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Measuring gene similarity by means of the
classification distance

Elena Baralis, Giulia Brund and Alessandro Fioki

I Dipartimento di Automatica e Informatica, Politecnico dirifio, Torino, Italy

Abstract. Microarray technology provides a simple way for collectmgye amounts of data on
the expression level of thousands of genes. Detectingaiitiéls among genes is a fundamental
task, both to discover previously unknown gene functions, ta focus the analysis on a limited
set of genes rather than on thousands of genes. Similarityeba genes is usually evaluated
by analyzing their expression values. However, when aaftiti information is available (e.g.,
clinical information) it may be beneficial to exploit it. lhis paper, we present a new similarity
measure for genes, based on their classification powegnéheir capability to separate samples
belonging to different classes. Our method exploits a nave gepresentation which measures the
classification power of each gene and defines the classificdistance as the distance between
gene classification powers. The classification distancesaredas been integrated in a hierarchi-
cal clustering algorithm, but it may be adopted also by otthestering algorithms. The result of
experiments run on different microarray datasets suppleetituition of the proposed approach.

Keywords: Similarity measure; Microarray; Clustering; Data mining

1. Introduction

Genome wide expression analysis with DNA microarray tetgyohas become a fun-
damental tool in genomic research (El Akadi et al, 2010; Getial, 1999; Thompson
etal, 2007; Jiang et al, 2004). An important goal of bioinfiatics is the development of
algorithms that can accurately analyze microarray data &dtistering algorithms are
often used to detect functionally related genes by groufuiggther genes with similar
patterns of expression (Datta and Datta, 2006). Many warksider the application or
the adaptation of conventional clustering algorithms toegexpression data (see Jiang
et al, 2004 and Thalamuthu et al, 2006 for a review) and newaritkgns have recently
been proposed (Bouguessa and Wang, 2009; Chu et al, 2018dRvedico, 2007; Fu
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2 E. Baralis et al

and Banerjee, 2008; Gu and Liu, 2008; Jiang et al, 2006; Wealy 2009). All cluster-
ing algorithms need to define the notion of similarity betwetements.

Since microarray data are continuous values, severalicdéhstistance measures
(such as Euclidean, Manhattan, Chebyshev, etc.) have b@éwited to compute the
distance between pairs of genes. However, such distancédos are not always ad-
equate, because strong correlations may exist among geeesfehey are far from
each other as measured by these distance functions. Thedl@ere expression profile
may be more interesting than the individual magnitude ohdaature and traditional
distance measures do not score well for shifting or scaléémps (Zhao et al, 2006).

Other widely used schemes for determining the similaritivieen genes use the
Pearson or Spearman correlation coefficients, which medisesimilarity between two
expression profiles. They have proved effective as sinylaneasures for gene expres-
sion data, but they are not robust with respect to outliarghiermore, they are a macro-
scopic metric and strong correlation may only exist on a subsconditions (Zhao et
al, 2006). The cosine correlation is more robust to outlieesause it computes the co-
sine of the angle between the expression gene value vedta@mnparison of several
distance and correlation measures is provided in Zapal&ahdrk (2006).

Other kinds of similarity measures include pattern baseani\ét al, 2002) (which
considers also simple linear transformation relationsh@y tendency based (Liu and
Wang, 2003) (which considers synchronous rise and fall pfession levels in a sub-
set of conditions). In Zhao et al (2006) the authors focushenproblem of grouping
also negative co-regulation patterns, while in Mitra andwtaler (2004) a maximal
information compression index is used to measure disgiityilactween the expression
levels of genes.

The common characteristics of these approaches is thatthster genes only by
analyzing their continuous expression values. These appss are appropriate when
there is no information about sample classes and the ainuefering is to identify a
small number of similar expression patterns among samiglasever, when additional
information is available (e.g., biological knowledge onidal information), it may be
beneficial to exploit it to improve cluster quality (HuangladPan, 2006).

In this work, we address the problem of measuring gene gityilay combining
the gene expression values and the sample class informatidhis aim, we define the
concept ofclassification powenf a gene, that specifies which samples are correctly
classified by a gene. A gene classifies correctly a samplg ifphsidering the sample
expression level, it assigns the sample unambiguouslhetodirect class. Thus, instead
of discovering genes with similar expression profiles, wentify genes which play an
equivalent role for the classification task (i.e., genesgha a similar contribution for
sample classification). Two genes are considered equbifitbry classify correctly the
same samples. The classification power of a gene is repeeseyta string of 0 and 1,
that denotes which samples are correctly classified. Thigyss namedyene mask

To measure gene similarity, we define a novel distance me&siween genes, the
classification distancevhich computes the distance between gene masks. Thefielassi
cation distance has been integrated in a hierarchicaleringtalgorithm, which itera-
tively groups genes or gene clusters through a bottom utegiréEveritt et al, 2009). To
allow the computation of inter-cluster distance by meanthefclassification distance,
the concept ofluster maskKi.e., the total classification power of genes in a cluster3 w
also defined. Besides hierarchical clustering, the claasifin distance measure may be
integrated in clustering algorithms based on differentapphes (e.g., DBSCAN Ester
et al, 1996, or PAM Kaufman and Rousseeuw, 2005).

