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Abstract Wireless sensor networks (WSNs) have become much more relevant in recent
years, mainly because they can be used in a wide diversity of applications. Real-time locating
systems (RTLSs) are one of the most promising applications based on WSNs and represent
a currently growing market. Specifically, WSNs are an ideal alternative to develop RTLSs
aimed at indoor environments where existing global navigation satellite systems, such as the
global positioning system, do not work correctly due to the blockage of the satellite signals.
However, accuracy in indoor RTLSs is still a problem requiring novel solutions. One of
the main challenges is to deal with the problems that arise from the effects of the propa-
gation of radiofrequency waves, such as attenuation, diffraction, reflection and scattering.
These effects can lead to other undesired problems, such as multipath. When the ground is
responsible for wave reflections, multipath can be modeled as the ground reflection effect.
This paper presents an innovative mathematical model for improving the accuracy of RTLSs,
focusing on the mitigation of the ground reflection effect by using multilayer perceptron
artificial neural networks.
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1 Introduction

Wireless sensor networks (WSNs) [4] allow us to obtain information about the environment
and act on this, expanding users’ capabilities and automating daily actions. Some of the most
interesting applications for WSNs are real-time locating systems (RTLSs). The most impor-
tant factors in the locating process are the kinds of sensors used and the techniques applied to
calculate the position based on the information recovered by these sensors. Although global
positioning system (GPS) has provided outdoor locating services for almost two decades, and
similar systems such as Galileo [27] are currently under development, indoor locating still
needs much more development, especially with respect to accuracy, and low-cost and effi-
cient infrastructures [25,33]. There is a need to develop RTLSs that perform efficient indoor
locating in terms of precision and resource optimization. This resource optimization includes
the reduction in the costs and size of the sensor infrastructure involved in the locating system.
In this sense, the use of optimized locating techniques obtains more accurate locations using
even fewer sensors and computational requirements [25].

There are several wireless technologies used by indoor RTLSs, such as RadioFrequency
IDentification (RFID), wireless fidelity (Wi-Fi), ultra-wide band (UWB), Bluetooth and
ZigBee [20]. However, independently of the technology used, it is necessary to establish
mathematical models that determine the position of a person or object based on the signals
recovered by the sensor infrastructure. The position can be calculated by means of several
locating techniques, such as signpost, fingerprinting, triangulation, trilateration and multi-
lateration [11,20]. However, each of these must deal with important problems when trying to
develop a precise locating system that uses WSNs in its infrastructure, especially for indoor
environments.

The electromagnetic waves transmitted and received by the wireless sensor infrastructure
used by these systems are affected by some propagation effects, such as reflection, scattering,
attenuation and diffraction [9]. Due to these effects, the energy of the transmitted electro-
magnetic waves is substantially modified between transmitter and receiver antennas in these
systems. With the attenuation effect, it is possible to estimate the distance covered by a wave
between a transmitter and a receiver antenna [2]. This is very useful for building RTLSs
based on these distances or based on trilateration [20]. However, reflection, diffraction and
scattering effects lead to other problems such as multipath, where the expected distance cov-
ered by a wave is decreased or even increased due to the sum of the waves reflected off the
walls or the objects placed throughout the environment [2]. Indoor locating systems based on
the measurement of distances between the sensors and the objects to be located are especially
affected by the ground reflection effect [9], a kind of multipath propagation effect. Therefore,
it is necessary to define new models and techniques that improve the accuracy of these kinds
of systems. This paper proposes a new mathematical model aimed at improving the precision
of RTLSs based on WSNs, especially with indoor environments. This model uses artificial
neural networks (ANNs) as the main component to mitigate the ground reflection effect and
calculate the position of the elements. This way, the new model proposes the use of two
multilayer perceptron (MLP) ANNs [26,37] to improve the precision of RTLSs. The first
MLP can mitigate the ground reflection effect when estimating distances from power signal
levels used to calculate the positions of users and objects by different locating techniques.
The second MLP then calculates the final positions of users and objects in the environment,
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using the output of the first MLP and acting, in fact, as a new locating technique that improves
the precision of other compared techniques.

This paper is structured as follows: Section 2 explains the problems that the ground reflec-
tion effect introduces in RTLSs which are based on WSNs. Related approaches that try to
solve these problems partially or globally are also described. Section 3 describes a new pro-
posal for reducing the ground reflection effect by using ANNs. Section 4 depicts a case study
where the new model was applied in a real scenario, explains the experiments performed on
that scenario to validate the accuracy of the new model, and describes the obtained results.
Finally, Sect. 5 presents the conclusions obtained so far and depicts the related future work
intended to improve the proposed method, including new applications for it.

2 Background and problem description

Real-time locating systems based on WSNs can be seriously affected by some effects related
to the propagation of electromagnetic waves, especially indoors [25]. Some of these effects
are reflection, scattering or attenuation. These effects can provoke what is known as the
multipath effect, or the ground reflection effect, which is more specific to indoor RTLSs
based on WSNs [14].

This section begins by depicting how RTLSs based on WSNs work, and includes some
locating techniques used to estimate the position. Then, the problem of the ground reflection
effect and its consequences in these kinds of systems are described, as well as some existing
research that tries to solve this problem through the use of diverse approaches, including
ANNs.

