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Abstract. Privacy and security considerations can prevent sharing of data, derailing data mining
projects. Distributed knowledge discovery can alleviate this problem. We present a technique
that uses EM mixture modeling to perform clustering on distributed data. This method controls
data sharing, preventing disclosure of individual data items or any results that can be traced to
an individual site.
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1. Introduction

Generally distributed knowledge discovery is viewed as an optimization—data is
distributed and the traditional method of building a centralized data warehouse is
costly. Distributed data mining methods can offer savings in processing time through
use of the inherent parallelism in a distributed system, storage cost because the data
doesn’t need to be copied and the human cost of integrating data into a warehouse.

Privacy and security concerns provide another motive for distributed knowledge
discovery. Often, data is distributed because it has been collected or produced by
different parties. Contractual or regulatory controls on privacy can prevent release of
the data. Trade secrecy concerns may outweigh the perceived benefit of global data
mining. In these cases, building a centralized data warehouse is impossible, as no
single party can be trusted by all of the distributed data sources. Distributed data
mining is the only alternative.

For example, a corporation may cluster its customers to identify different groups
to target in marketing campaigns. Now imagine that a multinational corporation
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would like to develop a global advertising campaign. Building a data warehouse
of worldwide customers would enable the desired clustering, but privacy laws may
prevent transferring customer data across borders (Pri 2001; Blackmer and Wilmer,
Cutler, Pickering 1998). Clustering within each country doesn’t give the knowledge
needed to develop a global campaign. Distributed clustering is the only solution,
provided it can be done without violating the privacy laws restricting transborder
flow of customer data.

This example demonstrates the three constraints that define a privacy preserving
distributed data mining problem:
1. What is the data mining task? Perhaps the easiest way to answer this question

is to ask what would be done if a centralized warehouse could be built.
2. How is the data distributed? Simple examples include horizontal partitioning,

where each entity is represented entirely at a single site, and vertical partitioning,
where the attributes are divided across sites and the sites must be joined to obtain
complete information on any entity.

3. What are the security constraints? Privacy regulations may prevent disclosure of
individually identifiable data. Corporate secrecy may allow release of individual
data, but need to protect higher level rules and summaries that could be gleaned
from that data.

This paper addresses (1) the task of clustering, where (2) the distributed data is
horizontally partitioned, and (3) security constraints prevent sharing any information
that can be traced to an individual site.

Specifically, we present a secure method for generating an expectation maximiza-
tion (EM) mixture model from distributed sources. EM mixture clustering (Dempster,
Laird, and Rubin 1977) iterates over the data, producing a new set of cluster cen-
troids at each iteration. Over time, these converge to good cluster centers. We show
that this can be done without revealing individual data points and without reveal-
ing which portion of the model came from which site. We assume only that their
is a majority of sites that do not collude to violate privacy; any individual site (or
a minority acting together) may actively try to defeat the method and will still not
be able to learn individual data points or which portion of the model came from
which site.

The basic idea is that each iteration can be broken into a sum of values corres-
ponding to partitions of the data. Each partition can be computed locally, based on
the local data points and global information from the previous iteration. The global
sum is then computed without revealing the individual values. This provides sufficient
information to compute the global information needed for the next iteration. Once
this process converges, the individual sites can use the resulting model to determine
in which cluster their data values lie.

The next section discusses background and related work. In Sect. 3, we show
how to distribute EM mixture modeling and use this to produce a secure clustering
methodology. Section 3.2 addresses evaluating the stopping criterion for the EM
algorithm in a distributed setting. Section 4 provides an analysis of what is disclosed
by the method.

2. Related work

First, we give some background on secure multiparty computation and discuss other
approaches to privacy-preserving data mining. This is followed with a brief intro-
duction to EM mixture modeling.
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2.1. Secure multiparty computation

Yao’s millionaire’s problem (Yao 1986) succinctly captures the problem of secure
multiparty computation. Suppose two millionaires want to find out who is worth
more, but neither want to reveal their worth? More generally, the goal is to compute
a global function, without any party learning anything except their own input and
the global result. Yao presented a general solution to this problem for two parties,
since extended to the multiparty case by Goldreich, Micali, and Wigderson (1987).

