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Abstract Similarity search is important in information retrieval applications where objects
are usually represented as vectors of high dimensionality. This leads to the increasing need
for supporting the indexing of high dimensional data. On the other hand, indexing structures
based on space partitioning are powerless because of the well-known “curse of dimension-
ality”. Linear scan of the data with approximation is more efficient in the high dimensional
similarity search. However, approaches so far have concentrated on reducing I/O, and ig-
nored the computation cost. For an expensive distance function such as L, norm with frac-
tional p, the computation cost becomes the bottleneck. We propose a new technique to ad-
dress expensive distance functions by “indexing the function” by pre-computing some key
values of the function once. Then, the values are used to develop the upper/lower bounds of
the distance between a data vector and the query vector. The technique is extremely efficient
since it avoids most of the distance function computations; moreover, it does not involve
any extra secondary storage because no index is constructed and stored. The efficiency is
confirmed by cost analysis, as well as experiments on synthetic and real data.

Keywords Similarity search - High dimensional space - Function index

1 Introduction

Implementing efficient similarity search mechanisms for high dimensional data sets is one
of the important research topics in the field of data engineering, and has been well studied in
recent years [[,2,3,8,5,6]. The difficulties of this topic mainly arise from the well-known
property called the “curse of dimensionality”. In high dimensional spaces, it is observed
that hypersphere covering results of a nearest neighbor query tend to have huge radius.
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Because of this property, space partitioning and data partitioning techniques become worse
than the simple sequential scan [[Z]. For this reason, recent research attention is mainly paid
to improving the performance of the sequential scan. Such techniques include VA-file (or
vector approximation file) and its variations [[I,5,8,9].

Indeed, the dimensionality curse problem has been dealt with by employing appropriate
dimensionality reduction techniques. Some approaches surveyed in [[0] can be considered
as the same category. SEM-tree [[[1] treats sequence as vector, and approaches the search
efficiency by dimensionality reduction. Earlier researches such as FastMap [IZ] is also a
feature selection technique which can be applied to metric data as well. Classical PCA [I3]
and SVD [[[4] are well known. However, dimensionality reduction techniques are impossible
or at least not feasible for huge data, for data that the target dimensions are not clear, and for
dynamic data like stream.

Another research topic of the similarity search is what distance metric should be used
[I5, 6,2, TR]. For data vector sets, L, norm (Minkowski metric) is generally used in vari-
ous applications. The parameter p refers to the degree of power, and mainly used are p = 1
(Manhattan metric) and p = 2 (Euclidean metric). In [I3], it is argued that the value of p is
sensitive to meaningfulness in high dimensional spaces, and a smaller value of p is prefer-
able. It is also mentioned that fractional values less than 1 are rather more effective than the
cases of p = 1 and p = 2. However, using fractional p makes the distance calculation costly,
and it considerably decreases the performance of the similarity search. This is because we
need time consuming numerical computations for calculating pth powers.

In this paper, we propose an efficient technique for the similarity search in feature vector
space with “expensive” distance functions. The motivation comes from the observation on
our first experiment (Figure ) that the computation cost of the functions affects the per-
formance as significant as the I/O cost. Our approach is based on the idea of “indexing the
costly distance function”. Some approximated values of pth powers which can be used to
calculate the distance between vectors are computed in advance, and they are used to obtain
upper and lower bounds in the course of the similarity search procedure. The technique is ex-
tremely efficient since we do not have to perform numerical computations for every search.
We demonstrate the efficiency of the proposed technique by both analysis and experiments
performed on synthetic and real data sets. In [[Y], an effort is made in avoiding distance
calculation by buffering the query (result) history. We do not believe that it is index-free
because query results take secondary storage. Further, the management of the query result
buffer affects the search efficiency significantly. The main contribution of [20] is to merge
the lower dimensional method (R-tree) and the high dimensional method (VA file), but it
does not aim at improving the efficiency itself of the original R-tree and VA file.

Integrating with the basic idea of function index in [Z1] the main contributions of this
papers are as follows.

— we discover that the computational cost of the distance function is also a bottle neck
in the multi-dimensional search, while traditional researches concentrated on the space-
partition based index.

— we propose a new scheme that indexes the function values which are calculated on the
fly, and thus indeed require no extra secondary storage.

— we design algorithms which can be applied to both range queries and k-NN queries. Our
algorithms are extremely efficient for high dimensional search with an expensive func-
tion. They are effective enough for relatively lower dimensional search with a normal
distance function such as Euclidean distance. The algorithms are flexibly applicable to
both lower and high dimensional searches.



This paper is organized as follows. In the next section, we explain the necessity of ex-
pensive distance functions, by recovering some arguments on the behavior of non-Euclidean
distance metrics in high dimensional space. We then clarify the necessity of the sequential
scan and describe the neighbor search problems. Following this, we explain the motivation
of our approach with a running example in Section B. Then, Section 8 describes the proposed
method and its performance analysis. In Section B, we present our empirical results. Section
B provides a summary and conclusions.

2 Background and Problem Description

Table 1 Notations and Basic Definitions

V,D vector database, V' C [0, l)D , D: number of dimensions

N the number of vectors in V/, thatis N = |V/|

d subscription range over dimensions, d € {1,2,...,D}

v; ith data vector, v; € V, sometimes be omitted by v

V.Tq v’s coordinate value of dth dimension. v.zg4 € [0, 1)

q a query vector, g € [0,1)P

44 the difference between ¢ and v on dth dimension, |¢.z4 — v.24]

Ly Ly-norm distance function. Ly(g,v) = R

Ip(v), up(v) | lower & upper bounds of v, respectively: I, (v) < L5(q,v) < up(v)
B parameter: the number of knots dividing [0,1)

In this section, we clarify the necessity of expensive distance function by the exam-
ple of non-Euclidean Distance. We then explain the superiority of the sequential scan over
space-partitioning methods in the high dimensional similarity search. Finally we define the
problem that we want to solve formally. In additional the notations throughout this paper are
summarized in Table .

In [6], Beyer et. al. gave the following theorem which shows that the difference be-
tween the maximum and minimum distance becomes less significant as the dimensionality
increases. This means that in the high dimensional application, it is hard to disseminate the
“nearness” among different points. In such cases, all data points may be finally clustered to
a single group. Therefore, any spatial index based on space partitioning will be powerless.

