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Abstract In this article, we focus on distributed Apriori-based frequent itemsets mining.
We present a new distributed approach which takes into account inherent characteristics of
this algorithm. We study the distribution aspect of this algorithm and give a comparison of the
proposed approach with a classical Apriori-like distributed algorithm, using both analytical
and experimental studies. We find that under a wide range of conditions and datasets, the per-
formance of a distributed Apriori-like algorithm is not related to global strategies of pruning
since the performance of the local Apriori generation is usually characterized by relatively
high success rates of candidate sets frequency at low levels which switch to very low rates at
some stage, and often drops to zero. This means that the intermediate communication steps
and remote support counts computation and collection in classical distributed schemes are
computationally inefficient locally, and then constrains the global performance. Our perfor-
mance evaluation is done on a large cluster of workstations using the Condor system and its
workflow manager DAGMan. The results show that the presented approach greatly enhances
the performance and achieves good scalability compared to a typical distributed Apriori
founded algorithm.
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1 Introduction

Mining frequent itemsets is at the core of various applications in the data-mining field. The
best known such task is the association rules finding. Since its inception, many frequent
itemset mining algorithms have been proposed in the literature [1-5], etc. Many of them are
related to the Apriori approach. Basically, frequent itemsets generation algorithms analyse



the dataset to determine which combination of items occurs together frequently. For instance,
considering the commonly known market basket analysis; each customer buys a set of items
representing his/her basket. The input of the algorithm is a list of 7 transactions giving the sets
of items, among / items, in each basket. For a fixed threshold support s, the algorithm deter-
mines which sets of items, of a given size k, are contained in at least s of the ¢ transactions
or baskets.

Specifically, we are focusing on mining frequent itemsets on distributed datasets over
the grid. Indeed, huge amount of datasets are naturally distributed over different geographic
locations. Furthermore, grid technologies have recently emerged as a de facto standard for
distributed computing. A large amount of scientific communities are using available distrib-
uted facilities to share, manage and process large scale datasets and applications. Grid-based
approaches are then motivated by the inherent distributed nature and by the challenge of
developing scalable solutions for data-mining applications, which are highly computation-
ally expensive and data intensive, taking into account the constraints related to the analysis
of these massive distributed datasets on these environments. Many high-level distributed and
grid-based knowledge discovery and data-mining systems have been, or are being, proposed
leading to the need of effective high-level algorithmic approaches. This article introduces the
problem of Apriori-based frequent itemsets mining of large distributed collections of datasets
over the grid and presents a well-adapted distributed approach for this purpose, based on both
analytical and experimental approaches.

The analytical part of this article has a performance analysis of the Apriori task under a
parameterised model, and a network performance model based on LogP. Each local dataset
portion has a certain number of candidates at each generation level. This is the main fac-
tor that determines how much a classical-distributed implementation is communicating, in
addition to the main factor on how much the algorithm will do locally. The worst-case work
and communication needed by a classical distribution of the Apriori algorithm can be expo-
nential in the size of the input. Considering the case where every transaction, in every node,
contains every item, the algorithm must output and may communicate each subset of the /
items, at each level. This can be due to remote support counts collections for global pruning
purposes. In this case, the communication steps are completely unnecessary. We will show
that local pruning strategies are mostly sufficient and that intermediate global phases do not
bring enough useful information, and performance constraining. We will give analytical for-
mulations of the presented approach and a classical Apriori founded distributed algorithm,
namely the fast distributed mining (FDM) of association rules algorithm, proposed in [6]
and [7].

The experimental part of the article gives performance evaluations and various factors
estimations for the performance models. Two large datasets are tested, a synthetic dataset
generated using the IBM Quest generation code and a census dataset available from the UC
Irvine KDD Archive, and derived from the public use microdata samples (PUMS) dataset.
Conclusions from experimental datasets will give understanding of the amount of work done
by the Apriori algorithm in both cases, and define bounds of the factors and parameters
described in this article. The main factor, leading our reasoning, is how close are the candi-
date sets at each level corresponding to both approaches. This is also related to the success
rate, which is usually high for small values of the level /, and low after a given value of /,
and often drops to zero.