To our knowledge, there are no works which address the isugeasuring the
similarity between genes by considering both their expoesglues and the informa-
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tion about each sample class. Some works address the coembmy problem, i.e.,
grouping samples by analyzing their gene expression véRigshel et al, 2007; Song
et al, 2008), or combining clinical and microarray data tdcda model for tumor clas-
sification (Gevaert et al, 2006). Differently from samplestering, gene clustering does
not provide an easy validation procedure, because the dase labels are unknown,
and clustering accuracy cannot be computed by countingehegcorrectly assigned
to each cluster.

Since gene expression data is typically affected by ostliae also introduce a
new density based approach to reduce the influence of vandsomm the concentra-
tion core (i.e., outlier values). A popular procedure sfieally used in microarray data
analysis (Yang et al, 2002) for removing outliers is the Hamgentifier (Davies and
Gather, 1993), also called the median absolute deviatiohMmethod. The MAD
estimator smooths the effect of values far from the meditueyéandependently of their
density.

To take into account also the density distribution of valuespropose theveighted
mean deviatiorfor WMD) method to reduce the influence of outliers in the deéin
of the gene expression intervals. In particular, mean arthsird deviation are replaced
by their weighted versions. A weight is assigned to each datee by considering the
number of its neighbors belonging to the same class. Thugh&hweight is assigned
to values with many neighbors and a lower weight to isolatddes.

We validated our method on different microarray datasetsdmparing our dis-
tance measure with the widely used Euclidean distances®aorrelation and cosine
distance measures. The experimental results confirm thiiam of the proposed ap-
proach and show the effectiveness of our distance measugieistering genes with
similar classification behavior.

The paper is organized as follows. Section 2 describeséips 86 compute the clas-
sification distance between gene (or cluster) masks. Se@{wesents the integration of
our distance measure in a hierarchical clustering appr@ettion 4 discusses the ex-
perimental evaluation of the proposed approach and finaltyi@ 5 draws conclusions
and presents future works.

2. Measuring gene similarity

When all the samples whose gene expression value is in aginge belong to a single
class, the gene can assign unambiguously these samplestarthct class. We propose
a method to define the similarity between genes by measuréigdiassification power
(i.e., their capability to correctly classify samples),igthperforms the following steps.

— Core expression interval definition.Definition of the range of expression values for
a given gene in a given class. To address the problem of mythedensity based
weight is exploited in the core expression interval defomiti

— Gene mask and cluster mask generatiorDefinition of thegene masknd theclus-
ter maskas representatives of gene and cluster classification pdWwergene mask
is generated by analyzing the gene core expression insgwalle the cluster mask
is generated by analyzing the gene masks of genes in theiclust

— Classification distance computationDefinition of theclassification distancenea-
sure to evaluate the dissimilarity between the classitioghiower of genes (or clus-
ters). The Hamming distance is exploited to measure thardistbetween masks.

These steps are described in details in the following suilogec



4 E. Baralis et al

In general, microarray daté are represented in the form of a gene expression ma-
trix, in which each row represents a gene and each colummesepts a sample. For
each sample, the expression level of all the genes undeidesaton is measured. Ele-
mente;s in E' is the measurement of the expression level of geoe samples, where
1 =1,...,Nands = 1,...,.S . Each sample is also characterized by a class label,
representing the clinical situation of the patient or tesseing analyzed. The domain
of class labels is characterized bydifferent values and labdl, of samples takes a
single value in this domain.

2.1. Core expression interval definition

The core expression interval of a gene in a class representange of gene expression
values taken by samples of the considered class. Sinceaniayodata may be noisy, we
propose a density based approach to reduce the effect @rsuih the core expression
interval definition, theweighted Mean Deviatiofor WMD). WMD is a variation of
the MAD estimator (Hampel, 1974; Daszykowski et al, 200He MAD estimator first
computes the median of the data and defines the set of absaluts of differences
between each data value and the median. Then, the mediais eéthis computed. By
multiplying this value by 1.4826 (i.e., the scale factorfiormally distributed data), the
MAD unbiased estimate of the standard deviation for Gausséda is obtained. The
MAD estimator smooths the effect of values far from the medialue, independently
of their density. In WMD the mean is replaced by the weightezhmand the standard
deviation by the weighted standard deviation. The weigtésamputed by means of a
density estimation. A higher weight is assigned to expogsgalues with many neigh-
bors belonging to the same class and a lower weight to isbiatkies. A comparison
between WMD and MAD is presented in Section 4.2.

Consider an arbitrary sampiebelonging to clasg and its expression valug; for
an arbitrary gené Let the expression values be independent and identicistigtalited
(i.i.d) random variables ang; ;, be the standard deviation for the expression values of
genei in classk. The density weightv;s measures, for a given expression vadug the
number of expression values of samples of the same clas$ whlong to the interval
+0, 1 centered ire;s.

