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Abstract. Linux malware can pose a significant threat — its (Linux)
penetration is exponentially increasing — because little is known or under-
stood about their vulnerabilities. We believe that now is the right time
to devise non-signature based zero-day (previously unknown) malware
detection strategies before Linux intruders take us by surprise. There-
fore, in this paper, we first do a forensic analysis of Linux executable
and linkable format (ELF) files. Our forensic analysis provides insight
into different features that have the potential to discriminate malware
executables from benign ones. As a result, we can select a features’ set
of 383 features that are extracted from an ELF header. We quantify the
classification potential of features using information gain and then re-
move redundant features by employing pre-processing filters. Finally, we
do an extensive evaluation among classical rule based machine learning
classifiers — RIPPER, PART, C4.5 Rules and decision tree J48 — and
bio-inspired classifiers — cAnt Miner, UCS, XCS, and GAssist — to select
the best classifier for our system. We have evaluated our approach on
an available collection of 709 Linux malware samples from vz heavens
and offensive computing. Our experiments show that ELF-Miner pro-
vides more than 99% detection accuracy with less than 0.1% false alarm
rate.

Keywords: ELF, Data Mining, Information Security, Structural Informa-
tion, Malicious Executables, Machine Learning, Malware Forensics, Linux Mal-
ware, Evolutionary Computing.

1 Introduction

Linux — due to its open source nature — is getting an ever increasing atten-
tion both by researchers and developers [2]. Moreover, home users and business
enterprizes are preferring Linux based Personal Computers (PCs) and server
machines. As a consequence, Linux will definitely become a favorite target for
hackers, the moment its market share makes it an attractive proposition to



launch attacks on Linux running hosts. The current scarce availability of Linux
malware has also lead Linux security experts to hold a notion that Linux is
inherently secure [1]; therefore, malware detection on Linux has never received
its due attention. Consequently, Linux based computers — open source nature
makes the task of a hacker also easier — are not adequately protected against
emerging threats.

In this paper, we first do a forensic analysis — with a particular focus on
the structural information present in the header of an ELF file — of available
Linux malware. The analysis helped us in identifying a set of structural features
that can be used to discriminate a malware file from a benign one. We then
apply preprocessor filters to remove redundant features. Finally, we give the
remaining features’ set as an input to a number of classifiers — classical machine
learning and bio-inspired — to finally detect malware. We compare the accuracy
of different classifiers on a collection of 709 malware samples available from vz
heavens [7] and offensive computing [3]. Our results show that our system is
able to detect Linux malware with more than 99% accuracy. The true strength
of our approach is that it does not make a signature from the instructions of
a malware; therefore, it is a non-signature based technique and has the ability
to detect zero-day (on the day of its launch) Linux malware. Our data mining
approach takes only a fraction of a second; therefore, we can deploy it in realtime
on Linux systems!.

The rest of the paper is organized as follows. In the next section, we briefly
summarize related work. Section 3 discusses the ELF mined features’ set in de-
tail. Section 4 provides an overview of ELF-Miner framework. A brief introduc-
tion of malware dataset is given in Section 5. A comprehensive forensic analysis
of benign and malware files is provided in Section 6. An overview of our clas-
sification methodology has been presented in Section 7. Section 8 presents the
experiments, results and evaluation of classifiers on the dataset. Finally, Section
9 presents the conclusion of the paper and future research directions.

2 Related Work

In the related work section, we summarize relevant non-signature based malware
detection techniques based on static analysis of executables. All of these tech-
niques are for windows executables. We have recently proposed our technique
— PE-Miner [28] — that extracts structural information from the headers of a
windows executable and uses it to detect malware. Later, we enhanced it in [26]
to overcome the side effects of doing packing (encryption) of executables. As a
result, the enhanced version has the capability to discriminate packed malware
files from packed benign files and unpacked malware files from unpacked benign
files. The other recently proposed malware detection techniques for windows exe-
cutables are: Perdisci et al. [21], Schultz et al [25], Masud et al. [19] and Kolter et

! We have already published our initial work on this approach as “PE-Miner” [28] that
detects zero-day malicious executables on Windows platform using the structural
information in the header of a PE file.



al [18]. We now briefly summarize their detection methodology but an interested
reader can refer to [27] for a detailed description.

The technique proposed by Masud et al. [19] utilizes a hybrid features selec-
tion scheme to detect malicious PE files. The hybrid set consists of three types
of features:(1) n-grams as binary features, (2) n-grams of unique assembly in-
structions, and (3) n-grams of dynamic link library calls. Decision trees are used
to classify the PE files on the basis of the extracted hybrid features’ set. The
technique uses a disassembler to create the features’ set; therefore, the scanning
time is significantly large (making it difficult to use it in realtime).

In [21], Perdisci et al., the authors proposed a framework 'McBoost’ based
on two level classification. The two classifiers — C1 and C2 — have been used
to classify the non-packed and packed portable executables (PE) files. They
developed a customized unpacker to extract hidden codes from an executable and
provide them to the C2 classifier for analysis and classification. In [25], Schultz
et al. proposed three different methodologies for detecting malicious executable
files on the Windows platform. The first technique is based on the information
of dynamic link libraries (DLLs), their function calls and citation counts. In the
second technique, they use the strings as binary features (i.e. present or absent).
The third technique uses two byte words (instead of a string) as binary features.
Later on, Kolter et al. [18] have improved the third technique of Schultz et al.
by using 4-grams as binary features. We have already compared the techniques
of Schultz et al., Perdisci et al., and Kolter et al. with our PE-Miner in [28].
The results of our experiments show that none of these techniques are realtime
deployable because they have: (1) less than 99% detection accuracy, (2) more
than 1% false alarm rate, and (3) large file scanning time (order of seconds). In
comparison, PE-Miner not only achieves greater than 99% detection accuracy
and less than 0.1% false alarm rate but also its scanning time is comparable
(200 milliseconds) with that of commercial antivirus software. We do not want
to again establish the superiority of ELF-Miner over other approaches because it
seems straightforward after the above-mentioned discussion in [28]. Therefore, in
this paper, our focus is to explore another dimension of research: whether using
the structural information to detect malware could be generalized to executables
of other operating systems? This paper proves this thesis.