Considering the performance behaviour of the Apriori generation task will then lead to
consider the intermediate communication steps as computationally inefficient in comparison
to the related overheads which are cumulated at each level. We will show that this process can
be done on a single phase at the end of local countings much more efficiently. Based on these



observations, the proposed approach has two phases: the local mining phase, and the global
counts collection phase. In the first phase, we consider only a local pruning strategy. In the
second phase, each node asks for remote support counts of a collection of locally frequent
itemsets from the other nodes. This phase is carried out in few passes. All globally frequent
itemsets from size 1 to k can be deduced by considering global support counts collections
using a top-down search. The overhead related to multiple synchronisation and communi-
cation phases in classical approaches can then be highly reduced using a single collection
phase with much fewer passes. While our performance study focuses on the Apriori-based
distribution, we believe that the key reasoning of this study will hold for many other frequent
itemsets generation tasks, since it is partly related to the dataset properties.

The rest of the article is organized as follows. The next section surveys related work in
parallel and distributed frequent itemsets mining. In Sect. 3, we give the problem definition,
then in Sect.4, we present the algorithm and the analytical analysis for both the proposed
approach and the FDM algorithm. In Sect. 5, we present the experimentation setup. The fol-
lowing section presents the performance evaluation as well as factors bounds related to the
proposed models. Finally, concluding remarks are made in Sect. 7.

2 Related work

Frequent itemsets generation plays an important role in a range of tasks in data mining includ-
ing association rules, correlations, causality, episodes, among others. Most of the existing
approaches were dedicated to parallel systems using standard message passing communica-
tion interfaces. These include, among others, the count distribution (CD) approach in [8],
optimized distributed association rule mining (ODAM) [9], the FDM approach [6,7], the
CCPD approach in [10] and [11], parallel FP-Growth [12], etc. In this section, we will not
be considering approaches that need a global view, the dataset replication, or dataset portion
movements since they are not suited for loosely coupled environments.

Most of the following approaches assume that the datasets are horizontally partitioned
among processes. The CD algorithm is a straightforward parallelisation of the Aprior-
i algorithm [1]. In order to obtain global counts, local counts are exchanged after each
process has generated its local candidate itemsets. This approach was enhanced by the
FDM algorithm which generates a smaller number of candidate itemsets. It is intended
to reduce communication costs by combining different strategies of local and global pru-
nings for the candidate sets generation. It implements some message optimization tech-
niques that require an assignment function, which can be a hash function, for selecting
polling nodes. However, this can generate an extra computational cost and increase com-
munication overhead caused by the global support counts requests from polling nodes when
the number of nodes is large. Another Apriori-based variant is proposed by the ODAM
algorithm. It intends to minimise the candidate itemset generation cost by eliminating all
infrequent items after the first pass to efficiently generate candidate support counts in latter
passes, and adopts the FDM pruning technique for intermediate candidate itemsets genera-
tion.

In the group of Apriori-based algorithms, we can also cite the CCPD approach [11], target-
ing shared-memory machines and proposing locality enhancing and false sharing reducing
policies, and the distributed decision miner (DDM) approach and its variants [13]. This latter
approach introduces a distributed decision protocol in each round in order to determine the
set of globally frequent itemsets. It aims to reduce the communication needs and enhance
scalability compared to the previously quoted Apriori founded algorithms.



Other distributed approaches are based on different sequential algorithms, such as the
FP-Growth approach [12], or the Sampling algorithm [14]. A combination of the latter algo-
rithm and the DDM approach, called D-Sampling, was proposed in [15]. In addition, many
approaches are dedicated to maximal frequent itemsets generation. Some research works in
maximal frequent itemsets mining are reported in [16] and [17]. However, there are only
few algorithms adapted to nowadays distributed systems such as the grid. We can cite the
GridDDM approach [18], which also mines maximal frequent itemsets from distributed data-
sets. It is based on a sequential maximal miner locally followed by a global mining phase.'
Another approach for large scale association rules mining is proposed in [19]. It proposes
a majority vote protocol acting in an asynchronous way over dynamic datasets. There exist
some papers summarising the work that has been done in this area, such as [20] and [21] by
Zaki. A relatively more recent overview is given in [22]. Although the authors consider a
general survey, many aspects apply to the frequent itemsets mining.