Theorem 1 (Adapted for L, metric) If limp_,o, var ( % ) =0,
p

maz{||Xpllp}—min{ || Xp|lp} —p 0. Where E[X] and var(X) express the expected

then .
min{|[Xpll»} ) _
value and the variance of the variable X respectively. || Xpl||p means the Lyp-norm of X

(againsts the origin) in the D-dimensional space.

On the other hand Aggarwal et. al. figured out another result as follows.

Theorem 2 ([I[5]) Let F be the uniform distribution of N points and p = 1/l for some

1)- ﬁ for some constant C.
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By this, they argue that though the discrimination affected by dimensionality negatively,
a smaller p helps to affect it positively.

We confirm the result by a real dataset and a synthetic dataset. Figure [ (a) shows the
confirmation of the first theorem: the maximum and minimum distance increase almost in
the same rate for p = 2; while in (b) of the figure where p = 0.5, the maximum distance
increases much faster than the minimum distance as the dimensionality increases, which is
the conclusion of the second theorem.

Figure O shows yet another result for the real datasets taken from the online UCI KDD
Archive ™. We compare the change against p because the dimensionalities of the two datasets
are fixed (12 and 60, respectively). Obviously for both datasets the difference increases when
p decreases.

Figure B displays some shapes of L, spaces for different p’s. As shown in Figure O, the
difference between the maximum and minimum distance decreases as p enlarges. As the
extreme example, the unit sphere of L is the square and when the dimensionality is very
high. The vectors seem to concentrate on the sphere face and make it difficult to distinguish
each other. From these spaces we also observe two properties which affect the search result
and efficiency.

I http://kdd.ics.uci.edu/summary.task.type.html
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Fig. 3 The Unit spheres of different p’s. Vectors on the sphere have the same distance from the center and
cannot be distinguished from each other.

Property 1 L, does not keep distance order for different p.

In other words, let p1 # p2, and w1, v1, wa, ve be four vectors in the same dimensional
space. Then L1 (w1, v1) > Lp1 (w2, v2) does not imply Lo (w1, v1) > Lpa(w2, v2).
It needs only an example to prove this property. In the two dimensional space [0, 1)2, let
w1 = wg = (0,0),v1 = (0,1), and vo = (0.5,0.5). Then 1 = Lo(w1, v1) > La(wa, v2) =
1/0.52 4 0.52. On the other hand, 1 = L1/2(w17 v1) < Ll/g(wg, vg) = (\/ﬁ-l— \/ﬁ)2
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Fig. 4 Image search result for 10-NN on (left) Lo space and Lo 3 space, respectively. On top of each figure
is the same query image.

This explains our demonstration result of Figure B. In this example, we searched 10-NN
from Corel GALLERY™ 1,000,000 for p taken 0.3 and 2 respectively. In both cases, the top
3 most similar images are found. But by p = 0.3, it also finds two other images (the 6’th and
the 7°th) which look more similar than by p = 2.

Though L, for general p leads to a good search result, it brings trouble as well. The
following property points to the cases when space partitioning index will be useless.

Property 2 When p < 1, Ly is not metric space.

Similarly, we need only to show an example that violates any metric conditions. Also in
[0,1)2, let 0 = (0,0),u = (0,1), and v = (1,1). Then Ly/s(0, u) + Lyja(u, v) =1+ 1is
smaller than Ly /5(0, v) = (v/1 + v/1)2 which does not satisfy the triangle inequality.



Consequently, and similar to the argument in [[[5], a distance function other than the Eu-
clidean one is necessary in high dimensional applications. On the other hand, the computing
cost of a Ly is some hundred times more than addition and/or multiplication. Therefore, we
would like to propose efficient and effective method that avoids L, computation.

As for comparison between partition-based indexes and the sequential scan, [[lI] con-
firmed the priority of the sequential scan by three conclusions, in terms of performance,
complexity and degeneration. More detailedly, it pointed out that for any clustering and par-
titioning method there is a dimensionality beyond which all blocks are accessed and hence
the complexity becomes O(size-of-DB), and therefore the sequential scan performs better.

The problems we are to solve effectively and efficiently in this paper are the range query
and k-NN query which are defined in the following.

Range queries

Given a data vector set V, a vector ¢ and a real number r, the range query finds vectors
within distance r from g, that is, v|v € V' A dist(q,v) < r.

k-NN queries

Given a data vector set V, a vector ¢ and a natural number k, the k-NN query finds the
k vectors nearer than other vectors from ¢. Let the answer of the k-NN query be V}, then
Yo € Vi, v' € V =V, dist(q,v) < dist(q,v), V| > kand |Vi_q1| < k

3 Motivation by Example

The motivation of our idea is illustrated by examples (Figure B and B). We first explain how
the bounds are assembled with Figure B. It is worth emphasizing that the virtual grid lines
are drawn only for understanding, and that there is no necessity to really partition the space.
For simplicity, suppose that the space is two dimensions and normalized (that is, [0, 1)2) and
that the distance function is L, with a fractional p (0 < p < 1). The first example supposes
that the problem is to find answers from a large set of vectors within a distance r away from
a given query point ¢ = (q.z, ¢.y). Because the calculation of (-)? is expensive, our aim is
to avoid such calculations as much as possible.

Suppose that the interval [0, 1) is divided into 10 equal blocks by points ¢/10, ¢ =
0,1,...,10. Preparing c[t] = (¢/10)P, t =1,...,9 costs 9 calculations of p-power (c[0] = 0
and ¢[10] = 1 are known easily). These c[t]’s are enough to construct the upper and lower
bounds for the efficient nearest search for all vectors. In other words, though ¢[-] is one
dimensional, it is commonly used for all the dimensions.