2.1 Real-time locating systems

The basic operation of a RTLSs begins with a network of reference nodes that are deployed
throughout the area or environment where the locating will be carried out. These nodes are
usually called readers [20]. Some of these readers can move throughout the monitored area,
acting as mobile references. In addition, there is a set of mobile nodes, known as tags [20,33],
which are carried by the users or assets to be located by the system. Each tag has a unique
identifier string or number by which it is unequivocally identified in the system. Each of the
tags sends a signal that contains its identifier in the system. This signal can be broadcasted
periodically or as a response to other signals or excitations transmitted by the readers, also
referred to as exciters [33]. The signals sent by the tags are detected by the readers within their
coverage area. Thus, the readers can obtain the identifier of the tag that sends each signal,
and also gather some measurements of that signal. These measurements provide information
about the power of the received signal (e.g., RSSI or received signal strength indication),
its quality (e.g., LQI or link quality indicator, its signal-to-noise ratio (SNR) or the angle of
arrival (AoA) to the reader, among many others. Finally, the information (i.e., the reference
measurements) from all of the readers in the network is compiled and processed in order to
calculate the position of each tag. There are RTLSs in which the position is calculated by
each tag (e.g., GPS); in this kind of RTLS, however, only the specific user knows its position,
unless every user, or a set of them, transmits their own position to another node through a
certain data communication channel, such as GPRS or UMTS [27].

Real-time locating systems can be categorized by their wireless sensor infrastructure and
by the locating techniques used to calculate the position of the tags. This way, there is a
combination of several wireless technologies, such as RFID, Wi-Fi, UWB, Bluetooth and
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ZigBee, and also a wide range of locating techniques that can be used for determining the
position of the tags. Some of the most widely used locating techniques include signpost, fin-
gerprinting, triangulation, trilateration and multilateration [11,20]. The set of the locating
techniques that a RTLS integrates is known as the locating engine [20]. Both the wireless
technologies and these locating techniques will be briefly described in this and the following
sections of this paper.

A widespread technology used in RTLSs is RFID [33]. In this case, the RFID readers
act as exciters by continuously transmitting a radiofrequency signal that is collected by the
RFID tags, which in turn respond to the readers by sending their identification numbers. In
this kind of locating system, each reader covers a certain zone through its radiofrequency
signal, known as reading field. When a tag passes through the reading field of the reader, the
tag is said to be in that zone.

Locating systems based on Wi-Fi take advantage of Wi-Fi wireless local area networks
(WLANs) working in the 2.4- and 5.8-GHz Industrial, Scientific and Medical (ISM) bands
to calculate the positions of the mobile devices (i.e., tags) [7]. Consequently, there is a wide
range of locating techniques that can be used for processing the Wi-Fi signals and determining
the position of the tags, including signpost, fingerprinting or trilateration. However, locating
systems based on Wi-Fi present some problems such as the interferences with existing data
transmissions and the high-power consumption by the Wi-Fi tags.

Ultra-wide band (UWB) is a technology that has been recently introduced to develop
these kinds of systems. As it works at high frequencies (the band covers from 3.1 to 10.6
GHz in the USA) [32], it achieves very accurate location estimations. However, at such high
frequencies, the electromagnetic waves suffer great attenuation by objects (e.g., walls) so
its use on indoor RTLSs presents important problems, especially the ground reflection effect
due to the high frequencies used.

The well-known Bluetooth standard is another technology that works, as does Wi-Fi,
in the 2.4-GHz ISM band and is mainly used to connect diverse devices such as mobile
phones, hands free car kits or even computers, thus creating wireless personal area networks
(WPANs). It can also be used to build RTLSs, mainly based on RSSI measurements and,
like Wi-Fi, uses locating techniques such as signpost, fingerprinting or trilateration. Its main
inconvenience is the difficulty in building WSNs made up of more than 8 devices [10].

ZigBee is another interesting technology for building RTLSs. The ZigBee standard is
specifically intended to implement WSNs. As with Wi-Fi and Bluetooth, it can work in the
2.4-GHz ISM band, but it can also work in the 868- to 915-MHz band. Different locating
techniques based on RSSI and LQI can be used on ZigBee WSNs (e.g., signpost or trilatera-
tion) because it can build networks of more than 65,000 nodes in star, cluster-tree and mesh
topologies [20]. ZigBee is the wireless technology that was selected for our research.

As previously mentioned, RTLSs can also be categorized by the locating techniques that
make up the locating engine (i.e., set of locating techniques). The locating engine calculates
the position of each tag in the system from a set of measurements obtained from the elec-
tromagnetic waves transmitted among tags and readers. The signpost technique determines
the area in which each tag in the environment is located according to the closest reader to
each tag [20]. Fingerprinting is based on the previous study of some measurements of the
electromagnetic waves in each zone of the monitored environment, thus making it possible
to estimate in which zones each tag is located [11]. Triangulation calculates the position of
each tag according to the angles of arrival from the broadcasted signals between tags and
readers [20]. Trilateration calculates the position of each tag from the estimated distances
between each tag and a set of readers [27]. Finally, multilateration estimates the position of
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the tags from the time difference of arrival (TDOA) of the broadcasts received from each tag
to a set of readers [8].

