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Abstract. As database technology is applied to more and more application domains, user queries
are becoming increasingly complex (e.g. involving a large number of joins and a complex query
structure). Query optimizers in existing database management systems (DBMS) were not de-
veloped for efficiently processing such queries and often suffer from problems such as intoler-
ably long optimization time and poor optimization results. To tackle this challenge, we present
a new similarity-based approach to optimizing complex queries in this paper. The key idea is
to identify similar subqueries that often appear in a complex query and share the optimization
result among similar subqueries in the query. Different levels of similarity for subqueries are
introduced. Efficient algorithms to identify similar queries in a given query and optimize the
query based on similarity are presented. Related issues, such as choosing good starting nodes
in a query graph, evaluating identified similar subqueries and analyzing algorithm complexities,
are discussed. Our experimental results demonstrate that the proposed similarity-based approach
is quite promising in optimizing complex queries with similar subqueries in a DBMS.

Keywords: Algorithm; Complex query; Computational complexity; Database system; Query
optimization; Query similarity

1. Introduction

Query optimization is vital to the performance of a database management system
(DBMS). The main task of a query optimizer in a DBMS is to seek an efficient
query execution plan (QEP) for a given user query. Extensive study on query op-
timization has been conducted in the last three decades. Many query optimization
techniques have been proposed. Good surveys of this area can be found in the lit-
erature (Chaudhuri 1998; Graefe 1993; Jarke and Koch 1984).

However, the database field is a rapidly growing one. As database technology is
applied to more and more application domains, user queries become more and more
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complex in terms of the number of operations (e.g. more than 50 joins) and the
query structure (e.g. snowflake queries). The query optimization techniques adopted
in the existing DBMSs cannot cope with the new challenges.

As we know, the most important operation for a query is the join operation.
A query typically involves a sequence of joins. To determine a good join order for
the query, which is an important decision specified in a QEP, two types of algorithms
are adopted in the current DBMSs. The first type of algorithm is based on dynamic
programming or other exhaustive search techniques. Although such an algorithm can
guarantee to find an optimal solution, its worst-case time complexity is exponential,
i.e. O(2"). The second type of algorithm is based on heuristics. Although such an
algorithm has a polynomial time complexity, it often yields a suboptimal solution. In
traditional database applications, queries involving more than 15 joins were consid-
ered to be unrealistic. For such queries, both types of algorithms mentioned above
are acceptable to a certain degree.

However, as database applications become more and more complex and database
sizes become larger and larger, queries with a large number of joins occur more
and more often in the real world. Existing techniques can no longer be used to
optimize such queries. For an algorithm with an exponential complexity, it may take
months or years to optimize a complex (large) query. On the other hand, although
a heuristic-based algorithm takes less time to find a join order for a complex query,
the efficiency difference between a good solution and a bad one can be tremendous
for such a query. Unfortunately, the heuristics employed by current systems do not
take the characteristics of a complex query into consideration, which often leads to
a bad solution.

Therefore, we need a technique with a polynomial time complexity to find an effi-
cient plan for a complex query. Note that the general query optimization problem has
been proven to be NP-complete (Ibarake and Kameda 1984). Hence, it is generally
impossible to find an optimal plan within a polynomial time. Several studies have
been reported to find a good plan for a large query (i.e. involving many joins) within
a polynomial time in the literature, including the iterative improvement (II), simu-
lated annealing (SA) (Ioannidis and Wong 1987), Tabu Search (TS) (Matysiak 1995),
AB algorithm (AB) (Swami and Iyer 1993), and genetic algorithm (GA) (Bennett et
al. 1991). These algorithms represent a compromise between the time the optimizer
takes to optimize a query and the quality of the optimization plan. However, these
techniques are mostly based on the randomization method. One advantage of such an
approach is that it is applicable to general queries, no matter how simple or complex
the query is. On the other hand, a method only based on randomization has little
intelligence. It does not make use of some special characteristics of the underlying
queries.

In our recent work (Tao et al. 2002), we introduced a technique to exploit com-
mon subqueries that appear in a complex query to optimize the query. This technique
is shown to be more effective than a pure randomization-based method because it
takes the structural characteristics of a complex query into consideration when op-
timizing the query. However, because this technique requires existence of common
subqueries in a query, its application is limited.

We noticed that many complex queries often contain similar substructures (sub-
queries) although they may not be exactly the same (i.e. common). This phenomenon
appears more often when predefined views are used in the query, the underlying
database system is distributed or some parts of the query are automatically gener-
ated. The more complex the query is, the more similar subqueries there will possibly
be. As an example, consider a UNION ALL view defined as a fact table split up
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by year. Assume that dimension tables are to be joined with the view. To avoid
materializing the view, a DBMS usually pushes down the dimension tables into the
view, resulting in similar UNION ALL branches (subqueries). Another more concrete
real-world query example is given in the Appendix.

Based on the above observation, we introduce a new similarity-based approach to
reducing optimization time for a complex query by exploiting its similar subqueries
(the similarity is defined by some error bounds on query parameters) in this pa-
per. It is a two-phase optimization procedure. In the first phase, it identifies similar
subqueries in a given query. For each group of subqueries that are similar to a rep-
resentative subquery, it performs optimization for the representative subquery and
shares the resulting execution plan for all the subqueries in the group. After each
similar subquery is replaced by its (estimated) result table obtained by using the cor-
responding execution plan in the original query, the revised query is then optimized
in the second phase. Because the complexities of similar subqueries and the revised
final query are reduced, they can be optimized using a conventional approach (e.g.
dynamic programming) or a randomization approach (e.g. AB).

Although our work has some similarity with multiple-query optimization (Ches-
nais et al. 1983; Cosar et al. 1993; Dalvi et al. 2001; Dalvi et al. 2003; Kalnis and
Papadias 2003; Krolikowski et al. 2000; Mistry et al. 2001; O’Gorman et al. 2002),
there are significant differences. The purpose of multiple-query optimization is to
optimize multiple user queries collectively instead of individually. Such typical tech-
niques include caching (intermediate) results of one query for sharing with others,
choosing an access method (e.g. one involving column sorting or index creation)
for one query that can also benefit the others, sharing page accesses among mul-
tiple queries and parallelizing execution to maximize the system throughput. The
similarity-based optimization technique introduced in this paper optimizes one in-
dividual complex (large) query, which became an issue only recently when a user
query was getting very complex. Because similar subqueries used in our technique
are not necessarily identical, we only share their execution plans (to reduce opti-
mization time) rather than share their results. Although different parts of a complex
query that contain similar subqueries sharing an execution plan can be logically con-
sidered as separate queries, such a (logical) split of the query is not clear until the
beneficial similar subqueries are identified. In other words, we cannot split the given
query into multiple queries in advance and treat them as independent multiple user
queries for optimization because different splits may significantly affect optimiza-
tion results. Hence, our technique searches for beneficial similar subqueries within
a given query without any predefined boundaries. To our knowledge, no similar work
has been reported in the literature.

The rest of this paper is organized as follows. Section 2 introduces the definitions
of a query graph and its similar subquery graphs, which are the key concepts used in
our technique. We then present an efficient ring network representation to implement
a query graph. Section 3 gives the details of an algorithm that is the kernel for our
technique. Section 4 defines similarities at higher levels and discusses the revisions
needed to extend the previous algorithm. Section 5 shows some experimental results.
Section 6 summarizes our conclusions.