The density weight for the expression vatygfor a gene and a sample belonging
to classk is defined as

Wis = Z 61'771 (1)

m=1,m%#s

whered;,, is a function defined as

1 if samplem belongs to class A
dim = €im € [€is — Tik; €is + 00 k] (2
0 otherwise

If an expression value is characterized by many neighboratges belonging to
the same class, its density weight is higher. For exampl&jgare 1 the expression
values of an arbitrary genewith four samples of class 1 (labeled wsx, y, andz)
and seven of class 2 (labeled asb, c, d, e, f, andg) are shown. For samplg, the
expression level (denoted ag, in Figure 1) is characterized by a density weight
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Fig. 1. Genei: Density weight computation for samplagandb.

equal to 0, because for gemdhere are no other expression values of class 2 in the
intervale;, + o, 2 (represented by a curly bracket). For sanipléhe expression value
(eip) is characterized instead by a density weighg equal to 3, because three other
samples of class 2 belong to the interwgl+ o; ».

The core expression interval of an arbitrary géieclassk is given by

Lik = fig £ (2 Gik) 3)
where the weighted meai ,, and the weighted standard deviatiéy)y, are based on

the density weights and are computed as folfows
The weighted meap,; . is defined as

s
1
(i ) = Ois * Wis - €4s 4
ik Win ; Wis - € 4)
whered;, is a function defined as
1 if samples belongs to class
Ois = . (5)
0 otherwise
andW; ;. is the sum of density weights for gefhe classk (i.e.,ZfZ1 Ois - Wis)-
The weighted standard deviatién, is given by
1S
~ ~ 2
Gik = Wir Sz:; Ois - Wis - (€56 — flik) (6)

In the upper part of Figure 2, an example of the core expressiervals for a gene

L The term2x&; j, covers about 95% of expression values. Higher (or loweresbf the weighted standard
deviation multiplicative factor may increase (or decrgédke number of included values.
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Fig. 2. Core expression interval computation for classes 1 and Zyand mask computation for gepge

with samples belonging to two classes is shown. Since thesfiraple of class 2 (i.e.,
samplea) has a low density weight (equal to zero), its value provittesontribution to
the weighted mean and standard deviation computation., Thei€lass 2 core expres-
sion interval is less affected by outliers

2.2. Gene mask and cluster mask generation

For each gene we define a gene mask, which is an arréiyit§, whereS is the number
of samples. It represents the capability of the gene toi§yassrrectly each sample, i.e.,
its classification power. Consider an arbitrary geéaad two arbitrary classes, ¢, €
{1,...,C}.Bit sofits mask is set to 1 if the corresponding expression valukelongs
only to the core expression interval of a single class (€;9,,) and does not belong to
the core expression interval of any other class (€;g,, with ¢; # ¢3). Otherwise it is
set to 0. Formally, bit of the gene mask is computed as follows.

1 if (eis S Ii,m) A /ECQ ?é C1 | €is € Ii,cz
0 otherwise

mask;s = { @)

A sample might not belong to any core expression interval, (it is an outlier). In
this case, the value of the corresponding bit is set to O daagto (7).

Figure 2 shows the gene mask associated to an arbitraryi gétee the computation
of its core expression intervals; andI; ». The sampleg, w, andx belong to the
expression interval of a single class, thus their corredpgmask bits are setto 1. The
bits corresponding to the other samples are set to 0.

The notion of classification power may be extended to clastégenes. Given an
arbitrary gene cluster, itduster masks the logical OR between the masks of the genes
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in the cluster. It represents the total classification paviehe cluster, i.e., the samples
that can be correctly classified by considering all the gém#®e cluster.

2.3. Classification distance computation

The classification distance measure captures the dissityiteetween genes (or clus-
ters) by analyzing their masks. It evaluates the classificatower of each object, rep-
resented by its mask, and allows the identification of objedtich provide similar
information for classification.

Given a pair of objects§i, j), the classification distance between them is defined as
follows

s
1
dij = 3 Z mask;s & mask;s (8)
s=1

whereS is the number of samples (bits) of the masiqsk;; is bit s of maski, and® is
the EX-OR operator which yields 1 if and only if the two opetamre different. Hence,
the classification distance is given by the Hamming distérat&een masks.

When two genes (or clusters) classify in the same way the sameles, their dis-
tance is equal to O because their masks are identical. Orttibeextreme, if two objects
have complementary masks, their distatigeis maximum and equal to 1, because the
sum of complementary bits is equal to the number of samples

The classification distance is a symmetric measure thassasgene similarity by
considering both correct and uncertain classification ofidas. We also considered, as
an alternative, an asymmetric distance measure simildretdaccard coefficient (Cox
and Cox, 2001). This asymmetric measure considered thelmatidn of correctly clas-
sified samples (i.e., both 1 in the mask) and disregardedathigiloution of samples for
which classification is uncertain, due to interval overlap.{ both 0 in the mask). An
experimental evaluation (not reported in the paper) of ditisrnative showed a worse
performance, thus highlighting that also the similarity fmcertain classifications is
important to group genes with similar behavior.

3. Integration in clustering algorithms

The classification distance measure may be integratediougaclustering approaches.
To validate its effectiveness, we integrated it into a nenecal clustering algorithm (Everitt
et al, 2009). Agglomerative hierarchical clustering iteely analyzes and updates a
distance matrix to group genes or gene clusters throughtarbaip strategy.