The measurements used by these techniques include the received power of the signals
(i.e., RSSI), the quality of the received signals (i.e., LQI) or the angle of incidence to the
receiver antennas (i.e., AoA). In an ideal environment, these measurements would be perfect,
with no error or noise, and the calculation of tag positions would be exact. In the real world,
however, the electromagnetic waves are influenced by effects such as reflection, scattering,
attenuation and diffraction. Attenuation is, in fact, a desired effect for estimating distances
from measurements such as the received power of signals (RSSI). RSSI can in fact be used in
signpost, fingerprinting and trilateration techniques to estimate distances from signal received
power. However, reflection, scattering and diffraction can make the readers receive additional
spurious signals that are undesired copies of the main signal. The reception of such spurious
signals makes up the multipath effect. This effect is especially undesired when measuring
parameters such as the RSSI, the AoA or the TDOA. When the ground is responsible for
wave reflections, multipath can be modeled as the ground reflection effect, which is described
in the next subsection.

2.2 The ground- reflection effect

Some of the effects that influence the propagation of the electromagnetic waves include
reflection, scattering, attenuation and diffraction. These effects can reduce or even increase
the range of a radiotransmission [9]. The reduction or the unexpected increase in the range
of a radiosignal is an important aspect to be taken into account in wireless transmission
applications [2]. Specifically, these effects can be a major challenge when designing a RTLS
based on WSNs, especially for indoor environments.

The detailed effects of phenomena such as attenuation and reflection in the propagation of
electromagnetic waves can be calculated by solving Maxwell’s equations with some bound-
ary conditions that model the physical characteristics of each object or medium involved
[9]. As this calculation can be very complex, or even the physical characteristics of each
object unknown, there are few approximations to model signal propagation and calculate the
range transmission. One of these approximations is the ray-tracing technique that simplifies
electromagnetic wavefronts to simple particles. Physically, each wavefront is the locus of spa-
tial points presenting the same phase for a certain electromagnetic wave. In the ray-tracing
technique, each wavefront is considered to be a particle traveling from the transmitter to the
receiver antennas. This is very useful for modeling reflection and refraction effects, although
it ignores the scattering phenomenon [9].

The propagation of electromagnetic waves between antennas is a well-studied physical
phenomenon. Let us consider that we have two antennas correctly aligned and polarized.
Let us also suppose that these antennas are separated by a certain distance between them
in free space. Finally, let us consider that the transmitter antenna is transmitting an electro-
magnetic wave to the receiver antenna. When transmitting a monochromatic electromagnetic
wave (or a band wave narrow enough to assume a unique wavelength) through the free space
between two correctly aligned and polarized antennas, the received power is given by the
Friis transmission equation [2]:

PR = PTGTGR

(
λ

4π

)2 (
1

d

)n

, (1)

where PR is the power available from the receiving antenna, PT is the power supplied to the
transmitting antenna, GT is the gain in the transmitting antenna, GR is the gain in the receiving
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antenna, λ is the wavelength of the electromagnetic wave in the transmission medium (e.g.,
the air or the vacuum), d is the distance between the transmitter and the receiver, and n is the
path loss exponent that is experimentally calculated (e.g., in the free space, with no objects
causing additional attenuation and reflection effects, we have that n = 2.0).

The wavelength of the electromagnetic wave in a medium is given by

λ = v

f
, (2)

where v is the phase speed of the wave in the medium (v = c in the vacuum, and a lower
value in any other medium) and f is the frequency of the wave.

However, this model is too ideal for real life. Applications such as RTLSs are greatly
affected by the multipath effect, especially indoors. This means that an electromagnetic
wave transmitted by a certain wireless source will be reflected, diffracted or even scattered
by the multiple objects placed throughout the environment and, as a result, the antenna of the
destination node will receive undesired copies of the transmitted signal. Even worse, these
additional signals could possibly be delayed in time and shifted in frequency and phase.

When a single ground reflection effect predominates in the multipath effect, a two-ray
model similar to that depicted in Fig. 1 can be used. In this model, a radiofrequency signal
is transmitted through the free space from a transmitter antenna with gain GT to a receiver
antenna whose gain is GR. The distance between the bases of the transmitter and receiver
is d . The ground is assumed to be a perfect, infinite flat plain. Moreover, the height of the
transmitter antenna above the ground is hT, whereas the height of the receiver antenna above
the ground is hR. As can be seen in Fig. 1, the total energy of the signal in the receiver
antenna is the sum of the energy of the wave directly transmitted between both antennas,
and the energy of another wave transmitted from the transmitter antenna and reflected off
the ground. This reflected wave comes in contact with the ground with an incident angle θi ,
and it is reflected with a reflection angle θr . In fact, by the law of reflection, we have that
θr = θi . As the directly transmitted wave and the reflected wave travel different distances
from transmitter to receiver, and the reflected wave suffers from the ground reflection, they
will have a different magnitude and phase when they arrive to the receiver antenna. Due to
the difference in the phases of both waves, they will be constructively or destructively added
in the receiver antenna.