One key issue in the above definition is what is meant by learning anything.
At first glance, this would seem to imply that no communication is allowed be-
cause wouldn’t any communication tell the parties something? The formal definition
is based on distributions of random data. Each party should be able to construct
a data distribution from a random distribution, its own input and the global out-
put that is computationally indistinguishable from the data distribution of messages
exchanged in runs of the secure multiparty computation. This shows that what is
learned in the actual run can be modeled with only local information and the global
result, therefore nothing has been learned by the data exchanged in the computa-
tion.

Another issue is what the parties may do to defeat the protocol. The two models
used in secure multiparty computation are semihonest (also called honest but curious)
and malicious. A semihonest party is required to follow the protocol but may try
to deduce private information from what it sees during execution of the protocol.
This is insufficient for most practical purposes. The malicious model solves this,
requiring that, regardless of the actions of the malicious party, it learns nothing but
the result and that the honest party either sees a result that could have come from
some input from the malicious party or knows that the other party is malicious. To
elaborate, there is no way to detect if the malicious party just gives wrong input, but
otherwise behaves honestly—this is equivalent to an honest party that really had that
input. There is also no way to prevent a malicious party from stopping the protocol
at any point (say, after learning the final result but before the honest party learns the
result). However, in this case, the honest party knows the other is malicious. This is
more than is needed to preserve privacy. We instead define a noncolluding majority
standard. Parties may arbitrarily cheat, but as long as at most a minority collaborate
as part of the cheating, they cannot violate the privacy of the honest parties. The
honest parties may obtain bad results and not be able to detect the malicious parties,
but their privacy is not violated. We believe this is sufficient for practical use and
enables more efficient solutions than the secure multiparty computation malicious
model.

There are still two issues to address before applying secure multiparty computa-
tion to a practical problem.

1. Is it sufficient? Secure multiparty computation assumes that every site learns the
global result. However, we still must ensure that this global result does not reveal
protected information. Just because the computation is secure doesn’t mean the
result is.

2. Is it necessary? The general method (Yao 1986; Goldreich et al. 1987) is not
practical for large inputs. However, relaxing the security constraints may enable
efficient solutions that still meet practical privacy and security requirements.

Section 4 addresses these issues for the method presented in this paper. We show
that the EM mixture model generated does not disclose individual data values or
release information that can be traced to a specific site. The method does not meet



Privacy-preserving clustering with distributed EM mixture modeling 71

the definition of secure multiparty computation, as each iteration reveals some in-
formation. However, because this information does not reveal individual values or
specific site information, it does meet the security constraints of our problem.

There has been other work addressing distributed data mining in the face of se-
curity constraints. Lindell and Pinkas showed how to construct decision trees under
secure multiparty computation constraints (Lindell and Pinkas 2000). More recently,
association rule mining has been addressed in both horizontally partitioned (Kantar-
cıoǧlu and Clifton to appear) and vertically partitioned (Vaidya and Clifton 2002)
data. Secure K -means clustering has been addressed, but only where the data is verti-
cally partitioned, i.e. each dimension is completely contained at one site (Vaidya and
Clifton 2003). To our knowledge, this is the first work to address secure distributed
Clustering, where the data is horizontally partitioned (each site contains complete
information about a set of entities.)

2.2. EM mixture modeling and secure data mining

The expectation maximization (EM) algorithm is an iterative method based mainly
on the maximum likelihood principle. Since Dempster, Laird, and Rubin’s celebrated
paper on the EM algorithm (Dempster et al. 1977), it has become a very popular
method in the AI and statistics community. More details on the EM algorithm and
mixture models can be found in McLachlan and Basford (1988); McLachlan and
Krishnan (1997); McLachlan and Peel (2000).

