Knowl Inf Syst (2007)13: 197-219 Knowledge and
DOI 10.1007/510115-007-0066-6 Information Systems

REGULAR PAPER

Arjan J. F. Kok - Robert van Liere

A multimodal virtual reality interface
for 3D interaction with VTK

Received: 3 October 2005 / Revised: 15 November 2006 / Accepted: 6 December 2006
Published online: 8 February 2007
© Springer-Verlag London Ltd. 2007

Abstract The object-oriented visualization Toolkit (VTK) is widely used for
scientific visualization. VTK is a visualization library that provides a large
number of functions for presenting three-dimensional data. Interaction with
the visualized data is controlled with two-dimensional input devices, such as
mouse and keyboard. Support for real three-dimensional and multimodal input is
non-existent. This paper describes VR-VTK: a multimodal interface to VTK on a
virtual environment. Six degree of freedom input devices are used for spatial 3D
interaction. They control the 3D widgets that are used to interact with the visual-
ized data. Head tracking is used for camera control. Pedals are used for clutching.
Speech input is used for application commands and system control. To address
several problems specific for spatial 3D interaction, a number of additional fea-
tures, such as more complex interaction methods and enhanced depth perception,
are discussed. Furthermore, the need for multimodal input to support interaction
with the visualization is shown. Two existing VTK applications are ported using
VR-VTK to run in a desktop virtual reality system. Informal user experiences are
presented.

Keywords Visualization - Virtual environments - 3D interaction

A.J. F. Kok ()
Department of Computer Science, Open Universiteit Nederland, The Netherlands
E-mail: arjan.kok@ou.nl

R. van Liere

Department of Information Systems, Center for Mathematics and Computer Science,
Amsterdam, The Netherlands

E-mail: robertl@cwi.nl

198 A.J. F. Kok, R. van Liere

1 Introduction

Throughout the past years, various authors have reported on the benefits of a vir-
tual reality (VR) interface to scientific visualization [4, 24]. The key argument is
that a well-designed VR interface can provide the sensation of presence and stim-
ulates participation with objects in a scene. Such a VR interface needs support
for 3D interaction with six degree of freedom (6 DOF) trackers and support for
system control, for example, by speech. Clearly, this may lead to multimodal in-
terfaces in which the user has more control of how the scientific data is presented
and explored.

The object oriented visualization Toolkit (VTK) is rapidly becoming the stan-
dard for scientific visualization toolkits [18]. It is an open source class library that
contains a large number of functions for the presentation of scientific data. VTK
uses a pipeline mechanism for rendering. Data is passed through various pipeline
objects (e.g. filters and mappers) to obtain geometry that can be displayed by the
renderer.

For interaction with the data, VTK employs the concepts of picking and 3D
widgets. Picking is used to select objects in the visualization, while widgets are
used to interact with objects in specific ways. A widget has a visual representa-
tion within the 3D visualization and defines the behavior that is executed when
the widget is manipulated [5]. Simple examples of 3D widgets are the point wid-
get for probing object information, the box widget for positioning, rotating, and
scaling of objects, the spline widget for defining a spline by editing control points,
etc.

VTK widgets are currently controlled with 2D input devices, such as mouse
and keyboard. An important question is whether a user interface to VTK can be
improved when widgets are controlled with different modalities in a virtual envi-
ronment. For example, what is the benefit of using 6 DOF input devices to control
widgets? In what way can other input modalities, such as speech and gestures be
used? In addition to controlling a widget with one specific input modality, it can be
beneficial to combine modalities [12]: Two or more input modalities can be com-
bined to define one action, different input modalities can be used concurrently to
execute concurrent actions, and one input modality can be used to enable/disable
one of the other modalities.

In this paper, we present a multimodal VR interface to VTK. Hands are
used for direct 3D manipulation using widgets and pickers, feet for clutch-
ing, head for camera control, and speech for system control. In the next sec-
tion, we position our solution against other approaches that have been taken to
use VTK in a virtual environment. Section 3 shows how the VTK class hier-
archy has been extended. In Sect. 4 we show how the support for direct ma-
nipulation has been added. It includes the basic picking and widget manipula-
tion, multimodal interaction with widgets, some enhanced interaction features,
and ways to allow more accurate 3D interaction by means of better depth per-
ception. Section 5 shows how a VR interface can be extended with visualiza-
tion and application control. Section 6 gives examples of real applications that
have been implemented using our interface. It includes a description of the
used hardware platform. Finally, the last section consists of a discussion of our
design.

A multimodal virtual reality interface for 3D interaction with VTK 199

2 Previous work

We have chosen three points of view to position our solution against others. First,
from an engineering point of view, in which we discuss how other researchers have
approached the problem of using VTK in a virtual environment. Second, from a
multi-modal interface point of view, in which we discuss how multi-modalities
can be used to control widgets. Finally, from a 3D user interface approach, in
which we discuss various performance issues in 3D interaction.

2.1 VTK in virtual reality

Several visualization systems researchers have investigated the integration of VTK
with a virtual reality (VR) system.

One approach is the vtkActorToPF library [13]. In this approach, generation
of visualization geometry is decoupled from the rendering of this geometry. VTK
generates the geometry in the form of actors that consist of geometry and prop-
erties. A new class, vtkActorToPF, transforms these actors into pfGeodes that are
included in a Performer scenegraph. This scenegraph is rendered independently of
VTK. The advantage of this method is the explicit decoupling of rendering from
geometry creation, by which the rendering is not interrupted because of complex
geometry creation. Only whenever geometry is completely created by VTK, it is
transformed to Performer. Disadvantages are the fact that the VTK cameras and
lights are not considered in the Performer environment and the fact that there is no
support for direct interaction with the VTK pipeline from the rendering. Objects
can only be manipulated in the Performer application.