2. Query graph and similar subquery

In this section, we introduce the definitions of a query graph and its similar subquery
graphs, which are the key concepts for our query optimization technique. We also
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present an efficient data structure, called the ring network representation, to represent
a query graph for our technique.

2.1. Query set considered

Most practical queries consist of a set of selection (o), join (p<) and projection ()
operations. These are the most common operations studied for query optimization
in the literature, which are also the operations to be considered in this paper. Note
that 7 is usually processed together with other operations (o or <) it follows in
a pipelined fashion. For simplicity, we assume that there is always a projection op-
eration following each o/ < operation to filter out the columns that are not needed
for processing the rest of the given query. We also assume that the query condi-
tion is a conjunction of simple predicates of the following forms: R.a ¢ C and
Ri.a1 6 Ry.ap, where 0 € {=, #, <, <,>,>}; R, Ry and R, are tables (relations);
a, a; and a, are columns (attributes) in the relevant tables; and C is a constant in
the domain of R.a. For example, EMP.salary > 20000 and EMP.dno = DEPT.dno
are two valid predicates. The predicates of the second form are also called join
predicates. Another assumption made in our paper is that joins are executed by the
nested-loop method. Under this assumption, we can simply consider one cost model.
However, our technique can be extended to include other join methods by adopting
multiple cost models.

2.2. Query graph

Let Q be a query, T = {Ry, Ra, ..., R,} be the set of tables referenced in Q and
P ={pi1, p2, ..., pn} be the set of all predicates referenced in Q. We call each table
reference in Q a table instance. The logical structure of query Q can be represented
by a query graph, based on the following rules:

e Each table instance in Q is represented by a vertex (node) in the query graph G
for Q. Let V be the set of vertices in G. There exists a many-to-one function'
d:x+ R,where x e Vand Re T. In G, each x € V is labeled with §(x) = R.

e For any table instances (vertices) x and y, if there is at least one predicate in P
involving x and y, then query graph G has an edge between x and y, with the
set of all predicates involving x and y labelled on the edge. If x and y are the
same table instance (vertex), the edge, in fact, is a self-loop (edge) for the vertex
in query graph G. Let E be the set of all edges in G. There exists a function
@ :er> c, where e € E and ¢ € 2F. ¢(e) gives the set of all simple predicates
on edge e. In G, each e € E is labeled with ¢(e) = c.

Therefore, a query graph for query Q is a 6-tuple G(V, E, T, P, §, ¢), with each
component defined as above. For the rest of the paper, we use the following notation:
edge(x, y) denotes the edge between vertices x and y in a query graph, vertices(e)
denotes the set of (one or two) vertices connected by edge e in a query graph. If
x =y, edge(x, x) is denoted by self-loop(x). sizeof(x) denotes the size of the table
represented by x, sel(e) denotes the selectivity of ¢(e), i.e. the selectivity of the
conjunction of all the simple predicates in ¢(e).

! Note that several table instances may reference the same table in the database. For example,
table EMP is referenced twice in the following SQL query: SELECT X.name, Y.name FROM EMP X,
EMP Y WHERE X.supervisor_SSN = Y.SSN.
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Without loss of generality, we assume our query graph is connected in this paper.
Otherwise, each isolated component graph can be optimized first and a set of Carte-
sian products are then performed to combine the results of the component graphs.

2.3. Similar subquery graphs

Let V' C V be a subset of vertices in the query graph G(V, E, T, P, 8, ¢) for query Q.
Let

Ely ={ e | e € E and vertices(e) C V'},
Tly» ={ R | R €T and there exists x € V' such that x is an instance of R},
Plyv={p| pe P and p e w and w is the set of predicates labeled
on e € E|y},
Slyr :x+— R, where x € V', Re T|y and §(x) = R,
@ly e ¢, where e € Ely, ¢ €2V and ¢(e) = c.

We call El|y, Tly, Ply, §ly and ¢|y the restrictions of E, T, P, § and ¢ under
subset V' of vertices in G, respectively. Clearly, G'(V’, E|y', T|y', Ply’, 8|v', ¢lvr)
is a subgraph of G. If G’ is connected, we call it a subquery graph in G. The cor-
responding query is called a subquery of Q. Note that a subquery graph is uniquely
determined by the subset V' of vertices in G. An edge edge(x, y) between vertices
x and y in G is called an interconnecting edge of subquery graph G’ if one of x
and y is in V' and the other is not.

Let G'(V', Elv, Tly', Ply', 8ly', ¢ly) and G"(V", Ely», T|y», Plyn, 8|y, @ly»)
be two subquery graphs in G. r, and ry are two given error bounds for table sizes and
condition selectivities, respectively?. If G’ and G” satisfy the following conditions,
we regard them as a pair of similar subquery graphs with respect to the error bounds
ry and rg, denoted as G’ ~ |, G":

e There exists a one-to-one mapping f between V' and V”, such that, for any
x €V and f(x) € V”, we have g(x, f(x)) < r;, where &,(x, f(x)) =
|sizeof(x)—sizeof (f(x))|  |sizeof(x)—sizeof (f(x))] }
sizeof(x) ’ sizeof (f(x)) .
e There exists a one-to-one mapping g between E’ and E”, such that, for any
e € E' and g(e) € E’, if vertices(e) = {x, y}, then vertices(g(e)) = {f(x), f(¥)}

[sel(e)—sel(g(e))| |sel(e)—sel(g(e))]
sel(e) ’ sel(g(e))

max i

and &;(e, g(e)) < rs, where g;(e, g(e)) = max {

Let us consider an example. Given a query graph G in Fig. 1 (the size of the
table represented by each node and the selectivity of the predicates on each edge are
marked in parentheses), using error bounds r, = r; = 0.3, the similar subqueries are
shown in the dashed-line circles marked as G’ and G”. (The light dotted-line circles
show a pair of subqueries with a higher level similarity, which will be discussed in
Sect. 4.) Intuitively, a pair of similar subquery graphs have the same inner graph
structure and the table sizes for the corresponding vertices and the selectivities for
the corresponding edges in the pair are within error bounds r, and ry, respectively.
Note that the size of a table and the selectivity of a query condition are the two most
important factors that influence the decision of a query optimizer. In fact, a selectivity
can be determined/estimated based on a set of other basic parameters/factors such
as the number of distinct values in a column, the maximum and minimum values

2 Assume that no table size or selectivity is zero. Otherwise, the result of the entire query will be empty—
no optimization is needed in such a case.



Optimizing complex queries based on similarities of subqueries 355

RS (20k) R1

(
P
R2.c2<R5.c1 (0.7) () G’ . ‘

o ) - . .,
:': R2 (10(§k RI:c4=R5.¢3 (0.3) K ! £=R121 0.0 R12 (IOOk;"-_
i1 Ricl=R2cl (0.1) H B 5
H (30K) (40k)  R6 (250K): R7 (90k) R9(330k) i RI0(G00k) (RII (44k R13(33k) '3
".;%\ 1 3 /6\‘ g /7 @ k3 6& i ‘/]] 63\ s
T, RL2ER3CL03) 7 Rilc5=R6.02 (0.6) (R6.35R7.c3 (0.7 RO.2=R10.c1 (¥ RILe2=R13.cl (0.3)00"
% K 06 ©n @2, R10.c3<R11.63075) 03
Reedos (02) Rlcz:mcl(os; R7.c1=R8.cl (0.15) RECIROC3 (04) ek 13RIl (0.5)
4250, 3=R4.c1 (0.5
924 1 k]4,c2:k|5.c1(0,1)r14
AT ° N .
R4 (15k) R8 (110k) R15 (27K) R14 (15k)

Fig. 1. Example of a query graph with similar subqueries

of a column and the data distribution of a column. We could directly use the basic
parameters to define the similarity. However, using the integrated factor (i.e. the
selectivity) from the basic ones greatly simplifies the definition of similarity. On the
other hand, it is also possible that some additional factors need to be considered in
some environments (e.g. index-related parameters if indexes exist). In such a case,
the above similarity definition can be easily extended by examining the additional
parameters with respect to their given error bounds.