As both the transmission medium (typically the air) and the ground can be considered
dielectric media, a portion of the incident wave on the ground is reflected by the junction

Fig. 1 Graphical representation of the ground reflection effect. Both the directly transmitted wave and the
ground reflected wave travel from the transmitter antenna to the receiver antenna. They are summed up at the
receiver antenna, causing the wave to be constructively or destructively added due to phase difference
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between them, and the rest of the energy of the incident signal passes through this junction.
This way, considering neither media to be conductive (i.e., their conductivity being σ = 0)
and being that the transmission medium is the free space (relative permittivity εr = 1 and
relative permeability μr = 1), and the ground is a dielectric whose relative permittivity is
εr and relative permeability μr = 1, the Fresnel reflection coefficients for horizontal and
vertical polarized signals are given by Eqs. 3 and 4, respectively.

�H = sin θi − √
εr − cos2 θi

sin θi + √
εr − cos2 θi

. (3)

�V = εr sin θi − √
εr − cos2 θi

εr sin θi + √
εr − cos2 θi

. (4)

For environments where hT +hR is much lower than d , we have that�H ≈ �V ≈ −1. How-
ever, this approximation does not often suit indoor RTLSs, where distances among wireless
transmitters and receivers are similar to their heights over the ground.

Figure 2 thus shows how ground reflection effect influences the transmission range
between a transmitter and a receiver in the 2.4-GHz band (typical band used in Wi-Fi, Blue-
tooth and ZigBee) inside an office with soft partitions (n = 2.6, with a standard deviation
σ = 14.1, and a permittivity εr = 18 for the ground), where transmitter and receiver are
sited respectively at a height of 1.1 and 2.5 m above the ground. These conditions are typical
for indoor RTLSs using WSNs and based on distance measurements. This figure shows how
ground reflection effect varies the expected transmission range regarding the polarization of
the wave. For long distances, vertical and even more horizontal polarized waves have more
losses than ideally transmitted waves. Even worse, for shorter distances, the received power

Fig. 2 Comparison of the transmission losses between the Friis free space model and the ground reflection
effect model regarding the polarization of the waves. Transmitted power PT = 0 dBm; frequency f = 2.450
GHz; gain of antennas GT = GR = 1; height of the transmitter antenna hT = 1.1 m; height of the receiver
antenna hR = 2.5 m; relative permittivity of the ground εr = 18; path loss exponent n = 2.6

123

Author's personal copy



J. F. De Paz et al.

does not vary monotonically with distance. This means that, for certain local distances, we
can have a higher received power even if the receiver is sited farther away from transmitter or
vice versa. Furthermore, if we want to guess the distance between a transmitter and a receiver
from the received power at the receiver, we can have more than one distance between antennas
that could cause such a received power.

2.3 Related approaches

There are some related approaches focused on the study or the mitigation of the multipath
or the ground reflection effect. Xie et al. [35] present a multipath mitigation algorithm for a
spread spectrum radiofrequency system using a frequency hopping technique and a two-ray
environment. However, its integration with existing RTLS is difficult as it is based on the
frequency hopping technique and requires the modification of the wireless technologies used
in the systems. Eui [14] study the ranging performance through a two-ray multipath simu-
lated model. This research uses IEEE 802.15.4a as wireless technology intended for indoor
locating applications. Nevertheless, it is only a simulation with analysis proposals and does
not propose a real way to mitigate the ground reflection effect. Schmitz and Wenig [30] study
the wave propagation effects in the performance of Mobile Ad-Hoc WSNs and how these
effects impact the routing protocol efficiency. Ray et al. [27] demonstrate how multipath
effect also impacts outdoor locating systems such as GPS. This research proposes the use
of a Kalman filter to estimate the errors provoked by carrier-phase multipath effect on static
GPS applications. There are other approaches that use ANNs to perform locating techniques.
Salcic and Chan [29] propose the use of an ANN to estimate mobile GSM phone positioning.
This research includes the comparison of the ANN with a function approximation model.
Nerguizian et al. [25] present a method for indoor mobile station location using received
signal strength fingerprinting measurement results applied to an ANN.

The innovative mathematical model proposed in this paper takes RSSI measurements as
inputs and estimates the position of the tags in the system based on these RSSI measure-
ments. RSSI was selected because it is one of the most common measures used in current
indoor RTLS and it is also easy to obtain in most wireless technologies [20]. In the first stage,
the model establishes the most probable distance of each tag based on the RSSI levels by
mitigating the ground reflection effect. In the second stage, the generated data are used by
the model to train an MLP neuronal network [16] that finally estimates the position of each
tag after the system has already been trained using standard location algorithms. This model
is described in detail in the next section.

3 The new mathematical model

As previously depicted, we use the measurement of the RSSI levels of the signals sent by each
tag. This way the position of each tag is estimated regardless of the position of the readers in
the environment. However, two main aspects have to be taken into account when calculating
the position of the tags. First of all, it is necessary to establish a relationship between the
RSSI levels of the signals sent by the tags and the distances between each tag and each reader.
To do this, it is necessary to model the ground reflection effect, described in Sect. 2.2, which
considerably distorts the relationship between a certain range of RSSI levels and distances.
It is also necessary to apply a new algorithm that can estimate the final position of each tag,
based on the distances calculated according to the measured RSSI levels.