Another approach is based on the modification of the VTK renderer and render
window [20, 27]. The renderer and render window are the objects that are respon-
sible for rendering the objects to screen(s). By using derived classes of the ren-
derer and render window that include virtual reality system dependent functions,
rendering is done onto the VR system. All other functionality of VTK, includ-
ing interaction using the mouse, remains available to the user. Advantages of this
approach are the rather simple implementation and the fact that all VTK function-
ality is available for interaction. All objects in a pipeline can directly be modified
as result of a user action.

We adapted the second approach. However, we have a different focus. To in-
tegrate VTK with VR there are two problems to solve:

— Real-time update of the visualization: This is needed to get the impression
of motion in the visualization and, more importantly, to be able to do 3D in-
teraction. Several solutions are available, such as decoupling rendering from
processing, parallelizing the visualization and processing, proper data man-
agement, etc.

— Efficient comfortable interaction: We want to directly manipulate the visu-
alization in 3D. That is much more difficult than interaction in 2D. Special
care should be taken to investigate ways to improve the efficiency and com-
fort of direct 3D manipulation. Furthermore, it must be possible to combine
the spatial 3D interaction with non-spatial interaction to allow for changing
interaction modes, changing the visualization, controlling the application, etc.

200 A.J. F. Kok, R. van Liere

Most efforts to integrate VTK with VR systems address the problem of real-
time updates [4, 13, 27]. Our focus is on efficient and comfortable direct manipu-
lation in 3D and on efficient visualization and application control.

2.2 Multimodal widgets

Smalltalk’s Model-View-Controller abstraction can be used to model a VTK wid-
get [6]. Every widget has a view (graphical representation on display), which
provides the user with the feedback of the state of the widget. A box widget, for
example, is represented as a wireframe of a box augmented with small handles for
translation and scaling of the representation. The model of a widget encapsulates
the widgets semantics, i.e. which operations are feasible. For example, the seman-
tics of a box widget define that an object, controlled by this widget, is rotated
when the user moves a plane of the widget, and that the object is scaled when a
handle is dragged. The controllers are the devices used to manipulate the widget.
A mouse can be used to drag the handles of the box widget representation.

In our VR-VTK system we turned the VTK widgets into multimodal widgets
by extending the controllers, see Sect. 4.3. We have explored the usage of 6 DOF
devices, pedals and speech as controllers. The user uses two hands to control the
widget. The non-dominant hand is used to control the position and orientation
of 3D objects in the virtual environment. The dominant hand is used to control
the handles of the widget. Having both hands occupied interacting with the data
prevents the user from using a keyboard or mouse at the same time. Therefore,
other input modalities have been added. Foot pedals are used to simulate button
actions, such as button press and release. The 3D widget mechanism also allows
us to use a gesture recognition interface as controller to resize or move an object
using the box widget.

To our knowledge there has been no other researcher that has explored the
usage of multimodal VTK widgets. Multimodal interfaces, however, have been
applied for visualization applications before, e.g. [11, 12, 21]. They all combine
gestures with speech to navigate through the environment or to manipulate the
virtual objects. As outlined above, our approach is different. In our multimodal
interface, 3D interaction is driven by 3D widgets. These widgets are primarily
controlled by direct 3D manipulation, but can also be controlled by other modali-
ties.

2.3 Human factors

From the user interface community it is known that point location is a basic task
in the design and implementation of 3D user interfaces. Point location, the task of
positioning the cursor on a point in 3D, is the primitive operation used for tasks
such as object selection and object manipulation. Many user studies have been
performed to investigate the efficiency of point location subject to different hard-
ware conditions (stereoscopic displays, head tracked displays) [1, 3]. In addition,
user studies have been done to understand the effect that different depth cues have
on the user performance of basic 3D tasks. For example, studies have reported

A multimodal virtual reality interface for 3D interaction with VTK 201

on the relative importance of auxiliary 3D depth cues (stereo, lighting conditions,
perspective viewing and shadows) on interactive 3D tasks [7, 9, 25, 29].

We have taken the results of these studies into account in the design of VR-
VTK. We have developed the notion of cursor regions in order to aid the user to
perform the VTK pick in a three-dimensional environment. In addition, several
cues have been introduced to enhance depth perception. These enhancements will
be discussed in Sect. 4.

To our knowledge no user interface researcher has done formal user perfor-
mance studies on the usage of 3D widgets.

3 VR-VTK architecture

Basic assumption in developing a virtual reality version of VTK is that the user
must be able to port his existing VTK applications with minimal effort. Technical
aspects of VR systems (support for input devices like trackers, pedals, keyboard,
speech, support for multi-threading, . . .) should be hidden from the user.

The VR-VTK layer extends VTK with virtual reality support, see Fig. 1. This
layer contains a number of new VR-VTK classes, most of them derived from
the existing VTK classes (for modification of functionality), and some of them
really new classes (to add new functionality). Note that only classes involved in
interaction and rendering have to be added to this layer. The visualization pipeline
classes (data objects, filters, mappers, etc.) can be used without any modification.

In “standard” VTK each render window (vtkRenderWindow) can be associ-
ated with an interactor (vtkRenderWindowInteractor). This interactor captures the
windowing system specific events (e.g. mouse and keyboard events) in the render
window, translates these system dependent events into system independent VTK
events, and dispatches these VTK events. Interactor observers, such as interactor
styles (vtkInteractorStyle) and widgets (vtk3DWidget), define the behavior asso-
ciated with particular VTK events. They intercept these events and perform the
defined action. For example, upon receipt of a mouse move event, the interactor
style moves the camera of the renderer.

3.1 Render window and renderer

In VR-VTK, for rendering, subclasses of vtkRenderWindow and vtkRenderer
have been developed. They control the rendering of the scene for a VR system.

