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Abstract
The widespread availability of high spatial and temporal resolution public transit 
data is improving the measurement and analysis of public transit-based accessibility 
to crucial community resources such as jobs and health care. A common approach 
is leveraging transit route and schedule data published by transit agencies. However, 
this often results in accessibility overestimations due to endemic delays due to traffic 
and incidents in bus systems. Retrospective real-time accessibility measures calcu-
lated using real-time bus location data attempt to reduce overestimation by captur-
ing the actual performance of the transit system. These measures also overestimate 
accessibility since they assume that riders had perfect information on systems opera-
tions as they occurred. In this paper, we introduce realizable real-time accessibil-
ity based on space–time prisms as a more conservative and realistic measure. We, 
moreover, define accessibility unreliability to measure overestimation of schedule-
based and retrospective accessibility measures. Using high-resolution General Tran-
sit Feed Specification real-time data, we conduct a case study in the Central Ohio 
Transit Authority bus system in Columbus, Ohio, USA. Our results prove that real-
izable accessibility is the most conservative of the three accessibility measures. We 
also explore the spatial and temporal patterns in the unreliability of both traditional 
measures. These patterns are consistent with prior findings of the spatial and tempo-
ral patterns of bus delays and risk of missing transfers. Realizable accessibility is a 
more practical, conservative, and robust measure to guide transit planning.
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1 Introduction

Accessibility, or the ability to reach opportunities in an environment, is a funda-
mental concept in transportation science and human geography (Hansen 1959; 
Ingram 1971). As the focus of transportation planning shifts to a sustainable 
mobility paradigm, accessibility measures are becoming more crucial as a perfor-
mance measure to guide policy, planning, and decision-making (Banister 2008). 
Advances in mobility and geospatial data technologies and science have enhanced 
the sophistication and practicality of accessibility measures to a point that they 
are transforming planning and policy (Handy 2020; Levinson & Wu 2020; Wu 
& Levinson 2020). This includes the space–time prism (STP): a core concept in 
time geography that models accessibility as the envelope of all possible paths 
with respect to time based on anchoring locations and times, maximum speeds 
for travel, and stationary activity times (Hägerstrand 1970). New mobility and 
geospatial data technologies have allowed researchers to greatly increase the ana-
lytical power of this basic time geographic concept (Miller 2017; Neutens et al. 
2007).

O’Sullivan et  al. (2000) pioneered the application of STPs to model public 
transit accessibility. Since that time, the availability of data on public transit net-
works and related supporting infrastructure such as sidewalks afforded the devel-
opment of public transit network accessibility analysis based on high-resolution 
representation of transit and walking networks. However, this research tradition-
ally still depended on assumptions of average schedule frequency and headways 
during peak and off-peak times (Tribby & Zandbergen 2012). This barrier has 
been shattered by the development of data standards for publishing high-resolu-
tion schedule and real-time vehicle location data public transit data via the Gen-
eral Transit Feed Specification (GTFS) developed by Google. GTFS allows devel-
opers to create navigation apps to support public transit users. It is also allowing 
researchers to analyze the accessibility generated by public transit systems at high 
levels of spatial and temporal resolution (Lee & Miller 2018; Wessel et al. 2017; 
Wessel & Farber 2019).

Transit systems are highly dynamic and time dependent due to variations in 
operating conditions, and actual performance can be different from the schedule 
(Park et  al. 2020). There are several factors that contribute to these deviations 
from scheduled service: first, many bus systems operate within road networks 
that are shared with other vehicles. Conditions such as recurrent congestion and 
non-recurrent disruptions like construction and crashes can slow transit vehicles, 
leading to deviations from the scheduled service. Second, only travel time at des-
ignated timepoint benchmark stops is explicitly defined in the official timetables 
of many transit systems; travel time at non-timepoint stops is derived from inter-
polation, which may not be strictly followed in practice.

Wessel et  al. (2017) and Wessel & Farber (2019) compared accessibility 
measures based on public transit schedule data with accessibility measures cal-
culated retrospectively from real-time vehicle location data, finding substantial 
differences that call into question the use of schedule data alone for public transit 
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accessibility analysis. However, while retrospective real-time accessibility meas-
ures recognize that actual operations can deviate from scheduled service, they 
assume users know a priori the actual arrival time of vehicles (Wessel & Far-
ber 2019); this knowledge is only attainable after the event happens. This makes 
accessibility measures calculated retrospectively from real-time vehicle location 
data unrealistic in depicting the accessibility realized by the transit system and 
experienced by public transit users.

This paper provides a scalable time geography approach to measure the reliability 
of transit accessibility. We introduce the concept of realizable real-time accessibility 
based on the STP to address the overestimation of accessibility in traditional meas-
ures. Like retrospective real-time accessibility, the realizable real-time accessibility 
is also calculated based on actual bus locations data, but it acknowledges that users 
are not able to know the actual arrival times a priori and respond in real-time to 
on-time performance deviations in the network. We also introduce the concept of 
accessibility unreliability as a measure of the deviation of schedule accessibility or 
retrospective accessibility from realizable accessibility. This measure represents the 
difference between the expected potential path area (PPA)—i.e., the spatial footprint 
of the STP—and the actual or realized PPA based on realistic system performance 
given the same time budget and departure time. The aggregate version of this meas-
ure can also show the consistency and reliability of the transit service; this is vital 
for administrative and planning purposes. We use schedule and real-time vehicle 
location data to calculate and compare STPs based on schedule, retrospective, and 
realizable real-time accessibility assumptions. We illustrate these measures using 
GTFS data from the Central Ohio Transit Authority (COTA) bus system, a public 
transit agency in Columbus, Ohio, USA. The analyses focus on the spatial and tem-
poral patterns in different levels from 2018 to 2019 across Columbus.