Even some of these approaches were focusing on minimising the communication costs,
most of them are under an implicit homogeneity hypothesis since they still need multiple
synchronisation and communication phases between processes. Our aim is to propose and
test a well-adapted approach dealing with constraints related to large distributed environ-
ments and their underlying tools. Indeed, we are designing and implementing the ADMIRE
framework [23,24] which is a data-mining engine for the grid. It aims to provide grid-based
data-mining techniques and implements higher knowledge map representations of mined data
by both locally and globally. Similar grid-based projects and frameworks addressing this area
include Knowledge Grid [25], Discovery Net [26], Grid Miner [27], and TeraGrid [28]. These
frameworks aim to offer a high level abstractions and techniques for distributed data mining
and knowledge extraction from data repositories and warehouses available on the grid. They
often use basic grid mechanisms, mainly provided by existing grid environments, to build
their specific knowledge discovery services. However, beyond their architecture and design,
the data analysis and management policies, the data integration or placement approaches,
or the underlying middleware and tools, the grid paradigm needs efficient and well-suited
algorithmic approaches to optimize their performances, which is the main motivation of this
work.

3 Problem definition

In this section, we define the frequent itemsets generation problem and its properties, and
the underlying sequential method, i.e the Apriori algorithm. The proposed approach and the
formalism that describes will be given in the next section.

3.1 Frequent itemsets mining

The frequent itemsets generation problem can be described as follows. Let X = {x1, 2, .. .,
T, )} be aset of n items, and let W = {1, 12, ..., t;,} be a set of m transactions, where each
transaction ¢; is a subset of X. An itemset x of size k is known as a k-itemset, and the support
of xis Z’;’zl (I : z € tj),1.e. the number of transactions in W that have x as a subset, denoted
as 0,(W). The frequent itemset mining task is to find all z € W with support greater than
a user-specified minimum value. A frequent itemset is maximal if it is not a subset of any
other frequent itemset.

I Note that the GridDDM approach is not considered for comparison because it is not Apriori-based (which
is the focus of this article).



As mentioned before, many existing frequent itemset generation algorithms, both sequen-
tial and distributed, are related to the Apriori algorithm [1]. Some sequential Apriori-based
approaches in centralized datasets are reported in [2,4,5,29]. The Apriori algorithm exploits
the observation that all subsets of a frequent itemset must be frequent. This algorithm does
the following computation:

1. it starts with the generation of frequent 1-itemset, then iterates steps 2 and 3,

2. generate candidates at level [ from frequent itemsets at level [ — 1,

3. examine the data to determine whether the candidate sets meet the user-defined mini-
mum support threshold. Remember the cases where the answer is positive, i.e. frequent
[-itemsets, and go to the step 2.

3.2 Distributed frequent itemsets mining

The distribution aspect can be described as follows. Let W be a dataset with D transactions
partitioned horizontally over M nodes; {s1, ¢2, ..., ¢ }. Let the size of the partition ¢; be
D;.Leto, (W) and 0, (g;) be the respective support of the itemset x in W and ¢;. For a given
minimum support threshold sy, an itemset x is globally frequent if o, (W) is greater than
sw x D, and is locally frequent at a node N; if its support 0,(g;) is greater than sy x D;.
Here are two basic properties:

Property 3.1 A globally frequent itemset must be locally frequent in at least one node.

Proof Let z be an itemset. If 0, (g;) is smaller than sy x D; fori =1, ..., M, then o, (W)
is smaller than sy x D (since o, (W) = Zlﬁil o,(ci)and D = Zlﬁil D;), and x cannot be
globally frequent. Then, if x is globally frequent, it must be locally frequent in at least one
node N;. O

Property 3.2 All subsets of a globally frequent itemset are globally frequent.

Proof Let x be an itemset, and let 2’ be a subset of x. If o, (W) is smaller than sy x D,
then o, (W) is also smaller than sy x D (since 0, (W) < o,,(W)), and = cannot be globally
frequent. Then, if = is globally frequent, all its subsets must be frequent. O

4 Algorithm

Basically, our approach computes the required size k of frequent itemsets locally in each site
without intermediate support counts exchange. All globally frequent itemsets are deduced at
the end of the computation phase by considering:

1. atthe first pass, the global support counts collection for frequent itemsets of size k and all
smaller frequent itemsets in each node that are not subsets of any greater size (maximal
ones), and

2. subsets of locally frequent itemsets that fail the global frequency test in the following
passes.

Note that a local pruning implicitly applies during these passes. Indeed, while generating
subsets, some of them can become globally large by adding support counts of the different
higher size itemsets from where they have been derived.