The pre-computed c[-] are used to assemble the values of the “knots” of the grid net, for
instance, LY (g, p1) = ¢[2] + ¢[2]. Note that the first c[2] expresses that the distance between
g and p1 projected on z-axis is 2 knots, while the second ¢[2] expresses the same distance on
y-axis, and they share the same array c[-]. Each vector falls in one of the rectangles bounded
by 4 corner knots, whose nearest one and farthest one to ¢ represent the lower bound and the
upper bound of the distance between v and g, respectively. For vector v of Figure B c), the
bounds are Ly (g, pl) and Ly(q, p2) because Ly(gq,pl) < Lp(gq,v) < Lp(q, p2). We would
like to emphasize that, the grid net in the figure is drawn only for the sake of understanding.
It does not represent the partition of the real space, nor the coordinate system. Hence, as
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Fig. 5 A 2-dim. example of function index: (a) the data space and an arbitrary query vector; (b) “cover” the
data space with a virtual grid net centered at ¢; and (c) focus on one vector to see how bounds are assembled.

shown in Figure H a) and b), it never means that the query point ¢ must locate in the origin,
but instead g can be assigned anywhere.

In Figure B c), taking a data vector v = (v.z, v.y), suppose the task is to find whether
Ly(g,v) < rholds. Before computing the exact distance
Lp(gq,v) = {/|g.x —v.zP + |q.y — v.y[P, in some cases we can give the answer with less
computation. Denote |g.z —v.z| and |g.y — v.y| shortly by d, and §,, respectively, obviously
0 < 0 < 1. So there exists at, € {0,1,...,9} such that

L <6y < t””l'gl and thus c[ty] < 65 < c[tz + 1]. For the same reason, there exists a t,
such that c[ty] < 6% < c[ty + 1]. Consequently,

[lp = clta] + clty] < LE(g,v) = 88 + 8 < cfte + 1]+ clty + 1] = up |

This tells us that [;, and uy, are a lower bound and an upper bound of the distance between
q and v, respectively. In other words, if I;, > rP then we know that the real distance will never
be less than r?; hence the vector can be safely discarded. On the other hand, if u; < 7? is
satisfied then v is added to the answer set immediately. Noting that both the upper bound
and the lower bound can be simply assembled by looking up the pre-computed array c[-],
most vectors are judged without the expensive p-power calculation.

Further, back to Figure B(b), the (up, {p) of v4, vs and vg are (c[1], c[1]+¢[2]), (0, c[1]+
c[1]) and (c[2], ¢[1] + ¢[3]), respectively. Vectors locate to the left of, or under, ¢ does not
mean negative coordinates in this virtual grid net. In other words, when we analyse the
distance, we can imagine such vectors in their symmetric side and consider only the positive
sub-plane.

The image of the range query and the k& Nearest Neighbors (k-NN) query processing is
illustrated in Figure B. In a), v; is included in the answer set automatically because even its
upper bound to g (L5 (g, p1) = ¢[3] + c[1]) is less than 7. On the other hand, v2 is discarded
because its lower bound (L} (g, p2) = c[4] + ¢[3]) has already exceeded rP. Unfortunately,
whether v3 satisfies the range condition is unknown and the real distance must be examined.



VvV Vg e
*V3 | P2 7
.V,
b s ovy
. 2
; P3 Va e Vie | P

) .v6 V3

B L 4 Py P3

.- B oV
q @) q ()

Fig. 6 (a) Examples of Range query, v1 is answer while v2 is not. vz needs a further check. (b) Example of
2-NN query

Nevertheless, a more detailed partition of [0, 1) to larger c[-] can reduce such a v3 area easily.
Because c['] is not stored in the secondary storage, the total extra cost to double the partition
is double computation of ¢[-] and the in-memory array of it. The VA-file, though good for
some k-NN, can never be good for the range query.

In b), suppose that database V' consists of eight vectors vy, v2 ..., vg being accessed in
the order of their subscriptions and the 2-NN of the given ¢ from V is required. This k-
NN query is processed in two phases. The first phase excludes those vectors which have no
possibility to be k-NN. In filtering only the bounds of the distance between each vector and
q are necessary. The second phase refines the candidates of the previous phase and gives the
answer to the k-NN.

To process 2-NN, firstly, the lower bounds of vy, v2 (I(v1) and [, (v2)) are obtained by
looking up ¢[] as above. Meanwhile, v1, v are taken as the first two candidates. Their upper
bounds and lower bounds are sorted in ascending order, respectively. Now that there are &
(here, 2) upper bounds found, ideally the newly scanned approximation can be discarded or
can replace existing ones.

When v is encountered, its lower bound I(vs)(= Lb(q,pl)) is compared with the
existing larger (hence v1’s) upper bound wu,(v1)(= Lb(g, p4)). Because the former one is
smaller, vz is added to the candidates because we are not sure currently which of vz and
v1 has a smaller real distance to ¢q. On the other hand, the next encountered v4 is discarded
because I, (v4) > maxz{uy(v2), up(vs)}. Therefore the real distance Ly(q,v4) between vy
and ¢ can never be less than that of either vy or v3. Since there already exist at least two
other nearer vectors to ¢ than vy, v4 will never have chance to be 2-NN of q.

Similarly, vs, vy and vg are discarded. On the other hand, vg remains because its lower
bound is less than that of vg

So after the filtering phase, v, v, v3, v are left as candidates. Then in the refinement
phase, the real distance between v; and ¢ is examined for ¢ = 1,2, 3, 6. This examination
finally decides that vs and vg are the answers to 2-NN of g.

4 Indexing the Expensive Function

In Table M we first give the notations that will be used throughout this paper, though some
have been used in the previous section.



Let V and ¢ be as in Table [, » be a real number and & be a natural number. A range
query is to find those vectors in V' within distance r from g, with respect to L. A k-NN
query aims at finding the & nearest vectors in V' to ¢ with respect to Ly.

A range query is formally expressed by finding the answer set V- where

Vi ={vlv € V, Lp(q,v) <r}

On the other hand, the answer set V}, of a k-NN query satisfies all the following con-
ditions all together. The first condition says that there are at least k vectors in the answer
set. By the second condition, V;, becomes less than k vectors if the farthest vector(s) are
removed. This happens when several vectors have exactly same distance from q.

Yv € Vi, Vu € (V —Vy), Lp(q,v) < Lp(g,u) and

Vil > kA Vi — arg mazyev, {Lp(q. )} < k

Since the exponent is computationally expensive, it is meaningless to compute each
element 55 of the arbitrary norm Ly, by its original definition. We generalize the description
of the processing mentioned in Section B and develop the following efficient solution.