In the next section of the paper, we discuss the background of the space–time 
prism, transit accessibility, and the unreliability issue of accessibility measures. We 
then introduce the data source; the time-dependent routing algorithm; the concepts 
of scheduled, retrospective real-time, and realizable real-time STP; and accessibility 
unreliability in the methodology section. We finally discuss the findings of overall 
distinction, spatial, and temporal analyses in the results section.

2  Background

This section provides background for the concepts and measures of realizable real-
time accessibility and accessibility unreliability. We discuss: (1) the evolution of the 
space–time prism; (2) the development of transit accessibility measurements; and 
(3) the unreliability of schedule-based accessibility measures.

2.1  The evolution of the space–time prism

The space–time prism (STP) is a well-established time geography method to meas-
ure physical accessibility afforded by transportation systems (Miller 1991; Wu & 
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Miller 2001). Since its introduction by Hägerstrand (1970) as a concept, there has 
been progress in STP analytics based on improving capabilities of computer hard-
ware and software, and the availability of data, allowing the STP to be operational-
ized and measured more realistically. Lenntorp (1976) provided the first operational 
implementation of the STP in his computer simulation of possible activity and travel 
schedules. Burns (1980) provided an analytical foundation for the STP in his formal 
analysis of the impacts of time, speed, and network changes on accessibility. The 
rising popularity of geographic information system (GIS) software inspired Miller 
(1991) to develop a generic GIS-based procedure to derive STPs within transporta-
tion networks. Refinements in capabilities for calculating shortest paths from and to 
arbitrary locations within networks allowed Miller (1999) to refine the STP within 
transportation networks. Increasing availability of dynamic network data allowed 
researchers to develop procedures for calculating STPs within networks with time-
varying flows and travel times (Li et al. 2011; Wu & Miller 2001).

Improvements in location-aware technologies such as the global positioning sys-
tem (GPS), automated vehicle location (AVL) devices, and mobile telephony have 
also allowed greater refinement and wider application of the STP. Abundant data 
help refine STP models and enhance the reliability of STP measures. For example, 
Chen et al. (2013) used floating-taxi traffic data to introduce travel time uncertainty 
into the calculation of the STP. Delafontaine et al. (2011) introduced a STP frame-
work with emphasis on travel time uncertainty in non-network-constrained environ-
ments. Chen et al. (2016) address the scalability of STP to large-scale applications 
and data through an efficient spatiotemporal data model. Abundant data can also 
help extend the applicability of STP and time geographic models to wider domains. 
For example, Fang et al. (2012) utilized STP to identify crucial links from a large 
origin–destination trips dataset. Farber et al. (2015) used social interaction potential 
and the space–time prism to measure the spatial and temporal dynamics of social 
segregation. Li & Farber (2016) used social interaction potential to explore the role 
of the modifiable areal unit problem in time geographic accessibility measures. Wid-
ener et al. (2015) used the social interaction potential to measure and compare food 
access by automobile and public transit.

2.2  The evolution of transit accessibility measurement

Malekzadeh & Chung (2020) suggest there are two major trends for transit accessi-
bility studies: (i) better capturing travelers’ behavior and (ii) developing more disag-
gregated transit accessibility measurements. Both trends exemplify how larger, more 
detailed, and more accessible datasets impact the formulation of transit accessibility 
models.

Due to its multimodal and nonlinear nature, early transit accessibility models 
usually adopt simple assumptions based on travel time estimations, which signifi-
cantly reduces their computational burden (Malekzadeh & Chung 2020). For exam-
ple, some early transit accessibility models consider the proximity to transit stops by 
only walking as the accessibility to a transit system (Hsiao et al. 1997; Zhao et al. 
2003), which is a major simplification since they ignore the travel time in the transit 
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system. As transit-related datasets become more detailed and accessible, models can 
better capture the travelers’ behavior, such as system-facilitated models—i.e., meas-
uring users’ ability to reach other opportunities in the transit network (Tribby & 
Zandbergen 2012) and integral accessibility models—i.e., measuring overall access 
to a number of possible destinations (Farber et al. 2014; Owen & Levinson 2015). 
As mentioned in introduction of this paper, O’Sullivan et al. (2000) pioneered the 
application of STPs in the analysis of public transit accessibility. However, their 
analysis assumes travel through planar space outside the transit network. Tribby & 
Zandbergen (2012) improved transit accessibility by incorporating detailed repre-
sentations of the sidewalk network for traveling to, from and between transit stops. 
However, their analysis assumes a static or steady-state transit headway for peak and 
off-peak hours, based on scheduled service frequency. More detailed and specific 
models powered by high-resolution and large-volume real-time data can provide a 
better understanding of transit accessibility.