This distribution scheme is motivated by the performance behaviour of the basic genera-
tion task using Apriori, and the statement that is in widely distributed systems, such as the



grid, it is highly recommended to avoid multiple synchronisation and communication steps
as much as possible. Indeed, the overhead due to the communications can be very large for
dense datasets or small minimum supports. The pseudo-code is presented in Algorithm 1.
The loop ‘for’ (in line 1) computes locally frequent itemsets in each of the M nodes. LL;
represents the locally frequent itemsets on a node N;. The initial LL; sets are generated by
the AprioriGen function (in line 2), then replaced (in the following iterations) by the subsets
of the locally frequent itemsets that fail the global frequency (line 18). The L; set represents
the itemsets that pass the global frequency test on a node N; (which is updated in line 17).
Then, while the LL; set on N; is non empty (line 5), it is sent for remote support counts
computation and collection (loops ‘for’ in lines 6 and 9). The following section gives the
analytical analysis of our approach.

Algorithm 1. GFM (Grid-based Frequent itemsets Mining).

Imput :g¢;,i=1,...,M,sy and k
Output: L, globally large itemsets of size 1 to k

1 fori =1to M do

2 | AprioriGen(gj,k);
end

4 fori =1to M do

5 while LL; # () do
//send locally frequent itemsets
6 for j=1toM (i # j)do
7 | Send(LL;, j);
end
//remote computation
9 for j=1toM (i # j)do
10 ReceiveRemoteSet (i, LLj);
11 LocalSupport (LLj )
12 SendSupportCounts (i, j);
end
//support counts reception
14 for j=1to M (i # j)do
15 | ReceiveRemoteSupports (j);
end
//compute globally large and deduce
//subsets from globally failing itemsets
17 L; += ComputeGloballyLarge();
18 LL; = SubsetsGloballyFailled();
end
end
21 L=UM, L

4.1 Analytical analysis

This section presents the analytical study of this article. It has a performance analysis of
the local Apriori task and the communication needs under a parameterised model, for both
approaches: a typical distribution scheme, represented by the FDM algorithm, and the pro-
posed approach. Recall that our aim is to show that intermediate global pruning steps are
computationally inefficient in local nodes and affect the global system performance. This
is related to the performance behaviour of the Apriori generation described here. This also



must hold for other frequent itemsets mining techniques since it is also related to the datasets
properties and/or the support thresholds.

The success rate at each level is the main factor determining the number of candidates at
the next level. Besides, this latter parameter determines the amount of work that the algorithm
will do. Interesting upper bound combinatorial analysis of this parameter is given in [30].
Experiments show that this bound is exact for some distribution, and that is close to the exact
value in many cases. We will consider the upper bound of the amount of work done by the
Apriori task at each level and each node. This is proportional to the global candidates at the
level [ (denoted by GC; ;, i representing the computing node) for the FDM approach, and
the local candidates at the level [ (denoted by LC;; at a given node N;) for the proposed
approach. The main insight of our approach is that the set GC; ; obtained using a global
pruning strategy is very close to the set LC; ; obtained only by local pruning. This leads to
the fact that global pruning strategies (and the related multiple synchronisation steps) are
performance constraining, and that this can be done in one phase at the end of the counting
phases much more efficiently.

Consider now the notation of the set GC; ; as GS; ; + GFa; ;, which represents the sum of
the number of itemsets that are success, and the number of the itemsets that fail the frequency
test, at a given level /. This set also represents L F; ;, the set of locally frequent itemsets at
the level /. Consider the same notation for the set LC; ; as LS; ; + LFa; ; associated with the
proposed approach. Then, let GC;4; ; = GS;41,; + GFa;41; be the number of candidates
at the level / + 1. Now, consider the global view of a typical distributed approach, and 1; ;
the number of items involved at the level / on the node N;. On the one hand, by definition,
each candidate on level / 4 1 is associated with / 4- 1 frequent itemsets at level /, denoted by
GC41,; (I 4 1). On the other hand, this number is bounded by GS; ; (1;,; — ). Indeed, there
are at most /; ; — [ candidates generation at the level / + 1 if the number of items that occurs
at the level / is I; ;. Then we have:

GCip1,; (U+1) <GS;; (U1 = 1)

I —1

GCrpry < LD Gg),
[+1

which gives

I i—1

' I —1

Z (;,z 1 ) GS; ;

=0 +

as the upper bound of the amount of work. This can be associated with the global view of
any distributed Apriori-based algorithm. However, we have usually GS;; < LS;; (since
GC;; < LG ;), then we introduce the factors P; and Py, (related to items) and rewrite GS; ;
as P, LS; ;. Thus, we can rewrite the sum above as:

Ii—

1
P I —1
Z ( JIRIN! )Pl LS[,'
=0 I+1 ’

which represents local upper bounds related to both distributed approaches with P; and Py,
equal to 1 for the proposed approach. The lower bounds for P; and P;, will be evaluated by
experiments. The following models are mainly based on these amounts.