3 The Features’ set of ELF-Miner

In this section, we present an overview of structural features — extracted from
the header — of benign and malware ELF files. In order to make the paper self
contained, we briefly introduce ELF format.

3.1 Executable and linkable format (ELF)

In Linux, the object files play a key role in the process of program linking and
execution. The manual of ELF format [29] describes three types of ELF files:
(1) relocatable file (it contains the “how to link” information with other object
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Fig. 1. Executable and linkable format (ELF) structural view [29]

files in order to create a shared library or an executable file), (2) executable file
(it contains data and information required by an operating system to create a
program image that can be executed by accessing information in the file), and
(3) shared object file (it contains all the information required for both static and
dynamic linking). We have used both shared and executable ELF files in our
dataset.

The structure of an ELF file is as shown in Figure 1. An ELF header, at
the beginning of every file, holds a blueprint of a file’s organization. In case of
a relocatable file, a section header table is mandatory and a program header
table is optional. In case of an in-executable object file, a program header table
is compulsory and a section header table is optional. Note that a section header
table contains the description of all sections that exist in the object file. Every
section in the object file has an entry in this table. The section entries provide
the attributes of a section: section name, section size etc. The sections primarily
hold the object file information required for building and linking ELF programs.
The information about program instructions, data, symbols, dynamic linking
and relocation is contained in different sections of an object file. We skip further
details of ELF format for brevity but an interested reader can find them in [29].

3.2 ELF Structure-based Features’ set

We initially extract 383 features from the header of an ELF file (see Table
1). Later we use our forensic analysis to rank these features to select the ones
having the best potential to discriminate a benign file from a malware file. We
now introduce our features’ set in detail.

Table 1. Features extracted from ELF files

[No[ ELF Structure Name [Features Count]

1 ELF Header 16
2 Section Headers 238
3 Program Headers 40
4 Symbols Section 17
5 Dynamic Section 27
6 [Dynamic Symbol Section 17
7 Relocation Sections 26
8 Global offset table 1

9 Hash table 1

[T Total Fields [ 383




ELF Header. ELF header consists of data structures that describe the
organization of an ELF file. The header structures help in parsing an ELF file.
An ELF header structure consists of a number of typical fields: identification,
machine type, ELF file version, entry point address, program header table file
offset in bytes, section header table file offset in bytes, processor specific field
flags, ELF header size in bytes, size and count of individual entries in program
header table, section header size in bytes, number of entries and index of entry
associated with the section name string table in section header table. We use
16 fields of ELF header excluding program and section headers offsets in our
features’ set.

Section Header. The structure of a section header contains the fields: sec-
tion name, section type, section flags field that represents miscellaneous at-
tributes, address field where section’s first byte should reside, section’s offset
field that holds the first byte of section’s offset from the beginning of ELF file,
size of section in bytes, section header table index link, section info field that
depends upon section type, section address alignment field that shows the align-
ment constraints. We include 238 fields of 34 section header structures in our
features’ set, excluding the section names, addresses and offsets fields.

Program Header. All executable and linkable files are array of structures,
which represent program segments and other information that are mandatory for
successfully executing the program. Each executable file segment may contain
one or more sections. The segment header structure contains 8 fields: segment
type, segment offset that gives the offset from the beginning of the file, virtual
address at which first byte resides in the memory, segment’s physical address,
file size field provides the number of bytes in the segment file image, memory size
field contains the number of bytes in memory image, flags’ field holds the flags
related information of segments, p_align member contains alignment information
of segment in file and memory. We select 40 features excluding all addresses and
offsets fields of first 8 segments for our features’ set.

Symbol Table. It contains the information related to symbols in an ELF file
but this information is not mandatory in all types of object files. The symbol
table structure has five major fields — name, value, size, info, other and section
header index — but the number of entries vary in symbol table of different ex-
ecutable files. Therefore, we make categories on the basis of st_info field — it
contains the information of symbol’s binding and attributes. The resulting cate-
gories are: total number of [symbols, local symbols, global symbols , weak symbols
and stb_lo_proc symbols]. The objects and functions symbols are further catego-
rized on the basis of their scope i.e. total number of [local objects, global objects,
weak objects, local functions, global functions, weak functions, sections, files ,
stt_lo_proc and stt_hi_proc| objects. As a result, we create 17 categorical fields
from the symbol table for our features’ set.

Dynamic Section. If any ELF file has dynamic linking information, seg-
ment PT_DYNAMIC (dynamic section is an integral part of it) becomes part
of the program’s header table. The structure of dynamic section contains a 4
bytes field d_tag and union d_un. All fields are classified on the basis of the



information available in parameter d_tag. Like symbol table, dynamic section
also doesn’t contain a fixed number of entries; as a result, all these entries are
classified into 27 categories for our features’ set.

Dynamic Symbols Section (DSS.) If an object file contains dynamically
linked objects, it may have dynamic symbol section also. The details of dynamic
symbol section are similar to that of the symbol section as mentioned earlier in
this section. 17 features are extracted from the DSS section.

