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Abstract

Many statistical queries such as mazimum likelihood estimation involve finding the best candidate model given
a set of candidate models and a quality estimation function. This problem is common in important applications
like land-use classification at multiple spatial resolutions from remote sensing raster data. Such a problem is
computationally challenging due to the significant computation cost to evaluate the quality estimation function for
each candidate model. For example, a recently proposed method of multi-iscale, multi-granular classification has
high computational overhead of function evaluation for various candidate models independently before comparison.
In contrast, we propose an upper bound based context-inclusive approach that reduces computational overhead based
on the context, i.e. the value of the quality estimation function for the best candidate model so far. We also prove
that an upper bound ezists for each candidate model and the proposed algorithm is correct. Experimental results
using land-use classification at multiple spatial resolutions from satellite imagery show that the proposed approach
reduces the computational cost significantly.

1 Introduction

We are interested in a probabilistic statistical query to find the preeminent candidate model from a set of
candidate models using a quality estimation function. We refer to such a problem as the best candidate model
problem. Formally, it can be stated as follows: Given a set of candidate models and a function to evaluate the
quality of each candidate model, the goal is to find the best candidate model probabilistically. The evaluation of
this measure is generally very expensive and thus minimizing the computation time is a key objective.

One important example of the best candidate model problem is in classification of a spectral image, obtained from
a satellite, with domain-specific labels to produce a thematic map. Thematic maps are widely used in applications
including agricultural monitoring, land cover change analysis, and environmental assessment. Examples in land
cover change can be seen in Figure 1, where 217 square miles of Louisiana’s coastal lands were transformed to
water after hurricanes Katrina and Rita (Figure 1a); the deforestation in Brazil causing the loss of 150,000 sq. km.
of forest between May 2000 and August 2006 (Figure 1b); and urban sprawl in Atlanta, GA between 1976 and
1992 (Figure 1c).

Image classification at multiple spatial resolutions is an important application of spatial data mining. For
example, NASA’s Earth observation systems obtain a spectral image of land-use, which is then classified at multiple
resolutions. The best candidate model problem to find the best classification label can be considered as a parameter
estimation problem. Since estimating parameters at a spatial region is an important function in spatial data
mining, the best candidate model problem may be a sub-class of spatial data mining.
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Figure 1: Land Cover Change Examples. (Best viewed in color)

Numerous studies in remote sensing have been done for multi-resolution land-use classification (e.g., [5, 10, 12]).
See [16] for a detailed discussion on various methods for multi-resolution classification. A statistical method to
classify an image at varying spatial and categorical resolutions was proposed in [9]. This approach is context-
exclusive, based on using a query tree to identify each candidate model independently. The maximum likelihood is
used as a set operator among quality measures for each candidate model, thus making it necessary to analyze all
candidate models together. The result is very high computation costs to identify the preeminent candidate model.

Figures 2 and 3 gives an example of a multi-scale, multi-granular image classification based on land usage.
Figure 2 gives the input that includes a set of domain-specific labels (also called classes) logically grouped as a
hierarchy (Figure 2a), and the values of each specific class: conifer, hardwood, brush, and grass (Figures 2c-
f). The values of a specific class are derived from a synthetic remotely-sensed satellite image [9] (Figure 2b),
that has been provided in this paper for completeness. The goal is to classify each pixel in the satellite image
to one of the labels based on a quality measure called likelihood. The likelihood measure is calculated for non-
specific classes using Expectation Maximization (EM) [1] which is computationally expensive because of the large
number of iterations required until convergence. Also, multiple scales are defined implicitly in powers of 2 (i.e.,
2x2,4%x4,...,2""t x 2"~ where n is the size of the image). An example output in shown in Figure 3 having a
set of classified images at scales 1 x 1,2 x 2,4 x 4, and 64 x 64.

Calculating the likelihood of each candidate model makes the problem computationally expensive. For instance,
the approach proposed by [9], takes about 7 hours of computation time to classify an image of size 512 x 512 pixels
with 12 labels at varying spatial resolutions. About 80% of the total computation time is consumed to find the
quality measure for each candidate model. Thus, as the image size grows the computation time increases, which
makes this problem challenging.