We also evoked the notion of critical or switch level which occurs in almost all experi-
mental cases independently from the dataset types. Indeed, there is a value of / such that the
success rate is relatively high until this level, but lower and usually drops to zero afterwards.



To take into account, the variations that occur between various datasets, we can define a
factor F; to quantify the changes in comparison to the bound defined before. If we use /.
to be the critical level, F; is close to 1 if [ < [, and close to 0 otherwise. The lower and
higher bounds of F; in between, for the two cases, can be evaluated by experiments for a
given dataset. However, this factor is a property of the dataset, and since the critical level is
the same for both approaches for a given dataset, it will not be considered as a metric in the
following models.

Now, in order to explain the network part of the proposed models, we present general
schemes of both approaches. Basically, the FDM approach does the following computation:

Step 1 Candidate sets generation, which are the locally frequent set at each node, using the
Apriori algorithm,

Step 2 Support counts exchange, which consists of two communication phases, and a com-
putation phase for remote supports countings at each node, denoted by RS, ; at the level / on
the node N;,

Step 3 Generate the globally frequent itemsets at each node, of the current level, accord-
ing to the collected remote support counts, followed by their broadcast. The steps 1 to 3 are
repeated until reaching the requested size k. Note that an extra communication cost can occur
at related to polling sites selection which is not considered for simplicity.

For the proposed approach, iterations are local rather than global since no global pruning
is considered. The general scheme is as follows:

Step 1 Apriori generation until reaching the requested size k,

Step 2 A global support counts exchange phase. This consists of a few communication and
computation passes for remote support counts collection, denoted by RSg; ;. It generates
globally frequent itemsets at each node using a top-down search.

As stated earlier, the network part is captured by the LogP model. This model is motivated
by the current technological trends in distributed computing towards large grained networks.
It has been shown to model accurately a variety of systems including grid-like environments.
The main parameters of this model are; L an upper bound on the latency, o the overhead of
handling a message, g the gap (the reciprocal corresponds to the available bandwidth per
processor), and P the number of modules or resources available. Using these metrics, if we
use k to be the requested level, the communication cost for the classical distribution is:

k P—1
Crpm = 2(2 P> (GCpig+L*+ 0))

=1 i=1

In the case of our approach, this cost is:

P—1 T P—1
Coim =2 P Z (LFeig+L*+0)+ (2P Z (SFl,ig+L2+o))
i—1 I=k—1 i—1

where SF; ; represents subsets of global candidates that fail the frequency test at the earlier
pass. Recall that GC; ; can be noted as P; LC; ; using the factor P; introduced before, and



that LF; ; represents also the set GCy ; generated locally. Then, the previous formalism leads
to the following overall cost for the FDM distribution:

I —

1
(P I1i —1)

Z Fy Z L~ PLS;; | +RS;; | + Crpm (1)

=1 =1 1=0 I+1

E

~

and for the proposed approach:

k I;i—1

L X
SIS (e %—1” LSii | + D RSgii | + Corm 2)

i=1 \/=I 1=0 I=k

The upper and lower bounds of the factors P, and P;, will be defined by experiments, as
well as the upper bound of the amount of work at each level. We will evaluate the amount
x [used in Cgpm and Eq. (2)], where k — x represents the number of passes in GFM for the
tested datasets (in comparison to k passes for the FDM approach). We will also evaluate a
lower bound for the difference factor between the amounts GC; ; and SF ; related to support
counts collections for the two approaches. This gives the amount of communication each
algorithm will do. Also, since the factor Fj is a property of the dataset and is appearing at
the same level in the comparison, the models can be relaxed by ignoring it. Indeed, a given
dataset will have the same properties and behaviour in both cases.

5 Experimentation setup

In this section, we briefly present the workflow concept, and the grid middleware (and its
workflow manager) used in our implementations. Then, the proposed approach and the FDM
algorithm are implemented, tested, and evaluated using this environment, and two widely
used synthetic and real world datasets.