Application
| VR-VTK |
VTK | VR
OpenGL | ASR |
Operating System

Fig. 1 VR-VTK architecture

202 A.J. F. Kok, R. van Liere

N r—-=-—--"-" - -~~~ -~ -~ - -=- = 1
VR -vtkRenderWindowInteractor | Generated VTK events |
[[
—
el I L» TrackerlMoveEvent ‘
Ly I
- handlers [J Y g Tracker2MoveEvent |
Q
g9 ‘ |
@ % head tracki | ‘
) cad fracking : » Render Event !
£% 3 handler | I
S o 8 [
> o —————————
© V;E‘ : » LeftButton { Press,Release } Event :
g £ g button ' MiddleButton{Press,Release } Event :
2 2.8 handlers = 4 7 RightButton {Press,Release}Event |
n g
¢ 5k ! !
D T p— - I I
£ % window +» Several window events I
g2 handler [|
2v ‘ ‘
N [[
speech ! ‘
handler ": » CharEvent :
[[
imulati ‘ ‘
stmu’ation Lp TimerEvent ‘
handler [I
o |

Fig. 2 The VR-VTK render window interactor. It captures VR system events and translates
these events into VTK events. All event handlers run in parallel

The VR-vtkRenderWindow decouples rendering from interaction by creating
a separate thread for rendering. Rendering by this thread is triggered by render
events. These events are invoked by the head tracker. Also, the Render method of
the render window, which is usually called when the scene is modified is over-
ridden. Instead of directly rendering the scene into the render window, it now
invokes a render event. A new event handling method of VR-vtkRenderWindow
now does the actual rendering of the scene. Furthermore, the VR-vtkRenderer per-
forms some extra operations to visualize the scene on the VR system properly. For
example, it supports the rendering of shadows (see Sect. 4.5) and the rendering of
the VR-VTK 2D widget interface (see Sect. 5.2).

3.2 Render window interactor

Central component in the VR-VTK library is the VR-
vtkRenderWindowInteractor. Its main task is to capture and translate events
from the VR system into events that can be interpreted by the VTK pipeline,
that means into VTK events. At creation of the VR-vtkRenderWindowInteractor
several event handlers are created (see also Fig. 2):

— Two tracker handlers (one tracker for each hand): These handlers receive
events from the tracking devices containing position and orientation (pose) of
the trackers. Upon receipt of a tracker event, the pose of the tracker is stored
in the interactor and a VTK event is invoked to process the event in the appli-
cation. For that, two new VTK events are introduced: a Trackerl MoveEvent

A multimodal virtual reality interface for 3D interaction with VTK 203

that represents an event from the tracker in the dominant hand (this event re-
places the MouseMoveEvent used in 2D VTK) and a Tracker2MoveEvent that
represents an event from a tracker in the non-dominant hand.

— A head tracking handler: This handler receives head tracking events from the
head tracking device. A head tracking event contains the head position of the
user. This position is put into the active camera and an event to redraw the
scene is issued.

— Three button handlers: These handlers receive events from button devices used
in the VR system (e.g. mouse buttons or pedals). These are used as clutching
devices. Upon receipt of a button event, the corresponding VTK button event
is invoked.

— A window handler: This handler receives events from the window system
(e.g. key press/release events, window events). Window events can be used
to show/hide or resize the window. All these events are converted to their cor-
responding VTK events. Keyboard commands are converted to VTK character
events and can be used to control the visualization and the application. This
handler performs the tasks of the “standard” interactors.

— A speech handler: This handler receives speech events from an external au-
tomatic speech recognition (ASR) system. It converts these speech events
into several VTK events: character events, button events or (the new) tracker
events.

The mapping to character events allows that all objects in “standard” VTK
that react on keyboard events (such as styles and widgets) now automatically
react on speech input. Therefore, speech commands are used to control the
visualization and the application (see Sect. 5.1).

Speech events mapped to button and tracker events are used to control the
multimodal interaction using 3D widgets (see Sect. 4.3).

— A simulation handler: The simulation handler generates VTK timer events
in a user-specified frequency. Users can register an observer with the VR-
vtkRenderWindowInteractor that listens to these timer events. Upon receipt
of a timer event the observer will execute the actions associated with the ob-
server.

The simulation handler can be used, for example, to integrate a simulation or
an animation in the VTK pipeline.

Each of these handlers runs in its own thread. Therefore, parallel performance
of interactions is feasible [22].

3.3 Interactor observers

The VR-vtkInteractorStyle defines the “look and feel” of the interaction and vi-
sualization environment. It is driven by VTK events (for example, those gener-
ated by the interactor, such as VTK tracker, button and character events). Its main
tasks are controlling the picking process and the enhanced interaction methods
(see Sect. 4), controlling features to enhance depth perception (see Sect. 4.5), and
controlling the visualization (see Sect. 5).

The VR-VTK widgets are subclasses of the available VTK widgets. Just as the
interactor style, these widgets observe VTK events. In stead of acting on mouse

204 A.J. F. Kok, R. van Liere

move events, as the standard widgets do, the VR-VTK widgets act upon receipt
of TrackerMoveEvents. They use the real 3D position and orientation information
stored in the VR-vtkRenderWindowlInteractor to perform their action (see also
Sect. 4.3).

3.4 Platform independence

VR-VTK is generally applicable. It is not limited to specific hardware (plat-
form, trackers, etc.). All VR-VTK classes are independent of specific hard-
ware. Most of them are controlled by VTK events only. Even the VR-
vtkRenderWindowInteractor does not depend on the used hardware. This class
is implemented using a VR library, currently PVR [26]. The VR-library hides
all device details from VR-VTK. The VR-vtkRenderWindowlInteractor class
receives events from this library (instead of from the devices directly), and
translates these to VTK-events. It is not much work to modify the VR-
vtkRenderWindowlInteractor class to use other VR libraries, such as the MR
toolkit [22] and VRPN [23]. These VR libraries allow us to use VR-VTK on other
VR platforms, such as the CAVE. New input devices can be added easily, without
the need of modifying VR-VTK, as long as the VR library supports these devices.

4 3D interaction

Interacting with a 3D visualization will typically include the manipulation of
graphical objects. In general, direct manipulation can be decomposed in three
tasks: start the interaction by selecting the object, perform the interaction by drag-
ging the object and ending the interaction by releasing the object. VR-VTK pro-
vides three basic mechanisms that are used to support these tasks: 3D cursor re-
gions, 3D picking (both controlled by the VR-vtkInteractionStyle) and 3D wid-
gets.