123

Author's personal copy



Mitigation of the ground reflection effect

Fig. 3 Execution flows of the locating process. This figure shows the possible alternative executions for
calculating the distances from the RSSI levels and calculating the final position of the tags from these
distances

Figure 3 shows the possible execution flows for the two stages of the locating process.
The first stage corresponds to the distance calculation, whereas the second stage represents
the calculation of the tags’ final positions. The algorithms selected for each of these stages
are highlighted in gray in Fig. 3.

The next subsections analyze the ground reflection effect and the locating techniques used;
each subsection describes the corresponding proposal to address these challenges.

3.1 Modeling the ground reflection effect

In ideal conditions, modeling the relationship between RSSI levels and distances between
antennas creates a decaying exponential shape. This can be seen in Fig. 2 for the Friis model
when ground reflection effect is not considered. Nevertheless, as shown in Fig. 2, when
ground reflection effect is taken into account, the process of approximating the relationship
between the RSSI levels and the distances between antennas is complex and problematic.
Therefore, it is necessary to use other models that can consider the ground reflection effect
in order to obtain a reliable estimate of the distances between tags and readers.

Currently, there is a wide range of models for function approximation. Among the most
widely used are the regression models, which are based on the generation of mathematical
functions that minimize a certain error function according to the training data. Usually, the
error function utilized is the least square error function. There are different regression models
for the existing relationship between the variables, including the linear regression, exponen-
tial regression or the logarithmic regression models, among many others. Regression models
are valued according to the coefficient of determination, which measures the goodness of fit
of a certain model.

An alternative to these regression models is the support vector regression (SVR) [6,31,34].
In SVR, it is not necessary to take into account the type of correlation between data, because
the SVR method transforms the data to create linear relationships between them. The SVR
method comes from a related method known as support vector machine (SVM) [15], which
learns from data, and specializes in obtaining regression models by means of a change in
the dimensionality of the data. SVM is a supervised learning technique that is applied to the
classification and regression of different elements. It is commonly used in different fields,
such as chemical [18], modeling and simulation [36], data mining [17] or text mining [21].
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SVM facilitates working with data that cannot be adjusted to linear models [34] that were
initially conceived to obtain classifications in linear separable problems by means of find-
ing a hyperplane able to separate the elements of a set. In addition, SVM can also separate
non-linear data. To obtain non-linear separation, SVM maps the initial data into a high dimen-
sionality space, where the data can be linearly separated using specific functions. Given that
the dimensionality of the new space can be very high, most of the time it is not viable to use
hyperplanes to obtain linear separation. As a solution, non-linear functions called kernels
are used. SVR is, indeed, a variation of SVM to generate regressions [31,34]. Therefore,
the aim is to adjust the data. As in the case of SVM, the input data are mapped into a high
dimensionality space in which the regression can be carried out without the initial limitations.

Polynomial interpolation methods are an alternative to regression. These methods can
approximate values from a certain tabbed data set. Among the interpolation methods, we
have linear interpolation, Newton’s divided differences interpolation polynomial, quadratic
interpolation, Lagrange’s interpolation polynomial, etc. [3,19].

Other regression methods applied when the distribution of data and their relationships
are unknown are supervised learning neural networks. These kinds of ANNs are applied in
forecasting problems such as electric power consumption [12], gas consumption [26] or oil
slick forecast [22]. Kalogirou [12] presents a complete review of case studies where these
ANNs have been applied. Among the supervised learning networks, there are different alter-
natives for the learning process, which include error-correcting learning [28], delta rule or
least squares learning [28], generalized rule or error back propagation algorithm (gener-
alized delta rule) [28], reinforcement learning [23] or stochastic learning [5]. Among the
supervised learning networks, we have the MLP or the radial basis function (RBF) networks
[1]. ANNs are applied to a wide range of function approximation problems. Kolmogorov
[13] demonstrated that given any continuous function f : (0, 1)n → Rm, f (x) = y, such
a function can be exactly implemented by means of a three-layer feed-forward back propa-
gation ANN with n process elements in the input layer, m elements in the output layer and
(2n + 1) elements in the hidden layer. Therefore, the values of the layers are obtained from

zk =
n∑

j=1

λkψ(x j + ε · k)+ k k = 1, . . . , 2n + 1, (5)

y j =
2n+1∑
k=1

g j (zk) j = 1, . . . ,m, (6)

where zk is the output of the k-th neuron in the intermediate layer, y j is the output value of
the j-th neuron in the output layer, λ is a real constant, ψ is a monotonically increasing real
function, ε is a rational constant, and g j is a real continuous function known as the transfer
function.

The problem with the Kolmogorov theorem is that it mentions the existence of ψ and g j ,
but it does not state how to implement these functions. The sigmoid activation function is
thus habitually used in the intermediate layers, whereas in the output layer a sigmoid or a
linear activation function can be applied. If sigmoid activation functions are chosen for the
different layers, we can obtain the expressions for estimation and learning.