The idea behind the EM algorithm is as follows. Assume i.i.d. data y = {y1, · · · , yn}
drawn from a population with density function f(y; Ψ). Ψ is a vector of the unknown
parameters. The observed data log likelihood is

log L(Ψ) = log f(y; Ψ).

The maximum likelihood principle says that the estimators that maximize the data
likelihood are consistent estimators of the true parameters. However, it is virtually
impossible to find analytical solutions. The EM algorithm is an iterative procedure to
find the Ψ that maximizes log L(Ψ) by data augmentation. The observed data y are
augmented by the missing value z that contains group information of the observed
data. More specifically, z = (Z1, · · · , Zn), where Z j = (Z j1, Z j2, · · · , Z jk). Z ji = 1
means data point j belongs to the ith component. For instance, Z j = (1, 0, 0, 0, 0)
means that the jth data point belongs to component 1. x = 〈y, z〉 becomes complete
data with density function fc(x; Ψ). The complete-data log likelihood is

log Lc(Ψ) = log fc(x; Ψ).

Typically, the complete-data likelihood has a simpler structure and its expected likeli-
hood can be maximized analytically. Dempster et al. (1977) proved that by maximiz-
ing G(Ψ ; Ψ (t)) = EΨ (t){log Lc(Ψ)|y}, the observed log likelihood is nondecreasing
for each iteration step, which guarantees convergence of the algorithm. The EM algo-
rithm takes advantage of this and solves the maximum likelihood problem iteratively.
The algorithm contains two steps:

E-Step: On the (t + 1)st step, calculate the expected complete-data log likelihood
given observed data values: G(Ψ ; Ψ (t)).

M-Step: Find Ψ (t+1) to maximize G(Ψ ; Ψ (t)).
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The algorithm stops when log L(Ψ (t+1))−log L(Ψ (t)) is less than a preselected thresh-
old.

In this paper, we focus on an EM algorithm for finite normal mixtures, as is
widely used in the data mining community. Assume a mixture of k components
(clusters), with a d-dimensional data set y of size n. Assume further that the unknown
parameters are Ψ = (µ1, . . . , µk,Σ1, . . . ,Σk, π1, . . . , πk)

T . The normal mixture
model is

f(Y; Ψ) =
k∑

i=1

πi fi(Y; µi,Σi),

where fi(Y; θi) is the normal density:

fi(Y; µi,Σi) = (2πi)
−d/2|Σi |−1/2 exp

{
− 1

2
(Y − µi)

T Σ−1
i (Y − µi)

}
.

Let component information Z i, j , representing that the jth data point belongs to com-
ponent i, be missing data. The complete-data log likelihood is

log(LC(Ψ)) =
k∑

i=1

n∑

j=1

Z ij log fi(y j; µi,Σi) (1)

= − 1

2
n log(2π)

− 1

2

k∑

i=1

n∑

j=1

Z ij
{

log |Σi | + (y j − µi)
′Σ−1

i (y j − µi)
}
. (2)

It is clear that, for the (t + 1)st iteration, G(Ψ ; Ψ (t)) can be calculated by sim-
ply computing z(t)

ij = EΨ (t)(Z ij). The expected complete-data likelihood can thus be
maximized in each iteration step to obtain a good estimator for Ψ .

3. Privacy-preserving expectation maximization

Based on the framework of the previous section, we present a privacy-preserving EM
algorithm that utilizes the linearity of parameter estimators in each iteration step dur-
ing the EM algorithm. Section 3.1 gives the general algorithm. Section 3.2 discusses
evaluation of stopping criteria and Sect. 3.3 explains the connection between the al-
gorithm and privacy. For clarity, the conventions for notation of the paper are given
in Table 1. Table 2 defines the meaning of indexes.