Consider an arbitrary s&¥ of N genes. The triangular distance matfixcan be
computed orG by means of the classification distance measure defined.iA(jrbi-
trary elementl;; in D represents the distance between two objeatsdj, which may
be either genes or gene clusters. Mafdixs iteratively updated each time a new cluster
is created by merging genes or gene clusters. The procesgssiatedV — 1 times, until
only one single element remains.

At each iteration, the two objects to be merged are selegtéddntifying in D the
element with the lowest valué;;, which represents the most similar pair of objects
(genes or clusterg)and;. If more object pairs are characterized by the same minimum
distance, the element with the maximum average varianadasted, because variance
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Table 1. Dataset characteristics: name, number of samples, nuribenes, and number of classes

Dataset Samples Genes Classes
Tumor9 60 5726 9
Brainl 90 5920 5
Lung 203 12600 5
Leukl 72 5327 3
Leuk2 72 11225 3
Colon 62 2000 2
Prostate 102 10509 2
SRBCT 83 2308 2
DLBCL 77 5469 2

is the simplest unsupervised evaluation method for genldrgr{He et al, 2006). In
particular, genes with high variance are usually ranketidridpecause their expression
values significantly change over conditions (He et al, 2088grage variance of an
element is given by the average over the variance of the sgjore levels of all genes
belonging to the two objectsand; concurring to the new (cluster) element.

The classification distance measure may be integratedén oliinstering approaches.
For example, density-based clustering methods, such aCBRSEster et al, 1996),
consider the Euclidean distance among elements to compaiteachability relation-
ship needed to define each element neighborhood. The pidstance measure may
replace the Euclidean distance, whileay be defined in terms of the maximum num-
ber of mismatching bits between the two masks (i.e., the maxi number of bits set to
1 after the EX-OR computation). Similar considerationgdior partition-based clus-
tering algorithms (e.g., PAM (Kaufman and Rousseeuw, 2005)

4. Experimental results

We validated our method on 9 microarray datasets, publichflable on (Statnikov
et al, 2005) and (Alon et al, 1993). Table 1 summarizes thHeracteristics. The data
distribution and cardinality of these datasets are rativerse and allowed us to validate
our approach under different experimental conditions.

We performed a set of experiments addressing the follovasiges.

— Classification distance evaluationTo evaluate the effectiveness of the classification
distance in measuring the classification power of genes weaoced the accuracy
and the sensitivity provided by neighboring genes. Funttuee, the biological rele-
vance of our results has been assessed by verifying if neigidbgenes are reported
with similar biological meaning in tumor literature.

— Core expression interval comparisonThe Weighted Mean Deviation (WMD) and
the Hampel identifier (MAD) for detecting the core expressiatervals have been
compared in terms of both accuracy and interval charatitsis

— Cluster characterization. The characteristics of the clusters yielded by hierardhica
clustering exploiting the classification distance havenliaeestigated.

4.1. Classification distance evaluation

Accuracy and sensitivity.
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Accuracy is defined as the number of samples correctly assaicto their class over
the total number of samples. It provides an overall clasgifio performance measure.
We also analyzed the classification performance sepaffataach class by computing,
for each class, the true positive rate (i.e., the rate ofeodlyr assigned samples over the
total number of samples belonging to the class). The truéip®sate is also called
sensitivity or recall.

In the context of tumor classification, to which the datagefEable 1 are devoted,
the most interesting genes are those which play a role inideasge. We focused our
analysis on these genes, which are commonly selected bysnoédeature selection
techniques (Mukkamala et al, 2006). In our experiments, sraputed the accuracy
provided by the set of top ranked genes selected by meansupfesvssed feature se-
lection technique. Then, we substituted in turn a singleegeith the most similar gene
according to various distance metrics. We computed the rmewracies and we com-
pared the obtained results to the previous accuracy value.

In particular, to avoid biasing our analysis by considedrgingle feature selection
technique, we performed supervised feature selection anmef the following pop-
ular techniques (Statnikov et al, 2005): (i) Analysis ofigace (ANOVA), (ii) signal
to noise ratio in one-versus-one fashion (OVO), (iii) sigwanoise ratio in one-versus-
rest fashion (OVR), (iv) ratio of variables between catégmto within categories sum
of squares (BW). New feature selection techniques have eemtly developed (Liu
and Motoda, 2007), but since the selection of a feature tatealgorithm is not very
critical and it is done only to avoid biasing the analysis Isjng only one of them,
we limit the analysis to these four methods. Feature seletias been performed sep-
arately for each dataset. We considered the first ten gen&sdady each feature se-
lection technique. These small gene subsets only contaiesg&hich are relevant for
discriminating among sample classes.

In each of the 10-gene sets obtained from feature selesti@substituted in turn a
single gene with the most similar gene according to a digtameasure. In particular, we
considered the Euclidean distance, the Pearson correl#étie cosine correlation, and
the classification distance. Thus, for each 10-gene set@neltch distance measure,
we created ten new different gene sets, each of which withsabstituted gene. The
accuracy and the sensitivity provided by these new setsfirealy been computed and
compared.