Relocation Section. In ELF, the process of relocation links referred symbols
with their definitions. When a program calls a function, the control must be
transferred to the function definition at an appropriate address. The structure
of .rel contains two members — offset and info. The offset field refers the location
where the relocation action should be performed. In case of relocatable files, the
offset field contains the offset from the beginning of section to the storage unit of
relocation. If the files are executable or shared objects, an offset represents the
virtual address of the storage unit. The info field maintains information about
the type of relocation and the symbol table index that is used for relocation. We
extract 26 features from the contents of sections .rel and .rela for discriminating
the benign and malicious files.

Global Offset Table (GOT). This table contains absolute addresses of
objects representing private data. It provides address without affecting position
independence and sharing capability of a program text. The programs refer to
GOT for absolute address values using position independent addressing. For our
features’ set, we only have one field that represents the size of GOT.

Hash Table. 1t is a 32-bit object table that facilitates the access to the
symbol table. Only one field of the hash table size is included in our features’
set.

4 ELF-Miner Framework

We now discuss the architecture of our proposed framework — ELF-Miner — that
mines the structural information in ELF executables to detect malicious ones.
Our framework consists of three basic components: (1) features extraction, (2)
features preprocessing, and (3) classification (see Figure 2). The feature extrac-
tion block first does a validity check to confirm the validity of an ELF header.
If the file is legitimate ELF executable, it extracts 383 features from its header.
Afterwards, the preprocessing block ranks these features to filter redundant fea-
tures or features with smaller classification potential; as a result, the remaining
features’ set is given to a number of classifiers that eventually classify the exe-
cutable as malicious or benign.

5 ELF Malware Dataset

In this section, we present an overview of the datasets used in our experiments.
In order to remove any bias because of the size of files, we divide ELF files — both
malicious and benign — into six bins of different sizes starting from 20 KB to 4
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Fig. 2. Block diagram of ELF-Miner framework

MB. In order to have a balanced dataset, we ensure that the percentage of benign
and malicious files in a certain category is approximately the same to remove any
bias on the basis of size (see Table 2). The benign ELF files are collected from
Linux operating system’s directories /bin, /sbin, and /usr/bin. We use the ’size
based filtering’ criteria to select approximately an equal percentage of benign
ELF files. As a result, only those files are selected which have size greater than a
given threshold that is calculated on the basis of number of files and their size in
a specific malware category. In comparison, Linux malware dataset is collected
from vx heavens [7] and offensive computing [3]. We have combined some
malware categories because of their similar functionality. For example, we have
combined Exploits, Rootkits and Hacktools to create a single Expts + RK + HT
category. As a result of the unification process, the number of malware samples
per category are increased significantly. We now provide a brief description of
individual and combined malware categories — 8 to be precise — to make the
paper self-contained.

Backdoor + Sniffer (Bkdrs). A backdoor is a program which allows by-
passing of standard authentication methods of an operating system. As a result,
remote access to computer systems is possible without explicit consent of the
users. Information logging and sniffing activities are possible using the remote
access.

Constructor + Virtool (Cnstr). This category of malware mostly in-
cludes toolkits for automatically creating new malware by varying a given set of
input parameters. Virtool and constructor categories are combined because of
their similar functionality.

DoS + Nuker (DoS). Both DoS and nuker based malware allow an attacker
to launch malicious activities at a victim’s computer that can possibly result in
a denial of service attack. These activities can result in slowing down, restarting,
crashing or shutting down of a computer system.

Email- + IM- + SMS Flooder (Fldrs). The malware in this category
initiate unwanted information floods such as email, instant messaging and SMS



Table 2. Benign and malware file size normalization

Benign Files Malware Files

File Ranges| Total] % |Bkdrs|Spfr|Wrms|Vrs|Expts|RK|Cnstr|DoS|Fldrs|HT | Trjns| Total] %
20K 445 | 61 116 | 7 16 |71| 91 |35 14 | 33 | 33 | 16| 17 | 449 |63
20-50K 161 | 22 61 0 5 9| 32 |23 2 T T 7| 6 | 147 |21
50-100K a1 6 4 0 1 6 1 B 0 0 0 | 1] 2 26 | 4
100-500K | 67 9 11 0 18 [10]| 11 [14] O 0 0 [5] 0 69 |10
500K-1MB | 15 2 1 0 1 2 1 3 0 0 0 | 3] 0O 14 |2
1-4MB 5 1 T 0 0 1 0 0 0 0 0 2] 0 4 |1
Total 734 B 107 | 7 | 44 |99 136 |83 | 16 | 34 | 34 |34 25 | 709

floods. Similarly, well known network packets based attacks — TCP SYN and
ICMP floods — are also launched by this category of malware.

Exploit 4+ Hacktool + Rootkits (Expts + RK + HT). The malware
in this category exploit vulnerabilities in a system’s implementation which most
commonly results in buffer overflows. These attacks are launched to take admin-
istrative permissions remotely or to execute malicious code on systems.

Email- + M- 4+ IRC- + Net Worm (Wrms). The malware in this
category spread through instant messaging networks, IRC networks and port
scanning.

Trojans (Trjns). A trojan is a broad term that refers to stand alone pro-
grams which appear to perform a legitimate function but covertly do possibly
harmful activities such as providing remote access, data destruction and corrup-
tion.

Virus 4+ Spoofer (Vrs 4+ Spfr). A virus is a program that can replicate
and attach itself with other benign programs. It is probably the most well known
type of malware. Similarly, a spoofer is a program that successfully masquerades
as another host or program and gains an illegitimate access to the system.

We have recently obtained latest malware dataset from vx heavens [7] and
offensive computing [3] which contains more than 900 Linux malware; how-
ever, only 709 passed the validity test. The distribution of malware into different
categories and the size is shown in Table 2. The top four malware categories in a
descending order are Bkdrs, Expts, Vrs and RK respectively. Another important
observation is that 63% of malware is less than 20KB which signifies the impor-
tance of removing the size bias (as a feature) during classification; therefore, we
have ensured that 61% of benign files are also less than 20KB in our dataset.