The range query algorithm

First of all, the Function get-bound is commonly used in both the range query algorithm and
the k-NN algorithm, so we isolate it for readability. The action of this function is clear and
needs no explanation.

Function get-bound(v, g, c[B])

v = (v.r1,...,v.2p) is a vector of V,
q = (q.x1,...,q.zp) is the query vector.
begin

ford=1,2,...,Ddo
tqg < |lg.xq — v.x4| X B, //quantify coordinates to knots
end for
L(v) — S5 cltal. up(v) — SSE ) clta + 1]
return lp, up
end

Function 1: Computation of the Upper/Lower Bounds of a vector to query q.

Our algorithm for processing range queries is very simple. As in Algorithm Range-
query (Alg. M), it scans each vector, assembling its bounds by calling Function ger-bound,
then comparing them with the given range r. Naturally, instead of comparing Ly (g, v) with r
for all v of V, it is much cheaper to compare L5 (g, v) with P because L} (g, v) is assembled
from c[-] straightforwardly. This is reflected with line 2 in the algorithm. Line 5 decides those
vectors which are surely in the answer while line 7 excludes those vectors which never have
the possibility to be the answer. If neither of the above happened, then we have to examine
the real distance in line 9.

The Range-query algorithm is simple, while the difficulty comes from the estimation of
an appropriate value of the parameter B. Nevertheless, by cost analysis (section El), we will
have a hint in given B for efficient filtering. Further, since c[-] is the only array we calculate
on the fly and keep in the memory, doubling the split (B — 2B) doubles c[-] which increases
the overhead very slightly. On the other hand, methods which need secondary storage are not



Algorithm Range-query
Input: V, g, B as in Table [, and 7.
Output: Answer set V-

begin

I: c[t] — (¢/B)P fort =1,2,...,B—1.

2: v« rP; V. « 0; /luy, s are in fact bounds of rP

3: foreachv € V

4: (Ip(v), up(v)) « get-bound(v, g, ¢)

5: if up(v) < r then

6: Vi« Vi U {v} /Mlower bound under r: be a answer.
7: else if [;,(v) > r then

8: discard v; //upper bound exceeds 7: cannot be answer.
9: else if L5 (g, v) < r then // the real distance

10: Vi — Ve U{v}

11: end if

12: end foreach

end

Algorithm 1: Range Query algorithm

designed for such dynamical change. An example is that the VA-file needs to re-calculate
the approximation of all vectors and store the enlarged index file.

The k-NN query algorithm

The algorithm for processing k-NN queries is in the filtering phase and refinement phase.
The essential difference compared with the VA-file is that we do not aim at the reduction of
the I/O cost but the computation cost. Since our algorithm does not depend on any certain
index, we can also process a query flexibly by changing B dynamically. We introduce heap
structures in both phases. For readability, we assume that the heaps are sorted in ascending
order.

The filtering phase is based on the idea that Vvy,va € V, Iy (v1) > up(v2) = Lp(q,v1) >
Ly(g,v2). Generally, if we have k candidates in hand and the largest upper bound among
them is uy (v ), then a new encountered vector v can be safely discarded the moment we find
lp(v) > up(vg). The Algorithm kNN-filtering (Alg. @) describes this processing formally.
Before all else, c[t] is obtained by B — 1 p-power calculations. Then the first & encountered
vectors along with their lower bounds sorted in ascending order are added to candidate heap
Cand. The first k upper bounds are also inserted to heap H,, (of fix size k, and sorted). This
guarantees that there are at least k& candidates (line 3-7). Then each later coming vector is
compared to the largest upper bound found so far (H, [k] and line 10). The vector is added to
Cand only if its lower bound does not exceed Ho, [k]. Adding a vector to C'and also causes
the replacement of H,, (line 12), which tightens the upper bounds contiguously.

In the algorithms, we hide some details to make the description simple and more read-
able. In real world, the heap H,, is implemented as fix size k to store the k upper bounds.
Then for example in line 12, before an insertion to Hy, is really carried out, the kth value is
removed unconditionally. Overwriting the kth position without checking whether it is empty
makes the execution more efficient. Moreover, it is not actually necessary that Hy, is sorted.
Being a heap, the largest element found in the root is enough for Hy,.

Noting that when there comes a new vector having the upper bound exists in Hy,, it is
added to the candidate set while H, remains unchanged. Therefore, usually several times



Algorithm kNN-filtering
Input: Vector set V' and query vector g, B and k.
Output: Candidate set and bounds C'and

begin

1:  create heaps Cand and H,,

2: c[t] < (¢/B)P fort =1,2,...,B—1.

3: foreachv € {v1,va,...,vx}

4: (Ip(v), up(v)) « get-bound(v, g, ¢)

5: insert (v, Ip(v)) into Cand // 1 (v) as sorting key
6: insert up (v) into Hy, // Hy, is sorted

7: end foreach

8: foreachv € V — {v1,v2,...,v%}

9: (Ip(v), up(v)) < get-bound(v, g, c[B])
100 ifly(v) < Hy k] then

11: insert (v, Iy (v)) into Cand

12: insert up (v) into Hy,

13: end if

14: end foreach
15: return Cand

Algorithm 2: The filtering phase for k-NN Query

Algorithm kNN-refinement
Input: V, q, B, k.
Output: Answer set V}, (in heap structure).

begin
Cand « Call kNN-filtering
Vi — 0
fori=1,2,...k
(v, 1p(v)) — Cand]i]
compute L} (g, v) //the real distance
insert (v, LY (g, v)) into Vj
end for
for (i = k + 1;1 < size-of(Cand); i++)
9: (v,lp(v)) <« Cand][i]
10: if I, (v) > L¥ (g, vg) of Vi[k] then break
11: else insert (v, L} (g, v)) into Vj,
12: end for
13: return Vi [i],i =1,2...,k
end