4.1 3D cursor regions

VTK uses a 2D cursor as feedback to indicate the position of the 2D input
device. The straightforward analog would be to use a 3D cursor for the posi-
tion/orientation of the 3D spatial input device. However, to address the difficulties
that users have with point location in 3D, VR-VTK uses the notion of a cursor
region.

A cursor region is defined as a region in 3D space that is used to simplify
selection. Objects that coincide with the region are objects that can be selected.
Two regions are available: a cylinder and a sphere. Regions can be parameterized
with two parameters:

— An offset: This offset defines the distance from the user’s hand to the centre of
the cursor region. An offset of zero results in direct manipulation, as the user
has the regions directly in his hands. The offset can be enlarged, if the objects
to be manipulated are not within arm’s reach.

A multimodal virtual reality interface for 3D interaction with VTK 205

Fig. 3 Cursor region feedback: cylinder (/eft) and sphere (right). Parameters control the offset
and size of the region

— The size of the region: The size of the region defines the accuracy required for
manipulation. If very precise manipulation is required, the size of the region
can be set to almost zero (approaching 3D point location), while a large size
can be used when accuracy is less important or the objects in the scene are
large.

Cursor region feedback is continuously given by drawing a ray for the offset
and a cylinder or sphere at the appropriate position for the size of the region, see
Fig. 3.

4.2 3D pick

The cursor region defines a picking volume: when picking, the object intersected
by the cursor region that is closest to the center of this region is picked.

When picking in 2D it is always clear which object will be picked: the one that
is visible in the pixel under the 2D cursor. In 3D it is not always clear which object
is picked: the cursor region may intersect several objects, or the selected object is
(partly) hidden by other objects. Therefore, a continuous feedback is given by
highlighting the selected object, by placing a bounding box around the selected
object.

The 3D pick is started by a button press event (in our environment we usu-
ally use foot pedals or speech). Upon press, the application can activate a VR-
VTK picker object and call the VR-VTK pick function. While the button remains
pressed, the selected object is dragged: its position is updated using the position
of the cursor region. Upon button release, the interaction stops.

4.3 3D widgets

VTK provides a set of 3D widgets to allow many types of interaction and control
of many shapes (points, lines, planes, volumes), e.g. vtkPointWidget, vtkLineWid-
get, vtkBoxWidget, etc. [19]. These widgets in VTK are controlled by 2D mouse
movements and mouse button events. The 3D widget receives VTK events invoked
by the interactor, and takes appropriate action.

206 A.J. F. Kok, R. van Liere

device

. . events render window
input devices .

interactor

vtk events
behavior
3D widget .
wiee 3D object
geometry

Fig. 4 Interaction with a 3D widget: Events from input devices are translated by the render
window interactor into VTK events. These events control the shape, position and orientation of
the geometry of the widget, which in turn control the behavior of the object associated by the
widget

In VR-VTK all 3D interaction with the data visualization is done by manipu-
lating 3D widgets. To interact with an object, a widget has to be linked to it. The
type of widget determines the semantics of the action, i.e. which operations on
the object are feasible. Each widget has some geometry; for example, spherical
handles to define size and shape of the widget, and arrows to define orientation.
Manipulation of the widget is done by interacting with this geometry.

Figure 4 shows the steps performed from manipulation of an input device to
behavior of an object controlled by the widget. Operation of the widgets is con-
trolled by events from the VR-vtkRenderWindowInteractor and the position and
orientation of the cursor region. This information defines the modification of the
geometry of the widget, which in turn defines the response of the object.

Interaction with the widgets can be done with different modalities (input de-
vices) and different levels of control:

— By 3D manipulation of the geometry of the widget: The 3D tracker controls
the cursor region that is used to select and move the handles of the widget in
3D. Pedals or speech are used for clutching.

— By speech in combination with tracking to control the geometry of the widget:
The 3D tracker, represented by the cursor region, points to a position. A speech
command that specifies a handle and an action (e.g. “put that handle there”)
defines an action on the handle.

— By speech to control the whole widget: A speech command that specifies a
widget and an action (e.g. “rotate that widget by ...”) defines an action on the
widget.

Figure 5 shows an example of a 3D widget used to define a slicing plane. The
handles at the corners of the plane can be used to enlarge/reduce the size of the
plane, the arrow handle to modify the orientation of the plane while the plane itself
can be used to move the plane.

The set of widgets can be extended to include more complex tasks. More com-
plex widgets can be built from the basic widgets. VR-VTK contains, for example,
a convex-hull widget (to define convex volumes) built from several point widgets.

For complex visualization and manipulation, the scene may contain several
widgets. To avoid the scene to become cluttered with manipulable object repre-
senting these widgets, VTK allows for selective enabling/disabling widgets (by

A multimodal virtual reality interface for 3D interaction with VTK 207

Fig. 5 A 3D widget to control a slicing plane. The cursor region selects a widget handle and can
move this handle to change the size and position of the slicing plane

pressing a key). A disabled widget disappears from the environment. In VR-VTK
enabling/disabling widgets can also be done by speech commands.

4.4 Enhanced 3D interaction

There are two ways to enhance 3D interaction for visualization:

— World in hand: In scientific visualization it is often useful to position and ori-
entate the complete scene. The tracker in the non-dominant hand can be used
to control the position and orientation of the complete visualization (world in
hand). This makes it possible to inspect the world from all sides by rotating
the non-dominant hand. The world in hand metaphor also improves interac-
tion with the world. Rotating the world such that the objects to be manipulated
are not hidden and within reach of the user, makes interaction more easy. The
dominant hand can then be used to control the 3D cursor region and therefore
performs the real operations on the visualization and data.