2.4. Ring network representation

A query graph gives a logical representation of a user query. To implement an al-
gorithm based on it, we need to adopt an efficient data structure to represent the
graph in a computer system. For the query optimization technique to be discussed
in this paper, we introduce a data structure called the ring network representation to
represent a query graph.

In the ring network representation, every vertex x in the query graph G has
a node x. Assume that node x has a set of adjacent nodes, yi, y2, ..., y,. We use
a closed link list (i.e. a ring): x - y; — y» — ... — y, — x to represent such an
adjacency relationship. Node x is called the owner (node) of the ring, while nodes
Y1, ¥2, ..., ¥, are called the members of the ring. Each node in the ring network
for G is the owner of one ring, and it also participates in other rings as a member.
The structure of a node® is shown in Fig. 2. For a simple query graph in Fig. 3,
which is subquery graph G’ in Fig. 1, its ring network is shown in Fig. 4.

3. Query optimization via exploiting similarity of subqueries

In this section, we will introduce a technique to perform query optimization via
exploiting similarity of substructures in a given complex query. We will discuss the
basic idea of this technique, give a high-level description of the algorithm for the
technique and analyze the complexity of the algorithm.

3 For simplicity, we only include the selectivity of each edge ¢ and omit the relevant predicates, which
are not directly used in our algorithms.
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3.1. Basic idea

The basic idea of this technique is as follows:

e Identify pairs of similar subqueries in a given query with respect to given error
bounds r, and r;.

e Optimize one subquery in each similar pair and map and apply the resulting
execution plan to the other subquery in the pair. In this way, we reduce the
optimization time by sharing the same (mapped) plan between two similar sub-
queries.

e Replace similar subqueries with their (estimated) result tables in the query graph
and optimize the resulting revised query. As the number of vertices in the query
graph is reduced, less overhead is needed to optimize the revised query compared
with the original query.

Because the error bounds r, and r, are adjustable, by setting r, and r, larger, we may
get a pair of larger similar subqueries (that is, with more vertices in each subquery),
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and thus more optimization work may be shared between the similar pair. On the
other hand, if the error tolerances are higher, the similarity between corresponding
vertices and edges in two similar subqueries is worse, and therefore, the optimization
quality (the performance) after sharing the plan may be worse. We will discuss this
issue in more detail in Sect. 5.

Note that we will describe how to generalize our technique to utilize a group of
more than two similar subqueries for query optimization in Sect. 3.5.

3.2. Algorithm description

A high-level description of the algorithm for our technique is given below. Note that,
if there is a self-loop on an node/vertex, it is usually a good strategy to perform such
a unary subquery first to reduce the operand table size. Hence, we assume that all
self-loops are removed in such a way for a given query graph.

Algorithm 3.1. Query optimization based on similar subqueries

Input:  Ring network representation of query graph G(V, E, T, P, §, ¢) for user

query Q, and error bounds r; and r.

Output: Execution plan for query Q.

Method:

1. begin

2. Initialize flag selected(x) = O for each node x; /* no node selected yet */

3. Initialize the sets of identified pairs of similar subquery graphs
Saccept = Shota = 9;

4. while there are unselected node pairs with similar table sizes within
error bound r; do

5. Pick up the pair of nodes x and y by following the rules for choosing start
nodes in Sect. 3.3;

6. Let Vi ={x}; Vo ={y}; /* V) and V, are the node sets for current similar
subquery graphs G; and G, */

7. record one-to-one mapping f: x+— y; [*ie.,y= f(x) */

8. Let selected(x) = selected(y) = 1;

9. while V| and V, have unexpanded nodes do
10. Pick the next pair x € V| and y € V, based on FIFO order for expanding;
11. for each member x; with selected(x;) = 0 in the ring owned by x do
12. for each member y; with selected(y;) = 0 and y; # x; in the ring owned
by y do
13. if &,(x1, y1) <r, and
14. [ edge(x;, x") exists for any x" € V; if and only if
edge(y1,y') exists for y = f(x') € V»
15. and &;(edge(xy, x'), edge(y1,y")) < rg ]
16. then V] = V] U {xl}; V2 = V2 U {yl};
/* a new pair of similar nodes has been found */
17. selected(x;) = selected(y;) = 1;
18. record one-to-one mapping f: xj > yi;
19. record one-to-one mapping g : edge(xy, x') — edge(y1,y')

if such edges exist for any x’ € V; and y' = f(x') € V,;
20. break;
/* no need to check other similar nodes for x; after y; is found */
21. end if
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22. end for

23. end for

24. end while;

25. Evaluate the resulting pair of similar subquery graphs < Gy, G2 >;

26. if it is worth to accept < Gy, G, >

27. then Remove any < G|, G; > from Sp, that shares some nodes
with < G, G, >;

28. Saccepf = Daccept ) {< Gla G2 >};

29. else if it is worth to hold < G, G, >
30. then Reset selected(x) = 0 for all x in G| and Gy;
/* allow nodes to be re-considered */

31. Shotd = Shota Y {< G1, G >};

32. else Reset selected(x) = 0 for all x in G| and G,; /* unselect nodes */
33. Discard < Gy, G, >;

34. end if;

35. end while;

36. while Sy #= ¥ do /* accept some held similar subquery pairs */

37. Remove the largest pair < Gy, G, > from S5

38. if < G, G, > does not share any node with any pair in Sgecepr

39. then Saccept = Saccept ) {< Gla G2 >};

40. end while;

41. for each similar subquery pair < G, G2 > € Syccepr dO

42. Optimize G| and share the execution plan with Gj;
/* after an appropriate mapping using f and g */

43. Replace G, and G; in the original query graph G with their (estimated)

result tables;

44. end for;

45. Optimize the revised G to generate an execution plan;

46. return the execution plan for Q, which includes the plan for the revised G
and the plans for all the similar subquery graphs;

47. end.

Lines 4-35 search for all pairs of similar subquery graphs in query Q. Lines
9-24 expand the current pair of similar subquery graphs using the ring network.
Lines 25-34 determine if we should accept, hold or reject the pair of identified
subquery graphs. Lines 36—40 accept the remaining pairs of held similar subquery
graphs that are not overlapped with any accepted similar subquery graphs. Lines
41-45 optimize all similar subquery graphs and the revised final query graph. Line
46 returns the execution plan for the given query.

More details of some steps and the reasons why some decisions in the algorithm
were made are discussed in the following subsections.