AN A S

Algorithm 3: The refinement phase for the k-NN Query

more vectors than |V}, | remain after the filtering phase, so it is necessary to examine the real
distance. Algorithm kNN-refinement (Alg. B) provides a sophisticated method to do this.
For a similar reason as in the previous phase, to guarantee k vectors, the first k¥ candidates
in C'and is added to answer set V;, unconditionally (line 3-7). Noting again that V}, is sorted
by L¥(g,v;), instead of simply examining all the remaining vectors in Cand and updating
Vi, a technique is developed to accelerate the termination. Using the fact that real distance
(= wup = wy) is the tightest bound, the condition in line 10 terminates the algorithm any
time a lower bound [, (v;) (i > k) is found that exceeds the k’th distance L} (g, vy,) of Vi [k].
Because Cand was sorted in ascending order of [, (in the filtering phase), vectors (say, v;)
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Fig. 7 Estimating the candidate volume: (a) the candidate volume shell, (b) the thickness
of the shell, and (c) and upper bound of the volume of the shell.

after v; have larger lower bounds than I (v;); hence their real distance to ¢ can never be un-
der Lyp(q, vg). It is clear that such v; can be safely discarded by expressing the relationship
formally as follows.

LY(q,v5) > lp(vj) > lp(vi) > Lp(q, vk)

4.1 Efficiency Analysis

There are various factors that influence the performance. First of all the data set. Either for
the data index or for our function index, the efficiency of the index-based query processing
depends on the dimensionality of the data space, the number of points in the database, the
data distribution, and even on the correlation of dimensions. Methods other than our function
index are especially affected by the complexity of the functions.

Our algorithms reduce the expensive function computation such as p-power by replacing
it with the much cheaper multiplication and summation for those vectors judged by the
bounds. In other words, the efficiency of the algorithm appears in the filtering effect; the
more vectors filtered out by bounds, the more efficient it is. We analyze the filtering effect
in both phases. The yardstick used here is one computational cost of the function (eg.(-)?),
denoted by C,.

The filtering effect strongly correlates with the tightness of the bounds, that is (uj — I3).
By Function get-bound (Fun. ),

D

D
Ar=up —lp = Z(C[td +1] = cfta]) = Z((td;— 1)? Bl (%)p)
d=1 d=1

The maximum of this difference is (Zf;l (% — %)p)l/p = D'/P/B, which happens
as in Figure @ (b). In each dimension, (u; — ) is projected to a band of width 1/B, and
candidate vectors falling in such bands cannot be judged at the point of time. Such candidates
are kept for further examination in the refinement phase in which real distance comparison
is performed. The number of such candidates is in proportion to the areas (columns) of the
bands (sphere shells) as shown in Figure [ (a). Apparently, our purpose of reducing the
candidate vectors to as few as possible implies the need to reduce the above area (volume).

We call this the candidate volume and estimate it in the following way.



Range queries

In the best case when a vector is close to ¢, 63 = |q.zq — v.24] is close to the virfual original
point and the candidate volume is 1. In the general case, the volume is given by the “shell”
of a hyper sphere

Vol(up,r) — Vol(lp,T)

where Vol(D,r) is given by using the expression of the volume of the hyper sphere as
Equation [, where D is the dimensionality and r is the radius of the hyper sphere.

D/2,.D il ; .
Vol(D,r) = — " = TR if D > 0is even, o
PA+D/2) | mgy /=2 if D > 0is odd.

We simplify the estimation by building an upper bound of this volume. In Figure. @ (c),
the volume of the bounding box with the same “thickness” Ar is apparently an upper bound
of the sphere inside it. Concentrating on the bounding box, imagining the 2-dimension case,
the worst case arises when the vector is far away from ¢; hence the candidate volume, in
terms of the number of hyper cubes of length 1/B, will be the rim of the square, B? — (B—
1)2. Obviously the average estimation is (B/2)% — ((B/2) —1)?. The analysis is extended to
a general D dimension where generally the candidate volume is (r+ Ar/2)P — (r — Ar/2)P

When B is large enough, this volume is estimated by

Ar - O(maz(rP=1, ArP~1y)

Considering that the volume of the data space, in terms of hyper cubes length 1/B, is
BP , the portion of the candidate volume against the whole dataset, is

Ar - O(maz(rP~1/BP, ArP=1/BPY).

Because

Ar < DYP/B andr < (32, (1 - 0)P)1/P = /P,

we have

(’I“D_l/BD_l) < (Dl/p/B)D—l and ATD_l/BD_l < (Dl/p/B)D—l/B

Finally,

Ar - O(maz(rP=1/BP, ArP~1/BPY)

< Ar/B-O(max(rP=1/BP=1 ApP=1/BD~1Y)

< DY?/B.O(maz((D'/?/B)P~1, (D7 /B)P~1/B))
= D'Y?/B.O((DY?/B)P~1) (because B > 1)

— o((DV/?/B)")

Since D is fixed, we conclude that even in the worst case, we need to check only a small
portion of the whole dataset by assigning the value of B larger than D'/? several times. In
other words, almost all the vectors can be judged in the first phase. It is also worth noting that
the worst case happens only in the case when ¢ is given as the vertexes (all g.x4’s are binary
0 or 1); and all the data concentrate to the opposite angle of ¢, that is, all v.x4’s are 1 or 0.
The extreme case is when g is the original point, then all N = |V| data vectors concentrate
to a single point (1, 1,...,1). However, in this case, the intersection between the dataset V'
and the candidate volume is only the few points around the vertex (1,1,...,1).

k-NN queries

In the first phase, the computation of (-)? is necessary for c[-]. Therefore the cost is B x Cp.
To estimate the number of the real distance computation in the second phase, we need to
estimate the candidates left after the phase (size of H; in Algorithm kNN-filtering (Alg. D)).
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Imaging from two extreme cases, it can be known that the number strongly depends on the
distribution of the vectors: when at least some k vectors fall in the same block of ¢, then it
is the number of all vectors in this block; when more than N — k vectors distribute on the
surface of [0,1)7, then the number may be as large as N.