The focus of our work is to develop a computational efficient EM based multi-scale multi-granular (MSMG)
method (see [9] for details on MSMG). In our previous paper [2], we proposed two heuristics to reduce the
computation time for the evaluation of candidate models. The first heuristic, called Limiting Factor (LF), is
based on the precision of convergence for each candidate model. As LF decreases, the computation time is reduced
due to faster convergence of each candidate model. The second heuristic, called context-inclusive heuristic (CIH),
simultaneously considers information from all models during evaluation rather than independently as in the context-
exclusive (CE) approach. Rather than executing each model till convergence and then ranks the models as in CE,
CIH evaluates all models together as it executes and exits as soon as a single model is dominant over all the others.

However, CIH may not obtain the same exact results as in CE due to the fact that each model may not fully
converge. Thus, we propose an upper bound based context-inclusive approach (UBCI) that utilizes a filter and
refine technique for each model. We provide an upper bound for each model and use this information to obtain
the same exact results as CE while still obtaining a significant savings in computation time than the CE approach.

Initial results were reported in [2], this paper makes additional new contributions:

1. We propose a novel Upper Bound based Context-Inclusive approach that finds correct classifications while
achieving a significant reduction in computation time (Section 3.2).
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Figure 2: Example Input: Class Hierarchy, Satellite Image, and values for specific classes [8] (Best Viewed in Color)

2. We prove than an upper bound exists for each model is our best candidate model problem (Section 4.1).

3. A proof of correctness is provided for our proposed approach (Section 4).

4. Experimental evaluation of synthetic and real datasets is given in terms of the number of iterations in EM
and the computation time for our proposed method.

In addition, we have made several revisions to improve its readability. For example, we provide a new section
discussing Expectation Maximization (EM), its application to our problem, and an example execution trace in
Section 2.

Scope. The following topics are out of scope in this paper: (i) the choice of using an optimal EM and statistical
models for Multi-Scale Multi-Granular (MSMG) classification, (i) the actual accuracy of the context exclusive
approach, and (iii) a comparison between MSMG and traditional approaches. Interested readers are encouraged
to see [6, 7] for more details.

Outline. The rest of the paper is organized as follows: A background on the EM algorithm and its application
to our problem is described in Section 2. Section 3 gives a detailed overview of our approach along with the major
differences with previous work. As part of our proposed approaches, we prove an upper bound exists in each
candidate model (Section 4). Experimental results to compare the previous and the proposed approach are given
in Section 5. Finally, Section 6 concludes this paper with a discussion and future work.

2 Background

This section presents a general overview of Multi-Scale Multi-Granular Image classification and its application
to the best candidate problem. Also, an execution trace example is shown.

2.1 EM-Based Multi-Scale Multi-Granular Image Classification

Satellite remote sensing provides timely and continuous coverage of the earth’s surface and has proven to be
extremely important in making thematic maps such as land cover maps. Such remote sensing data is available now
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Figure 3: Example Output: Image Classification at Multiple Scales (Please refer to Figure 2a for the legend)

at a variety of spatial scales as part of the Earth Observing System (EOS) enterprise undertaken by NASA. This
explosion of satellite data is leading to a paradigm shift in the way classification is done. Land cover classification
in remote sensing is traditionally carried out at a single spatial scale and a single categorical scale and increasingly,
the need to integrate data at multiple spatial scales, is leading to a new emphasis in classification that is both
multiscale, in the sense of being able to incorporate information across multiple spatial scales in constructing a map
and also dmultigranularin the sense that class labels of different granularity, or categorical scale, similarly co-exist
in the same map. As discussed in Ju et al. [7], multiscale and multigranular framework may improve the accuracy
of pixel-wise classification as well as impact the validation of coarse-scale land cover classification, provide an
adaptive choice of scale in correspondence with local complexities in the image as well address a problem relating
to cartographic generalization, where the objective is to best represent selected classes of features at different
map scales. Our framework provides a statistically grounded procedure for producting landcover maps that are
potentially more intuitive and visually appealing than those created using monogranular methods

In this section, we present a mathematical representation of our previous method [9]. Please use Table 1 as a
reference for the list of notations used in this section. Suppose we have digitized a spatial region into an image of
n? pixels i.e., {I; i, }& ip—1- For each pixel I;, ;,, there is a vector-valued observation x;, ;,. The landcover content
of this pixel is denoted as ¢;, 4,, and is assumed to be a member of some set of specific classes C = {1,...,C}.