Classification has been performed by means of the LibSVMsiflas (Chang and
Lin, 2001), with parameters optimized by using the grid ekan the scripts down-
loaded with the LibSVM package. Ten fold cross-validatias been exploited to avoid
selection bias. The reported accuracy is the overall vadugptited on all the splits. The
considered feature selection methods are available in BEMd&software (Statnikov et
al, 2005).

Table 2 shows the accuracy results of the experiments onrdie Bdataset. Simi-
lar results hold for the other datasets. The accuracy of tiginal setting (i.e., the ten
original genes selected by the feature selection methsdsported in the first column.
For each feature selection method, rows labeled 1-10 rép®eccuracy difference be-
tween the original set and each of the modified sets (each iha wifferent substituted
gene), while the last two rows report the average value dvet® modified settings and
the standard deviation. For three out of four feature selechethods the classification
distance selects the best substituted gene with respeloe tother distance measures.
In the case of OVO and ANOVA, the substitution even improvesiaacy with respect
to the original setting (i.e., it selects a better gene witspect to that selected by the
supervised feature selection method).

The different overall accuracy increase/decrease depmmtt®e intrinsic nature of
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Table 2. Differences between the accuracy of the original subsettamchodified ones on the Brainl dataset
for different feature selection methods and distance nreasu

Method Gene Euclidean Pearson Cosine Classification

1 -1.11 0.00 1.11 -2.22
2 2.22 111 -1.11 4.44
ANOVA 3 2.22 -1.11 -2.22 -1.11
81.11 4 3.33 2.22 3.33 2.22
5 -2.22 -3.33 -2.22 111
6 -1.11 2.22 -1.11 1.11
7 2.22 1.11 111 3.33
8 -1.11 0.00 111 111
9 -2.22 -3.33 -3.33 -2.22
10 1.11 -2.22 -1.11 -2.22
Mean 0.33 -0.33 -0.44 0.56
Std 2.10 2.04 1.34 241
1 2.22 -8.89 -3.33 -1.11
2 -2.22 -3.33 -3.33 -1.11
BW 3 -4.44 -3.33 -1.11 -5.56
74.45 4 7.78 -4.45 0.00 -1.11
5 -2.22 -5.56 -3.33 -3.33
6 -4.44 -6.67 -4.44 -5.56
7 -5.56 -5.56 -3.33 -4.45
8 -5.56 -5.56 -3.33 -1.11
9 -3.33 -3.33 -3.33 -2.22
10 -2.22 -7.78 -5.56 -3.33
Mean -3.56 -5.44 -3.11 -2.89
Std 2.71 1.55 2.20 1.83
1 2.22 2.22 111 0.00
2 0.00 -1.11 0.00 3.33
ovo 3 3.33 5.56 6.67 2.22
74.45 4 -4.45 5.55 4.44 5.56
5 3.33 111 0.00 3.33
6 -1.11 111 111 111
7 1.11 0.00 111 0.00
8 3.33 2.22 2.22 -1.11
9 -2.22 -1.11 -1.11 -3.33
10 2.22 2.22 3.33 5.56
Mean 0.78 1.78 1.89 1.67
Std 2.67 2.35 2.69 2.88
1 -6.67 -6.67 -7.78 -4.44
2 -10.00 -6.67 -7.78 -5.56
OVR 3 -5.56 -3.33 -5.56 0.00
73.34 4 -3.33 -4.45 -2.22 -3.33
5 -3.33 -4.45 -4.45 -2.22
6 -5.56 -3.33 0.00 -4.45
7 -1.11 1.11 111 0.00
8 -7.78 -4.45 -3.33 -2.22
9 -5.56 -2.22 -5.56 -2.22
10 -1.11 -5.56 -5.56 -8.89
Mean -5.00 -4.00 -4.11 -3.33

Std 2.83 301 2.29 267
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Table 3. Average sensitivity (i.e., true positive rate) in percegetaver the ten substitutions for each class (1 to
5) and the total accuracy (row All) on the Brainl dataset féiedent feature selection methods and distance
measures

Method Class Euclidean Pearson Cosine Classification

1 94.17 94.50 94.00 94.83
2 72.00 73.00 74.00 73.00
ANOVA 3 64.00 58.00 59.00 61.00
4 65.00 62.50 60.00 67.50
5 8.33 6.67 6.67 8.33
All 81.44 80.78 80.67 81.67
1 93.17 91.17 91.00 91.67
2 30.00 26.00 27.00 33.00
BW 3 21.00 19.00 19.00 31.00
4 67.50 70.00 70.00 67.50
5 1.67 1.67 1.67 5.00
All 70.89 69.01 71.34 71.56
1 95.33 96.83 97.00 95.67
2 57.00 56.00 58.00 59.00
ovo 3 11.00 12.00 12.00 16.00
4 92.50 92.50 95.00 90.00
5 0.00 0.00 0.00 0.00
All 75.23 76.23 76.34 76.12
1 88.67 89.50 90.17 89.67
2 46.00 50.00 45.00 47.00
OVR 3 8.00 8.00 9.00 14.00
4 72.50 67.50 70.00 72.50
5 0.00 3.33 1.67 3.33
All 68.34 69.34 69.23 70.01

each feature selection method. For the ANOVA and OVO methibdsoriginal gene
masks are characterized by more bits set to 1 (on averages2@0\samples) than the
other two methods (on average 8). The highly selective géreeswith few 1 in their
mask) chosen by BW and OVR may be more difficult to replace gmately. In this
context, the classification distance selects a gene witlassification behavior more
similar to the gene to be substituted than the other distareasures. Finally note that
highly selective genes do not necessarily imply high aagura