As in the experiments for uniform distributions, this number is usually several ten times
larger than k. In the second phase of the Algorithm kNN-refinement (Alg. B) with the tech-
nique that accelerates the termination, the number of vectors that need actual computation
is reduced to several times of k. Using the same policy in dimension partition, the experi-
ment in VA-file [[I] holds also here. In [[I], it shows that for uniformly distributed data, for
D =50, k =10, N = 5 x 10°, and each dimension is split by 8 bits (corresponding to
B = 2% in this paper), the selectivity of the filtering phase is around 0.1%. In our experi-
ments (eg. Fig. [8), it also shows that B = 128 is large enough, and the efficiency keeps
unchanged for B > 128.

4.2 Remarks on Extensions

Till now we have explained our algorithm by applying the indexing the function to Ly-norm
and have not considered any kind of traditional data index. We would now like to put some
remarks on the extensions of our approach by several directions.

Employing other distance functions

Our method can also be applied to any other distance function if it is calculated from the
coordinates. We show the example of the Mahalanobis distance, which is involved in many
outlier detection methods as mentioned in [27], in the following.

The Mahalanobis distance is defined as a dissimilarity measure between two random
vectors x and y following the same distribution with the covariance matrix S :

d(x,y) = /(x—y) TS 1(x —y).

The Euclidean distance can be considered as a reduction of the Mahalanobis distance
when S is the identity matrix. If the covariance matrix is diagonal, then the resulting distance
measure is called the normalized Euclidean distance. Though the calculation of S~! is time
consuming, it is not necessary to calculate it every time a query is evaluated. Standardizing
the coordinates to [0, 1), then the corresponding S~! can be pre-computed once and stored.
With this, the values of the “knots” for each dimension can also be pre-computed and used
as the bounds in the similar way. The storage cost is |V|2 x size-of-floating-point-number as
well as D x size-of-c[]. One limitation of distance functions such as the Mahalanobis distance
is that they are not suitable for dynamic (eg. stream) data.

We would also like to emphasize that the more expensive the function is, the more benefit
it obtains from using our method.

Combining with other Indexes

Since our approach concentrates on the cost of the function computation, it differs from
other approaches based on data index. Our algorithms find their role in fields with expensive
functions which attract attention in [[Z3,24]. For well indexed data using traditional methods
such as surveyed in [Z5], our algorithms can be applied to the data set after filtering by data
indexing. It will play an active part in the new kinds of searching that need more distance
calculations such as ANN([26]) and RNN([Z]).
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For high dimensional data vectors, the VA-file ([I]) based on the sequential scan is
known to be more efficient. To such methods, our algorithms are applied in their original
styles to (eg. VA-file of) V.

On non-uniform distribution data

For the original case where distances on all coordinates are computed by a single function,
different distributions do not affect the performance significantly. For instance, doubling
the number of grids in each dimension from 1000 to 2000 increases the calculation of the
function by 1000, which is ignorable compared to the huge number of high dimensional data
vectors in V. It is worth noting that doubling the number of grids makes the D dimensional
space separated to 1/2” thus can enhance the filtering effect significantly.

However, in the case when the distance on each dimension is calculated by different
functions, the calculation as above will be increased by 1000 times D. There are two kinds of
approach we can take to address such cases. One is to divide the functions into “expensive”
and “not expensive” and index only the expensive ones. The other is to divide the [0, 1) of a
coordinate to nearly similar to the distribution of the data on this dimension.

Applying to dimension-wise distance functions
In the case when the distance on each dimension is calculated by different functions, the
calculation as above will be increased by 1000 times D. As mentioned above, dividing the

functions into “expensive” and “not expensive” and indexing only the expensive ones could
be a feasible policy.

5 Experimental Results

Table 2 Parameters Used in the Experiments

[ symbol [ default value | description ]

166416 | the number of vectors in data set
10 | the number of similar vectors to be searched
63 | dimensionality
0.3 | the degree of power
128 | the number of knots
0.3 | the radius of range queries

| s |Gl ==

In this section, to show the advantage of expensive functions, we evaluate the quality of
Ly, of fractional p as an example. We show the efficiency of our method, the main purpose of
this paper. All experimental results presented in this section are performed on an Intel-based
computer system running under Linux. CPU is Intel(R) Xeon (R) 2.83 GHz and the amount
of main memory is 8.0GB. Programs are implemented in the C++ language.
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5.1 A study on the Quality of Ly-norm for k-NN Search

As mentioned in the beginning, the parameter p in the Ly,-norm is sensitive in high dimen-
sional space. Using the fractional p can give better results than other distance metrics, such
as Euclidean distance (p=2). Responding to this argument, we perform an extensive study to
capture the behavior of the Lp-norm distance functions varying the parameter p over differ-
ent datasets. We also test the quality of k-NN search applying different L,-norm distances,
and construct the precision versus recall graphs as well. This section is composed of the
primary settings and the results of study.

5.1.1 Primary settings

We use seven real datasets from the UCI machine learning repository?. All of these datasets
are prepared for classification tasks which have a large number of feature variables, and a
class label to identify the classification. The information of these datasets are summarized
in Table B.

Table 3 The real datasets used in the experimental study.

Name Features (Dimensionality)  Cardinality — Classes
Musk 166 476 92
Breast Cancer (wdbc) 30 569 2
Breast Cancer (wpbc) 33 194 2
Ionosphere 34 351 2

Wine (Red) 11 1599 6

Wine (White) 11 4898 7
Image Segmentation 19 2100 7

In order to capture the trend of changing the parameter p in Lp, and to evaluate the
quality of the similarity search applying L, to k-NN, we used the following two measures:

1. Accuracy ratio of label matching: This is the primary measure that we used to
analyse the trend when different p’s are used in the L. Designated by the providers, the
class label of each object in the datasets is known. The same as the one used in [I5], the
measure used here is described as follows. For each dataset, each object is chosen as the
target (query) object, then the k-NN search using L, is executed on the dataset without
seeing the class label. We count the total number of the k nearest neighbors that have the
same class label as the target object over all the different target objects. Then the accuracy
ratio of label matching is calculated by dividing the total number of objects in the same
dataset. With this measure, we compare the trend of the accuracy when differing p, which
presents sensitive behavior of different similarity functions.