A typical mono-granular probability model for a measurement x, at a pixel I, will specify the likelihood through
a class-specific density, say g(z|c), for = conditional on the underlying truth c¢. But the multiscale/multigranular
probability model [9] allows the user to assign a less-specific class to an entire region R containing I and certain
surrounding pixels. The choice of possible regions R is restricted to those allowed under a quad-tree decomposition
of the image region. Less-specific classes are constrained to belong to a subset S, of the specific classes in C. Such
subsets are pre-defined, based on prior knowledge of the image domain, and restricted in number.

The likelihood for the multiscale/multigranular probability model is specified using a mixture model i.e.,

f(@]9) = meg(ale) . (1)

ceS

The class-specific densities g(z|c) are assumed known i.e., they are input for the overall algorithm. So the unknown
quantities in the model are (i) the choice of regions R, (ii) the choice of subsets S, for each region R, and (iii) the
choice of relevant weights 7., for each class ¢ € S. These unknown quantities must be inferred from data.

A maximum likelihood approach is natural here, using the pixel measurements {z;, ;, }. Note that since the
regions R can contain more than one pixel, by design, selection of the model parameters for any one pixel involves
an optimization incorporating all pixels. And, since this is a very rich model class, some sort of penalty is adviseable
to discourage over-fitting. A complexity-penalized maximum likelihood method for model inference was proposed
in [9].

Specifically, let M = (R, S, II) be the set of regions R, subsets S = S(R) of class labels ¢, and weights 7. = 7.(.5)
under a given MSMG model for the image region. The optimal model M is chosen as

~

M = argmax {£(x| M) —pen (M)}, (2)



Notation Definition Notation Definition
n Number of Pixels R Spatial Region
I, i, Pixel in an image Te Weights for class ¢
Tiy o Vector valued observation M MSMG Model
C Set of specific classes M Optimal MSMG Model
C; class @ S Collections of possible subsets
g(zlc) likelihood value for x given ¢ m Number of specific classes
L(x| M) Likelihood L(x | M) Log-Likelihood

Table 1: Table of Notations

where ¢(x | M) is the log-likelihood of the data under model M and pen(M) is a penalty function. Here x = {z;, ;,}
represents the full set of observations.

The penalty in (2) is essentially the code-length for describing the model M, a precise definition of which can
be found in [9], the likelihood is of the form

L(x|[M) = H @iy in | Sivia) (3)

11,12

and the log-likelihood is of the form

l(x| M) Z log f(@iyis | Sivi) (4)

71 72

where the quantities f(z; 4, | Si, i,) are mixture densities like that in (1). Now if the densities f(z]S) in (2) were
known, then optimization would reduce to a search over all partitions of the image into regions R, and assignment
of subsets S of categories to each region R. Give the use of a quad-tree structure in defining the regions R, this
would result in an algorithm of O(n?|S|) complexity, where S is the collection of all possible subsets S allowed by
the user.

However, the mixture weights in the densities f(x|S) are unknown and must be fit for each candidate region R
and each candidate subset S. Usually estimation of mixture weights through maximum likelihood is done using
the EM algorithm. Thus, the optimization in (2) nominally requires O(n?|S|) EM algorithms to be run. This
requirement represents the major bottleneck in optimizing computational performance for the MSMG methodology
and is this aspect that this paper seeks to improve upon.

2.2 Execution Trace

There are many implementations of the Expectation Maximization algorithm [1]. Algorithm 1 presents the
Expectation Maximization algorithm that is used in our problem domain as described in [9]. First, we present
the algorithm to discuss the computation aspect but not the correctness. Second, we give an example of this
Algorithm using a two class problem. The input to Algorithm 1 is the Non-Specific class (e.g. forest) to determine
the maximum likelihood of its specific class (e.g. conifer and hardwood) proportions 71 and o respectively, the
likelihoods of each of the specific classes, and the spatial region (e.g. a quad of size 2 x 2 pixels).