In the MLP, when taking into account the activation function f j , the calculation of the
output values in a hidden neuron is given by the following expression:

y p
j = f j

(
N∑

i=1

w j i (t)x
p
i (t)+ θ j

)
, (7)
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where w j i represents the weight that joins j-th neuron in the hidden layer with i-th neuron
in the input layer, t is the time instant, and p is the pattern in question. x p

i (t) is the i-th input
value in the pattern p, N is the number of neurons in the input layers, and θ j is the bias. The
calculation of the output in a neuron in the output layer is calculated in a similar way, taking
the hidden layer as an input layer.

The training for the network is carried out by the error back propagation algorithm [16].
The weights and biases for the neurons in the output layer are updated by the following
expressions:

w
p
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p
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d p

k − y p
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) (
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k

)
y p

k y p
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(
w

p
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)
. (8)
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)
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The neurons at the intermediate layer are updated by a procedure similar to the previous one
using the following expressions:
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, (10)
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)
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(
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p
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)
, (11)

where wk j represents the weight that joins j-th neuron in the intermediate layer with k-th
neuron in the output layer, t is the time instant, and p is the pattern in question. d p

k represents
the desired value, y p

k the value obtained from k-th neuron in the output layer, y p
j the value

obtained from j-th neuron in the intermediate layer, η the learning rate andμ the momentum.
θ

p
k represents the k-th bias value from the output layer. The variables for the intermediate

layer are defined analogously, keeping in mind that i represents the neuron in the input layer,
j is the neuron in the intermediate layer, and M is the number of neurons in the output layer.

Artificial neural networks can also work with time series. The use of time series facilitates
the forecast if it is not possible to estimate non-independent values with consecutive samples.
This way, a more realistic forecast of values is provided. Indeed, this is a fundamental fea-
ture for the forecast of distances from the RSSI levels, thus mitigating the ground reflection
effect. This is because the ground reflection effect mainly occurs inside certain ranges of the
distances.

3.1.1 Mitigation of the ground reflection effect using multiple readers

As shown in Fig. 2, the ground reflection effect registered in the signals varies according to
the RSSI level. The figure demonstrates that for a certain range of RSSI values, there are
fluctuations in the distance values according to the RSSI levels. Thus, a certain RSSI value
can represent distinct distances. In order to model the ground reflection effect, we utilized
time series applied to ANNs. Specifically, we used a MLP, as previously mentioned. ANNs
can forecast a value according to the received historical values. Therefore, the neural net-
work in this study is provided as input with both the current detected RSSI value and the
RSSI values detected in previous time instants; this is how we intend to mitigate the ground
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Fig. 4 Structure of the multilayer perceptron used in the training stage for the mitigation of the ground
reflection effect using multiple readers. The ANN contains n inputs for each of the k readers and k outputs

reflection effect. The neural network is made up of n input neurons, being n the time instants
taken into account: t, t − 1, . . . , t − (n − 1). The intermediate layer of the neural network is
configured following the Kolmogorov theorem [13] and choosing 2n + 1 neurons.

In order to improve the forecast of the time series, we opted to incorporate the RSSI levels
provided by other readers into the neural network. This way, the distance forecasting is done
using a subset of the deployed readers in the system simultaneously. The architecture of the
neural network is depicted in Fig. 4. This neural network has k input groups with n neurons
in each of them. These n neurons correspond to the n values of the time series. Likewise, the
k groups correspond to the number of readers that are considered for the distance estimation.
This number of readers is set in advance; thus, the readers with the highest measured RSSI
levels from the tag are selected. The intermediate layer is made up of 2(k + n)+ 1 neurons,
whereas the output layer is formed by k neurons (i.e., a neuron per each reader).

The groups of input neurons are ordered according to the current RSSI level from highest
to lowest. Therefore, the first output of the neurons is associated with the reader that received
the highest RSSI level, and so on.
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3.2 Locating techniques

As previously mentioned, there are several locating techniques that can set up the locating
engine of a RTLSs. In our research, we are focused on three of them: signpost, finger printing
and trilateration.

The signpost technique is the simplest one and has a relatively low computational com-
plexity [20]. In signpost, the location of each tag is estimated from the strongest signal
received from each reader, or from the strongest signal received at each reader from each
tag, according to which elements are broadcasting their identifiers. In our research, the latter
estimation is used, so the tags are responsible for broadcasting their identifiers to the readers.
This technique does not obtain the estimated coordinates of the position of each tag, but
does obtain the zone where each tag is located. That is, it determines the closest reader to
each tag in the environment. The accuracy provided by signpost can be increased by add-
ing more readers to the wireless infrastructure (i.e., the reader density or number of readers
per unit area). However, it needs more readers to achieve similar accuracy levels than other
techniques.

The fingerprinting technique is based on the study of the characteristics of each area of
locations (e.g., buildings), performing measurements of distinct radiofrequency characteris-
tics and estimating in which area of influence each tag is found [11]. In our research, we used
the RSSI levels of the signals broadcasted by the tags to the readers. However, this technique
is not very dynamic, because such radiofrequency characteristics can change over time as a
result of changes in the walls, the furniture or the same elements to be located. Consequently,
some kind of training or pre-tuning is necessary before starting the algorithm runtime, when
the actual performing of the calculation of tags’ positions is done.