Another trend in transit accessibility analysis is more disaggregated transit acces-
sibility measurements. For example, while traditional studies mainly addressed 
accessibility at the regional level and stop level (O’Sullivan et al. 2000; Tribby & 
Zandbergen 2012), recent studies can assess trip-level or even person-level acces-
sibility based on fine-grained standard data like General Transit Feed Specifica-
tion (GTFS) and smart card data (Arbex & Cunha 2020; Batty 2013; Lee & Miller 
2018). These data have well-defined structures for scheduled information, real-time 
bus location and time, or trip behavioral information; GTFS data are also often 
released publicly by transit authorities (Barbeau & Antrim 2013). Therefore, many 
recent studies use GTFS to derive STP at a larger scale without compromising the 
fine details of transit systems (Lee & Miller 2018; Tasic et al. 2014). Meanwhile, 
more powerful computational platforms are also making accessibility modeling 
significantly more detailed. For example, OpenTripPlanner uses a multimodal rout-
ing engine to provide refined results of accessibility at specific times and locations 
(Boisjoly & El-Geneidy 2017; Owen & Levinson 2015). Larger and more-detailed 
datasets, greater computational ability, and better visualization methods help to 
improve the fidelity and granularity of transit accessibility analysis.

2.3  Unreliability of schedule‑based accessibility measures

As recent studies focus more on capturing users’ stochasticity, unreliability becomes 
the center of the discussion: in other words, how well can an accessibility measure-
ment capture the actual experience of a user in the system? We define unreliability 
as an accessibility measurement’s deviation from a standard benchmark, which ide-
ally should represent the accessibility delivered to or experienced by users. Due to 
the lack of accessible real-time data sources, most traditional accessibility measures 
are calculated based on transit schedules (Wessel & Farber 2019); therefore, many 
schedule-based accessibility measures can be unreliable due to two factors: uncer-
tainty and accuracy.

Uncertainty refers to the stochastic variation in the accessibility measure, due to 
on-time performance and measurement error. Public transit systems are constantly 
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changing, with early or late arrival times occurring because of unexpected external 
or internal factors, such as traffic, weather, vehicle conditions, or operator condi-
tions. Hall (1983) was among the first to consider uncertainty when formulating and 
calculating accessibility. Similar to the development of STP, more studies are being 
dedicated to discussing the unreliability of accessibility measures with better data-
sets. For example, Kim & Song (2018) discuss an integrated measure of accessibil-
ity and reliability for transit systems; Zhang et al. (2018) introduce a time-dependent 
reliability modeling approach based on GPS trajectories to address traditional meas-
ures’ overestimation problem. More recently, a new R5 routing engine can simulate 
the uncertainties of travel time with static GTFS feeds (Conway et al. 2018; Pereira 
et al. 2021).

Another factor that can contribute to a schedule-based accessibility measure’s 
unreliability is accuracy. It can be defined as systematic deviations of an accessibil-
ity measure from the standard benchmark. Some papers discussed the topic with 
empirical evidence: Wessel et al. (2017) constructed a retrospective transit timetable 
from real-time automatic vehicle location data to better capture the dynamic nature 
of the transit system. The paper also provided a case study for the Toronto Tran-
sit system and pointed out that an accessibility measure based on retrospectively 
collected real-time vehicle locations data does have significant deviation from the 
schedule, and the pattern of the deviation does not seem random. Wessel & Farber 
(2019), moreover, explored the accuracy of schedule-based accessibility in Toronto, 
Jacksonville, Massachusetts Bay, and San Francisco. The paper concludes that 
schedule-based accessibility measures overestimate on average by five to 15 percent 
or more, and it may not be sufficient to use schedule data alone to evaluate transit 
accessibility for most transit systems.

Traditional schedule-based accessibility measures have both uncertainty and 
accuracy issues. In the following sections, we continue the discussion of schedule-
based unreliability issues; we also expand the discussion to examine unreliability 
issues in retrospective accessibility measures.

3  Methodology

In this section, we introduce the definition of accessibility and unreliability. We first 
introduce the two main transit datasets on which our analysis is based. Then, we 
demonstrate a time-dependent Dijkstra algorithm to calculate the two versions of 
space–time prisms.

3.1  Data sources

We use General Transit Feed Specification (GTFS) data as the main data source for 
time geographic analyses in this paper. GTFS is a data standard that helps transit 
authorities to publish transit data and developers/researchers to consume the data 
(Google Developers 2020). GTFS includes two parts: GTFS static and GTFS real-
time data, corresponding to scheduled service and real-time vehicle locations, 
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respectively. Several relational database tables comprise the GTFS static data, speci-
fying the transit system’s stops, trips, routes, arrival and departure time, and other 
schedule information (Google Developers 2020). The GTFS real-time data include 
two parts: trip update, which contains the expected arrival/departure time of each 
trip at each stop in the transit system, and vehicle position, which is similar to auto-
matic vehicle location (AVL) data and shows the location of active vehicle in the 
system (Google 2021). Transit authorities broadcast GTFS real-time data at regular 
time intervals from 10 to 90 s to support navigation apps (Liu & Miller 2020a). We 
derived the actual arrival time of each trip at each stop from the latest trip update 
feeds.

We collected both GTFS static and real-time trip update data from the official 
application programming interface (API) of the Central Ohio Transit Author-
ity (COTA) from February 2018 to March 2020 (Central Ohio Transit Authority 
2021). We record the updated GTFS static data whenever there are any changes in 
the schedule data. This can include minor changes on a daily basis, three seasonal 
adjustments in January, May, and September, major planned route and schedule 
changes, such as COTA transit system redesign in May 2017 (Lee & Miller 2018; 
Schmitt 2018) and COVID-19-related schedule adjustments in 2020 (Liu et  al. 
2020). We collected real-time trip update feeds at the interval of 60 s; this is a com-
mon GTFS real-time update frequency for US transit systems (Liu & Miller 2020a). 
The total data volume exceeds one terabyte. Due to the large data size, we used a 
noSQL (unstructured) database technology, MongoDB, to maintain the database and 
support queries.