In general, there are five major steps in a single iteration of Algorithm 1. First, the proportions are set to their
current values. If this is the first iteration, then the proportions are initialized such that each has an equal weight
totaling to one (e.g., for two specific classes, the proportions are 71 = 0.5 and w3 = 0.5. Otherwise, the proportions
are obtained in the previous iteration. Second, the product of the likelihood at each pixel for a specific class and
its proportion is set to h(z;, ;,|Ck). For example, for two classes, the following would be calculated:

h(ziy i,|C1) = g(w4y,i,|C1) * 1 (5)
h(ziy i,|C2) = g(i,,i,|C2) * T2

The third step is to take the sum of all likelihood values from all the specific classes. For two classes, the following
would be used:

Uiy i) = @iy ,0,|C1) + h(iy,4,|C2) (6)



Fourth, for each specific class, the values obtained in Step 2, h(z;, ;,|Ck), is divided upon the values obtained in
step 3, ¢, and is set to j(xi,.i,|Cx). For example, in two classes:

. h(iy,io|C
J@alC) = e 7
(2 - |C _ h(Iil,iszz) (7)
J(@iyi,|Ca) = R

t(mil,ig)

Finally, the fifth step averages the values in j(x;, ;,|Ck) for each specific class k and the new proportion . For
example, in two classes the proportions are found by:

™ =  aVgz; ,, (j(x71712|01))
2 = a’vgwil.'iz (j(xil,i2|02))

(8)

This process is repeated until the desired accuracy of the proportions (i.e., difference between the current and
previous proportions) is acquired. Accuracy is determined by the amount of change in the likelihood value based
on the proportion size between iterations.

Algorithm 1 EM-based MSMG Image Classification

Function EM(class Non-Specific)
: Initialize the proportions as equal weights
repeat
Step 1 Set the proportion of each corresponding specific class in the spatial region
Step 2 Multiply likelihood at each pixel in the spatial region by corresponding specific class proportion
Step 3 Add the likelihood at corresponding pixel
Step 4 Divide the value in Step 2 by value in Step 3 at corresponding pixel
Step 5 Average the likelihood in the spatial region for each specific class and consider these to be new proportions
until the required accuracy is achieved
return sum of the product of proportions and likelihood Mazimum Likelihood

QLR AD I W

—

To give an example, consider the use of the Expectation Maximization algorithm for a non-specific class forest,
calculated for a quad of size 2 x 2 pixels. The given likelihood values of the specific classes, Conifer (C7) and
Hardwood (C3), corresponding to forest are represented by vectors in Table 2.

(a) Conifer (b) Hardwood

02102 0.8 0.8
0.9 109 0.11]0.1

Table 2: Likelihood values (in 10™*) for specific classes of Forest in a 2x2 region

Based on Algorithm 1, there are five major steps in a single iteration. First, the proportions are initialized to
equal weights since this is the first iteration, 71 = 0.5 and m = 0.5. Second, based on Eq. 5, h(z;, ;,|Ck), and using
the likelihood values in Table 2 and the initial proportion values (Table 3), h(x;, 4,|Ck) is obtained in Table 3.

(@) h(@iy,in|C1)  (b) h(Ziy,i5|C2)
0.1 | 0.1 04 | 04
0.45 | 045 0.05 | 0.05

Table 3: Step 2 Results from Algorithm 1

The third step uses Eq. 6 to find the total value between all specific classes. In our running example, Table 4
gives the results for g’ by summing the values obtained in the second step.

The fourth step uses the values from steps 2 and 3 within Eq. 7 and the values from are 2 class example is given
in Table 5.

Finally, the new proportions for each specific class can be created by taking the average value in j(x;, ,|Ck). In
our example, the new proportions are m; = 0.55 and w2 = 0.45. The process will continue to iterate until the 16th
iteration where the final converging proportions are m; = 0.6042 and 7o = 0.3958. The log-likelihood for forest



0.5 1] 0.5
051 0.5

Table 4: g/, Step 3 Results from Algorithm 1

(@) J(@iy,i5|C1)  (b) J(2iy,i5|C2)
0.2 | 0.2 0.8 | 0.8
0.9 0.9 0.1 0.1

Table 5: Step 4 Results from Algorithm 1

can be calculated using Eq. 4 which is 1.17162. The likelihoods for the specific classes coni fer and hardwood can
be obtained by simply summing the values in Table 2 which is 2.2 and 1.8 respectively. Thus, the class having
the maximum likelihood from forest, conifer, and hardwood is confier with a log-likelihood value of 2.2 and is
assigned to the given 2x2 region.