Trilateration, sometimes wrongly confused with triangulation, is a technique that calcu-
lates the position of each tag from the distance to several readers. Graphically, it is performed
by an intersection of several spheres in a three-dimensional space. The distances to the refer-
ence nodes are estimated by different measurements of the received signals, such as the Time
of Flight, the RSSI or the LQI. In our research, as in the other applied techniques, we used
the RSSI levels of the signals broadcasted by the tags to the readers. This technique requires
at least four reference points to determine the position of a tag in the tridimensional space.
However, unlike triangulation, devices (i.e., tags and readers) do not need to use arrays of
antennas on receivers, so they are simpler and cheaper than those used in triangulation-based
systems [20].

Our proposed model captures data from the estimation of the positions by the trilateration
algorithm. It stores these in a memory for subsequent use in carrying out the training of an
MLP. This way, the neural network allows us to make the fastest estimations and is more
responsive to variations in the distances resulting from the reflections of the emitted waves.
Input data in the neural network correspond to the distances calculated by means of the MLP
described in Sect. 3.1.1 from a pre-fixed number of readers and the position of the readers.
These readers are selected according to the lowest distances they have to the tag. Output
has two coordinates, one for each coordinate in the two-dimensional Cartesian space. The
number of neurons in the hidden layer is 2n + 1, where n is the number of neurons in the
input layer. Finally, there is one neuron in the output layer. The activation function selected
for the different layers is the sigmoid. Furthermore, the neurons exiting from the hidden layer
of the neural network contain sigmoidal neurons. Network training is carried out through the
error back propagation algorithm [16].
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4 Case study

In order to test the performance of this model in an indoor environment, we proceeded to
deploy a WSN infrastructure made up of several ZigBee nodes (i.e., readers and tags). As
previously mentioned, the ZigBee standard is specifically intended to implement WSNs and
operates in the frequency range belonging to the ISM radioband, specifically in the 868-MHz
band in Europe, the 915-MHz band in the USA and the 2.4-GHz band throughout most of
the world. The underlying IEEE 802.15.4 standard is designed to work with low-power and
limited computational resources. The ZigBee standard allows more than 65,000 nodes to
be connected in a star, tree or mesh topology. Therefore, RTLSs can implement ZigBee,
allowing for the use of different locating techniques.

Each ZigBee node in our case study included an 8-bit RISC (Atmel ATmega 1281) micro-
controller with 8KB of RAM, 4 KB of EEPROM and 128 KB of Flash memory and an IEEE
802.15.4/ZigBee transceiver (Atmel AT86RF230) [24]. These devices, called n-Core� Sirius
A for readers and Sirius B for tags, have both 2.4-GHz and 868/915-MHz versions and have
several communication ports (GPIO, ADC, I2C, PWM and USB/RS-232 UART) to connect
to distinct devices, including a wide range of sensors and actuators. The n-Core� Sirius
devices form a part of the n-Core platform [24], which offers a complete API (Application
Programming Interface) to access all its functionalities.

The ZigBee network was formed by 15 fixed nodes acting as readers and distributed
throughout three rooms, following the distribution shown in Fig. 5. The total size of the
monitored area was 19 m per 19 m. The readers were distributed in this way, so that each
tag could be identified by several readers simultaneously. Therefore, the selected locating
techniques (i.e., signpost, fingerprinting and trilateration) could be applied using several
simultaneous measurements.

Fig. 5 Distribution of the network of ZigBee readers in the laboratory. Each blue dot represents a reader in
the laboratory (color figure online)
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4.1 Experiments

The designed neural network was compared to other regression methods and SVR in order
to evaluate the results of the estimation of the distances from RSSI levels. Function interpo-
lation methods were discarded because RSSI levels are discrete values in the ZigBee devices
used in this case study (and in most wireless technologies), so it is not useful to apply these
kinds of methods. The regression methods were chosen according to the representation of the
information. As can be seen in Fig. 6, the logarithmic regression model fits the distribution
of data.

Prior to estimating the position of the tags, we carried out a training process of the neural
network built in order to estimate the distances between nodes from the RSSI levels. A
test tag was successively moved through different predefined location sequences (i.e., zones
inside the laboratory). This allowed us to calculate the relationship of the measured RSSI lev-
els with the real distances between the tag and the readers. To do so, the detected RSSI levels
between the tag and each of the 15 readers were measured. The RSSI–distances measurements
were then used to make predictions in the time series. In total, 200 cases were generated to
train the neural network according to the structure previously shown in Fig. 4. In addition,
different positions were randomly chosen throughout the zones to generate 100 new cases
and estimate each position by means of both the neural network and other approximation
methods to compare them. Other methods were SVR, a linear regression model and a logarith-
mic regression model. Figure 7 shows the test positions used for calculating the relationship
between the RSSI levels and the distances in the training data set. The calculation of these
relationships is necessary because the characteristics of the existing materials considerably
affect the detected distances.