6 Forensic Analysis of Benign and Malware ELF
Executables

We now provide our forensic analysis — by closely studying the pattern of the
fields in the headers of different ELF files — to understand the difference in
the headers of benign and malware ELF executables. The aim is to establish the
thesis that the structural information of malware files is different from that of the
benign ones. We utilize well known information-theoretic measures — Resistor-
Average (RA) divergence [17] and Frequency Histogram analysis — to analyze
the difference between various fields in ELF headers of benign and malware files.
(Note that we do not rank the identified features, by using information-theoretic



measures in our forensic analysis, for classification purposes.) The definition of
RA divergence is given as:

1
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In equation (1), KL (Kullback-Leibler) distance [12] is another information-
theoretic measure, which can be used to measure the difference between two
probability distributions — p(z) and ¢(z) in equation (2). KL distance is always
non-negative and is zero only in case of p=¢. Moreover, in a special case when
p(z) =0 or g(z) =0, the distance becomes zero or infinity; therefore, we simply
add eps = 2752 — which is the distance from 1.0 to the next largest double
precision number — in both the distributions p(z) and ¢(z) to avoid this problem.
Moreover, KL distance is not symmetric over two distributions. As a result, we
use a symmetric distance measure.

p(z)
q(z)
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Similarly, the frequency histogram provides the count of occurrence — of field
values or headers in benign and malware files separately. In order to abbreviate
the large names of fields in an ELF header, we use a convention: the ELF headers’
or sections’ names are used as a prefix with the field name. We will briefly
describe the functionality of fields, but an interested reader is recommended to
consult [29] for details.
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Fig. 3. ELF header RA divergence graph for benign and malware files

ELF Header FExramination. The RA divergence values for 16 fields of
ELF header for benign and malware are shown in Figure 3. It is interesting
to note that 4 header fields are significantly different in benign and malware
files. The fields are: ELFHEENTRY, ELFHEPHNUM, ELFHESHNUM and eLruesasTRINDX. Most of these
fields contain distinct numeric values — indices and header sizes — which are
significantly different in benign and malware executables. Most of other fields
contain either zero or constant values; as a result, RA divergence is zero or
negligible.
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ELF Section Headers. In object files, various sections contain the control
and program information. We initially extract headers of 34 sections and their
description is provided in Table 8 of appendix A and in Section 3.

Sections’ headers frequency histogram analysis. We have plotted the
frequency histogram of different sections — occurring in benign and malware files
— in Figure 4. It is interesting to note that 13 out of 34 sections never appear in
any benign or malware file. These sections generally contain debug information,
initialized values, read-only data, and rarely used pre-existing extensions. Some
sections — .comment, .note, .strtab, .symtab, and .sbss, — are present in malware
files but are generally absent in benign files. Similarly other sections — .rel.dyn
and .got.plt — are not used by most malware programs. We have zoomed at the
distribution of these 7 sections in Figure 5 to get a better understanding.

Our analysis shows that most malware misuse .comment, .notes sections
(used to hold version control information and file notes respectively) to store
their malicious information. It is interesting to see that sections .symtab and
.strtab, which hold the symbols and strings related information of the programs,
are missing in most benign files. We investigated this unexpected trend and
found that most of these binaries are stripped and these sections are removed
from them [6].

got.pit sbss b
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Fig. 5. Overall frequency of 7 sections in all malware (left) and benign (right) files

Similarly, .rel.dyn holds dynamic relocation information and is used by the
majority of the benign files and almost 35% of the malware files. Section .got.plt
that holds read-only portion of the global offset table is used by almost all benign



files and few malware files. The frequency of all other sections can be observed
from the Figure 4.
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Symbol Table. Similarly, the RA divergence in different fields of symbol
table is shown in Figure 6. We see that except processor specific symbols —
SYMTABHIPROC, SYMTABLOPROC, SYMSTTHIPROC and symsTTLOPROC Which are not used by benign
and malware programs — a significant difference exists between symbol table
entries. It is already mentioned that most of benign programs — mostly stripped
binaries — do not contain a symbol table. In comparison, most malware have
symbol table entries.

Dynamic Section. The graph of RA divergence for dynamic section fields is
shown in Figure 7. We can see that some fields — with high RA divergence — have
the potential to discriminate between benign and malware files. Most of these
discriminating fields represent different categories of dynamic elements that are
used by benign and malware programs in a different manner. For example, the
first field — pyntorar — with a RA value of 0.15 shows that total number of dynamic
symbols in both types of files are significantly different.

Dynamic Symbol Section. The RA divergence of different fields of this
section is plotted in Figure 8. The figure shows that other than the processor
specific features only three categories of attributes — srrriLe, strosisteLoca and
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Fig. 7. Dynamic section RA divergence graph for benign and malware files
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STTFUNSTBLOCAL — are missing from both programs. The obvious reason is that local
objects and functions are never visible outside the file containing them; therefore,
the local objects entry srropssteLocaL and local functions entry strrunsTeLOCAL are
absent. Moreover, it is a well known fact that symbol table’s file object strriLE
does not exist in DSS [4]. The other fields represent the counts of elements in
local, global and weak object categories. We can see in Figure 8 that these count
values are totally different in both types of programs — the reason for high RA
divergence.

Relocation Section. The RA divergence values for different relocation cate-
gories are shown in Figure 9. It is obvious that only 7 relocation types are used by
both malware and benign files — RELASECTIONCOUNT, RELR38632, RELR386PC32, RELR386COPY,
RELR386GLOBDAT, RELR386JMPSLOT and RELR386RELATIVE. A detailed analysis has revealed
that reLrssepcs2 is used only by malware programs. Note that rerrssepcs2 reloca-
tion type supports the PC-relative addressing while reLr3ss32 supports absolute
addressing. Some malware files use relative addressing while absolute addressing
is commonly used by both benign and malware programs. Other .rel fields have
high RA values that show their classification potential.