3.2  Time‑dependent routing

We use the STP, a well-established time geography method, to measure accessibil-
ity in public transit systems (Miller 1991; Wu & Miller 2001). In practice, we first 
calculate the shortest travel time between the origin stop and all other stops in the 
system. We then derive the STP and its spatial footprint, the PPA, by finding the set 
of stops for which the travel time is no greater than a specified time budget.

It can be challenging to obtain accurate travel times in a transit network, even 
with a complete archive of retrospective arrival times. A major reason is because 
transit networks are discontinuous and time-dependent (Gendreau et al. 2015; Wang 
et al. 2019). Unlike private vehicle or pedestrian network, a user cannot move in the 
network until he or she boards a vehicle which arrives only at specific time points. 
Therefore, the network costs of transit can vary depending on the passenger’s arrival 
time at the originating stop of a transit system. This time-dependent variation also 
applies to other components of public transit travel times, including wait time and 
in-vehicle time.

There are two approaches to time-dependent routing: deterministic and stochastic 
(Gendreau et  al. 2015). Stochastic models include a random factor to predict the 
time-varying travel times. They are useful at capturing the randomness caused by 
congestion, weather, crashes, and road maintenance (Gendreau et  al. 2015); how-
ever, because we already empirically collected the actual arrival times at all the stops 
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and aim for more precise travel time measures, we use a deterministic approach to 
address the time-dependent routing problem.

We use a Dijkstra algorithm with dynamic costs to solve the time-dependent rout-
ing problem. The Dijkstra algorithm is a classic and efficient algorithm to solve the 
shortest path routing problem (Golden 1976). It uses a greedy strategy to find the 
shortest path from the origin node to every other node (Xie et al. 2012), which sig-
nificantly reduces the size of the subproblems and is very useful and efficient to 
calculate the STPs. However, the correctness of the Dijkstra algorithm is based on 
non-negative static costs that time-dependent transit networks do not satisfy. In par-
ticular, a vehicle with a later start time may result in an earlier arrival time than 
another vehicle if the first vehicle passes the second (Gendreau et al. 2015). Conse-
quently, the results generated by Dijkstra algorithm with dynamic costs may not be 
the globally optimal solution. Therefore, many prior studies introduced no-passing 
or first-in-first-out (FIFO) rule to make the Dijkstra algorithm compatible with the 
time-dependent requirements (Ahn & Shin 1991; Ichoua et  al. 2003). FIFO rule 
assumes a vehicle leaving an origin stop will never arrive later at the destination 
stop than another vehicle that departed later. FIFO rule is a prerequisite to use Dijk-
stra to calculate the routing problem in a transit system. Therefore, we tested if vehi-
cles in the COTA system satisfy the FIFO rule by calculating whether each bus in 
the transit system can indeed pass subsequent buses in the same route. The average 
proportion of no-passing buses is 95%; therefore, we conclude that there are very 
few passing occurrences in the COTA system, and the FIFO rule generally applies 
to the system.

3.3  Three space–time prisms

After calculating the time-dependent shortest travel time between any stops in the 
system based on the scheduled and retrospective GTFS data, we derive an implicit 
STP by calculating the number of accessible bus stops. We use a decision variable 
�
�

ij�
 to represent whether a user starting from stop i at time point t can arrive at 

another stop j within the time budget �:

where t�
ij
 is the shortest travel time between stops i and j starting from a time point 

� . Therefore, the number of accessible stops with the time budget � can be written 
as:

where s�
i�

 represents the number of accessible bus stops (or an implicit PPA of the 
STP) from stop i at the time point t with the time budget � and S is the set of all 
stops. We can then introduce the definition of the STP:

(1)𝛿
𝜙

ij𝜏
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{
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𝜙
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≤ 𝜏

0, if t
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> 𝜏
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�
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where S�
i
 represents the implicit STP from stop i at a time point � , while T is the set 

of all time budgets.
We produce three versions of the bus stop-based implicit STPs based on the 

shortest travel times, namely scheduled, retrospective real-time, and realizable real-
time STPs.

3.3.1  Scheduled STP

Scheduled STPs are calculated based on the scheduled time from the GTFS static 
dataset. It represents the expected accessibility that a passenger can achieve if the 
transit system operates perfectly according to the schedule. However, the actual 
travel time and accessibility may vary due to on-time performance deviations, and 
schedule is not an unbiased representation of a transit system’s actual performance 
(Park et al. 2020); therefore, the scheduled STP is typically an overestimate of the 
actual accessibility experienced by a passenger.

3.3.2  Retrospective real‑time STP

As we can access all the historical arrival times from the GTFS real-time archive, we 
can calculate a retrospective version of the STP using the same algorithm described 
above by changing all the scheduled arrival times to corresponding retrospective 
real-time arrival times (Wessel et al. 2017; Wessel & Farber 2019). Although this 
allows for deviation from the schedule STP, it is still idealistic. When planning trips, 
the user cannot know a priori the actual arrival time of each bus (Wessel & Far-
ber 2019). Although it can be a useful reference for transit agencies and users, the 
retrospective real-time STP, or more generally retrospective real-time accessibility, 
cannot be realized by users. It overestimates users’ accessibility because it assumes 
users have omniscient knowledge of the transit system, even events that happen in 
the future. There are some unnatural and infeasible results caused by this overesti-
mation: in the retrospective model, a user can decide to take a very different combi-
nation of trips and routes that will not be possible without predicting the future.