5.1 Workflow management

Several significant research works have been conducted in recent years to automate applica-
tions workflow management and execution on the grid. The concept of workflow or process
arrangement is extremely important for distributed applications within the grid context. A
large number of tools, with different and a large range of capabilities, have been implemented
and used, including the Condor’s DAGMan meta-scheduler [31], Askalon [32], CoG [33],
YvetteML [34], GridAnt [35], among many others. Description languages for declaring the
jobs composition have also been proposed, and many of them have an XML-based modeling.
The architecture is usually composed of a user interface or language tools and a workflow
execution engine, which controls the execution on the grid. In the following, we briefly
present the Condor system and its workflow manager used in our implementation.

5.2 Condor/DAGMan

The Condor system is a distributed batch system providing a job management mechanism,
resource monitoring and management, scheduling and priority schemes. The Condor system
provides a ClassAds mechanism for matching resource requests and offers a checkpointing
and migration mechanisms. It provides also job management capabilities for the grid through



Condor-G (using the Globus Toolkit) and Condor-C, which allows jobs to be moved between
machines job queues.

DAGMan is a directed acyclic graph representation manager, which allows the user to
express dependencies between Condor jobs. It allows the user to list the jobs to be done with
constraints on the order through several description files for the DAG and the jobs within the
task graph. It also provides fault—tolerant capabilities allowing to resume a workflow where it
was left off, in the case of a crash or other failures. However, the scripting language required by
DAGMan is not flexible since every job in the DAG has to have its own submit description file.

5.3 Experimentation platform

The experiment platform is a cluster of workstations connected by a Gigabit Ethernet. It
consists of 312 bi-processors AMD-64 opteron 2GHz and 2 GB of memory. This cluster
is one of the nine nodes of the Grid’5000 platform [36] which is a large scale computing
environment for grid research. It provides a set of control and monitoring tools allowing users
to make reservations, and configure a specific environment, i.e. required software packages
and/or operating system.

6 Performance evaluations

In this section, we will present bounds estimation and experimental evaluations of the
described approaches. We used a sample from the PUMS census dataset and a generated
synthetic dataset using the IBM Quest code. This latter models supermarket basket data. It
has been used in several frequent itemsets generation studies [3,15,37], etc.

It is important to note that performance estimations of any distributed system depends on
the current experiments conditions, and a range of overheads related to the middleware and
the execution engine. This can affect the comparison. As a consequence, we will not include
some overheads in the reported execution times to keep the comparison uniform, such as the
job preparation and submission overhead, which are variable, and sometimes very excessive
under some grid middleware. Indeed, while the performance problem is usually a complex
scheduling issue in the case of complex applications, previous large scale distributed imple-
mentations, including a distributed variance-based clustering algorithm [38], showed that it
is more related to the underlying tool in the grid since basic jobs were mostly organized in
large parallel loops. Furthermore, a simple workflow executed locally (in a laptop, Genuine
Intel Centrino Duo 2 GHz and 2 GB memory) and containing only two small jobs under the
Condor/DAGMan system, shows that the preparation process takes in average about 295s
(about 5 min). This represents the time interval between the workflow launching and the first
job submission. However, this does not seem to be related to the size of the DAG and can be
variable.

6.1 Bounds estimation

In this section, we compute the bounds of the factors described in the analytical study, and
representing the basis of the comparison. Based on Eqgs. (1) and (2) in Sect. 3.3, we will show
that the estimated computational gain in the local Apriori generation process for the FDM
version, resulting from lower candidate sets sizes, is negligible in comparison to the genera-
tion cost of the proposed approach. Also, the top-down global frequency generation is much
less costly in terms of communications and synchronisations, and is more computationally
efficient.
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Fig. 1 Generated candidate sets using both approaches on different processes

In the following, we will give the experimental bounds of the factors P; and Pj, for the
considered datasets. Besides, we will estimate the communication costs at each level on the
basis of the observed sizes of the generated candidate sets, i.e. the sets GC;; and SFj; for
FDM and GFM, respectively. We will give experimental estimations of the gain in the com-
puting time in the local Apriori generation process (related to the factor P;). We will also
discuss the process related to remote support counts computations.