3.1. The algorithm

Different versions of EM algorithms have been proposed during the past 25 years.
Examples include Meng’s SEM (Meng and Rubin 1991), a stochastic version of
the EM algorithm by Celeux (Celeux, Chauveau and Diebolt 1996), and Mclust by
Banfield (Banfield and Raftery 1993; Fraley and Raftery 1998). In this section, we
follow the classical EM steps and relate the results to privacy-preserving clustering.



Privacy-preserving clustering with distributed EM mixture modeling 73

Table 1. Convention for symbols

k Total number of mixture components (clusters).
s Total number of distributed sites.
n Total number of data points.
nl Total number of data points for site l.
y j Observed data.
µi Vector of mean values for cluster i.
Σi Covariance matrix for cluster i.
πi Estimate of proportion of items in cluster i.
Zij Cluster membership. If yi ∈ component j, Zij = 1, otherwise Zij = 0.

Table 2. Meaning of indexes

Index Range Meaning

i 1 to k Index for mixture components (clusters).
j 1 to n Index for data points.
l 1 to s Index for distributed sites.
t 1 to number of iterations needed Index for iteration steps.

Following the complete-data log likelihood defined at (2), for step (t +1), Ψ (t+1)

can be found by computing the zeros of ∂G(Ψ ; Ψ (t))/∂Ψ . This leads to the parameter
updates at the (t + 1)th iteration:

µ
(t+1)
i =

n∑

j=1

z(t)
ij y j/

n∑

j=1

z(t)
ij (3)

Σ
(t+1)
i =

n∑

j=1

z(t)
ij

(
y j − µ

(t+1)
i

)(
y j − µ

(t+1)
i

)′/ n∑

j=1

z(t)
ij (4)

π
(t+1)
i =

n∑

j=1

z(t)
ij /n. (5)

Assume the data (y j) are partitioned across s sites (1 ≤ l ≤ s). Each site has nl
data items; the total number of items n = ∑s

l=1 nl . To obtain global estimators for
µ

(t+1)
i , Σi

(t+1) and π
(t+1)
i (the E step) requires only the global values n and

n∑

j=1

z(t)
ij y j =

s∑

l=1

Ail (6)

n∑

j=1

z(t)
ij =

s∑

l=1

Bil (7)

n∑

j=1

z(t)
ij

(
y j − µ

(t+1)
i

)(
y j − µ

(t+1)
i

)′ =
s∑

l=1

Cil, (8)
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where

Ail =
nl∑

j=1

z(t)
ijl y j (9)

Bil =
nl∑

j=1

z(t)
ijl (10)

Cil =
nl∑

j=1

z(t)
ijl

(
y j − µ

(t+1)
i

)(
y j − µ

(t+1)
i

)′
. (11)

Clearly, these A, B, C values can be computed locally at each site. In Sect. 4, we
will show that these items do not reveal individual data values or the respective
grouping information. Furthermore, it is not necessary to share nl , Ail, Bil and Cil
from site to site as the parameter updates only require the global sums over different
sites. Appendix A shows how to compute these summations securely, in the secure
multiparty computation sense.

After the global parameters (µ
(t+1)
i , Σ

(t+1)
i , π

(t+1)
i ) are obtained and shared site-

wise, zijl can be computed locally as

zijl = π
(t+1)
i fi

(
y jl; µ

(t+1)
i ,Σi

(t+1)
)

∑
i π

(t+1)
i fi

(
y jl; µ

(t+1)
i ,Σi

(t+1)
) , (12)

where y jl is a data point at site l. Algorithm 1 summarizes the method.

Algorithm 1 Secure EM algorithm

At each site l, ∀i=1...nl , j=1...k randomly initialize zijl to 0 or 1.
Use secure sum of Appendix A to compute n = ∑s

l=1 nl
t = 0
while Threshold criterion of Sect. 3.2 not met do

for all i = 1...k do
At each site l, calculate A(t+1)

il and B(t+1)
il using equations (9) and (10).

Use secure sum to calculate A(t+1)
i and B(t+1)

i .