2. Average precision versus recall: As mentioned in the literature [28], this is the well
known measure to evaluate the ranked retrieval results. In our study, the answers to the k-NN
search are ranked by their similarities to the query. Therefore, this measure can be employed
to evaluate the quality of the similarity search. We randomly generated 100 queries from
each dataset, and execute k-NN search varying the parameter p. Then the average precision
across 100 queries is measured at the 11 standard recall levels of 0.0, 0.1, 0.2, ..., 1.0. For the
computation of the precision, we checked the labels of the k objects in the answer set. The

2 http://www.ics.uci.edu/"mlearn/MLRepository.html
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Fig. 8 Accuracy ratio of correct class label matching between the k nearest neighbors and the query target.
Each graph represents the results on a dataset.

object holding the same label with the query is considered as the true positive, otherwise is
false positive. To compute the recall, we assume the true answer set according the original
classification in the dataset, and specified the same value of k as the number of objects in
the true answer set. Finally, the continuous precision-recall curve is plotted to confirm the
trends of different L,-norm parameter p.

5.1.2 Study results

As shown in Figure B, we executed k-NN queries on different datasets, varying the value of
k from 1 to 5. Meanwhile, p are assigned values 0.3, 0.5, 0.7, 1, 2, 4, 10, in the computations,
respectively. The y-axis denotes the accuracy ratio of label matching, and the z-axis denotes
values of p. As illustrated by these subfigures (a)-(f), it is clear that the trends from Lg 3
to L1 present in the similar ways, except for a few exceptions in Figure B(a). The major
trends in these subfigures for different datasets show that the accuracy decreases when p
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increases. Particularly, when p is less than 1.0, the accuracy is always better than larger p.
By this observation, it is confidently that the fractional norm L, enhances the accuracy of
similarity search for these datasets.

Following the same experimental settings, we execute 100 k-NN queries on different
datasets, varying the norm parameter p from the set of 0.1, 0.3, 0.5, 0.7, 1.0, 2.0, 4.0, 10.0.
We illustrate the precision-recall curves in Figure B, where each subfigure demonstrates a
different dataset. The y-axis and z-axis denote the precision and recall respectively. In spite
of a few exceptions, the major trends in subfigure (a)-(f) indicate that the similarity func-
tions using fractional parameter p could achieve higher precision. Especially, the Figure B(d)
presents distinct result to support this major trend. In other words, this observation implies
that preferring the fractional norm parameter p can guarantee even upgrade the quality of
similarity search.
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Fig. 9 Average precision vs. recall graph across 100 queries, varying different Lp-norm parameter (p) to
execute k-NN query on different datasets.



5.2 A Study on Efficiency Evaluation

To confirm the efficiency of the proposed technique, we performed an experimental eval-
uation and compared it to the simple sequential scan and the well-known R-tree. Though
many improvements such as M-tree [29], slim-tree [BU] or recent NAQ-tree [31] are consid-
ered to be more efficient than R-tree, they are designed basically for metric space and are
not compared here. Moreover, these methods produce non-disjoint partitions. Such indexes
performs good for datasets which can be clustered hierarchically. Their performance decline
when data cannot be separated well, whose extreme case is the uniformly distributed data.
We believe that the comparison with one of such indexes helps to understand the properties
of our method.

We used two kinds of data set for the experiments: a synthetic data set and a real data
sets. The synthetic one is the set of uniformly distributed vectors. The real data set is the
Corel Image Features taken from Corel GALLERY™ 1,000,000 &. In this experiment, we
extracted one set of features from all the PNG, JPG, and GIF images contained in this image
collections. Totally, 166,416 feature vectors of color moments are extracted. The feature
vectors of color moments are composed of 9 dimensional values as follows:

Color Moments: 9 dimensions (3 x 3) vectors the 9 values are: (one for each of
R,G, and B in RGB color space)

— mean,

— standard deviation, and

— skewness.

The distance between the Color Moments of two images represents the dis-similarity (dis-
tance). In order to verify the effect of dimensionality, we randomly re-used some of the 9
dimensions to generate new dataset having multiples of 9 dimensions. Meanwhile, we di-
vided the whole dataset into several sizes of sub dataset, so that we can test the experimental
performance with the change of sizes. Additionally, all the data is standardized to the [0, l)D
space. We confirm that the proposed technique is consistently effective for all the data sets.
The parameters used in the experiments and their default values are given in Table Dl.

The extensive experiments on k-NN search compare our Function Indexing method with
two related algorithms, the R-tree and the Sequential scan. In the result figures, they are
shortly named as FuniIndex, Rtree, and SeqScan, respectively. The Rtree algorithm is imple-
mented using the Spatial Index Library ?.

We report the experimental performance by changing the following parameters, IV (the
size of dataset), D (the dimension of data vector), and B (the number of “knots”). The cur-
rently changing parameter is dependent on the other fixed parameters denoted in the figures.
All the CPU cost is computed by issuing 100 different queries and taking their average. The
queries for synthetic dataset are generated randomly holding the same distribution of the
dataset, and the ones for the real dataset are randomly sampled from the original dataset.

5.2.1 Cost of exponent computation

First of all, we report the cost for computing pth powers, confirming that it is dominant
when p is fractional. Figure [0 shows the time elapsed to computing d” for fractional p. As

3 A product of image collections published by COREL CORPORATION and COREL CORPORATION
LIMITED, http://www.corel.com/

4 http://research.att.com/ marioh/spatialindex/
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shown in this figure, when p is fractional, the cost is some hundreds times larger than that of
Euclidean distance.

5.2.2 Range Queries: Comparison on real dataset

For range queries, we perform experiments on real dataset, while results on synthetic dataset
are compared but not included here. The reason is that from the results we believe that one
cannot obtain more information than what has been pointed out by so many researchers: in
high dimensional space, the partitioning based index performs poor for uniform distribution
datasets. Only one comparison on synthetic dataset on k-NN is shown in Figure [4.
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Fig. 11 Comparison on changing range 7 (real dataset); parameters correspond to Table &

The experiments are illustrated in pairs in Figure [, Figure [, and Figure [3. In each
figure, (a) and (b) give two results in correspondence with the two different remarkable p
values, 0.3 and 2.0, respectively. D is fixed to 9.
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Fig. 13 Comparison on changing size of dataset N (real dataset); parameters correspond to Table 2

The first experiment is on the changing radius r, shown in Figure [Il. As mentioned in
cost analysis, theoretically r can be as large as D(/P) when q is given as a vertex. We also
test the cases of » > 1, and as shown in the figure, the Rtree declines when r increase. On
the other hand, the sequential scan and our method perform constantly, that is, their CPU
times remain unchanged when r increase. In this experiment, our method outperforms the
others. So in the following experiments, we fix  to a small 0.3 from which the R-tree method
performs relatively stable. The reason why we choose this r is because for extremely small
r, it reduces to point query instead of range query. While for large » (eg. when > 0.8 in
Fig.[l(a)), R-tree’s performance declines.