— Two-handed input: Two-handed input can be beneficial for interaction tasks.
Tasks can be performed in parallel, but more importantly, tasks can sometimes
be done more accurately than with one hand [8]. In two-handed input, both
the dominant and the non-dominant hand control a cursor region. This kind of
two-handed input is used for composite interaction tasks, e.g. object docking
where each cursor region controls the position and orientation of an object,
simultaneously positioning the two handles of a line widget, etc.

These enhanced interaction options can be enabled by speech commands.

208 A.J. F. Kok, R. van Liere

4.5 Enhanced depth perception

One of the major problems with interaction in three dimensions is the lack of
depth perception, even if stereoscopic rendering is used. It is often very hard to
determine which objects are closer to the viewer than others. That makes it very
hard to select an object: are we reaching far enough into the environment to select
the object, or not?

There are several ways to add extra depth cues [29]:

— Motion parallax: Motion parallax is a powerful depth cue. Moving the head
from side to side, objects closer to the viewer move relatively faster than ob-
jects that are further away. To achieve motion parallax, the head tracker is
directly coupled with the active VTK camera. Moving the head changes the
camera position.

— The stage: The stage consists of a checkerboard and two coordinate axes.
The checkerboard serves as reference frame of the interaction space. Hav-
ing the trackers in the area above the checkerboard will ensure that they are
tracked properly. Furthermore, the checkerboard pattern on the floor enhances
the depth perception in the virtual environment. The coordinate axes show the
orientation of both trackers. They help the user orienting objects in the virtual
environment. Figure 6 shows the stage.

— Shadows: A virtual light source is placed above the virtual world. Using this
light source, shadows for the objects in the virtual world are projected onto the

Fig. 6 Stage: The stage consists of a checkerboard and two coordinates axes (on the left). Shad-
ows on the stage enhance depth perception

A multimodal virtual reality interface for 3D interaction with VTK 209

stage, see Fig. 6. These shadows make it much easier to see what the spatial
position of an object is.

The number of objects in the virtual world can be high, resulting in many
shadows. Apart from the high demands on rendering time, the high number
of shadows may result in a clutter of shadows on the stage. In that case the
shadows are of no use, as we cannot see what object caused what shadow
[9, 25]. We are, however, only interested in the spatial positions of certain
objects:

— The items that can be picked and manipulated (e.g. the handles of the 3D
widgets).

— The cursor region. We are interested in the position of the cursor region in
relation to the position of the pickable objects.

— Some reference objects, e.g. objects that are important for positioning ma-
nipulable objects, for example, the outline of the data set.

Therefore, in VR-VTK the user can define which objects should generate a
shadow. By default all widget handles and the picking regions generate shad-
ows, all other objects do not generate shadows, unless the user specifies dif-
ferently.

The shadows themselves might also be used as 3D widgets [7]. When the
shadows are implemented as pickable objects, these shadows can be selected
and moved over the stage. An object (e.g. a handle of a widget) in the scene
can be manipulated by manipulating its shadow.

5 Application control

Besides direct 3D object manipulation, VTK applications need support for non-
spatial input, e.g. for control tasks. Examples of these tasks in our VR-VTK en-
vironment are: enabling all kind of options such as stereo, shadows, the world-in-
hand and the stage, enabling widgets for 3D interaction (see Sect. 4.3), enabling
the pipeline browser (see Sect. 5.2.2), zoom in and out, and setting properties for
the cursor region. Examples of these tasks in a user application might be: enabling
visualization methods, setting parameters, setting properties for objects, and mod-
ifying color tables.

In a 2D desktop application these controls are usually implemented as widgets
using a 2D user interface (UI) toolkit, such as Tcl/Tk or Java Swing, operated by
mouse and keyboard. However, for our 3D interface this is not the most suitable
solution. Both hands are used for steering trackers, so we have to drop one of the
trackers to be able to use the mouse or keyboard. Moreover, we have to move
our attention from the 3D environment to the 2D GUI or the keyboard. Therefore,
other solutions are required.

5.1 Speech input

Speech has shown to be a useful modality for system control [2, 17]. Commands
can be issued in parallel with spatial interaction while user’s attention can stay
focused on the 3D environment.

210 A.J. F. Kok, R. van Liere

The VR-VTK interface contains a small “standard” vocabulary to support ba-
sic visualization control. It includes commands to control picking, setting the en-
hanced 3D interaction methods, setting the enhanced depth cues and zooming.
Furthermore, it contains commands to control the rendering process, such as en-
abling stereo and making screen dumps. Important is the command to transfer
interaction from interaction with the data to interaction with the Ul-toolkit (see
Sect. 5.2) vice versa.

The vocabulary is easily extended with speech commands for the user appli-
cation. As the speech handler converts speech events into character events, the
user only has to specify the mapping from speech command to a character. The
application itself should listen to character events.

5.2 2D widgets in a 3D world

Since many people have experience with 2D widget interfaces on the desktop, it
is an obvious choice to use them in the virtual world as well. Mine et al. [14]
discussed how these widget systems should be used integrated in a virtual envi-
ronment, and concluded that hand-held widgets performed best.

5.2.1 VR-VIK Ul

Therefore, the VR-VTK UI toolkit consists of a virtual cube containing 2D wid-
gets, and a virtual pen as selection device to manipulate the widgets. Each side of
the virtual cube can be equipped with all kind of widgets, such as buttons, pop-
up menus, sliders, labels, message boxes, etc. Having six sides on a cube makes
it possible to arrange widgets in groups. Desktop applications often use a main
menu and several windows. In our system the main menu and each window can
be placed on another side of the cube.

The virtual cube and virtual pen are controlled by trackers, in our system by
graspable input devices [10]. Instead of using the selection device, in future, it will
also be possible to manipulate the 2D widgets by speech commands.

By pressing a specific button (e.g. a pedal) or by a speech command, control
switches from visualization interaction to UI manipulation. The widget interface
is shown over the visualization. The user can now change some control parameters
on the cube by manipulating the 2D widgets. Results of these changes are directly
visible in the data visualization. When the specific button or speech command is
issued again, the widget interface disappears and direct 3D interaction with the
data visualization can proceed.