3 Approaches

In this section, we present two approaches to address the best candidate model problem. The first approach is
based on a previous approach [9] which we call context exclusive since each candidate model is evaluated indepen-
dently (Section 3.1). The second approach is our proposed upper bound based context-inclusive method that uses
a filter and refine technique to prune models based on their upper bound while evaluating each simultaneously
(Section 3.2).

3.1 Context-Exclusive Approach

Algorithm 2 presents the pseudo code of the context-exclusive approach from [9]. The input to Algorithm 2
is the set of non-specific class candidates and the output is the arg max candidate in the candidate set and its
corresponding likelihood value (i.e. maximum value in the Set of Candidate and Likelihood values SCL). The
main objective in Algorithm 2 is to obtain the candidate classification for a spatial region. Each candidate model
in the candidate set is analyzed independently to obtain its likelihood for a spatial region by executing EM from
Algorithm 1 (Line 4 in Algorithm 2). The candidate model containing the maximum or largest likelihood of all
candidates in Cand is declared the best candidate model (arg mazx) for a spatial region (Line 6 in Algorithm 2).

Algorithm 2 Context-Exclusive Approach

Function CONTEXTEXCLUSIVE(candidate set)
Set of Candidate and Likelihood Values SCL « {(0, %)}
for each candidate ¢ € candidate set do
SCL « SCL U (¢, EM(c))
end for
return arg maz(SCL), MAX(SCL)

To illustrate the context exclusive approach using an example, consider the hierarchy in Figure 2a and the EM
values in Figure 4. Initially, the specific class with the highest log-likelihood is chosen. Then, each non-specific
class is analyzed in EM until convergence. The number of EM iterations for Vegetation, Forest, and Non-Forest
is 46, 34, and 3 respectively. Then, the class with the highest log-likelihood value among all of the classes (specific
and non-specific) is chosen. In this example and as shown in Figure 4, Non-Forest has the highest value and
is assigned to the given region. It is important to note and explained further in the next section that using this
example, the CE approach took 83 EM iterations to find the answer.



3.2 Upper Bound based Context-Inclusive Approach

Our proposed approach evaluates each model together to obtain a correct candidate model, a relationship which
we refer to as context-inclusive using an upper bound. Essentially, the upper bound allows for pruning of non-
specific class models (e.g. Forest) which allows for a significant reduction in computation time while achieving
correct results. Using remote sensing terminology, each candidate model tuple represents a classification consisting
of either a specific (i.e., conifer or hardwood) or a general (i.e., forest) class (see Figure 2a). The quality
measure for a specific class is a single value whereas a general class consists of several proportions of specific
classes. For example, a general class of type forest may have several proportions of conifer and hardwood trees.
A computationally very expensive function is used (i.e., EM) to identify the likelihood value for each candidate
model. The main objective is to find the maximum likelihood value or best candidate model to represent a land-use
classification.

Algorithm 3 Upper Bound based Context-Inclusive Approach

Function UPPERBOUNDCONTEXTINCLUSIVE(Candidate Set)
Select c_cand from the candidate set
ML_cand <« EM(c_cand)
BestCand «— c_cand
for each ¢ € the candidate set AND c # c_cand do
ThUpper «— Upper Bound for the candidate c
if ThUpper < ML_cand then
¢ is pruned from the candidate set
else
10: c.ML — EM(c)
11: if c.ML > ML_cand then
12: BestCand «— ¢
13: ML_cand « c-ML
14: end if
15: end if
16: end for
17: return BestCand, ML_cand

©

Algorithm 3 presents the upper bound based context inclusive approach. An upper bound is calculated for each
non-specific candidate to ensure that the correct candidates are pruned from the candidate set (Theorem 1). By
determining the upper bound on the likelihood value of a non-specific class (Line 2 of Algorithm 3), it is possible
to prune candidates whose upper bound is lower than the current best likelihood value. This ensures that those
candidates that have an upper bound less than the current best candidate can not be the best candidate and
are then pruned (Lines 7-9 of Algorithm 4). For all other candidates, their respective maximum likelihoods are
found through the EM algorithm and compared against the current best candidate (Lines 11-15 of Algorithm 4).
Finally, the best candidate having the largest or maximum likelihood of all other candidates is returned (Line 18
of Algorithm 4).