Site 1 uses these to compute µ
(t+1)
i by equation (3) and broadcasts it to all sites.

Each site l calculates C(t+1)
il using equation (11).

Use secure sum to calculate C(t+1)
i .

Site 1 calculates Σi
(t+1) and π

(t+1)
i by equations (4) and (5), and broadcasts them to all sites.

At each site l, ∀ j=1...nl update z(t+1)
ijl using equation (12).

end for
t = t + 1
Calculate the log likelihood difference as described in Sect. 3.2.

end while

The number of values communicated at each step is 3 ∗ k ∗ s + 2 ∗ (k − 1) ∗ s.
This is quite reasonable, particularly as it is constant in n and thus scales well with
data size.
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3.2. Analysis of stopping criterion

Usually convergence in an EM mixture algorithm is defined as

| log L(t+1)(Ψ (t+1)|y) − log L(t)(Ψ (t)|y)| ≤ ε, (13)

where

log L(t)(Ψ (t)|y) =
n∑

j=1

k∑

i=1

{[
log πi fi

(
y j|Ψ (t))]} (14)

and ε is a predetermined threshold. The sum can be partitioned among the sites,

log L(t)(Ψ (t)|y) =
s∑

l=1

Dl, (15)

where

Dl =
nl∑

j=1

k∑

i=1

{
log πi fi

(
y jl|Ψ (t))}. (16)

Using the secure sum protocol in Appendix A, Dl can be computed as the sum of
the locally computed log L(t)

l . The master site can then check the stopping criterion,
i.e.

| log L(t+1) − log L(t)| ≤ ε (17)

to see whether the algorithm has converged. Once the stopping criterion is met at
the (t + 1)st step, each site clusters their own data using the following principle:

y j ∈ cluster h, if z(t+1)
h j = max

1≤i≤k
z(t+1)

ij , 1 ≤ h ≤ k.

3.3. Linearity of estimators and privacy

Through our analysis, linearity of the G(Ψ ; Ψ (t)) plays an important role for the
algorithm. Because of the linearity, we can calculate the required statistics locally
at each site, then combine them through a secure summation.

Also of note is that partitioning G(Ψ ; Ψ (t)) to local sites doesn’t change the
EM step. Thus, the general properties of a finite mixture model using the EM algo-
rithm still hold, which guarantees the convergence of the algorithm. We have also
empirically validated that the results generated by this method are comparable to
a well-known EM mixture model, FastMix (Moore 1999).

An important issue for clustering is to select the right number of clusters. We
have assumed a priori knowledge of the number of clusters, k. Researchers have been
using criteria such as Bayesian information criteria and minimum description length
to select this value. The basic idea is to fit data into mixtures with different numbers
of normal components (clusters), then choose the one with the largest convergent
log likelihood. This is not a problem for secure clustering because the sum of the
convergent log likelihood across the sites can be computed and compared under
different model assumptions.
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4. Security analysis

The goal of this method is to develop an EM mixture model without:

1. Disclosing individual data values beyond the site containing those items or
2. Revealing any information that can be traced to a specific site

Without applying the secure summation algorithms, values of nl , Ail, Bil , Cil and
L are revealed for each component l. It is then possible for the end user to derive
sample mean and covariance matrices at site l by

µil =
∑nl

j=1 zijl y j∑nl
j=1 zijl

= Ail

Bil
(18)

Σil =
∑nl

j=1 zijl(y j − µi)(y j − µi)
′

nl
. (19)

With these quantities, confidence intervals for the true mean and covariance matrix
can by derived for each site. However, by using the secure summation protocol of
Appendix A, only the global values Ai , Bi , Ci , n and L are revealed. This results
in revealing only the global values µi and Σi . From these values, it is not possible
to deduce confidence intervals w.r.t. the mean and covariance matrix for component
i at the local sites.