For example, Fig. 1 shows a real-world routing example based on COTA data that 
illustrates the overestimation potential for retrospective accessibility to overestimate 
caused by a preemptive transfer when the receiving bus that the user will transfer to 
is delayed (Liu & Miller 2020b). The map shows two retrospective- and schedule-
based routes; the retrospective route saves one transfer and much time compared to 
the scheduled scenario by taking a different bus at the circled stop. This was only 
possible for the retrospective scenario because the incoming bus in the alternative 
second leg (route 101, colored pink with origin stop circled) was delayed by four 
minutes relative to the schedule. However, unless the transit user can predict the 
future or have perfect real-time information feeds, it is almost impossible to foresee 
this transfer is possible.

(3)S
�

i
=

{
s
�

i�
|∀� ∈ T

}
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We can, moreover, deconstruct scheduled and retrospective real-time acces-
sibility from a perspective of a user’s decision-making: these two accessibil-
ity systems do not separate the decision-making and the decision implementa-
tion process. For a user, the decision-making process typically happens before 
the implementation process since people plan their trips before taking the transit, 
and the implementation result can be different from what they plan. However, 
both schedule and retrospective real-time accessibility models assume the two 
processes are happening simultaneously: the users are assumed to always real-
ize the expected trip plan and never miss a bus. Such an assumption is unrealistic 
because users are likely to miss a bus and suffer additional time penalty in real-
ity, especially during transfers when users have no control over the buses (Liu & 
Miller 2020b; Park et al. 2020).

Fig. 1  An example of overestimation in retrospective route (red, with two legs) compared to scheduled 
route (blue, with three legs). A delayed bus on the retrospective route’s second leg (pink, origin stop 
circled) makes the transfer feasible, which is impossible in the scheduled timetable and very hard for 
normal users to anticipate
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3.3.3  Realizable real‑time STP

Because of the unrealizable nature of both schedule and retrospective real-time 
accessibility models, we therefore define realizable real-time STP, or more gener-
ally realizable real-time accessibility, based on realizable real-time shortest travel 
time between any stops. We calculate realizable real-time shortest travel time in two 
steps to better represent transit users’ actual decision-making process: planning and 
implementation.

The first step is planning. We calculate a hypothetical user’s trip plan from the 
scheduled timetable, including all the shortest travel time and the corresponding 
route choice assuming buses follow the schedule. We assume that users do not have 
access to real-time information (RTI) about public transit since we want to define 
realizable real-time accessibility as a conservative estimate of experienced acces-
sibility. In addition, from a social equity perspective, RTI may not be accessible for 
everyone since smartphone and broadband Internet access are not universal (Mohad-
isdudis & Ali 2014; Tsetsi & Rains 2017).

The second step is implementation. The results of the planning step show how 
users or their trip planning app expect their trips will be, but the actual outcome can 
vary depending on the system’s actual on-time performance. Therefore, we revisit 
the same route choice plan from the planning step; we find the actual travel time 
between each arc and actual arrival time at each node on the planned route from the 
real-time transit data. This means the trajectories of scheduled and realizable real-
time STP are the same, but they can have different travel times. For example, the 
trajectory is {A, B, C} in the trip plan between A and C, where A, B, C represent a 
sequence of stops. The user is scheduled to take bus 1 from stop A to B, then trans-
fer at stop B to another bus 2, and finally arrive at stop C. However, because bus 1 is 
delayed, the user arrives late at the transfer stop B and misses the scheduled transfer 
bus 2. We then find the next bus from stop B to C and record the new arrival time 
at stop C and travel time between stops A and C. Note that the user will not follow 
alternative routes, since users plan their route fully based on the schedule and the 
freedom of switching routes during the trip is limited.

There are several factors that contribute to differences between the retrospective 
and realizable real-time STPs: (i) unlike the retrospective accessibility, a user does 
not have to experience the trip itself to make the decision about the trip, and it is 
calculated from information that can be obtained before the trip happens. Therefore, 
it is realizable; (ii) delayed or early arrival at the origin stop and transfer stops can 
result in substantial delay times for longer trips that involve multiple transfers; (iii) 
routes calculated retrospectively can exploit shortcuts that result in reduced travel 
times compared to the scheduled routes as shown in Fig.  1; however, real-world 
users cannot anticipate these shortcuts.

From the perspective of information veracity, we can consider retrospective 
accessibility as the measure that requires perfect RTI input for user decision-mak-
ing, which can fully foretell the future states of the network. Conversely, we can 
consider realizable accessibility as the measure with no RTI input, which can not 
anticipate future states of the network. Therefore, we view the retrospective and 
realizable STP as the upper bound and lower bound of accessibility, respectively. 
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Other accessibility measures with different RTI-based predicting schemes or rout-
ing algorithms should produce STPs that fall between the two benchmarks. For the 
same reason, although we use realizable real-time STP as a relaxed benchmark in 
this study, we do not claim the realizable measure can fully reflect all transit users’ 
behavior and can be a universally authoritative benchmark for all purposes. Many 
other routing algorithms adopt different assumptions and conditions, which almost 
guarantee their results will be different (further discussed in Sect. 4.2).

Figure 2 illustrates six possible relationships among the three STPs. The realiz-
able accessibility should always be the smallest of the three, while the retrospective 
accessibility can be equal to, larger than, or smaller than the scheduled accessibility 
depending on the network geometry and on-time performance.