3.3. Detailed explanation of the algorithm

Choosing starting nodes

For a given query O, when we construct its ring network, we also construct a set of
initial lists, called the similarity starting lists set. Each list in the set is for one base
table in the query, which has a header containing the base table name R; and two
sublists—one, OL;, contains all its instances (nodes) in the query and the other, SL;,
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contains other table instances whose sizes are within error bound r, with respect to
the size of R;. For example, for the query graph in Fig. 5 (selectivities on the edges
are omitted), using error bound parameter r, = 0.3, its similarity starting lists set is
shown in Fig. 6.

In principle, any node in OL; together with another node in OL; or SL; can
be used as a pair of potential starting (similar) nodes. However, our goal is to find
the pair of similar subquery graphs as large as possible. This is because the larger
the similar subquery graphs in a pair, the more the optimization work can be shared
between them, and, therefore, the more time is saved for query optimization.

Unfortunately, we cannot predict how the subquery graphs will grow from a pair
of starting nodes. Hence, a greedy approach is adopted. We attempt to choose a pair
of nodes with the maximum number of adjacent node pairs which satisfy: (1) the
adjacent nodes in each pair are unselected and different and (2) the sizes of tables
represented by the adjacent node pair are within the given error bound r;,.

To efficiently search for such a pair of starting nodes, based on the set of simi-
larity starting lists, we attach two indicator arrays, O (occurrence) and S (similarity),
to each table instance in the query. The lengths of arrays O and S are the size of
T (i.e. the number of distinct base tables) for the given query. Let x be a table in-
stance vertex in the given query graph and R; be a base table. Array element O,[i]
indicates how many current adjacent nodes representing base table R; that x has*.
Array element S,[i] indicates how many current adjacent nodes whose table sizes
are within the given error tolerance with respect to R; that x has®. Figure 5 gives
an example of indicator arrays O and S.

Let m be the size of set T for query Q. For any pair of potential starting
nodes x and y selected from a similarity starting list, we can calculate the following
value:

matching_pairs(x, y) = Za}(x, v, i), (D)

i=1

4 As we have mentioned before, one base table can be represented by several instances; thus, the value of
Oy [i] can be greater than 1.

3 This number does not include the number of adjacent table nodes representing R;.
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where w(x, y, i) is defined as follows:

Ocli] + min{ Oy[i] — O«[i], Sc[il}, O«[i] = O,i]

O, [i] + min{ O,[i] — O,li], Sy[i]}. otherwise . @

w(x, y, i) =

If we first match the adjacent table instances for the current ith base table of the
starting pair and then match the remaining table instances of one node (if any) to
other table instances whose table sizes are within the given error bound, formula (2)
gives the total number of such matchings for the current base table. Note that arrays
O and S need to be updated every time when matched nodes are removed from
consideration based on (2) before the next new base table is considered in (1).

Formula (1) essentially gives the total number of matching pairs of adjacent nodes
for the pair of starting nodes x and y in a matching way described above. Our heuris-
tic for choosing a pair of starting nodes is to choose the pair that maximizes the
value of formula (1). If there is a tie, we pick up a pair with the smallest difference
of table sizes. If there is still a tie, a random pair is chosen.

Searching for similar subquery graphs

In our algorithm, we use the breadth-first search strategy to expand a pair of simi-
lar subquery graphs G| and G,. That is, all adjacent nodes for the current pair of
expanding nodes x and y are considered before a new pair of nodes is selected in
the first-in first-out (FIFO) fashion for further expansion. This procedure is repeated
until no pair of nodes can be expanded.

We use a nested-loop method to check all the unselected nodes (x; and y;) in
the two rings owned by the current pair of similar nodes (x and y). If the table sizes
of this new pair of nodes x; and y; are within error bound r,, then we check all
nodes that are already in similar subquery pair V| and V; to see if adding x; and
y1 into the current node pair will violate the similarity of subqueries or not.

There are two cases in which the similarity of G; and G, may be violated if
we add x; and y; into them:

(i) There exists a pair of x’ € V| and y' = f(x') € V, such that edge(x;, x’) exists,
but edge(y1, y’) does not, or vice versa.

(ii) There exists a pair of X’ € V| and y = f(x’) € V, such that there are
edge(xy, x") and edge(y1, y'), but sel(edge(xy, x")) and sel(edge(y:, y')) are not
within error bound r;.

Selecting similar subquery graphs

If the pair of similar subquery graphs that we have just found are very small (in
terms of the number of nodes in each graph), e.g. containing only 2 nodes, not
much optimization work can be shared by them. Furthermore, if we use them in
optimization, their nodes cannot participate in other possibly larger similar subquery
graphs. In such a case, it is better not to use them (lines 32-33). If the pair is worth
keeping, we remove all nodes in the subquery graph pair from the original query
graph by setting their “selected” flag to 1.

If a pair of similar subquery graphs is marginal, it is uncertain if it is worth to
using this pair in optimization. In this case, we hold this pair but allow other similar
subquery graphs to use their nodes. If we find a pair of larger similar subquery graphs
using some of the nodes, we use the new similar subqueries and discard the held
ones. Otherwise, we will still use the held similar subquery graphs.
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To determine whether to accept, reject or hold a pair of similar subquery graphs,
we use two threshold values, ¢; and ¢, where ¢; < c¢;. Let n be the number of
nodes in a similar subquery graph (note that G| and G, are of the same size). The
following rules are used to decide the fate of a pair of similar subquery graphs:

e If n > ¢y, then the new pair of similar subquery graphs is accepted.
If ¢c; <n < ¢y, then we put this pair on hold.
e If n < ¢y, then the new pair is rejected.

The threshold values can be calibrated through experiments. Note that our algo-
rithm can also incorporate other evaluation methods for selecting similar subquery
graphs.

Optimizing query

After all similar subquery pairs are selected, we can apply an optimization algo-
rithm, such as AB or II, to optimize one of the subquery graphs for each pair. As
all corresponding relationships of the nodes in each pair of similar subqueries are
recorded during searching them, we can map the execution plan for one subquery
that is generated from optimization to the one for its partner. For example, consider
a pair of similar subqueries, G| and G, that has the following corresponding re-
lationship for the nodes: x; <> yi,x» < yz2,x3 < y3, where xj, x2,x3 € G; and
yi, Y2, y3 € Gy. By optimizing G|, we get such a plan: ((x; < x3) < x3). The
mapped plan for G, is ((y; b<t y2) B<t ¥3).

By replacing all similar subquery pairs with their result tables in the original
query graph, we reduced the number of nodes in it. Because the complexities of the
similar subqueries and the revised final query are less than that of the original query,
many existing query optimization techniques (such as AB and II) usually perform
well. If a similar subquery or the revised final query is sufficiently small (e.g. less
than a chosen small constant), a dynamic-programming-based optimization technique
can also be used to find a truly optimal plan for it.

3.4. Time complexity analysis

By counting the number of operations required by each line in Algorithm 3.1, it is not
difficult to see that the worst-case time complexity of the algorithm is O(max{n*, T(n)}),
where n is the number of tables instances (vertices) in the query graph for input
query Q, and T(n) is the complexity of the optimization technique used to optimize
the similar subqueries and the revised final query. As mentioned before, unless n is
less than a small constant, we employ a polynomial-time technique such as AB or
IT with our algorithm. Therefore, our technique is of polynomial time complexity.