Furthermore, if µil and Σil for every site l are shared across all the sites, the
probability that a data point y belong to a specified interval can be calculated at
each site l as

P(y ∈ I(µil − a, µil + a)) = Φ(µil + a|µil,Σil) − Φ(µil − a|µil,Σil), (20)

where Φ is the usual cumulative function of normal distribution. By comparing the
probabilities across every site l, it is possible to deduce to which site the data point y
belongs. Revealing this would violate the privacy constraints. When only the global
values of µi and Σi are disclosed, these inductions are not possible.

We now address whether the revealed values themselves can be used to deduce
any information on individual data items.

n is the global count of data items. It clearly does not reflect individually iden-
tifiable information. Provided there are more than two sites, it reveals only an
upper bound on the number of items at any given site—most likely innocuous
information.

Ai is based on the data values at each site. However, it distills these into a single
number for each component, independent of the number of data values or sites.
Thus, by itself, it does not reveal restricted information. Even if a component
contains only a single data item (and thus the cluster center converges to that
item), no site can know that this is the case.

Bi is constructed from data from a previous iteration, along with knowledge of the
local number of items nl . Because it is a single value for each component, nl is
not revealed.

Ci use individual data values, but again these are distilled into a single value for
each component, as with Ai .

L is the global log likelihood of the data, again a single scalar value that is not
tied to an individual site or data item.

Thus, a single iteration reveals no restricted information.
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However, can the values we reveal in the previous steps be used to reveal values
that should not be disclosed? To address this question, assume, without loss of gen-
erality, that s new data points are assigned to component i. From the mean and
variance of steps t and t + 1, we have

Σ
(t)
i =

∑ni
j=1

(
y j − µ

(t)
i

)(
y j − µ

(t)
i

)′

ni − 1

Σ
(t+1)
i =

∑ni
j=1

(
y j −µ

(t+1)
i

)(
y j −µ

(t+1)
i

)′+∑ni+s
j=ni+1

(
y j −µ

(t+1)
i

)(
y j −µ

(t+1)
i

)′

ni + s − 1
.

Clearly, when s > 1, these two equations have infinite solutions for yni+1, . . . , yni+s.
In other words, values from previous iterations will not reveal any information that
is not already revealed by step t + 1 alone.

A second reason that multiple iterations do not release data is that the secure
summation prevents us from knowing which site is responsible for a change in values
between iterations or even how many sites are responsible.

These arguments assume three or more parties and no collusion. With two parties,
while no individual values are disclosed, a dishonest party could learn how data
clusters on the honest party. Simple input modification allows this—set ndishonest = 0
and participate in the protocol normally. The result is an EM mixture model based
only on the honest party’s data, with πi , σi and µi known to both. Collusion can
result in the same problem. However, the method can be extended to be secure with
an honest majority as described in Appendix A.

5. Conclusions and further work

We have presented a clustering method based on expectation maximization that limits
the disclosure of data between sites in a distributed environment. Specifically,

1. The values of individual data items are not disclosed.
2. No information can be traced to a specific site.

These properties are sufficient for many practical privacy problems, enabling clus-
tering even when data sharing is constrained.

This method is also quite efficient. The only communication needed by this
method is to generate the values A(t+1)

i , B(t+1)
i , C(t+1)

i and n that are used to calcu-
late µ

(t+1)
i , Σi

(t+1) and π
(t+1)
i , the local log likelihood estimates L(t+1)

l and sending
µi , Σi and πi from the central site to the distributed sites. Thus, the communication
cost for each iteration scales as O(ks), where k is the number of clusters and s is the
number of sites—in particular, this is independent of the size of the data. The rate
of convergence, and thus the number of iterations, is independent of the distributed
aspect of the problem.

The field of privacy-preserving data mining is wide open for research. One ques-
tion is if the method presented here can be efficiently extended to be secure in the
secure multiparty communication sense. This requires showing how the iteration can
be performed without learning the results of any but the last iteration. This would en-
able a more formal proof than the arguments given in Sect. 4. However, the practical
benefit is questionable, as secure multiparty computation is neither
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necessary, as it prevents the disclosure of innocuous information that could enable
a more efficient algorithm, or

sufficient, as the result combined with a site’s own input may disclose restricted
information.