To illustrate with an example, consider the hierarchy defined in Figure 2a and the actual likelihood and upper
bound values in Figure 5. Initially the likelihood values are calculated for the specific classes (coni fer, hardwood,
brush, grass) and the upper bounds for the non-specific classes (forest, non-forest, vegetation). Then, the
class (both specific and non-specific) with the highest value is chosen. Figure 5 shows that the upper bound for
non- forest is the largest. EM is executed for the non- forest class until convergence (3 iterations) which obtains
a log-likelihood value of approximately -50.2. Any non-specific class having an upper bound less than -50.2 can be
pruned out because its EM converging value cannot be higher. Thus, both forest and vegetation can be pruned
out, leaving non — forest as the dominant class and is assigned to the given region. Notice that using this example,
the Upper Bound based Context-Inclusive approach can obtain the same answer as in the Context Exclusive (CE)
approach in only three iterations rather than 83 in CE.

4 Analytical Evaluation

This section presents an analysis on obtaining and using an upper bound for the multi-scale multi-granular
image classification. First, we prove an upper bound (Lemma 1) for the candidate models in our problem. Second,
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we present the proof of correctness for the Upper Bound based Context Inclusive approach (Theorem 1).
4.1 Upper Bound

Lemma 1 The pizel-wise sum of the log(meagig(ﬂc)) is an upper bound for the log-likelihood function £((x|M).

Formally,
K((x | M) < Zil,ig log sz‘l,i27Si1,i2 (9)
where by g = mazcesg(x|c).
Proof Based on Eq. 1, note that
f(z|S) = ;Wc g(x|c) < I?Easxg(x|c) . (10)

Since Z 7 g(x|¢) is a convex combination [15] of densities g(x | ¢).

cesS
Let us revisit the log-likelihood (Eq. 4)

x| M) = Zlng Tiy iz | Sinia)

1,12

and rewrite the right hand side using Eq. 1

Lx| M) Z log Z Ted(Xiy i | €) | - (11)

1,02 cE€Siy iy

Combining Eq. 11 and the inequality in Eq. 10, the conclusion follows.

The density defined in Eq. 1 is a convex combination of the densities in its sum. Therefore,
f(]5) < maxg(zle) = ba,s - (12)
This bound is a function of x and of S. The bound for the log-likelihood ¢ = log L as

(M) = log f(@iy iy | Sivin) < Y loghe,, 5 (13)

1,12 11,82
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since the logarithm function in monotonic increasing which is a model-specific bound. A bound over all models is

max (M) < > logbs,, ., - (14)

11,12

Both of these bounds are clearly finite if the class-specific densities g(x|c) are finite for all x.

For example, suppose we want to determine the upper bound for Forest in Table 2 for the given likelihood
values. First, we would find the maximum value between the two specific classes (conifer and hardwood) for
each pixel (Table 6). Then, we would take the sum of each value in Table 6 which will give the upper bound for
Forest. Thus, the upper bound for Forest will have a likelihood of 3.4 or a log-likelihood of 1.2238. Recall that
in Section 2.2, the likelihood for Forest after executing EM is 1.17162 or the log-likelihood of 0.1584 which shows
that the upper bound found in this example is correct.

0.8 0.8
09109

Table 6: Maximum value between the specific classes conifer and hardwood.

4.2 Proof of Correctness of Upper Bound based Context Inclusive Approach

Theorem 1 The Upper Bound based Context Inclusive approach (UBCI) is correct such that each pizel in the
image is classified with the mazximum likelihood or best candidate class from the user-defined concept hierarchy.