In .rela relocation section, the field reLasecTIoNcOUNT represents the total number
of .rela relocation types in a program. Three relocation categories — RELAR38632,
RELAR386GLOBDAT and reLAr3seJMpsLoT — are only used by benign programs. It is inter-

0.05

RELR38632

RA Divergence
s s

e 2 e 8

° 2588

RELCOUNT s
RELR386PC32 |

RELR386NONE

RELR386COPY M

RELR386GLOBDAT sl

RELR386JMPSLOT |
RELACOUNT s

RELR386NUM
RELAR386NONE |
RELAR38632

RELAR386PC32

RELR386PLT32
RELAR386GOT32

RELR3SGRELATIVE I

RELR386GOT32
RELR386GOTOFF
RELR386GOTPC
RELAR386PLT32
RELAR386COPY
RELAR386GLOBDAT
RELAR386GOTOFF
RELAR386GOTPC
RELAR386NUM

RELAR386JMPSLOT |
RELAR3S6RELATIVE

Relocation Sections

Fig. 9. Relocation section RA divergence graph for benign and malware files



esting to note that no malware writer has used .rela sections. As a result, the
classification power of the information of .rela section is very high.
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Program Headers. The frequency histogram of segment table is shown
in Figure 10. Recall that we have included 8 segment headers in our features’
set. We have discussed their details in Section 3. We can easily conclude that
most benign and malware programs do not contain processor specific semantic in
program headers — the reason for low value of prroproc. In comparison, Segment
pr_pHDR specifies the location and size of the program header table. It’s existence
shows that the program header table is the part of program’s memory image that
precedes the loadable segment entry. Most benign programs use this segment
while most malware programs do not contain it.

We have proven our thesis that structural information — contained in the
header of ELF files — provide good classification potential for discriminating
malware programs from benign ones. Now we focus our attention to the classi-
fication methodology used in our ELF-Miner framework.

7 CLASSIFICATION SCHEME

7.1 Quantification

In Section 6, we have proven that the structural information of ELF files can be
used to discriminate between malware and benign executables. We now use an
information-theoretic measure — information gain — to rank different features in
our datasets. As a result, we can visualize the patterns that exist in our malware
datasets. Information gain measures the reduction in uncertainty if the values
of an attribute are known [12][33]. For a given attribute X and a class attribute
Y € {Benign, Malware}, the uncertainty is given by their respective entropies
H(X) and H(Y). Then the information gain of X with respect to Y is given by
IG(Y; X):

IGY;X)=H(Y) - H(Y|X)

A higher value of information gain represents higher classification potential and
vice versa. Note that information gain can vary from 1 to 0. We have created



8 datasets after combining benign files with each malware category — benign-
virus, benign-worm, etc. We have used InfoGainAttributeFEval attribute evalua-
tor with Ranker search method in Wakaito Environment for Knowledge Acquisi-
tion (WEKA) [32]. Figure 11 shows the normal probability plot for information
gain of features for Bkdrs, Cnstr, DoS, Expts + RK + HT, Fldrs, Trjns, Vrs +
Spfr and Wrms. In Figures 11(a) and 11(b), two types of features can be ob-
served: One type is composed of features with relatively large probability and
the other type consists of features with relatively small existence probability.
The majority of the features in all datasets have a very low value of information
gain (less than 0.3), but some of them have information gain values as high as
0.82. It is interesting to see that a large number of features have relatively large
existence probability but almost zero information gain. The reason behind the
fact is that most of these features contain constant values in most of the files
so their classification potential is zero. Another relevant observation is that the
means of information gain distribution of malware datasets’ are 0.10, 0.03, 0.04,
0.11, 0.04, 0.03, 0.08, 0.04 for Bkdrs, Cnstr, DoS, Expts + RK + HT, Fldrs,
Trjns, Vrs + Spfr and Wrms respectively. So we can envision — on the basis of
information gain values — Cnstr and Trjns are the most difficult categories to
classify for the classifiers that use higher information gain parameters to build
classification rules. In the next section, this ranked (quantified) features’ set is
then passed through preprocessing filters.
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Fig. 11. Probability distribution plot of Information Gain for features extracted from
multiple malware datasets’

7.2 Preprocessing Features

Remember in our ELF-Miner framework, we apply preprocessor filters to re-
move redundant and useless features — the features that have zero or very low
classification potential. For classification purpose, we prepare different datasets



Table 3. Dataset analysis for redundant and useless features.

[ Datasets [Instances[Features[Useless| Remaining[Useless (%) ]
Bkdrs + Benign 931 383 182 201 47
Cnstr + Benign 750 383 188 195 49
DoS+ Benign 768 383 196 187 51
Expts + RK + HT 4 Benign 987 383 190 193 49
Fldrs + Benign 768 383 195 188 50
Trjns | Bonign 750 383 193 150 50
Vrs + Spfr + Benign 840 383 181 202 47
‘Wrms + Benign 778 383 196 187 51

by combining benign dataset with all malware datasets: Bkdrs 4+ Benign, Cnstr
+ Benign, DoS + Benign, Expts + RK + HT + Benign, Fldrs + Benign, Trjns
+ Benign, Vrs + Spfr + Benign and Wrms + Benign — each of them having
931, 750, 768, 987, 758, 759, 840 and 778 instances respectively (see Table 3).
In comparison, as mentioned before, we extract a fixed number of 383 features
from an ELF file. Our forensic analysis has shown that ELF files usually do
not contain all 34 section headers that are part of our complete features’ set
(similar is the case of other headers). We have identified with the help of our
forensic analysis and features’ set quantification that the empty fields that are
assigned by default 0 values and fields with constant values have 0 classification
potential. It is interesting to note in Table 3 that approximately 50% of features
are redundant and useless. We have applied standard useless filter available in
(WEKA) [32] to remove these features. It is clear from Table 3 that remaining
features are actually given as input to a number of classification algorithms.