3.5. Sharing optimization work among more than two similar
subqueries

Algorithm 3.1 assumes that optimization work is shared between two similar sub-
queries in each pair. Sharing work among more than two similar subqueries in each
group can be done as follows. Algorithm 3.1 is applied to find a pair of similar
subqueries, < G, G, >, first. Other subqueries (other than G,) similar to G| can
be then found in a similar way, described in lines 9-24 in Algorithm 3.1. All the
subqueries in this similar group share the same execution plan generated for G|—the
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representative subquery for the group. A trade-off should be made between the size
of each similar subquery and the size of the similar group (i.e. the number of similar
subqueries in the group). In general, the more similar subqueries in each group and
the larger each similar subquery in the group, the more optimization work can be
saved.

For simplicity, we will still assume that each group contains a pair of similar
subqueries in the rest of the discussion in this paper.

4. Discussion of higher similarity level

The similarity we have defined in Sect. 2.3 can only guarantee that the table sizes
for the corresponding vertices and the selectivities for the corresponding edges from
two subquery graphs are within their given error bounds. As we know, when the
selectivities of two join conditions and the sizes of corresponding operand tables are
within their respective error bounds, the sizes of the two join result tables may not
be within its error bound. Based on this observation, we can extend the definition
of the similarity between subqueries into multiple levels.

4.1. Definition of similarity level

Let symbol G’ ~ |](<rr,r;)GN denote that two subquery graphs, G’ and G”, are similar
at level k with respect to error bounds r, and r,. The similarity definition given in
Sect. 2.3 is for the one at level 1, i.e. G' ~ ||, . G". The higher level similarities
are recursively defined as follows.

Let Gi(Vy, Elv,, Tly,, Plv,, 8lv,, ¢lv,) be a subquery graph in G. Let ¢; be an
edge in G, that is, e; € E|y,. If we replace the two nodes connected by e; with
their result table and rearrange the edges of the related tables in G; to the new
result table, we get a new graph G|. We call this operation a B-operation, denoted
by B(G1, e1) = Gi.

Let G' and G” be two subquery graphs in query graph G. r, and r, are the
given error bounds for the table sizes and selectivities, respectively. If G’ and G”
satisfy the following condition, we regard them as a pair of similar subquery graphs

at similarity level k, i.e. G’ =~ |](<rr,rs)GN:

o For Ve € E' and g(e) € E”, we have G' ~ [{,} |G" and B(G'.e) ~ |\,
B(G", g(e)).

The meaning of the similarity at level k (also called the k-level similarity) is:
if two subqueries, G’ and G”, are k-level similar, then their inner structures are
the same, and if we join any corresponding 2,3, ... or k connected tables/vertices
in each subgraph, the corresponding (unchanged and merged) table sizes and the
corresponding selectivities are within their given error bounds, r, and r,. For example,
in Fig. 1, a pair of 2-level similar subquery graphs using error bounds r; = r; = 0.3
are shown in the light dotted-line circles.

4.2. Algorithm modification

For a given similarity level k, we can revise our algorithm described in Sect. 3.2 to
optimize a complex query by exploiting its k-level similar subqueries.
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Let x be a node in query graph G(V, E, T, P, §, ¢), thatis, x € V. Let G{(Vy, Ely,,
Tlv,, Plv,, 6lv,,@lv,) be a subquery graph in G. We define a Boolean function
n(Gy, x). If x € V|, that is, x is a node in subquery graph Gy, then n(G, x) = TRUE.
Otherwise, n(G, x) = FALSE. We will use this function in describing the algorithm
based on the k-level similarity. Let |G| denote the number of nodes in the subquery
graph G.

In order to find the k-level similar subqueries for a given query G, we replace
lines 11-23 in Algorithm 3.1 by the following code:

Algorithm 4.1. Revised code segment for Algorithm 3.1

1. for each member x; with selected(x;) = 0 in the ring owned by x do
2. for each member y; with selected(y;) = 0 and y; # x; in the ring owned
by y do
3. flag = 1;
4. Vi=Viu{x); Va=WU{nkh
5. record one-to-one mapping f: x> yi;
6. for i from 1 to k do
7. for each G| € {G' | G’ is a subquery graph of G, |G'| =1,
and 1n(G', x;) = TRUE} do
8. follow the one-to-one mapping relationships (for vertices and

edges (if any)) between G| and G, to find the corresponding
subquery graph G, of Go;
9. Let res; and res, be the result tables for G| and G/, respectively;
10'. if g (res;,resy) >rpor { W eVi—V/and y = f(x) e Vo, =V}
such that [ only one, not both, of edge(x’, res;) and
edge(y, resy) exists |
or g(edge(x’, resy), edge(y', resy)) > ry }
11", then flag = 0; break; end if;
/* find a violation of k-level similarity—no need to further check */
12/ end for;

13", if flag = O then break; end if;
/* not k-level similar—no need to further check */
14’ if i =1 then
15 record one-to-one mapping g : edge(xy, x") — edge(y1,y')

if such edges exist for any x’ € V|, and y = f(x') € Va;
/* we know G| and G, have the same structure after Ist loop */
16'. end if;

17. end for;

18'. if flag =1 /* k-level similar */

19'. then selected(x;) = selected(y;) = 1; break;

20, else Vi =V, —{x1}; Va=V2—{n}

21" if i > 1 then

22 unrelate the mapping relationships g : edge(x, x') — edge(y1, ')

if such edges exist for any x' € V| and y' = f(x) € Va;
23, end if;
24 unrelate the mapping relationship f: x| +— yj;
/* unselect nodes x; and y; */
25" end if
26’ end for
27'.  end for;
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Lines 6/-17’, which are the main part of the code, check if the current pair of
subquery graphs with new nodes x; and y; included are k-level similar. The time
complexity of the above algorithm segment is O(k * nk*2), where n is the total
number of table instances in the given query, Q, and k is the similarity level.

Note that, for the same given error bounds, the higher the similarity level, the
more similar the two corresponding subquery graphs. Hence, a good execution plan
generated for one subquery is more likely to be also good for the other. On the
other hand, if the similarity level is very high, the chance to find similar subqueries
is greatly reduced and the similar subqueries (if any) to be found may be small.
Hence, less optimization work may be shared in this case. Besides, to find similar
subqueries at a very high similarity level requires much time. Fortunately, as we
will see in the next section, a low similarity level is usually satisfactory in practice.
Therefore, we assume k < n. Note that, to search for identical (common) subqueries,
our previous efficient technique based on common subqueries can be applied (Tao
et al. 2002).

5. Experiments

In the last section, we have shown that our technique is an efficient polynomial time
technique, which is suitable for optimizing complex queries. Although our technique
may not be more efficient than a randomization method or a heuristic-based tech-
nique in the worst case, it is expected that our technique usually generates a better
execution plan for a complex query than others because it takes some complex query
characteristics into account. Experiments were conducted to examine the quality of
the execution plans generated by our technique.

In the experiments, we chose to compare our technique with the most promising
randomization technique, i.e. the AB algorithm, for optimizing complex queries. We
also compared the results of our technique based on similarities at levels 1 ~ 3.
For simplicity, we call our technique based on the i-level similarity the i-level (i =
1,2, 3) similarity method in the following discussion. To make a fair comparison,
we employ the AB algorithm with our technique for optimizing identified similar
subqueries and the revised final query (i.e. lines 42 and 45 in Algorithm 3.1).

The experiments were run on a PC with PIII 500 MHz CPU and 512MB RAM.
All techniques were implemented in C. A synthetic database was used for our ex-
periments, which is described as follows.