Proof Based on Algorithm 3, an upper bound is assigned to each non-specific class candidate. The candidate
with the highest upper bound is chosen first and the converging value based on EM is assigned as the initial best
candidate (Lines 2-4 of Algorithm 3). If the upper bound for every other candidate is less than the current best
candidate’s likelihood, then the candidate will not ever have a higher likelihood value and can then be pruned
from the list (Lines 5-8 of Algorithm 3). All other candidates having a higher upper bound than the current best
candidate may have a higher actual likelihood value (from EM), which is then assigned as the best candidate
(Lines 10-14 of Algorithm 3). Thus, the best correct candidate will be retrieved from the candidate list. Also, the
output of the UBCI and the Context Exclusive approaches are identical. O

5 Experimental Evaluation

The goal of our experiments was to compare the Upper Bound based Context-Inclusive approach with the
Context-Exclusive approach in terms of computation efficiency. Computation efficiency is measured at a physical
(computation time) and at a logical (EM Iterations) levels. Figure 6 provides a schematic representation of our
experimental design. All experiments were performed on two different datasets: (1) A synthetic input image
having the size of , 7 total class, and 3 general classes (Figure 2); and (2) A real dataset of Plymouth County,
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Figure 9: Iterations in EM for the Real Dataset Figure 10: Computation Time for the Real Dataset

Massachusetts having 12 total classes, and 4 general classes. Both images have the size of 64 x 64 where multiple
image sizes were analyzed (i.e., 16, 64, 256, 1024, 4096 pixels). Outputs were obtained for varying the number of
pixels that was analyzed by each proposed approach. All experiments were performed on an UltraSparc III 1.1
GHz processor with 1GB of RAM.

5.1 EM Iterations

As discussed in Section 1, evaluation of the quality measure takes up most of the time. Hence the number
of iterations in EM may be used to evaluate the computation of the Upper bound based context-inclusive and
context-exclusive algorithms. Experimental results of both approaches at multiple spatial scales on the synthetic
and real datasets are shown in Figures 7 and 9, respectively. As the number of pixels increase, the number of
iterations increases as well because of the larger size of regions. Note that the real dataset has more general classes
than the synthetic, and thus is more computationally expensive. Experimental results show that the number of
iterations is less for the Upper Bound based context-inclusive approach because several non-specific classes may be
pruned due to its upper bound being less than the current best class. Compared to the context-exclusive approach,
at the largest number of pixels, the number of iterations with the upper bound context-inclusive approach reduces
by 57.2% for the synthetic and by 40.4% for the real dataset.

5.2 Computation Time

Figures 8 and 10 provides the execution time taken for the synthetic and real datasets, respectively. The
computation time was measured using MATLAB 7 and using the functions “clock” and “etimeof” to capture the
elapsed time for both the Context-Exclusive and the Upper Bound based Context-Inclusive approaches. Since the
number of iterations taken by the upper bound based context-inclusive approach is less than that for the context-
exclusive approach, the execution time for the context-inclusive approach will also be less. Since the number



of models that are evaluated by the upper bound based approach will likely be less than the context-exclusive
approach. As the number of pixels in an image increases the number of regions that need classification also
increases. This results in the need of more non-specific classes that need to be analyzed resulting in the significant
increase in the context-exclusive approach, whereas in the upper bound based context-inclusive approach, several
models are pruned resulting in a much lower execution time. At the largest image size, the execution time for the
upper bound based context-inclusive approach, as compared to the context-exclusive approach, is reduced by 40%
and 38.3% for synthetic and real datasets respectively.

6 Discussion and Future Work

We presented an upper bound based context-inclusive approach (UBCI) that utilizes an upper bound for each
candidate model to allow for pruning to obtain efficient and correct results. Also, we proved that an upper bound
exists for each candidate model and experimentally showed our dominance over the context exclusive approach.
Our approach is based on set context where tuples are evaluated together to obtain the optimal candidate model.
Other types of context may be explored such as spatial context i.e., the correlation of a variable with space [13], may
be used. Classification of spatial data based on an extended regression model called the Spatial Auto-regression
model (SAR) is provided in [14].

As discussed, most of the execution time is spent in calculating the quality measure using EM. EM is used to
find the best candidate model; more specifically, EM is used to find the best Gaussian mixture model in the case
of land-use classification. We plan to explore faster implementations of EM such as [3, 4, 11]. Larger datasets may
be used to extend the experimental evaluation along with alternative measures such as I/O costs. Also, further
optimizations of the UBCI may be explored such as ordering the non-specific classes based on their upper bounds.
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