5.2.2 VIK pipeline browser

The VR-VTK pipeline browser is a special GUI built with the VR-VTK UI toolKkit.
It enables the user to inspect and modify all parameters of all objects in the VTK
pipeline. The pipeline browser has the same functionality as the tcl/tk pipeline
browser [16]. However, our browser is rendered and controlled inside the same
3D space as the VTK visualization.

A multimodal virtual reality interface for 3D interaction with VTK 211

Fig. 7 The pipeline browser: the pipeline interface (/eff), the object interface (right)

The pipeline browser supports two views (see Fig. 7). One view of the VTK
pipeline shows a connected graph on one or more faces of the cube (the pipeline in-
terface). It contains one widget (checkbutton) for each object (data, filter, mapper,
actor, light, etc.) in the visualization pipeline. The other view shows the proper-
ties/methods of VTK objects (the object interface). Users can use the pen to select
one or more objects in the pipeline interface. A user interface for each selected
object will be rendered on a face of the cube. The object’s set/get methods are
automatically shown as sliders, (check) buttons or menus. Object properties can
be modified by manipulating these widgets.

The pipeline browser interface is generated automatically. However, since a
pipeline can consist of many VTK objects, and each pipeline object can have many
manipulable properties, the user can choose for a subset of these for display.

6 Examples

We ported several existing VTK applications to run in our virtual reality system,
the Personal Space Station (PSS), by applying our new multimodal VR interface.

6.1 The Personal Space Station

The Personal Space Station (PSS) is a near-field, mirror-based desktop VR/AR
environment [15], see Figs. 8 and 9. A head-tracked user is seated in front of a
mirror, which reflects the stereoscopic images of the virtual world as displayed by
the monitor. The user perceives the stereoscopic images of the display as a virtual
world located in front of him. The user can reach under the mirror into the virtual
world to interact with the virtual objects.

Spatial interaction is performed directly in the 3D workspace with one or more
graspable input devices (props). The interaction space is monitored by two or more
cameras. Each camera is equipped with an infra-red (IR) pass filter in front of the
lens and a ring of IR LEDs around the lens. Patterns of retroreflective markers
are applied to the tracked input devices. The optical tracking system uses these
marker patterns to identify and reconstruct the poses of the devices. In this way,
graspable, wireless input devices can easily be constructed.

212 A.J. F. Kok, R. van Liere

microphone
monitor
mirror
head tracker
props
stereo glasses
cameras

P

|l

Fig. 8 Schematic view of the Personal Space Station

pedals

Besides these input devices, the PSS is equipped with three foot pedals as an
equivalent to standard mouse buttons. A microphone is used for the speech recog-
nition system. Furthermore, standard desktop input devices, such as a keyboard
and mouse, can be used.

Figure 9 shows the PSS in use. The user holds two 6 DOF input devices to
directly manipulate VTK pickers and VTK widgets.

VR-VTK is not limited to the PSS and can be used in other virtual environ-
ments, such as the CAVE.

6.2 Diffusion tensor imaging

MR diffusion tensor imaging (DTI) measures the diffusion of water molecules in
tissue. The diffusion anisotropy is an indicator of the underlying structure of the
tissue, for example, of the fibers in the brain. The structure is fairly complex. It is
difficult to understand and to get insight in the structure when, for example, the
number of fibers is reasonably large. Therefore the use of 3D visualization and
3D interaction can help on getting a better understanding of such complex data.
A visualization tool has been developed, which allows the visualization of the 3D
structure that can be obtained from the diffusion tensors [28]. This tool is used for
brain and muscle studies.

Figure 10 shows DTI visualization and interaction using our 3D interface. In-
teractive visualization is provided by:

— Orthogonal slice planes: The slice planes visualize the anisotropy by mapping
anisotropy indices to color or grey values. Visualization and interaction with
these planes is controlled by three image plane widgets. They allow selecting
and moving the slice planes through the data set.

A multimodal virtual reality interface for 3D interaction with VTK 213

Fig. 9 Using spatial devices to directly manipulate VTK objects. A pen and cube device to
position fibers in a diffusion tensor data set. The cube is used to position the data set, while the
pen is used for precise interaction. System control is provided by speech

— Glyphing: The diffusion tensors are visualized by ellipsoid or cuboid glyphs.
The sample points of the glyphs are defined interactively by widgets. Depend-
ing on the number and organization of requested sample points a widget is cho-
sen (point, line, plane, or box widget). The point widget controls the position
of only one sample point, while the box widget controls the size, orientation,
and position of a volume with sample points.

— Fiber tracking: The diffusion tensor data can be visualized by streamlines,
hyperstreamlines and streamtubes. The seed points are defined interactively
with widgets, just like the sample point definition of glyphing.

— World in hand: The user can hold the data set (brains) in his hand and move
and rotate it to get the best view.

214 A.J. F. Kok, R. van Liere

Fig. 10 Diffusion tensor imaging: slice planes and fiber tracking

— Speech input: Speech is used to define the interaction and visualization by
the standard speech commands. New speech commands are added to en-
able/disable the different visualization modes with their 3D widgets, and to
change the color coding of the visualizations.

— VIK pipeline browser: Several visualization parameters can be modified using
the VTK pipeline browser.

Manipulating the widgets (e.g. moving a volume with seed points), and con-
trolling the visualization by speech and the pipeline browser will constantly update
the visualization.

6.3 Bouncing balls

The bouncing balls application simulates the behavior of moving balls inside a
bounding box. Several parameters control the simulation: the number of balls, the
radius of the balls, the size of the box, the damping factor of the medium in which
the balls move, an attraction force among the balls, the field force that is applied
on the balls, the position of each ball, etc. Each step of the simulation computes
new positions for the balls and new forces of attraction among the balls. Balls are
represented as spheres and small arrows which indicate the direction of the ball
movements. The force field around a ball is represented with an isosurface.