7.3 Classification

In the classification phase, our aim is to select a classifier that efficiently mines
structural information extracted from ELF executables. The selected classifier
must satisfy following requirements: (1) it must mine the structural information
in realtime, (2) it must provide high detection accuracy, and (3) it must provide
comprehensible and compact rules. In order to meet these requirements, we ex-
plore the design space along five dimensions: (1) evaluate different classification
paradigms — classical and bio-inspired, (2) do a scalability analysis to rank fea-
tures as a function of their classification potential, (3) do a robustness analysis
of our system by randomly forging features of malware with that of benign files,
(4) do a comprehensibility analysis of generated rules, and (5) perform a timing
analysis to determine the realtime deployment feasibility of the system.

In our study, we have used supervised learning based classifiers [16][24], four
well known classical machine learning classifiers - RIPPER [11], PART [14], C4.5
Rules [23] and J48 [22]. Similarly, we have used four well known bio-inspired ge-
netic machine learning algorithms: (1) cAntMiner [20] is ant colony optimization
based classifier, (2) XCS is a Michigan style learning classifier system [31], (3)
UCS is optimized for supervised learning environments [10], and (4) GAssist
ADI is a Pittsburgh style learning classifier system [9]. We skip details of classi-
fiers in this paper for brevity, but an interested reader may consult [15] for their
description.



We have used the standard implementations of classical machine learning
algorithms in (WEKA) [32]. Similarly, we have used implementations of bio-
inspired evolutionary classifiers in Knowledge Extraction based on Evolutionary
Learning (KEEL) [8] for our experiments. The objective of using standard tools
is to remove any implementation related bias in our evaluation. Moreover, we
have used the best configuration — determined after a number of plot studies —
of a classifier in our experiments.

8 EXPERIMENTS AND RESULTS

A stratified 10—fold cross validation procedure is followed for all experiments
reported later in this section. In this procedure, we partition each dataset into
10 folds and 9 of them are used for training and the left over fold is used for
testing. This process is repeated for all folds and the reported results are an
average of all folds.

In our experiments, we consider malware detection as a two class problem —
benign or malware detection. In such problems, the classification decision can
possibly lie in one of the following categories: (1) True Positive (TP) is correct
classification of a malicious ELF file as malicious, (2) True Negative (TN) is
a benign ELF file instance classified as benign, (3) False Positive (FP) is mis-
classification of a benign ELF file as malicious, and (4) False Negative (FN) is
misclassification of a malicious ELF file as benign. We define detection accuracy

as following for our experiments:
TP+ TN

DetectionAccuracy = (3)
TP+TN+ FP+ FN

Detection Accuracy. The results of our experiments are tabulated in Table
4. Tt is interesting to note that classical machine learning algorithms in general
outperform bio-inspired evolutionary classifiers for our malware detection prob-
lem. Except XCS, other evolutionary classifiers provide comparable accuracy
as that of classical algorithms. RIPPER achieves a benchmark of 100% on our
dataset that is closely followed by PART and J48.

Average Detection Difficulty (ADD). Another important question that
we want to investigate: which malware category is the most difficult to detect?
To answer this question, we take an average of detection accuracies of different
classifiers and report average detection difficulty for each category at the end
of each row in Table 4. The average detection difficulty of Bkdrs, Cnstr, DoS,
Expts + HT + RK, Fldrs, Trjns, Vrs + Spfr and Wrms datasets’ are 96.49%,
96.80%, 97.34%, 97.17%, 96.56%, 96.55%, 97.0% and 96.54% respectively. The
analysis of the results shows that Bkdrs, Wrms, Trjns and Fldrs are the most
difficult malware categories to detect both for evolutionary and non-evolutionary
classifiers. For our subsequent studies, we have short listed top 2 classifiers from
Table 4 — RIPPER and J48.

Scalability Analysis of Features’ Set. Recall from Table 2 that our
dataset consists of 734 instances of benign executables and 709 instances of



Table 4. ELF malware detection Avg. Accuracy and ADD comparison of evolutionary
and non-evolutionary algorithms

[ I Evolutionary Classifiers [Non-Evolutionary Classifiers] ]
[Datasets [cAnt Miner[ XCS [ UCS [GAss-ADI [C4.5 R[Ripper[PART[ J48 [ADD|
Bkdrs 100 76.82[99.03 [ 99.57 100 100 | 100 | 100 [96.49
+0 +2.54|40.09| +0.05 +0 +0 +0 | 0
Cnstr 100 77.77 | 99.86 100 100 100 | 100 | 100 |96.80
+0 +6.31({4+0.04 +0 +0 +0 +0 +0
DoS 100 81.41| 100 100 100 100 | 100 | 100 |97.34
+0 +4.36] +0 +0 +0 +0 +0 | 0
Expts 99.79 81.33 [99.28 [ 99.59 100 100 | 100 | 100 [97.17
RK+HT| +0.004 [46.74[40.07| £40.04 +0 +0 +0 | 40
Fldrs 100 76.60 [ 99.61 | 99.87 99.86 | 100 | 100 | 100 |96.56
+0 +4.34| £0.6 | +0.03 | 4+0.03| =0 +0 | 0
Trjns 99.96 76.28 [ 99.73 100 100 100 | 99.86 | 99.86 [96.55
+0.01  |+5.38] £0.5 +0 +0 +0 |40.03[40.03
Vrs+Spfr 100 80.21[99.40 | 99.40 100 100 | 100 | 100 |97.0
+0 +5.25| £0.1 | +0.07 +0 +0 +0 | 0
Wrms 100 76.31[99.74 99.74 100 100 100 | 100 |96.54
+0 +3.97| £0.5 | +0.05 +0 +0 +0 | 40
Avg.
Accuracy|  99.96 ‘78.34‘99.58‘ 99.77 ‘ 99.98 ‘ 100 ‘9998‘99‘98‘ ‘

