which justifies the use of Euclidean distance. However, as people and goods 
move along the road network, it is necessary to adapt ST-DB toward network dis-
tance, drawing from existing research about kernel density estimation for networks 
(Okabe et al. 2009), space–time hotspot detection for street-level incidents (Shiode 
and Shiode 2013), and local indicators of network‐constrained clusters (Yamada and 
Thill 2007). Third, we use epidemiological data under the assumption that people 
contracted the disease at their residential location. However, this is not necessar-
ily true, as people move around the city for daily commutes or leisure time activi-
ties. Therefore, uncertainty in the spatiotemporal location of disease cases could 
undermine our results. Lastly, our use of the ‘people-days’ metric to quantify the 
population within the kernel may face the following weakness: a given number of 
people-days may be achieved by multiple ways that represent different conditions for 
disease transmission. For instance, 12 people present in a kernel for one hour each 
has the same result like on person present for 12 h. Hence, domain knowledge is key 
to establish a measure that best suits the purpose at hand.

We think that ST-DB is most useful for scenarios where the phenomenon of inter-
est, as well as the background varies considerably in space and time, which depends 
on the scale and spatiotemporal extent of the study area/period, as well as data avail-
ability. Analyzing infectious disease at the municipal or regional level is a prime 
example of such a situation. Other application examples include chronic disease in 
rapidly urbanizing regions, or traffic accidents under varying traffic volumes. On the 
other hand, we think that ST-DB is likely not useful if the background is relatively 
static. For instance, many western cities are at a stage in their development where 
population density has not changed substantially for years, which would diminish 
the benefits of ST-DB. Lastly, while ST-DB is suitable for municipal- or regional-
level analyses over multiple years, it is less suitable for global- or continental-level 
analyses over decades, because spatiotemporal data tend to be coarse at such scales, 
thereby reducing variation in geographic phenomena across space and time.

7 � Conclusions

In this study, we presented ST-DB, a kernel density estimator for spatially and 
temporally dynamic background populations. Our approach demonstrated the 
utility of accounting for a dynamic background for kernel density estimation by 
comparing it to an estimator that ignores the temporal dimension (S-DB). To the 
best of our knowledge, this approach is the first within the GIScience domain 
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that explicitly accounts for a changing background population through time. We 
showed that accounting for temporal variation in the background in addition to 
spatial variation (ST-DB) may produce stronger clusters (as expressed in odds 
ratios) than an approach that only accounts for spatial variation (S-DB) for some 
parameter configurations.

Our approach addresses the limitations of current methods by adjusting kernel 
density estimates for dynamic backgrounds. We need to revisit and update cur-
rent methods for analyzing spatiotemporal phenomena to explicitly incorporate 
temporal variation in background population. In the face of current migration and 
urbanization trends, as well as the availability of population data at high spati-
otemporal resolution, this step has been long overdue.

Future work includes various improvements and applications of kernel density 
estimation for spatially and temporally dynamic backgrounds: first and foremost, 
it should be a priority to address some of the limitations mentioned here, includ-
ing additional simulation studies to confirm the general validity of our findings. 
Second, we plan to develop a parallel version of ST-DB, which allows harnessing 
the processing power of high-performance computing and increases applicability 
of the method. Third, new methods for kernel density estimation under dynamic 
backgrounds are needed, which are able to accommodate various formats and 
conceptualizations of population data (Fig. 1). This will require further thinking 
about issues of scale and granularity of spatiotemporal analyses, as data types 
range from individual trajectories to population counts that are aggregated to the 
spatiotemporal units of census tracts and decades.
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