The experimental database consists of 80 tables with their sizes shown in Table 1.
This database has the following characteristics:

e The table sizes cover a wide range from 1 to 19,521,020 rows.

e The database contains two groups of tables to be chosen as dissimilar ones in
a test query: R; ~ Rjp and Ry ~ Rgo. As shown in Table 1, the relative error
(|Ri+11—|Ri|)/|Ri+1| between the sizes of tables R; and R;y; is 60% (i.e. signifi-
cantly different/dissimilar) in these two groups. This feature allows us to include
some dissimilar tables in test queries. Note that the database contains both small
dissimilar tables (i.e. the first group) and large dissimilar tables (i.e. the second
group) to increase the diversity.

e The database contains a group of tables to be chosen as similar ones in a test
query: Ry; ~ Rys. The relative error between the sizes of two consecutive tables
in the group is from 1.5% (near Rys) to 27.5% (near R;;). Furthermore, the
closer the two tables, the more similar they are. For example, tables R;; and
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Table 1. Sizes of test tables

Table R; Ry Ry R Ll Rio
Group 1 Size |R;| 1 3 8 L 4895

Relationship [Ri+1| = [|R;]/0.4]

Table R; Ry Ry Ry .l R75
Group 2 Size |R;| 7895 10895 13895 ... 199895

Relationship [Ri+1| = |R;| + 3000

Table R,‘ R76 R77 R73 ...... Rg()
Group 3 Size |R;| 499738 1249345 3123363  ..... 19521020

Relationship [Ri+1| = [|R;1/0.4]

R» are more similar to each other than tables R, and R;s. This feature allows
us to choose tables with different degrees of similarity in a test query.

The tables provide different selectivities for queries. Each table in the database
has 15 columns. Values for the ith column (1 <i < 15) are randomly generated
from domain [1, 100i2]. In other words, a lower column has a fewer number of
distinct values than a higher column. Hence, different selectivities are provided
for queries on different columns.

Clearly, the above synthetic database allows us to have some controllable parameters,
such as the number of similar/dissimilar table instances in a query, the error bounds
for similarity and selectivities for query conditions in our experiments. Hence, we can
evaluate our technique for different situations. A real-world database, on the other
hand, would usually represent only one particular application scenario. Therefore,
we chose to use the above more flexible synthetic database for our experiments.

Because our technique was developed for optimizing large queries with similar

subqueries, we need to have a set of such test queries to evaluate our technique.
A test query Q with similar subqueries in our experiments was generated as fol-
lows.

Determining the total number N of tables (instances) in test query Q and the
number of tables (instances) in each similar subquery in Q. For a test query, its
N is randomly chosen from the range [20, 80]. We reserve a certain percent p%
(e.g. 20%) of tables for dissimilar ones. For the rest of the tables, we randomly
pick up a number from the range [2, upperbound] as the number of tables in
each subquery of a similar pair, where upperbound = N * (1 — p%)/2. This
process is repeated to choose more pairs of similar subqueries until either the
(1 — p%) quota for similar tables is used up or adding the next pair of similar
subqueries (because too large) would exceed the quota for similar tables. In the
latter case, the next pair of similar subqueries is not added, and the remaining
quota for similar tables is redistributed to dissimilar ones. To avoid increasing
the quota (beyond the initial p) for dissimilar tables too much in such a case, we
properly reduce upperbound during the process to allow more (smaller) similar
subqueries to be generated within the quota. In general, the number of tables
outside the similar subqueries generated from the above process for a test query
is usually larger than the initial quota p.

Determining the tables in each pair of similar subqueries < Q1, Q> >. To do
so, we randomly pick a table R from Rj; ~ Rys for Q. We then randomly pick
a table from R;; ~ Ry75 with a size within the range [(1 — ;) % |R|, (1 +7,) % | R[],



366 Q. Zhu et al.

where r; is the error bound used to define similar tables for the given test
query Q. This process is repeated until all tables in subqueries Q; and Q, are
determined.

e Determining the join edges (connections) for each pair of similar subqueries
< Q1, O» >. Let m be the number of tables in Q; (also for Q,). Consider
its adjacency matrix A[l..m, 1..m]. That is, if A[i, j] = 1, there is a join edge
between the ith table and the jth table (1 <i, j <m) in Qy; if A[i, j] = 0, there
is no join edge between these two tables. In fact, we only need to consider the
upper triangular part of matrix A due to its symmetry. To ensure subquery Q; is
connected, we set all elements in the first row of A to be 1. For the rest of the
upper triangular part of A, its elements are determined as follows. We randomly
pick a number k from the range [0, m * (m — 1)/2] as the additional number of
edges (besides m edges for the first row of A) in subquery Q. We then randomly
pick a number from the range [1, m*(m —1)/2], map this number into a position
in the upper triangular part of A and set the element at this position to be 1. This
process is repeated until k£ additional join edges are chosen. Once the join edges
for Q; are determined, the corresponding join edges for Q, are set accordingly.

e Determining the join predicates on the join edges for each pair of similar sub-
queries < Q1, QO >. For each join edge in O, we randomly choose a join pred-
icate with selectivity S and associate (label) it to the edge. To avoid having an ex-
tremely large result for a large query, we restrict the selectivity of a join predicate
within the range (0, 0.3]. For the corresponding join edge in Q», we randomly
choose a join predicate with a selectivity within the range (max{(l1 —rs) * S, 0},
min{(1 + ry) * S, 0.3}], where r, is the error bound used to define similar selec-
tivities for the given test query Q.

e Determining the tables that are not in any similar subquery. To do so, we re-
peatedly choose a table (randomly) from R; ~ Rjo and R7s ~ Rgo until all such
tables in the given query are determined.

e Determining the join edges (connections) and predicates for the tables that are
not in any similar subquery. To do so, we consider each similar subquery deter-
mined previously in the given query Q as one single (merged) table. We then
apply the above adjacency matrix method to determine the join edges among the
(merged and unmerged) tables. If an end of join edge e is connected to a merged
table representing a similar subquery Q’, a table R’ within Q' is randomly cho-
sen to connect to that end of edge e in the original (unmerged) query. For each
join edge, a join predicate is randomly chosen for it.

Clearly, a test query generated from the above process has a random number of
tables, a random number of similar pairs of subqueries, a random size for each
similar subquery, a random selectivity for each join predicate, and a certain num-
ber of tables outside the similar subqueries, within their respective allowed ranges.
Such test queries can be used to effectively evaluate the performance of our tech-
nique.

In the experiments, the following threshold values were used to accept, hold or
reject a pair of identified similar subqueries (subgraphs) in our technique: ¢; = 3 and
¢y = 5. That is, similar subqueries with >= 5 tables (nodes) are accepted; similar
subqueries with < 3 tables (nodes) are rejected and similar subqueries with 3 or 4
tables (nodes) are put on a hold list.