different categories of malware executables. For scalability analysis of our fea-
tures’ set, we have combined all benign and malware datasets’ and prepared a
comprehensive dataset (i.e. 709+734=1443 instances). Afterwards, we rank all
attributes using information gain measure. Finally, we select only those features
that have an information gain of 0.1 or above; as a result, we get 88 top rank-
ing features (see Table 5). Subsequently, we have created 9 different datasets
by gradually removing the features that have information gain values greater
than 0.89, 0.79, 0.69, 0.59, 0.49, 0.39, 0.29 and 0.19 respectively. The number of
attributes in each category are shown in Table 5. The ROC curves in Figure 12
have been plotted by varying the threshold on output class probability [13], [30].

It is interesting to see that our idea of using large number of features — ex-
tracted from different portions of ELF headers — has shown remarkable resilience,
using any classifier, even when we just use 42 top ranked features. The system
classifiers on the average merely show a 1 to 2% deterioration in true positive
rate. However, the moment we remove the attributes having information gain
more than 0.40, the true positive rate of classifiers significantly deteriorate by
1% to 11%.

Robustness against Forged/Spoofed ELF Headers. Now as a next
step, we analyze the "robustness” of our features’ set in a scenario when mal-
ware writers forge/spoof different sections of ELF header of their malware with

Table 5. Scalability analysis of ELF mined features’ set

Info-Gain |Removed|Remaining J48 Results (%) RIPPER Results (%)
Attr. Attr. Accuracy | TP Rate| FP Rate|Accuracy| TP Rate|FP Rate

0.99 - 0.10 0 88 100 100 0.0 100 100 0.0
0.89 - 0.10 3 85 99.58 99.9 0.1 99.45 99.6 0.4
0.79 - 0.10 8 77 99.58 99.7 0.3 99.38 99.4 0.6
0.69 - 0.10 11 66 99.58 99.7 0.3 99.51 99.4 0.6
0.59 - 0.10 3 63 98.68 99.3 0.7 98.82 99.0 1

0.49 - 0.10 21 42 99.02 99.4 0.6 99.09 99.9 0.1
0.39 - 0.10 10 32 98.40 98.6 1.4 98.27 98.2 1.8
0.29 - 0.10 11 21 98.05 97.7 2.3 97.78 98.2 1.8
0.19 - 0.10 8 13 91.40 90.6 9.4 90.57 88.0 12
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Fig. 12. The magnified ROC plots for scalability analysis of ELF-Miner features’ set

that of benign files. We have gradually replaced malware headers with benign
file headers and the corresponding true positive rate is given in Table 6. It is
surprising to see that both classifiers are able to maintain 99% and 98% true
positive rate, even when 77 of 88 features are forged/spoofed. It’s because, we
have forged/spoofed randomly selected headers (mentioned in the first column
of Table 6) and not necessarily the features that have high information gain
values. This experiment validates that our features are “robust” against crafty
attacks. Moreover, our experience is that most of executables with
forged headers are unable to successfully load into the memory. This
makes the task of a “crafty attacker” even more difficult.
Comprehensibility Analysis of Rules. We now do the comprehensibility
analysis of the generated rules by different classifiers. We have given some snap-
shots of generated rules by different classifiers in Table 7. It is interesting to see
that in case of XCS and UCS, both classifiers have generated rules in the form
of IF-THEN constructs by specifying intervals for all parameters in the dataset.
As a result, the number of rules and their size becomes significantly large that
makes it very difficult — if altogether not impossible — to comprehend and in-
terpret them. In comparison, cAntMiner generates rules in IF-THEN form and

Table 6. Malware detection capability of ELF features’ set with spoofed headers

Hoadors Removed|Remaining 748 Results (%) RIPPER Results (%)
Removed Attr. Attr. Accuracy| TP Rate|FP Rate|Accuracy| TP Rate|FP Rate
None 0 88 100 100 0.0 100 100 0.0
[Reloc, DynSym]Sec,GOT 18 70 99.45 99.6 0.4 99.23 99.3 0.7
ELF, [Cmnt, BSS, Dyn]SecH 10 60 99.24 99.6 0.4 99.03 99.2 0.8
SymTab Sec 12 47 99.45 99.6 0.4 99.37 99.6 0.4
[DynStr, DynSym, Fini,
Hash, Init]SecH 7 40 99.51 99.7 0.3 99.70 99.7 0.3
Segments 11 29 99.51 99.7 0.3 99.24 99.4 0.6
[StrTab, SymTab]SecH 10 19 99.51 99.7 0.3 99.44 99.7 0.3
[GOTPLT, RELDyn]SecH 11 10 99.58 99.6 0.4 98.74 99.0 1
[Note, GOT, SBSS, PLT,
RData]SecH, Dyn Sec 0 11 99.37 99.6 0.4 98.88 99.3 0.7




Table 7. Comprehensibility analysis of rules generated by all evolutionary and non-
evolutionary classifiers