This comes back to the problems described at the beginning of Sect. 4. Without a for-
mal definition of what constitutes acceptable and unacceptable disclosure, a formal
proof is meaningless. Security policy is today specified with informal descriptions,
a practical formal security semantics is still an open problem.

One approach is to reduce the final result to a minimal model that does not dis-
close any unneeded information. Assuming that the goal of clustering is that each
site should be able to determine which of its items fall into which cluster, the EM
mixture model result (which represents cluster centers) provides unneeded informa-
tion. A minimal result would simply provide each party with a mapping from their
own items to cluster numbers. While sufficient, such a solution is unlikely to be
necessary and the benefit must be weighed against the likely extra communication,
computation and complexity costs. This would address the two-party case: A solu-
tion secure under such a definition would not reveal anything to a dishonest party
simulating no input, although other attacks may be possible.

There are many open problems in privacy-preserving data mining. Section 2.1
discusses some of the problems that have been addressed, but there are many more
that have not. In addition to distributed privacy issues, there has also been work on
preserving privacy by distorting the data values, while still allowing data mining. This
has as of yet only been applied to decision trees (Agrawal and Srikant 2000; Agrawal
and Aggarwal 2001) and association rules (Rizvi and Haritsa 2002).

Distributed knowledge discovery has many benefits. Enabling data mining that
would otherwise be prevented due to privacy and security constraints is a key benefit
and is worthy of further exploration.

A. Secure summation

This method frequently needs to calculate the sum of values from individual sites.
Assuming three or more parties and no collusion, the following method (from Be-
naloh (1986)) securely computes such a sum.

Assume that the value v = ∑s
l=1 vl to be computed is known to lie in the range

[0 . . .n).
One site is designated the master site, numbered 1. The remaining sites are num-

bered 2 . . . s. Site 1 generates a random number R, uniformly chosen from [0 . . .n).
Site 1 adds this to its local value v1 and sends the sum (R+v1) mod n to site 2. Be-
cause the value R is chosen uniformly from [0 . . .n), the number (R + v1) mod n is
also distributed uniformly across this region, independent of the value of v1. There-
fore, site 2 learns nothing about the actual value of v1.

For the remaining sites, l = 2 . . . s−1, the algorithm is as follows: Site l receives

V =

R +

l−1∑

j=1

v j


 mod n.

Again, this value is uniformly distributed across [0 . . .n), regardless of the values
of v j , so l learns nothing about the values of v j . Site l then computes
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Site 3

v3=8

Site 1

v1=3

Site 2

v2=21

R+3 = 20 (mod 40)R=17

20+21=1 (mod 40)1+8=9 (mod 40)

v: 9-R=-8 mod 40=32!

20

1

9

Fig. 1. Values computed at each site during secure computation of a sum initiated by site 1 (all arithmetic
modulo n = 40)


R +

l∑

j=1

v j


 mod n = (vl + V ) mod n

and passes it to site l + 1.
Site s performs the above step and sends the result to site 1. Site 1, knowing R,

can subtract R to get the actual result. Note that site 1 can also determine
∑s

l=2 vl
by subtracting v1. However, given only the final sum, any site can determine the
sum of the v j at all sites other than itself. Because this is obtained from the result
and one’s own input, it does not represent an information leak from the algorithm.
Figure 1 depicts how this method operates.

This method faces an obvious problem if sites collude. Sites l − 1 and l + 1 can
compare the values they send/receive to determine the exact value for vl . The method
can be extended to work for an honest majority. Each site divides vl into shares. The
sum for each share is computed individually. However, the path used is permuted
for each share such that no site has the same neighbor twice. To compute vl , the
neighbors of l from each iteration would have to collude. Varying the number of
shares varies the number of dishonest (colluding) parties required to violate security.
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