As mentioned before, both the AB algorithm and our technique have a poly-
nomial time complexity. Therefore, both of them are efficient in optimizing large
queries. Note that the AB algorithm can achieve better results by taking a longer
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Table 2. Comparison of I/O costs for execution plans generated by different techniques

Q# |V| AB-1/0# 1-sim/Z/ O# (imp%) 2-sim// O# (imp%) 3-siml/ O# (imp%)
1 66  0.212e+59  0.273e+58 (87.1%)  0.340e+58 (84.0%)  0.713e+58 (66.4%)
2 33 0.622e+27  0.111e+26 (82.2%)  0.175e+26 (71.9%)  0.175e+26 (71.9%)
3 55  0.444e+44  0.655e+43 (85.2%)  0.355e+43 (92.0%)  0.528e+43 (88.1%)
4 38 0.486e+29  0.208e+29 (57.2%)  0.208e+29 (57.2%) 0.208e+29 (57.2%)
5 51 0.524e+44  0.720e+43 (86.3%)  0.989e+43 (81.1%)  0.137e+44 (73.9%)
6 44 0.648e+36  0.518e+35 (92.0%) 0.706e+35 (89.1%)  0.706e+35 (89.1%)
7 53 0.415e+42  0.350e+41 (91.6%) 0.234e+41 (94.4%) 0.363e+41 (91.3%)
8 72 0.309e+67  0.199e+66 (93.6%)  0.368e+66 (88.1%)  0.584e+66 (81.1%)
9 46  0.484e+36  0.138e+36 (71.5%) 0.151e+36 (68.8%) 0.151e+36 (68.8%)

10 63 0.716e+55  0.739%+54 (89.7%) 0.210e+55 (70.6%) 0.276e+55 (61.5%)
11 36  0.623e+23  0.957e+22 (84.6%) 0.295e+23 (52.6%) 0.295e+23 (52.6%)
12 57 0370e+47  0.469e+46 (87.3%) 0.525e+46 (85.8%)  0.927e+d6 (74.9%)
13 41 0.529e+33  0.154e+33 (71.0%) 0.313e+33 (40.8%) 0.313e+33 (40.8%)
14 49  0.687e+43  0.152e+43 (77.9%) 0.293e+43 (57.4%) 0.293e+43 (57.4%)
15 66  0272e+56  0.303e+55 (88.8%) 0.218e+55 (92.0%)  0.300e+55 (89.0%)
16 31  0591e+23  0.156e+23 (73.5%) 0.607e+23 (-2.7%)  0.607e+23 (-2.7%)
17 37 0.488e+31  0.665e+30 (86.4%) 0.725e+30 (85.2%)  0.909e+30 (81.4%)
18 60 0.612e+48 0.24le+48 (60.1%) 0.346e+48 (43.4%) 0.346e+48 (43.4%)
19 22 0513e+14  0.719e+13 (86.0%) 0.306e+14 (40.2%)  0.306e+14 (40.2%)
20 50 0.437e+40  0.326e+39 (92.5%)  0.505e+39 (88.4%)  0.541e+39 (87.6%)

|V, the number of table instances in the given query; I/ O#, the number of 1/O’s;
imp%, the percent of improvement of the underlying technique over the AB algorithm.

time to try more random plans. If we let the stand-alone AB and the AB used within
our technique have the same number of tries, we would actually allow more opti-
mization time for our technique because our technique needs some time to search
for similar subqueries. From a set of experiments, we found that our technique
took about 26.6% ~ 68.5% (47.7% on average) more time to optimize a large
query in such a case although both techniques can finish optimizing a query within
4 ~ 30 minutes. To make a fair comparison, we let the stand-alone AB have twice
as many tries (i.e. double its execution time) as the AB used within our technique
in the following experiments. Hence, the execution of the stand-alone AB took no
less time than that of our technique when optimizing a large query in the experi-
ments.

Because no complex computation is required for the set of queries considered
in the paper, the dominant cost for executing such a query is the I/O cost (i.e. the
number® of 1/O’s). Like related work in the literature, we focused on comparing
the I/O costs when queries were performed by using the execution plans generated
from different techniques. Table 2 shows a typical comparison of I/O costs for the
execution plans generated by different techniques for a set of test queries. The error
bounds used to search for similar subqueries in the experiments were ry = r, = 0.3,
and the initial quota p for tables outside the similar subqueries in a test query was set
to 20%.

6 A typical block size (8 KB) was used in the experiments.
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Fig. 7. Experimental result of changing error bounds

From the experimental result, we can see that the performance of execution plans
generated by our 1-level, 2-level and 3-level similarity methods for the test queries
is better than the performance of execution plans generated by the AB algorithm. In
fact, our 1-level, 2-level and 3-level similarity methods improve the performance of
the queries (on average) by 82.2%, 69.0% and 65.7%, respectively. This observation
verifies that making use of the characteristics of a complex query can improve the
performance of its execution plan.

The experimental result also demonstrates that increasing the similarity level usu-
ally does not improve the performance. The reason for this phenomenon is that,
for the same error bounds, the higher the similarity level, the smaller the similar
subqueries that can be found (due to the stronger requirement). Although a good
execution plan for a subquery has a better chance to be also good for its similar
counterpart when the similarity level is higher, the smaller size of the subquery re-
duces this benefit (because using a good execution plan for a small subquery may not
have a significant impact on the performance of the overall execution plan, compared
with a large subquery).

We also conducted experiments to examine the effect of error bounds on the per-
formance of query execution plans generated by our technique for different similarity
levels. Figure 7 shows the typical experimental result for a large query with similar
subqueries at different levels for different error bounds (assuming r, = ry). From the
figure, we can get the following observations:

e Very small error bounds cannot yield good performance, because, the smaller the
error bounds, the smaller the similar subqueries found.

e Moderate error bounds (e.g. 0.3 ~ 0.5) yield the best performance because similar
subqueries with reasonable sizes can be found.

e Large error bounds degrade the performance because subqueries are less similar
in such cases, which means that sharing execution plans among them may be
inappropriate.
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Fig. 8. Experimental result of changing percentage of tables outside the similar subqueries

e When the error bounds are sufficiently large (e.g. > 0.8), the performance of
an execution plan generated by our technique (for every similarity level) stays
the same. The reason for this phenomenon is that similar subqueries must have
the same query structure. When the error bounds are beyond a certain limit, the
sizes of similar subqueries may reach the maximum (in terms of the common
structure).

e When the error bounds are large, similarity at a higher level helps to improve the
performance. This is because larger error bounds usually lead to larger similar
subqueries and the higher level similarity ensures that subqueries are more similar
to each other.

Another factor that affects the performance of a large query optimized by our
technique is the percentage of tables that are outside its similar subqueries. To ex-
amine how this factor affects the performance, we conducted an experiment. In the
experiment, we considered queries with different percentages of tables outside their
similar subqueries. For each percentage, we applied our technique (1-level as a rep-
resentative) to optimize 10 test queries and calculated the average performance im-
provement from our technique over the AB algorithm. Figure 8 shows the experi-
mental result.

From the figure we can see that, the smaller the percentage of tables outside
the similar subqueries (in other words, more tables in the similar subqueries), the
more the performance improvement achieved by our technique. When the percentage
of tables outside the similar subqueries in a query is very large (e.g. > 85%), our
technique does not outperform the AB algorithm. Therefore, our technique is not
suitable for queries without or with little similarity among its subqueries.

In summary, our similarity-based technique can significantly improve the per-
formance of complex queries that possess certain similarity among subqueries. To
achieve good performance, the error bounds should be moderate and the similarity
level does not need to be high. However, for large error bounds, a high similarity
level is needed to ensure reasonable performance.
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6. Conclusions

As database technology is applied to more and more application domains, user queries
become more and more complex. Query optimization for such queries becomes very
challenging. Existing query optimization techniques either take too much time (e.g.
dynamic programming) or yield a poor execution plan (e.g. simple heuristics). Al-
though some randomization-based techniques (e.g. AB, II and SA) can deal with
this problem to a certain degree, the quality of the execution plan generated for
a given query is still unsatisfactory because these techniques do not take the special
characteristics of a complex query into consideration.