3.4  Accessibility unreliability

We define accessibility unreliability as the difference between expected (scheduled 
STP and retrospective real-time STP) and the delivered accessibility measures (real-
izable real-time STP). Based on the STP definition provided in Eq.  (3), we define 
accessibility unreliability as:

where S�
i
 is the expected STP (schedule or retrospective) starting from a time point 

� , R�

i
 is the realizable STP, s�

i�
 is the expected number of accessible stops, and r�

i�
 is 

the realizable number of accessible stops. We calculate two versions of accessibility 
unreliability: scheduled STP’s unreliability and retrospective real-time STP’s unreli-
ability. Scheduled STP is the promise that the transit authorities make to users, while 
the realizable STP is the actual experience the transit system delivers. The difference 
between the two represents the part of accessibility the transit system loses during 
operation compared with the schedule.
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Fig. 2  Possible relationships among the potential path areas (PPAs) in the three space-time-prisms 
(STPs)
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4  Analysis

In this section, we apply the methods above to empirical schedule and real-time data 
for the transit network in Columbus, Ohio. We first discuss the general differences 
between the scheduled, retrospective, and realizable STPs. We then show the spatial 
pattern of accessibility unreliability for different time budgets. Finally, we analyze 
the temporal pattern of accessibility unreliability in multiple dimensions.

4.1  Overall differences between three STPs

We first illustrate a specific scenario to demonstrate differences among the 
three STPs. Figure  3 shows an example of the PPAs corresponding to scheduled, 

Fig. 3  Examples of scheduled (top left), retrospective (top right), and realizable space-time-prisms 
(STPs) (bottom left) from a bus stop in the central downtown Columbus (North High Street & West 
Broad Street) at 8:00am, Sep 4, 2019, and overlaying potential path areas (PPAs) (highlighted) for the 
time budget of 30 min from the three STPs (bottom right)
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retrospective, and realizable STPs with different time budgets from a bus stop in 
downtown Columbus at 8:00am on 4 September 2019. We can see that the schedule 
and retrospective PPAs resemble each other spatially, while the realizable STP is 
more circumscribed. Figure 3 (lower right quadrant) overlays the three STPs’ PPAs 
for a time budget of 30 min (also highlighted in other three maps in Fig. 3) at the 
same origin stop and the same time. This illustrates that schedule and retrospective 
accessibility may be different from each other in terms of their spatial footprint, but 
they are nevertheless a generous delimitation of accessibility compared to the more 
conservative realizable STP.

Figure 4 shows the global average trend of the three measures. The plot shows the 
number of accessible stops as a function of the time budget. The plot clearly shows 
how the realizable measure is consistently smaller and a more conservative estimate 
of accessibility than the other two. Another notable observation is that the retrospec-
tive and schedule measures are similar, and the retrospective measure is sometimes 
greater and sometimes smaller than the schedule measure. This phenomenon illus-
trates that if a user is given perfect real-time information in a way that they can fully 
predict the future, the user can achieve comparable accessibility to that promised by 
the schedule and can even exceed it in some cases despite the existence of system 
delay. However, it is impossible to get perfect predictive real-time information in 
practice. The similarity of scheduled and retrospective measures may seem counter-
intuitive based on the dissimilarity of the two measures in Fig. 3; however, it should 
be noted that (1) Fig. 4 represents the average of the STPs for all stops while Fig. 3 
shows the STP for only one stop, and (2) the aggregated numbers of accessible stops 

Fig. 4  Global average number of accessible stops for all stops in the Central Ohio Transit Authority 
(COTA) system
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for the scheduled and retrospective are still indeed similar, despite dissimilarity of 
their shapes.

4.2  Spatial pattern of accessibility unreliability

We present results from analyzing the unreliability of schedule-based accessibility, 
using the realizable accessibility measure as a benchmark (Eq. (4)). Figure 5 shows 
four maps of schedule-based implicit STP’s unreliability with respect to the realiz-
able measure for each stop for time budgets of 15, 30, 60, 90 min for the last four 
months in 2019. Note that the map does not visualize a single STP; instead, the map 
summarizes more than 3000 STPs to their corresponding anchor (i.e., origin bus 
stop), showing the unreliability of each STP originating from each stop. The per-
centage can be interpreted as the scheduled-based measure’s deviation from the real-
izable measure (see Eq. (4)), therefore representing the inaccuracy or overestimation 

Fig. 5  Maps of unreliability for schedule-based accessibility with respect to the realizable measure for 
each stop for time budgets of 15, 30, 60, 90 min for the last four months in 2019
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of the scheduled-based measure. For example, 0% means no overestimation at all 
and the scheduled-based measure is the same as the realizable measure, while 100% 
means the scheduled-based measure is twice as much as the realizable measure.

We can see from the maps that the spatial pattern of accessibility unreliability 
is highly dependent on the time budget: for smaller budget of 15 min, unreliabil-
ity concentrates on the city center; for bigger and more practical time budgets for 
longer trips of 30–60  min, unreliability gradually spreads to a larger area until it 
affects almost all stops in the system. For relatively large time budgets, unreliability 
of schedule-based accessibility starts to decrease from the center and becomes more 
concentrated in the periphery. We call this phenomenon saturation. As the PPA 
expands to include the whole system with larger time budgets, the scheduled PPA 
component in Eq.  (4) will not be larger since the system has finite number of bus 
stops and it reaches a maximum value; however, the realizable PPA item will con-
tinue to rise, making the unreliability index smaller. Similar phenomena have been 
observed in prior studies (Wessel & Farber 2019).