Figure 1 shows plots of different candidate sets on different nodes using various support
thresholds, for both datasets. The lower bound of the factor P; is 0.78. This value is close to
1 in most cases, and its average value is 0.93. We will consider the same factor for both the
candidate sets sizes and success rates since it is almost the same. The factor Pj, follows the
same behaviour with a lower bound equal to 0.87, and the average value is 0.94. The resulting
difference in the experimental computing cost of the local Apriori generation is insignificant
(of the order of seconds in all cases). Comparisons of the average communication needs
(Crpm and Cgpym defined in Sect. 3.3), related to the global strategies of both approaches are
given in Fig. 2. It shows that the global strategy of the GFM approach is much less consuming
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in terms of communication compared to the FDM approach. Indeed, GFM needs only two
communication passes for both datasets. The gain factor reaches 82%, and the lowest rate is
8% while considering the worst execution cases of the GFM algorithm related to small values
of k for the synthetic dataset. Note that the input/output parameter was not considered in the
analytical model for simplicity. This is more costly in the case of the FDM approach since the
proposed approach generates less important overall sets for remote support counts collection.
The next section will give details about the conducted tests and the overall execution times.

Bounds evaluation presented in this section specifically show that: (1) distributed imple-
mentations of the Apriori algorithm do not need global pruning strategies, and therefore,



Table 1 Average execution

times, EDM versus Support Ratio Size (x100) FDM GFM Factor

GFM—synthetic dataset (%) (%)
1 1:1 0.5 188 172 8
2 1:1 0.5 36 31 13

(2) classical distribution schemes are less more efficient than the adopted global strategy in
our approach, starting from the requested size and using a top-down search, which in our
case led to only two communication passes per execution. Note that remote support counts
computations is a very costly process in FDM, specially in lower levels where the success
rates are high. This process was reduced to the minimum in our approach since only two
remote computation passes are required.

6.2 Experimental results

We present now the execution setup of the two implementations, GFM and FDM. The dataset
collections are composed of up to 10° transactions distributed by size ratios of 1:1 to 1:10.
This local execution can be block-based, i.e. the local portions can be partitioned into blocks
beforehand in the presence of out-of-core datasets to avoid any thrashing effect, which can
drastically degrade the performance. The support thresholds are set from 10 to 20% for the
PUMS dataset, and 1 and 2% for the synthetic dataset. The average transaction size is 20 for
the synthetic dataset, and 30 for the census dataset. The size of blocks can be different depend-
ing on the available memory, the threshold support, the number of items, etc. However, since
the testbed was dedicated, and depending on the nature of the used datasets, these amounts
were fixed (as upper bound sizes) to 10,000 transactions for the synthetic dataset and about
5,000 for the census dataset.

First, we perform tests with homogeneous distributions, i.e. size ratio equal to 1:1. Note
that our approach consists usually of few parallel loops, with at most two communication
passes in all tested cases. Whereas, if k is the requested size of frequent itemsets, the FDM
approach consists of k communication steps for support requests, k + 1 parallel activities
for Apriori generation processes, and k parallel activities for remote supports computation.
For this first set of tests, the datasets size is 0.5 x 10° transactions, distributed over 50—100
CPUs. In the DAGMan workflow framework, each job is represented by a submission file
and all dependencies are represented by a DAG file.

We consider the generation of frequent itemsets to the maximal size for both datasets.
The average processing times for the described sizes are given in Tables 1 and 2. These show
a better performance by up to 79% of the computing time for the GFM version. Note that,
in addition of the multiple communication and synchronisation steps in the FDM version,
the remote support computations at the different exchange stages are also quite computa-
tionally expensive, and reach 21% of the whole processing time presented here. This highly
constrains the performance, specially in lower generation levels with high success rates. The
gain factor is less important in the case of the synthetic dataset (up to 13%) because of less
generation stages, i.e small maximal frequent itemsets size. Indeed, k reached only 4 for the
synthetic dataset, against 9-11 (depending in the support threshold) for the PUMS dataset.
In addition, depending on the underlying tools used for the implementation, and taking into
account all kinds of overheads in the grid hierarchy, this will increase the gain of the proposed

2 This means that local portions can be up to ten times larger in some nodes.



Table 2 Average execution

times EDM versus GFM—PUMS Support Ratio Size (x10°) FDM GFM Factor

dataset (%) (%)

10 1:1 0.5 2,305 827 64

20 1:1 0.5 857 180 79
tTlfnbel: v?/i tﬁe}f:tgei(fgx:;;éin Support  Ratio  Size (x10%) FDM GFM Factor
distribution—synthetic datasets (%) (%)