Table 3 provides details on the percentage of correctlysiflad samples for each
class (1 to 5) in the Brain 1 dataset. The average sensifivity true positive rate) in
percentage over the ten substitutions for each class aridtti@ccuracy (row All) for
different feature selection methods and distance measureported. The cardinality
of the classes are 60, 10, 10, 4, and 6 samples respectihegensitivity of the classi-
fication distance is typically higher than the sensitivitpyided by the other distances.
In particular, the classification distance provides thet kessitivity for at least three
classes for all feature selection methods. Furthermoeeshihest sensitivity usually
characterizes the classes with low cardinality. Thus, ocethwd is particularly suited to
rare classes (i.e., classes with a low cardinality).

Experiments performed with larger gene sets (i.e., 50 gesiemved a similar be-
havior. The original accuracy is higher (for example, it §78% for BW when a set
of 50 genes is considered) and the average difference imamcis lower (about 0.5%
for the classification distance and -0.3% for the cosineadist). When the number of
considered genes increases, the effect of a single gene ataslsification performance
becomes less evident. Hence, these experiments are lestvefin evaluating the char-
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acteristics of the classification distance.

Biological investigation

To assess the biological meaning of similar genes, we fabois¢he Colon and Prostate
datasets, which have been widely studied in previous wdike.genes that are known
to play a role in the colon tumor progression are J02854 (lilyeegjulatory light chain
2, smooth muscle isoform) and M76378 (Cysteine-rich progeine). According to the
classification distance, the genes nearest to J02854 ar8@M6392451, R78934, and
T60155. Gene M63391 is listed in the top relevant genes ftancoancer in (Chen
et al, 2007; Yu et al, 2004; Bo and Jonassen, 2002; Ben-Ddr 20@0), while gene
T60155 is cited in (Ben-Dor et al, 2000) and (Yu et al, 2004)xtirermore, the genes
nearest to M76378 are M63391 and J02854, both relevant fonaancer. We also
analyzed the performance of other distance measures orotba Gataset. The cosine
correlation shows a similar behavior. For example, in treead gene J02854, it detects
as nearest three of the genes detected by the classificagtamacke (R78934, T60155,
T92451). On the contrary, there is no intersection betwkemearest genes yielded by
the classification and Euclidean distances. For exampl¢héEuclidean distance, the
nearest to gene J02854 are genes R87126, X12369, R4675%ZBH3& Among them,
only gene X12369 shows a correlation to the colon cancerdém Zhang, 2007).

In the prostate cancer the ETS-related gene (ERG), a merhtiex BTS transcrip-
tion factor family, is the most frequently overexpressemt@oncogene in the transcrip-
tome of malignant prostate epithelial cells (Petrovicd,2@05; Gregg et al, 2010). The
classification distance detects as the most similar geeds/grAsp-Glu-Leu endoplas-
mic reticulum protein retention receptor 3 (KDELR3), thediblast growth factor bind-
ing protein 1 (FGFBP1), the TNF receptor-associated f&{@0iRAF2) and the annexin
A7 (ANXA7) which show an overexpression and play an impdrtate in the prostate
cancer proliferation as reported in (Aicha et al, 2007; Radget al, 2008; Rosini et
al, 2002; Torosyan et al, 2002).

These results show that our distance metric groups genledutih comparable clas-
sification accuracy and similar biological meaning. Herare, method can effectively
support further investigation in biological correlatiomadysis.

4.2. Core expression interval comparison

Recall from Section 2.1 that the MAD estimator smooths tfiecef values far from
the median value, independently of their density. Inst¥dlllD takes into account the
density of values and smooths the effects of isolated vallies core expression in-
tervals defined by MAD are usually narrower than those defmeMD. Thus, the
number of ones in the masks is generally larger for MAD, beedhe intervals are less
overlapped. Figure 3 reports the boxplots of the distrdngiof the number of ones in
the masks corresponding to intervals generated by mean$Aid Ahd MAD.