Figure 6 depicts the average scheduled-based unreliability as a function of time 
budget for four classes of stations based on their distance to the city center (down-
town core, and inner, middle and outer rings) and also the global average. The satu-
ration process is evident; all curves first increase and reach a peak, then decrease as 
the time budget becomes large enough for schedule-based accessibility to include 
the entire network. However, depending on the geographic location of the stop, 
the time budget for peak unreliability will be different: the time budget where the 
peak occurs is directly correlated with the distance of the stops from the city center. 
This supports the pattern observed in Fig. 5 in which the high unreliability cluster 
migrates outward from the city center as time budget increases. We speculate that 

Fig. 6  Schedule-based accessibility unreliability for downtown core (radius of 2000 m from downtown 
center), inner ring (radius of 2000–5000 m), middle ring (radius of 5000–10,000 m), outer ring (outside 
10,000 m) for the last four months in 2019
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this phenomenon may be due to the star-shaped route alignment and transfer-focus 
planning strategy of the COTA bus system, since most unreliability comes from 
time penalty of missing a transfer (Liu & Miller 2020b, a). Moreover, as longer trips 
require more than one transfer, the total transfer time penalty will be larger due to a 
chain reaction effect.

It is noteworthy that our conclusions in the two sections above are seemingly 
different from the findings in Wessel et  al. (2017) and Wessel & Farber (2019) 
despite using a similar cumulative opportunities approach to measure accessibility. 
There are several explanations for this contradiction: (1) the realizable accessibility 
measure is essentially a different measure from the retrospective accessibility used 
in those studies; (2) we use a different routing algorithm; (3) Wessel et al. (2017) 
observed that their retrospective measure was similar to schedule-based accessibility 
on average, which is consistent with our findings; (4) Wessel & Farber (2019) only 
select one specific long time budget (cumulative parameter) for geographic visuali-
zations, while we present results with multiple time budgets. In fact, the unreliability 
pattern for the 90-min time budget in Fig. 5 is very consistent with prior findings 
(Wessel & Farber 2019), which suggests the existence of saturation in those sys-
tems; (5) The COTA system is a very geographically large and sparse bus system, 
and the peak unreliability occurs at a time budget of around 45  min as shown in 
Fig. 6. In other cities such as Toronto and San Francisco, peak unreliability occurs at 
a time budget of less than 30 min (Wessel & Farber 2019). This means that it takes 
users in Columbus much longer to travel to the edge of the system, and the unreli-
ability requires a longer time budget to reach saturation.

4.3  Temporal patterns

We now turn to temporal patterns in schedule-based unreliability. We conducted 
temporal analysis on several dimensions in terms of the start time: daily, days of 
week, and hours.

4.3.1  Daily

Figure 7 shows the daily pattern of the normalized accessibility unreliability from 
2018 to 2019. Because larger time budgets have less volatile patterns due to satu-
ration, we only include the results for time budgets of five to 60 min. Time budg-
ets larger than 15  min show generally similar and higher-variance patterns, while 
smaller time budgets have patterns exhibiting lower variance. We observe similar 
patterns in the spatial analysis (e.g., global average trend in Fig. 6) and other tem-
poral analyses (e.g., hourly pattern). We can observe two spikes among different 
months: February and September to October. We speculate this may be linked to the 
seasonal schedule adjustments in January, May, and September every year, as opera-
tors need time to adjust to the new schedule leading to higher unreliability.
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4.3.2  Days of the week

Figure 8 shows the average normalized schedule-based accessibility unreliability for 
each day of the week for the week of Sep 4, 2019, at 8am for time budgets ranging 
from five to 60 min. We selected this week because it is during the most recent four 
months in the analysis period and has a typical level of unreliability daily analysis 
in Fig. 7. The pattern shows that Wednesday, Friday, and Tuesday have the high-
est unreliability, while Monday, Saturday, and Sunday have the lowest unreliability. 
This pattern is consistent with prior findings about delay (Park et al. 2020) and risk 

Fig. 7  Daily average unreliability for schedule-based accessibility for time budgets of five to 60  min. 
Gaps indicate missing data

Fig. 8  Unreliability of schedule-based accessibility with respect to realizable accessibility for each day of 
week for the week of September 4, 2019
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of missing transfers (Liu & Miller 2020b) in the COTA bus system, which shows the 
inherent connections of accessibility unreliability to delay and transfer time penalty.

4.3.3  Hourly

Figure 9 presents the hourly pattern for schedule-based accessibility—i.e., the unre-
liability on the hour from 6:00 to 23:00 on Sep 4, 2019. We chose the day as a 
typical day for the same rationale described previously: the daily analysis shows that 
unreliability on this day is neither too high nor too low. The unreliability varies little 
throughout the day. The highest unreliability generally occurs during the morning 
rush hour (8:00) and the afternoon rush hour (18:00), which is also consistent with 
the hourly pattern of delay (Park et al. 2020) and risk of missing transfers (Liu & 
Miller 2020b). The hourly variation becomes less obvious for very small time budg-
ets (such as 5 min), which is also consistent with the analysis above.