Next, Figure [ gives the results on the influence of parameter B, the number of knots.
Though the cost increases very slightly when B increase in our method, the execution time
convergences when B is over 128. In almost all the cases, our method outperforms the other
two.



22

In Figure 3, we change the size of the datasets. Apparently our methods is the best and
the lead is linear to N. The R-tree performs significantly worse than the sequential scan as
expected.

It is worth emphasizing that all the above results show only the lower dimensional cases
when D is 9, and our lead becomes more remarkable in higher dimensional experiments.
Basically, the difference is in proportion to the increment of D.

5.2.3 k-NN Queries: Comparison on synthetic dataset

With each of Figure [[4 to Figure [[§, the experiments on k-NN are also illustrated in pairs,
(a) and (b), corresponding to p of 0.3 and 2.0, respectively.
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Fig. 14 Comparison on synthetic dataset conforming to uniform distribution; parameters correspond to Table
[}

Figure [ indicates the comparison results of the three algorithms executed on synthetic
dataset, which is generated conforming to the uniform distribution. We fixed the size of the
dataset (ie. N=100,000), the number of knots (ie. B=128), and issued queries by changing
the parameter D. As expected, our functional indexing method is fairly successful in reduc-
ing the computation cost no matter how the dimensionality of data is changed. Comparing
(a) and (b), we can see that change in the value of p to 2.0 does not diminish the superiority
of our method. The computation cost of the Rtree method increases quickly with dimension-
ality, the case that is not the worst one happens only when D = 9 in Ly space (b). On the
other hand, our method always performs best with remarkable leads. The reason for these
results is that the overlap of MBRs in the Rtree is rapidly increasing with the increment
of dimensionality. Then to search some data, the Rtree has to search a large portion of the
whole dataset. In such cases the Rtree algorithm is much worse than the sequential scan
method.

5.2.4 k-NN Queries: Comparison on real dataset

In the next experiment, we evaluated the performance by varying dimensionality. The results
are shown in Figure 3. With both results, we can observe that the elapsed time is linear to
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Fig. 15 Comparison on changing dimensionality D (real dataset); parameters correspond to Table D

the dimensionality. This is because the number of computations of pth powers is linear to the
dimensionality. We can also confirm that our method is stably effective. In (a) of the figure,
our function indexing method is much faster than the other two algorithms and the difference
enlarges with the increment of dimensionality. It is fair to explain that the Rtree declines
significantly as dimensionality increases because of the expensive distance function in the
Lo 3 space. However in (b), as shown in Figure [, when distance computation is much
cheaper under Lo the R-tree is the fastest, regardless of the increasing of dimensionality.
A more important reason accounting for this result is that the dataset is well-clustered. In
other words, the color moments can be sensitively grouped tightly into different clusters.
Therefore the Rtree method can divide them well with compact, disjunction MBRs. Such
Rtree is constructed without high overlap, helping it to avoid the curse of dimensionality.
Although, our method is linearly close to the Rtree method, we would like to do more
experiments on different real datasets in the future. The example given in NAQ-tree [31]
explains the (dis)advantage of our method and R-tree well, by showing the overlap of index
blocks.

Figure M8 and Figure [ indicate the experiment results by varying the dataset size N
in low dimensional and high dimensional space. As shown in (a) of Figure I8 and 4, our
method performs better than the R-tree and sequential scan methods under the expensive
Ly 3 space. Although the efficiency of our function indexing method is very close to the
Rtree method in the low dimensional space, the difference becomes much more significant
in the high dimensional space. As expected, the well-clustered property of the corel features
cannot cover the expensive distance computation in fractional p. Not surprisingly, (b) of
the two figures gives a similar result to Figure 3 for the same reason to do with the corel
features.

With the last experiment, we report the influence of parameter B, the number of knots
proposed in this paper. The computation cost reduces rapidly along with the increasing of
B, as shown in Figure [[8. It is easy to understand that the more the numbers of “knots” are
divided, the more efficiently the boundary performs for the filtering in the algorithm. Due
to the same reason of the well-clustered property, in (b) where p = 2, the efficiency of our
method increased along with B, and became stable but Rtree is still better. On the other hand,
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Fig. 17 Comparison on changing size of dataset /N in high dimension (D=63, real dataset); parameters cor-
respond to Table 2

in (a) where p = 0.3, we can see that when the value of B exceeds about 128, the efficiency
of the function indexing algorithm performs slightly better than the Rtree method.

6 Conclusions

For a long time it is believed that the I/O cost dominates the performance of almost any kind
of searching. Efforts are thus put on developing the data index to reduce I/O while processing
searching. We figured out in this paper that the computation cost for multi-dimensional
searches with expensive distance functions is also a dominating factor. To reduce such a
computation cost, we developed an efficient filtering algorithm based on the new technique
called function indexing. We also designed the range query algorithm as well as the k-NN
query algorithm based on this technique. Analyses on the filtering effect of the algorithms
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show that most of the distance computation can be avoided. As a general technique, it is also
widely applicable to any kind of applications with multi-dimensional searches. Experiments
on real and synthetic data confirm this efficiency.

To extend the technique, we are planning to combine it with other indexes, such as the
VA-file. A more precise cost model for estimating the efficiency of our Range-query and
k-NN algorithms is under construction. We recognize the necessity of the theoretical com-
parison between our method and the partition-based (R-tree, slim-tree, and so on) indexes.
To do this, the distance between clusters as defined in [BZ] is an important and feasible mea-
sure. We will also investigate the effect on non-uniform data and dimension-wise distance
functions.
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