For each gene, we computed the similarity between the masks generatetidoy t
two approaches (both characterizeddpits) by means of the following formula:

S

L 1
Similarity(mask; pap, mask; wap) = g Zmaskij,MAD ® maskijwmp (9)
j=1

Figure 4 shows the boxplot of the distribution of the siniflavalues. The masks agree
in roughly 90% of cases (i.e., gene/class pairs).
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We also analyzed the classification accuracy yielded by #re gnask represen-
tations provided by the MAD and the WMD methods. The same ix@mtal design
described in Section 4.1 has been used for these experinenisst cases WMD pro-
vided a better accuracy than MAD. For example on the Brairtas#d, the difference
in accuracy between the original subset and the modifiecesotained by exploiting
the MAD technique is -0.221.74 with ANOVA, 3+3.07 with BW, 1.56-2.24 with
OVO, and -6.33-1.74 with OVR. Thus, for ANOVA, OVO and OVR, WMD accuracy
(see Table 2) is higher than MAD accuracy. Furthermore, thvedard deviation of the
accuracy difference of MAD is, on average, larger than thedsrd deviation of WMD,
thus showing a less stable behavior. Similar results at@mdd for the other datasets.

This behavior may be due to an overestimation of the geneifitagion power
when intervals are defined by means of MAD. In particulargsithe core expression
intervals defined by MAD are narrower, they are also lesslapped. Hence, the result-
ing masks are characterized by a larger number of ones, wijrksent a higher gene
discriminating capability.

4.3. Cluster characterization

We evaluated the characteristics of the hierarchical etirgg algorithm presented in
Section 3, which integrates the classification distancesomea Since sample class la-
bels are available, but gene class labels are unknown, $hé tf gene clustering can-
not be straightforwardly validated. To evaluate the chiréstics of our approach, we
(i) compared by means of the Rand Index (Rand, 1971) theeelngtresults obtained
by using our measure, the cosine, and the Euclidean mdiifjanalyzed the variation
of the cluster size when varying the cluster number, andeii@luated the homogeneity
of the clusters by analyzing the classification behavioresfes included into the same
cluster. Clustering results, together with a tool to natdghe dendrogram and explore
the clusters, are available on our website.

Rand Index

To measure the agreement between the clustering resuéimebdtwith different met-
rics, we computed the Rand Index (Rand, 1971). It measueeaumber of pairwise
agreements between a clusteriRgand a set of class labets over the same set of
objects. Itis computed as follows

a+b

(%)
wherea denotes the number of object pairs with the same lab@lamd assigned to the
same cluster i, b denotes the number of pairs with a different labeCinhat were
assigned to a different cluster i§ and V is the number of objects. The values of the
index are in the range (totally distinct clusters) td (exactly coincident clusters). The
Rand Index is meaningful for a number of clusters in the rdag& — 1], whereN is
the number of objects. Clusters composed by a single elepnewide no contribution
to the Rand Index evaluation (Rand, 1971).

To perform a pairwise comparison of the clustering resuitained by different dis-

tance metrics, we selected one metric to generate the kchgt&€ and used as labels

R(C,K) = (10)

2 https://dbdng. polito.it/tw ki/bin/view Public/d assificationDistance
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Fig. 5. Pairwise Rand index evaluation between classification)ii2an, and cosine distance metrics on the
Colon dataset.

C the cluster identifiers obtained by clustering with the sdregarchical algorithm
and a different distance metric. We repeated the processrform the pairwise com-
parison of all three metrics. The results for the Colon datase shown in Figure 5.
Similar results are obtained on the other datasets. Higicaicclustering based on the
classification distance shows a good agreement (ca. 70%)cadine correlation clus-
tering. Instead, the Rand Index between classificatioalig clustering and Euclidean
distance clustering is very low. This last behavior is simtb that between Euclidean
distance clustering and cosine correlation clustering.

Cluster size

We evaluated the trend of the maximum cluster size when @samg the number of

final clusters (from 1 to 150 clusters) for the Euclideanatise, Pearson correlation
and Classification distance metrics. Figure 6 shows thdtsesn the Brainl dataset
(characterized by 5920 genes). The other datasets shovimda ehavior.

The Euclidean distance typically yields one big clustertaomng the majority of
genes and a number of small clusters with few genes. The nuaxisize is stable
around 5740 genes and remains constant until 554 clusteesgiit falls to 4810. Pear-
son correlation also creates one very large cluster (thebsuwf elements is roughly
4800), whose size abruptly changes to roughly half of thegéaround 2500 elements)
around 60 clusters. Cosine correlation shows a behavidlasito the Pearson correla-
tion, but the maximum size abruptly changes around 25 clgB#assification distance
yields a decrease in the cluster size until a maximum sizeratd000 genes. Hence,
it partitions data in smaller clusters, while the otheraliste measures typically yield a
very large cluster, which behaves as a generic gene containe
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Fig. 6. Maximum cluster size for an increasing number of cluster&faclidean distance, Pearson correlation
and classication distance.

Cluster homogeneity

To evaluate cluster homogeneity, we compared the clagsificaccuracy of genes be-
longing to the same cluster. To this aim, we defined two geses@esentatives of each
cluster, i.e., the one with the minimum (named central) &edone with the maximum
(named border) classification distance to the cluster mask.

We only considered informative clusters, i.e., clustenstaiming relevant informa-
tion for classification purposes, thus ignoring noise @tsstinformative clusters are
selected by (i) identifying relevant genes, denoted asraigenes in the following, by
means of feature selection methods, (ii) selecting clastiech that each cluster contains
a single original gene. More specifically, for the ANOVA, B@YO, and OVR feature
selection methods, we selected the 10, 50 and 100 top ramexbdn a given dataset.
For each original gene (i.e., gene in the rank), the largester containing this gene
and no other original gene is selected. In this way, thresedstof clusters are defined:
(i) with 10 clusters, (ii) with 50 clusters, and (iii) with OQlusters. For a larger number
of clusters, the cluster size became too small and the dsalgs not relevant.