5  Conclusion

Measuring transit user’s accessibility is a crucial part of public transit research and 
a prerequisite of transit planning and policy making. Among numerous accessibility 
measures, the space–time prism (STP) is an especially effective method for measur-
ing the physical accessible area afforded by the system for transit users; as more real-
time data become available, the size and fidelity of the analysis can increase corre-
spondingly. However, traditional measures still largely rely on schedule data, which 
cannot reflect the variation in the transit system’s on-time performance (Wessel et al. 
2017; Wessel & Farber 2019). Some prior studies used retrospective real-time meth-
ods to calculate accessibility using real-time data; however, these measures assume 

Fig. 9  Unreliability of schedule-based accessibility with respect to the realizable accessibility as a func-
tion of start times for time budgets of 5, 15, 30, 45, and 60 min on September 4, 2019
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transit users know future arrival times a priori (Wessel & Farber 2019) and never 
miss a bus, thus overestimating the ability of users to obtain information and reach 
destinations. This paper introduces a new time geography approach—realizable 
real-time space–time prism—to address the limitations of schedule-based and retro-
spective real-time measures and incorporate transit users’ capabilities in the calcula-
tion of accessibility. The realizable STP is novel in that it is a two-step method that 
accounts for both the decision-making and implementation processes of a user. We, 
moreover, introduce accessibility unreliability as the normalized difference between 
schedule-based or retrospective-based measure and the realizable measure. Thus, 
unreliability quantifies degree to which traditional measures overestimate accessibil-
ity. Put another way, unreliability quantifies the difference between a transit system’s 
expected performance and its realized performance in terms of accessibility.

This paper provides findings that can make accessibility more practical for transit 
users, planners, and authorities. We use high-resolution real-time General Transit 
Feed Specification (GTFS) data and a time-dependent routing algorithm to imple-
ment the proposed methods for the Central Ohio Transit Authority (COTA) bus sys-
tem in Columbus, Ohio, USA. Our analyses show that the potential path area of 
realizable accessibility is always the smallest compared to the other two measures 
and cannot cover all the COTA system even given a large (two hour) time budget. 
Therefore, the realizable STP is a different, more conservative measure compared to 
its scheduled and retrospective counterparts. We also find the global average perfor-
mance of scheduled and retrospective accessibility are very similar. We then explore 
the spatial pattern of schedule-based accessibility unreliability and its relationship 
with time budget. As a function of time budget, high unreliability tends to spread 
from the city center to the suburban fringe as time budget increases, but is followed 
by a pattern of low unreliability spreading from the center as time budget contin-
ues to increase. This is due to a saturation effect coinciding with very large time 
budgets that occurs when schedule- or retrospective-based measures reach all the 
stops possible in a finite system. Our temporal analyses demonstrate that unreliabil-
ity for schedule-based accessibility is higher in February and September, morning 
and afternoon rush hours, and the middle of the week. This is consistent with prior 
findings related to bus delays (Park et al. 2020) and the risk of missing transfers (Liu 
& Miller 2020b), indicating the inherent connections between these phenomena and 
unreliability.

The realizable STP can be a more user-centric and conservative measure for 
future transit planning and operation, and its pattern shows the asymmetric reality of 
transit planning: many transit systems set a very high standard for transit users and 
operators (e.g., trips involving two or three transfers with very high uncertainties); 
however, this expectation cannot be delivered to transit users by operators (e.g., 
missing buses and wait for the next bus for hours). Meanwhile, if schedule data are 
used as the sole data source for planning outcome measurement, the unreliability 
issues may never be addressed during the planning process due to lack of awareness. 
As transit authorities aim to enhance accessibility from the system’s perspective, it is 
equally important to consider this from a user’s perspective, i.e., whether a user can 
complete trips in the real world. This requires greater use of real-time analysis and 
big data with larger volume and faster velocity during the transit planning process in 
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the future. If planning continues to be based on schedule alone, it is imperative for 
authorities and planners to consider the inherent unreliability of scheduled and retro-
spective measures and plan more conservatively.

There are several topics that remain unexplored in this paper. First, our analy-
sis only allows for following the schedule as a user’s trip planning strategy, which 
cannot be universally applied to every transit user. As real-time information (RTI) 
becomes more accessible, more advanced real-time prediction algorithms can signif-
icantly enhance the experience of a user. Rather than attempting to account for the 
continuum of possible RTI integration, we provide the retrospective measure as the 
upper bound (perfect RTI) and the realizable measure as the lower bound (no RTI) 
for use as benchmarks. Second, despite incorporating users’ cognitive factors in the 
calculation, the paper’s scope is still within the physical accessibility afforded by the 
system and there are no behavioral data to, moreover, reaffirm the findings, such as 
how the measured unreliability impacts actual user’s transit experience or overall 
ridership. Future studies can survey transit users’ perceived accessibility and com-
pare the results with the three introduced measures to investigate the impact of unre-
liability on the demand side. Third, this paper is based on a rigorous, time-dependent 
Dijkstra routing algorithm, and results based on this algorithm may differ from other 
mainstream routing algorithms (e.g., Open Trip Planner) which likely use heuristics 
for scalability. However, although each algorithm can have its own specific imple-
mentation, it is indeed a universal risk of retrospective-based algorithms to make the 
overestimation mistakes discussed in this paper. Last, the empirical results derived 
from the COTA system may not be able to be applied to other systems; we hope 
future studies can conduct similar analysis on other transit systems and explore the 
relationship between unreliability and different aspects of system network topology, 
such as route alignment, stop locations, and headways.

Appendix

All scripts used in the paper can be found in this GitHub repository: https:// github. 
com/ luyul iu/ Reali zable- Acces sibil ity.
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