Figure 11 shows the application in action. Interaction in this application is
provided by:

— Picking and moving balls: Balls can interactively be selected and moved to a
new position. The simulation will continue computing with the new position
of the moved ball.

A multimodal virtual reality interface for 3D interaction with VTK 215

Fig. 11 Bouncing balls simulation

— Application of a field force: The white arrow left to the data visualization is
an implicit plane widget that controls the direction of the external field source.
Rotating the arrow changes the direction of the field.

— Color mapping of the forces in the data set on a slice plane: A plane widget
controls the position and orientation of the semi-transparent slice plane that
visualizes the forces within the cube.

— Definition of the bounding box: The bounding box is defined by a box wid-
get. Manipulation of this widget allows for scaling, moving, and rotating the
simulation volume.

— Speech input: Speech is used to enable/disable the widgets.

— VIK pipeline browser and VR-VTK UI: Numeric values for the simulation,
such as the number of balls, radius of the balls, the damping factor, etc., are
set by 2D widgets on the VR-VTK UI and the VTK pipeline browser.

The user can ‘steer’ the simulation by interactively manipulating the balls and
widgets and/or changing the simulation parameters by speech or the widget cube.
The visualization can be controlled using the pipeline browser.

7 Discussion

We presented a new multimodal virtual reality interface to VTK. Main contribu-
tions are the addition of real-3D direct manipulation with the visualization and the
integration of visualization and system control by different modalities.

216 A.J. F. Kok, R. van Liere

The VR interface allows efficient and comfortable direct manipulation of the
visualized world in three dimensions. Our 3D cursor regions enable easy selection
of objects, and overcome the problems of point selection in 3D. Manipulation
of the visualization is provided by the use of 3D widgets. These widgets can be
controlled by different modalities: from direct manipulation in 3D using 6 DOF
trackers to speech only control.

To overcome problems with spatial positioning in 3D, several features are
added: a stage, shadows, and two-handed manipulation. Application and visual-
ization control is provided by the use of speech commands and a 2D widget system
with a pipeline browser that is integrated in the virtual world. The pipeline browser
offers the user an interface to the VTK objects in the visualization pipeline. We
believe that these features are very useful for all interactive visualization systems.

Porting existing VTK applications primarily involves exchanging some of the
VTK classes in the application by their VR-VTK versions. The next step is to
replace the existing 3D interaction by 3D-widget interaction (as most existing ap-
plications do not use 3D-widgets). Furthermore, the interaction style (e.g., cursor
region parameters, use of stage, shadows) must be specified. The result is a 3D
interactive application, including basic system and visualization control provided
by speech input and 2D widgets. To have the application controls, usually pro-
vided by a 2D GUI, available in the 3D environment, these extra controls can be
implemented as speech commands or as 2D widgets on the VR-VTK UL

Several existing VTK applications were ported to include the new interface.
Porting was easy. It required only slight modifications to the existing VTK code.

Several users have experienced the applications, as described in Sect. 6, with
the new VR interface.

Users of the DTI tool have evaluated the VR version of this tool. We asked
them to interactively define a region of interest with seed points for the generation
of streamlines. Goal is to get a good insight into the data. This is one of the basic
tasks in the DTI tool. The choice of seed points is very important: If too many
points are chosen, the scene gets cluttered with streamlines, and if the number of
seed points is too small, important features of the data can be missed.

The users were very enthusiastic. Several observations were made:

Direct 3D interaction with the application is much easier than interaction in
2D. It required fewer operations to define the region of interest, and the result
was more accurate.

— The world-in-hand option is an essential interaction method to be able to
manipulate all handles. However, users constantly want to enable/disable the
world-in-hand option. Speech has proven to be very useful for this task.

— Speech is very useful for fast switching between the different interaction (by
enabling and disabling widgets) and visualization methods in the applications.
The users indicated that they preferred speech (although they had to learn some
commands) over 2D menus (as in the standard version of the DTI tool). It was
faster, and they could keep their attention at the data visualization.

— Speech needs more feedback. The only feedback a user gets from a speech

command is the command being executed. However, speech commands are

not always recognized as being valid commands. So, for the user, it is not
always clear whether his spoken command was correct or not. The system

A multimodal virtual reality interface for 3D interaction with VTK 217

needs to present visually that an invalid command has been recognized in the
virtual environment.

Apart from the recommendation from the user experiences, several improve-
ments can be made. The use of a parallel version of VTK will make rendering
faster, and will therefore improve the exploration abilities of VTK. More com-
plex widgets (although not necessary in our current applications), for example,
real two-handed widgets, will directly support more complex interaction tasks.
The use of speech to control the 3D widgets, as presented in Sect. 4.3, should be
further elaborated and tested.

References

1. Arsenault R, Ware C (2000) Eye-hand co-ordination with force feedback. In: Proceedings
of the SIGCHI conference on human factors in computing systems, CHI 2000. ACM, New
York, pp 408-414

2. Billinghurst M (1998) Put that where? Voice and gesture at the graphics interface. ACM
SIGGRAPH Comput Graph 32(4):60-63

3. Boritz J, Booth KS (1997) A study of interactive 3D point location in a computer simulated
virtual environment. In: Proceedings of the ACM symposium on virtual reality software and
technology, VRST’97. ACM, New York, pp 181-187

4. Bryson S (1996) Virtual reality in scientific visualization. Commun ACM 39(5):
62-71

5. Conner DB, Snibbe SS, Herndon KP, Robbins DC, Zeleznik RC, van Dam A (1992) Three-
dimensional widgets. In: Proceedings of the 1992 symposium on interactive 3D graphics,
SI3D '92. ACM, New York, pp 183-188

6. Goldberg A, Robson D (1983) Smalltalk-80: the language and its implementation. Addison-
Wesley, Boston, MA

7. Herndon KP, Zeleznik RC, Robbins DC, Conner DB, Snibbe SS, van Dam A (1992) In-
teractive shadows. In: Proceedings of the 5th annual ACM symposium on user interface
software and technology, UIST’92. ACM, New York, pp 1-6