Three different classification models have been built bys@taring (a) all original
genes, (b) the substitution of each original gene with thrgreégene in its cluster, and
(c) the substitution of each original gene with the borderegm its cluster. Classifi-
cation accuracy has been computed in all three settingsafdr dataset, each feature
selection method and each gene subset (i.e., 10, 50, anceh@8)y

Table 4 reports the original accuracy values (setting (ay) the difference with
respect to settings (b) and (c) for the OVO feature selectiethod on all datasets. The
average size of the pool from which equivalent genes arert(eg, the average cluster
size) is reported in Table 5. Similar results have been pbthfor the other feature
selection methods.
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Table 4. Differences from the original OVO rank accuracy on all datady using the central and the border
genes

Dataset N  Original  Diffcentral Diffborder
Brainl 10 74.45 0.00 0.00
50 85.56 222 0.00
100 84.45 2.22 1.11
Leukl 10 94.44 0.00 -1.38
50 97.22 0.00 2.17
100 95.83 0.00 0.00
Lung 10 86.21 -1.97 -4.93
50 94.09 0.00 0.98
100 97.04 -1.47 0.00
Tumor9 10 54.89 7.72 1.54
50 70.12 1.78 -3.33
100 66.40 -1.11 -1.11
Leuk2 10 93.06 -1.39 -2.78
50 94.44 0.00 0.00
100 93.06 277 1.38
SRBCT 10 93.98 -1.21 -7.23
50 100.00 0.00 0.00
100 100.00 0.00 0.00
Prostate 10 93.14 0.00 0.00
50 91.18 0.00 0.00
100 92.16 0.00 0.98
DLBCL 10 85.71 2.60 1.30
50 94.81 0.00 0.00
100 96.10 1.30 1.30
Colon 10 81.97 0.00 0.00
50 86.89 0.00 0.00
100 86.89 0.00 0.00
Meart-Std 10 0.64nt2.96  -1.508-2.96
50 0.44rt0.89  -0.02m:1.45
100 0.41£1.42 0.41a-0.83

Differences from the original classification accuracy aw.|Clusters formed by
a single gene (e.g., for the Colon and Prostate datasetsjoargignificant, because
obviously the difference in accuracy is equal to zero. Faydaclusters the differences
are always limited to few percentage points. For examplettfe ten cluster case on
the Brainl, Leukl, Leuk2 and DLBCL (cluster size range frdmw 3 to 6 genes) the
difference in accuracy varies from -2.78 to 2.60. Alwaydhe ten cluster case, the bad
performance of SRBCT is due to the fact that one of the saleg¢mes is located in
a big cluster (average cluster size 124.90 genes). Thugafteer gene might be very
different from the original gene.

On average, the obtained clusters provide a good qualitg geol from which
equivalent genes may be drawn. The substitution with thealegene usually provides
better results with respect to the substitution with thedeolgene. This difference is
more significant for the larger clusters obtained for the &#Aeysubset, than for the
smaller, more focused clusters obtained in the case of tloe 500 gene subsets.
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Table 5. Average cluster size for the experiment reported in Table 4
N Brainl Leukl TLung Tumor9 Leuk2 SRBCT Prostate DLBCL Colon

10 4.20 6.20 17.00 20.90 3.60 124.90 1.00 6.30 1.00
50 8.00 15.10 2.06 1.92 1.58 1.90 1.00 1.00 1.00
100 1.48 1.25 1.24 1.06 7.98 1.38 1.54 5.45 1.00

5. Conclusions

In this paper we propose a new similarity measure betweensjeheclassification
distance that exploits additional information which may be avaitabn microarray
data (e.g., tumor or patient classification). The discration ability of each gene is
represented by means of a gene mask, which describes theclges#ication power,
i.e., its capability to correctly classify samples. Thessification distance measures
gene similarity by analyzing their masks, i.e., their calitgtof correctly classifying
the same samples.

The classification distance measure can be integrated fierelit clustering ap-
proaches. We have integrated it into a hierarchical clusiexigorithm, by introducing
the notion of cluster mask as representative of a clustedafiding as inter-cluster dis-
tance the distance between cluster masks. We validated ethiochon both binary and
multiclass microarray datasets. The experimental reshitsv the ability of the classi-
fication distance to group genes with similar classificafiower and similar biological
meaning in the tumor context.

Currently, we are considering to integrate our distanceimet a (supervised) fea-
ture selection algorithm. By clustering genes which cdlyetdassify the same samples
and then selecting a single gene from each cluster, redtigdaas are disregarded and
both model coverage and classification accuracy may be wedro

We believe that the classification distance measure may pkedpalso in other
application domains with the same characteristics (esgr profiling, hotel ranking,
etc.), to improve the clustering results by exploiting diddial information available on
the data being clustered.
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