1 1:5 0.5 586 523 10

2 1:5 0.5 163 149 8

1 1:10 1 1,342 1,181 12

2 1:10 1 314 286 9

Table 4 Average execution

. . 6
times with a heterogeneous Support Ratio Size (x10°) FDM GFM Factor

distribution—PUMS dataset (%) (%)
10 1:5 0.5 3,917 1,371 65
20 1:5 0.5 2,297 508 77
10 1:10 1 9,658 3,090 68
20 1:10 1 5,340 1,026 81

approach since less communication and synchronisation stages are required, in addition to
lower number of jobs in the DAG. We will briefly discuss the overhead issue later on.

In the following tests, we used a size ratio up to 1:10 for the datasets distribution. Indeed,
FDM behaves badly in this case since the cost related to the waiting time, at each synchro-
nisation step, for the slowest or the most overloaded node can be of factor k — 1 between
the two versions. The local dataset portion sizes are ranging between 10,000 and 100,000
transactions (sizes generated randomly), with similar sizes of blocks as described earlier. The
average processing times to reach the maximal size of frequent itemsets are given in Tables 3
and 4. For these tests, the GFM algorithm improves the execution performance by 8-81%
compared to the FDM implementation. On the one hand, the results show that the gain factor
is more important in the case of more important values of the generation level k as quoted
before. On the other hand, uneven dataset distributions do not greatly increase the gain factor
in our case because of the test bed homogeneity.

6.3 Discussion

Our implemented approach within a workflow environment for the grid aims to reduce to
the minimum task synchronisations and data communications. The reasoning behind this
approach is based on the inherent nature of the generation task itself described in this arti-
cle. The comparison between the presented approaches shows the effectiveness of the GFM
algorithm and give good targets for future versions and evaluations.

Another important aspect in the design of grid-based algorithms is the scalability issue,
i.e., how to use the increasing amounts of processing resources in a memory and bandwidth
constrained environment? Most existing approaches for frequent itemsets generation need to



be adapted locally to tackle the memory constraint issues, and do not take into account the
underlying environment nature. The tests show that in the case of increasing sizes and num-
ber of processes, the data structure related to the large amount of remote supports exchange
is memory constraining and need explicit input/output management for local intermediate
countings. This is more pronounced in lower levels. The proposed approach is more scal-
able in these cases since the counting iterations are local and do not take into account the
large number of remote condidate sets. Current large distributed systems and the related
constraints put then pressure on the design of effective distributed algorithms. Our approach
aims to tackle some of these issues based on the main features of the underlying task using
a performance model and different types of datasets.

As for the execution overheads, important latencies related to the underlying tool were
noticed, such as the job preparation and submission or task scheduling. These are of prime
importance and can be the first source of efficiency loss, in addition of affecting comparison
results. However, we did remove them from the reported computing times, which do not
include these specific middleware related overheads. Note that latencies related to job prepa-
ration and submission were on average up to 13 times more important in the FDM approach
compared to the GFM implementation. This was expected since there are much more com-
putational stages, jobs, and synchronisations in the FDM implementation. Our evaluation
took then into account the time related to each parallel loop for the two versions including its
communication needs. The related overheads can reach up to 23% of the overall execution
time, depending on the number of levels and the number and size of jobs. The severity of some
cases, however, highlights the need of more consideration of this issue from the grid commu-
nity. Details about the hierarchy of these overheads will be more considered in future work.

7 Conclusion

In this article, we presented a performance study of distributed Apriori-like frequent item-
sets mining, and proposed a well-adapted distributed approach which leads to a substantial
improvement in the efficiency of its implementation. On the one hand, we evoked the need
of efficient distributed approaches well-suited for loosely coupled environments such as the
grid. On the other hand, based on the Apriori algorithm properties, we showed that the inter-
mediate communication steps are computationally inefficient since the global prunings do
not bring enough useful information, which consequently greatly affects the global perfor-
mance. Support counts collections passes are then much more efficient at the end of local
counting phases. This is also highly suitable in the case of uneven dataset distribution and/or
platform heterogeneity.

The proposed approach is basically intended to limit synchronisation and communica-
tion overheads, in addition to the underlying grid tools overheads. Comparisons to a typical
Apriori-like distributed approach show its effectiveness. This also attests that distributed
implementations on the grid have an essential need to avoid multiple communication and
synchronisation steps as much as possible.
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