8. Hinckley K, Pausch R, Proffitt D (1997) Attention and visual feedback: the bimanual frame
of reference. In: Proceedings of the 1997 symposium on interactive 3D graphics, SI3D ’97.
ACM, New York, pp 121-126

9. Hubona GS, Wheeler PN, Shirah GW, Brandt M (1999) The relative contributions of stereo,
lighting, and background scenes in promoting 3d depth visualization. ACM Trans Comput-
Hum Interact 6(3):214-242

10. Kok AJF, van Liere R (2004) Co-location and tactile feedback for 2d widget manipula-
tion. In: Proceedings of IEEE virtual reality 2004, VR’04. IEEE Computer Society Press,
pp 233-234

11. Krum DM, Omoteso O, Ribarsky W, Starner T, Hodges LF (2002) Evaluation of a multi-
modal interface for 3D terrain visualization. In: Proceedings of the conference on visualiza-
tion’02. IEEE Computer Society Press, pp 411-418

12. LaViola JJ (2000) MSVT: A virtual reality-based multimodal scientific visualization tool.
In: Proceedings of the third IASTED international conference on computer graphics and
imaging, pp 1-7

13. Leigh J, Rajlich PJ, Stein RJ, Johnson AE, DeFanti TA (1998) LIMBO/VTK: A tool for
rapid tele-immersive visualization. In: CDROM proceedings of IEEE visualizaton *98

14. Mine MR, Brooks FP Jr, Sequin CH (1997) Moving objects in space: exploiting proprio-
ception in virtual-environment interaction. In: Proceedings of the 24th annual conference
on computer graphics and interactive techinques, SIGGRAPH’97. ACM/Addison-Wesley,
pp 19-26

15. Mulder JD, van Liere R (2002) The personal space station: bringing interaction within
reach. In: Proceedings of the virtual reality international conference, VRIC 2002,
pp 73-81

16. Rajlich P, vtkPipeline.tcl. http://brighton.ncsa.uiuc.edu/~prajlich/vtkPipeline

218 A.J. F. Kok, R. van Liere

17. Schindler E, Kok AJF, Terken JMB (2005) Evaluation of input modalities for interaction
tasks supporting 3D object manipulation. In: Proceedings of the ICMI’05 international
workshop on multimodal interaction for the visualization and exploration of scientific data,
pp 18-25

18. Schroeder WJ, Martin KM, Lorensen WE (1996) The design and implementation of an
object-oriented toolkit for 3D graphics and visualization. In: Proceedings of the 7th confer-
ence on visualization’96. IEEE Computer Society Press, pp 93—-100

19. Schroeder W, Martin K, Lorensen B (2002) The visualization toolkit, an object-oriented
approach to 3D graphics (3rd edn). Kitware Inc., New York

20. Shamonin D, VtkCave. http://staff.science.uva.nl/~dshamoni/myprojects/VtkCave.html

21. Sharma R, Zeller M, Pavlovic VI, Huang TS, Lo Z, Chu S, Zhao Y, Phillips JC, Schulten K
(2000) Speech/gesture interface to a visual-computing environment. IEEE Comput Graph
Appl 20(2):29-37

22. Shaw C, Liang J, Green M, Sun Y (1993) Decoupled simulation in virtual reality with the
MR toolkit. ACM Trans Inf Syst 11(3):287-317

23. Taylor II RM, Hudson TC, Seeger A, Weber H, Juliano J, Helser AT (2001) VRPN: a
device-independent, network-transparent vr peripheral system. In: Proceedings of the ACM
symposium on virtual reality software and technology, VRST '01. ACM, New York, pp 55—
61

24. van Dam A, Forsberg AS, Laidlaw DH, LaViola JJ, Simpson RM (2000) Immersive VR for
scientific visualization: a progress report. IEEE Comput Graph Appl 20(6):26-52

25. van Liere R, Martens JBOS, Kok AJF, van Tienen MHAV (2005) Interacting with molecular
structures: user performance versus system complexity. In: Virtual environments 2005, IPT-
EGVE 2005. Eurographics Association, pp 147-156

26. van Liere R, Mulder JD (1999) PVR—an architecture for portable vr applications. In: Vir-
tual environments '99, EGVE *99. Eurographics Association, pp 125-135

27. van Reimersdahl T, Kuhlen T, Gerndt T, Henrichs A, Bischof J (2000) ViSTA: a multimodal,
platform-independent vr-toolkit based on WTK, VTK, and MPI. In: Proceedings of the 4th
international immersive projection technology workshop.

28. Vilanova A, Berenschot G, Pul, CV (2004) DTI visualization with streamsurfaces and
evenly-spaced volume seeding. In: Proceedings of the joint Eurographics — IEEE TCVG
symposium on visualization, VisSym’04. Eurographics Association, pp 173-182

29. Wanger LR, Ferwerda JA, Greenberg DP (1992) Perceiving spatial relationships in
computer-generated images. IEEE Comput Graph Appl 12(3):44-58

Author Biographies

Arjan J. F. Kok is an assistant professor at the Depart-
ment of Computer Science at the Open University of the
Netherlands. He studied Computer Science at the Delft
University of Technology, The Netherlands. He received his
Ph.D. from the same university. He worked as a Scientist
for TNO (Netherlands Organization for Applied Scientific
Research) and as assistant professor at the Eindhoven
University of Technology before he joined the Open
University. His research interests are visualization, virtual
reality, and computer graphics.

A multimodal virtual reality interface for 3D interaction with VTK 219

Robert van Liere studied Computer Science at the Delft
University of Technology, the Netherlands. He received
his Ph.D. with the thesis “Studies in Interactive Scientific
Visualization” at the University of Amsterdam. Since 1985,
he has worked at CWI, the Center for Mathematics and Com-
puter Science in Amsterdam in which he is the head of CWTI’s
visualization research group. Since 2004, he holds a part-
time position as full professor at the Eindhoven University
of Technology. His research interests are in interactive data
visualization and virtual reality. He is a member of IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