In this paper, we propose a new technique for optimizing complex queries based
on exploiting similar subqueries. The key idea is to use an efficient ring network
representation to represent a complex query, search for similar subqueries, optimize
each representative subquery, share the optimization result with other similar sub-
queries, reduce the original query by replacing each similar subquery with its result
table and then optimize the revised final query. Any efficient technique such as AB
algorithm can be used together with our technique for optimizing identified simi-
lar subqueries and the revised final query. It has been shown that our technique is
an efficient polynomial time technique, and furthermore, it usually generates good
execution plans for complex queries with similar subqueries because it takes the
structure characteristics of a query into account and divides a large query into small
parts. Using our technique, the query optimizer only needs to optimize a subquery
with a small number of operand tables at each time rather than directly deal with
the original query with a large number of operand tables.

Our experimental results demonstrate that the technique is quite promising in
optimizing complex queries with similar substructures. It outperforms the popular
AB algorithm. Experimental results also show that different situations need different
similarity levels to obtain the best performance for our technique.

Our work is just the beginning of further research that needs to be done in the
future in order to completely solve the query optimization issues for complex queries.
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Appendix: A real-world complex query with similar subquery
structures

In this appendix, we show an example of a complex (large) query with similar sub-
query structures from a real-world user application. To protect the user’s information,
we have masked the real names of the tables and attributes in the example. The com-
plex query is expressed in SQL as follows.

SELECT
SUM (F.R_CMS) AS CMS, SUM(F.R_MPY) AS MPY, SUM(F.R_NCD) AS NCD,
SUM(F.R_SPI) AS SPI
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FROM

FR_7F, DR_7 D7, S_CLA S1, S_CLA S2, S_CLA S3, S_CLA S4, S_CLA S5,
DR_2 D2, SCARE S6, DR_5 D5, SCUSR S7, SCUSR S8, SCUSR S9,

SCUSR S10, SCUSR S11, SCUSR S12, SCUSR S13, DR_U DU, SUNIT S14,
DR_T DT, SDATE S15, SCMON S16, SCQUA S17, SCWEK S18, SCYER S19,
DR_B DB, SCSMR S20, DR_8 D8, SCTYP S21, SCRCY S22, DR_1 DI,
SCUPC S23, SMATR S24, SPLT S25, DR_A DA, SR_BAC S26, SR_BKY S27,
DR_C DC, SR_CDF S28, SR_CSR S29, SR_CSN S30, SR_CNB S31,
SR_CTP S32, SR_COD S33, SR_CON S34, SR_COT S35, DR_6 D6,
SR_CTR S36, SR_CDF S37, SR_PDR S38, SR_PME S39, SR_PON S40,
DR_9 D9, SR_PPR S41, DR_D DD, SR_PMO S42, DR_4 D4, SR_RCN S43,
SR_SGR S44, SR_SNO S45, DR_3 D3, SR_SHR S46, SR_STP S47,
SR_SER S48, SUNIT S49, STIME S50, SwDY1l S51, DR_P DP

WHERE

F.KC_1=D1.DID AND D1.ENP=S23.SID AND D1.MAT=S24.SID AND
F.KC_2=D2.DID AND D2.CUS1=S6.SID AND D2.PLT=S25.SID AND
F.KC_3=D3.DID AND D3.SHR=S46.SID AND D3.TIME=S50.SID AND
F.KC_4=D4.DID AND D4 .RCN=S43.SID AND F.KC_5=D5.DID AND
D5.CUS2=S7.SID AND D5.CUS3=5S8.SID AND D5.CUS4=S9.SID AND
D5.CUS5=S10.SID AND D5.CUS6=S11.SID AND D5.CUS7=S12.SID AND
D5.CUS8=S13.SID AND D5.SGR=S44.SID AND D5.SNO=S45.SID AND
F.KC_6=D6.DID AND D6.CTR=S36.SID AND D6.PON=S40.SID AND
F.KC_7=D7.DID AND D7.CLA1=S1.SID AND D7.CLA2=S2.SID AND
D7.CLA3=S3.SID AND D7.CLA4=S4.SID AND D7.CLA5=S5.SID AND
D7.CSR=S29.SID AND D7.CSN=S30.SID AND F.KC_8=D8.DID AND
D8.C_TYP=S21.SID AND D8.COD=S33.SID AND D8.CON=S34.SID AND
D8.COT=S35.SID AND F.KC_9=D9.DID AND D9.PPR=S41.SID AND
D9.STP=S47.SID AND F.KC_U=DU.DID AND DU.B_UOM=S14.SID AND
DU.D_CRY=S22.SID AND DU.S_UNI=S49.SID AND F.KC_T=DT.DID AND
DT.CDAY=S15.SID AND DT.CMON=S16.SID AND DT.CQUA=S17.SID AND
DT.CWEK=S18.SID AND DT.CYER=S19.SID AND DT.WDY1=S51.SID AND
F.KC_A=DA.DID AND DA.BAC=S26.SID AND DA.BKY=S27.SID AND
F.KC_B=DB.DID AND DB.CSM=S20.SID AND DB.CDF=S37.SID AND
F.KC_C=DC.DID AND DC.CDF=S28.SID AND DC.CNB=S31.SID AND
DC.CTP=S32.SID AND DC.PDR=S38.SID AND DC.PME=S39.SID AND
DC.SER=S48.SID AND F.KC_D=DD.DID AND DD.PMO=S42.SID AND

F.KC_P=DP.DID AND ((((DP.RQD<=81)) AND
((S1.C_CLA BETWEEN ‘KO’ AND 'K6’))))
GROUP BY

S1.C_CLA, S2.C_CLA, S3.C_CLA, S4.C_CLA, S5.C_CLA, S6.CUSR,
S7.CUSR, S8.CUSR, S9.CUSR, S10.CUSR, S11.CUSR, S12.CUSR,
S13.CUSR, S14.UNIT, S15.DAT, S16.CMON, S17.CQUA, S18.CWEK,
S19.CYER, S20.CSMR, S21.CTYP, S22.CRCY, S23.CUPC, S24.MATR,
S25.PLT, S26.R_BAC, S27.R_BKY, S28.R_CDF, S29.R_CSR,
S30.R_CSN, S31.R_CNB, S32.R_CTP, S33.R_COD, S34.R_CON,
S35.R_COT, S36.R_CTR, S37.R_CDF, S38.R_PDR, S39.R_PME,
S40.R_PON, S41.R_PPR, S42.R_PMO, S43.R_RCN, S44.R_SGCR,
S45.R_SNO, S46.R_SHR, S47.R_STP, S48.R_SER, S49.UNIT,
S50.TIME, S51.WDY1

This query involves 68 tables. To process this query, a database management system
typically performs a join of all tables using the condition in the WHERE clause first.
It then processes the GROUP BY clause. The join structure for this query is shown
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in Fig. 9, which demonstrates a snowflake structure. Similar subqueries exist among
the snowflakes in the query.

Fig. 9. The structure of a real-world large join query
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