(1) cAnt Miner
IF GOTPLTSHENTSIZE [< 4.0] AND RELDYNSHSIZE [< 48.0] : malware
IF RELDYNSHENTSIZE [>= 8.0 AND STRTABSHTYPE [< 3.0] : benign
IF RELAR386JMPSLOT [< 5.0] : malware
(2) XCs
IF ELFHEININDENT [0.0 0.5] AND ELFHETYPE [0.0
IF ELFHEININDENT [0.0 0.8] AND ELFHETYPE [0.0
(3) UCs
IF ELFHEININDENT [O.
IF ELFHEININDENT [O.
(4) GAssist-ADI
IF RELAR386JMPSLOT [> 0.0] [661/661] : benign
ELSE IF RELAR386JMPSLOT [<= 0.0] [177/177] : malware
ELSE benign
(5) C4.5 Rules
IF BSSSHTYPE [<= 1.0] [465/465] : benign
ELSE IF RELAR38632 [> 11.0] [659/659] : benign
ELSE IF RELAR38632 [<= 11.0] AND BSSSHTYPE [> 1.0] [23/23] : malware
ELSE benign
(6) RIPPER
IF RELAR386JMPSLOT [> 0.0] [661/661] : benign
ELSE malware
IF RELR386COPY [> 10.0] [650/650] : benign
ELSE IF COMENTSHTYPE [> 0.0] [15/54]: malware
ELSE benign
(7) PART
IF RELAR38632 [> 11.0] [658/658] : benign
ELSE IF BSSSHTYPE [> 1.0] [24/225] : malware
ELSE benign
IF RELAR386JMPSLOT [> 0.0] [660/660] : benign
ELSE malware
(8) Jas
IF GOTPLTSHTYPE [<= 0]
.. IF RELR386GLOBDAT [<= 247] : malware
. . ELSE IF RELR386GLOBDAT [> 247]
. IF COMENTSHTYPE [<= 0] : benign
. . ELSE IF COMENTSHTYPE [> 0] : malware
ELSE IF GOTPLTSHTYPE [> 0]
.. IF SYMSTTHIPROC [<= 19]
... IF RELR386RELATIVE [<= 3] : malware
.. ELSE IF RELR386RELATIVE [> 3] : benign
. ELSE IF SYMSTTHIPROC [> 19] : benign

52] .... HASHTABLESIZE [0.0 0.06]: malware
7

0.
0.7] .... HASHTABLESIZE [0.0 0.35]: malware

.0] AND ELFHETYPE | .. HASHTABLESIZE [0.

0.0 1.0] . .0]: benign
.0] AND ELFHETYPE [0.0 1.0] ... HASHTABLESIZE [0.

01 01
01 0 0.9] : malware

GAssist-ADI generates rules in IF-THEN-ELSE form. It is interesting to note
that both classifiers do not add all attributes in the antecedent part of the rules;
as a result, the number and size of rules is significantly smaller compared with
XCS and UCS that increases the comprehensibility and interpretability of their
rules.

In case of classical machine learning algorithms, RIPPER, PART and C4.5
Rules generate compact and simple rules in the form of IF-THEN-ELSE. They
also highlight the number of data samples covered by a specific rule. These
classifiers do not add all input parameters in the antecedent part of the rules.
Consequently, their comprehensibility is high. J48 is the only classifier that builds
complex hierarchical rules. Its rules are accurate but complex as compared with
other classifiers. A closer look at the rules confirm our forensic analysis in Section
6: the classification power of features of relocation section (.rela) is very high
followed by the information from different section headers — .comment, .note,
.strtab, .symtab, and .sbss.

Timing Analysis. We now analyze the processing overhead of ELF-Miner
that includes time for features extraction, preprocessing, classifier training and
testing. On an average, features extraction and preprocessing times per instance
are 15.391 and 0.96 milliseconds respectively. The training times of J48 and



RIPPER are 0.173 and 0.616 milliseconds per instance respectively. Similarly, the
testing time of both J48 and RIPPER is 6.9 microseconds. So overall processing
overhead of ELF-Miner is approximately 16 to 17 milliseconds per instance (file)
using any of the two best classifiers. Such a small processing overhead makes our
ELF-Miner framework feasible for realtime deployment.

9 Conclusions

In this paper, we have introduced ELF-Miner, a malware detection framework
that mines structural features — extracted from different sections of ELF headers
— of Linux executables. We have done detailed forensic analysis to investigate the
fields that have high classification potential to detect malicious executables. Our
system achieves more than 99.9% accuracy depending on the selected classifier.
We have also done scalability experiments to show that ELF-Miner is able to
provide high detection accuracy even with a small number of features. We have
also shown that forging the features does not result in significantly degrading the
detection accuracy. It will be an interesting future work to put efforts to establish
the generality of our approach on executables of other operating systems — Mac
OS X, Symbian etc.
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Appendix A: Description of ELF Sections

Table 8. ELF sections & description [29] [5]

[No[ Section ]| Description
1 .text Executable instructions
2 .bss Uninitialized data in program image
3 |.comment Version control information
4 .data Initialized data variables in image
5 .datal Initialized data variables in image
6 | .debug Program debug symbolic information
7 | .dynamic Dynamic linking information
8 | .dynstr Dynamic string section
9 | .dynsym Dynamic symbol information
10 fini Process termination code
11 .hash Hash table
12 .init Process initialization code
13 .got Global offset table
14| .interp Path name for a program interpreter
15 line Line number information of symbolic debug
16| .note File notes
17 .plt Procedure link table
18| .rodata Read only data
19| .rodatal Read only data
20 | .shstrtab Section header string table
21| .strtab String table
22| .symtab Symbol table
23| .sdata Initialized non-const global and static data
24 .sbss Static better save space
25 1it8 8-byte literal pool
26| .gptab Size criteria info for placement of data items in the .sdata
27| .conflict Additional dynamic linking information
28| .tdesc Targets description
29 dit4 4-byte literal pool
30| .reginfo |[Information about general purpose registers for assembly file
31| .liblist Shared library dependency list
32| .rel.dyn Runtime relocation information
33| .rel.plt Relocation information for PLT
34| .got.plt Holds read-only portion of global Offset Table