Proper training and a cross-validation were both carried out to train the neural network.
The neural network followed the architecture described in the Sect. 3.2, being the number
of groups k = 4. The number of elements had to be greater than 3, so that the trilateration
algorithm could work properly (i.e., three references are needed in a two-dimensional trilater-
ation algorithm). The final number of elements was selected as 4 in order to reduce the error

Fig. 6 Relationship between the distance and the absolute value of the measured RSSI for the ZigBee devices
used in the case study
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Fig. 7 Distribution of the test positions (marked as crosses) utilized to calculate the RSSI–distance relation-
ships during the training of the neural network and the regression models for the mitigation of the ground
reflection effect

without increasing the execution time. The number of measurements for each group was 15.
This way, the number of inputs was 60. Likewise, the number of outputs was 4, one per each
group. In order to generate the distinct compared models (SVR, linear and logarithmic), only
the information of the group with the highest RSSI levels was used. Thus, only 15 input
values and 1 output value were used in these models. Both the neural network and the other
models used 200 cases of the training stage and 100 cases to make predictions.

Once the distances were calculated, the efficiency of the locating system was evaluated.
This evaluation was performed by training a second neural network. The training data were
obtained from the 200 initially calculated values, together with another 300 values estimated
using the trilateration algorithm. The structure of the neural network is described in Sect. 3.2.
The obtained results are detailed in the Sect. 4.2.

4.2 Results

Figure 8 shows the absolute errors obtained for the SVR, the linear regression model, the
logarithmic model and the neural network. As can be seen in this figure, the neural net-
work obtained better results than the other methods because it presents a lower error for the
estimation of distances.

The regression model obtained for the logarithmic regression fits in a very high grade the
training data, as this model obtains a R2 = 0.9907. Likewise, the linear regression model
obtains a R2 = 0.8968, which is also a high value. Based on these R2 values, both models
can be considered as valid for estimating. That is, the estimates made are significant and any
other method that improves these results would also be valid.

Figure 9 shows the relationship between the obtained error with regard to the estimator and
the RSSI levels for the values used in the estimation. As can be seen in the four bar diagrams,
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Fig. 8 Errors in estimating the distances from the RSSI levels for the different models compared: SVR, linear
regression model, logarithmic model and the MLP

Fig. 9 Errors in the estimates of the predictions made by the different methods compared: SVR, linear
regression, logarithmic regression and MLP

the errors are lower for the MLP than for the rest of the compared methods. Moreover, the
errors for the MLP are concentrated in a certain range of RSSI levels. This makes it possible
to create reliable values outside some specific frequency ranges.

Figure 10 shows a surface map corresponding to the highest detected errors. As can be
seen, the errors obtained with the MLP are lower than those obtained with the SVR and
the regression models, as almost all the detected surface is red, green or blue (the colors
corresponding to SVR, logarithmic regression and linear regression, respectively).

The estimate of mean error and standard deviation for each of the models compared is
shown in Table 1. As can be seen, the typical error and the deviation of the neural network
are lower than those of the SVR and regression models.
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Fig. 10 Surface map corresponding to the highest detected errors for each of the models compared. Both the
surface and colors are calculated according to the maximum error values and the kind of the error (color figure
online)

Table 1 Mean error and
standard deviation of the distance
estimates for each of the models
compared

Model Mean Deviation

SVR 1.09 1.04

Linear 1.16 0.98

Logarithmic 0.55 0.78

MLP 0.36 0.43

Analyzing the dispersion of the error for each of the models compared in Fig. 11, we can
see that the MLP offers the lowest dispersion and does not present such extreme values as
the SVR and linear regression models do. Figure 11 shows the box plot diagrams for the
SVR, the regression models and the MLP. As can be seen, the MLP presents the lowest data
variance.

In order to analyze the significance of the differences and to determine whether the neural
network is statistically better than both the SVR and the regression models, we applied the

Fig. 11 Comparison of the error dispersion in the different models compared. The figure shows box plots
representing the absolute error for the RSSI–distances relationship when using the different approximations
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Mann–Whitney U test. This test determines two values: H0 and H1. H0 shows whether the
data in both groups present the same distribution, whereas H1 determines whether there is a
difference in the distribution of the error distance data. Table 2 shows the p-value obtained for
the comparison method of the row and the corresponding column. Considering a significance
α = 0.05, we have that the p-value corresponding to linear–SVR and logarithmic–MLP is
greater than α. Therefore, we cannot discard H0, although it can be discarded for the equality
comparisons of distributions of SVR–MLP and linear–MLP. Nevertheless, even though H0

cannot be discarded for the logarithmic–MLP case and a significance α = 0.05, the value
that it presents, 0.1731, is low. This way, using a significance value α = 0.2, H0 would
be discarded. Observing the information presented in Table 2, we can state that the MLP
improves the results obtained by the logarithmic model.

In order to determine the position of each tag, the final positions were forecasted by
applying signpost and trilateration to obtain the RSSI levels. To train the neural network,
200 positions initially realized were used, and 300 were carried out with trilateration. The
100 remaining measurements were used to make predictions. Figure 12 shows the absolute
error obtained for the calculation of 100 positions by comparing the different methods. As can
be seen, the forecast based on the neural network improves the results of the other methods
and reduces the error in the predictions.

Furthermore, this improvement in the distances error is significant. To compare the
different methods, the same procedure as that indicated in Table 2 was followed. The box
plots representing the error information are presented in Fig. 13. As can be seen in the figure,

Table 2 Mann–Whitney’s data
distribution equality test for the
distance errors

SVR Linear Logarithmic MLP

SVR

Linear 0.405

Logarithmic 3.423e-6 8.455e-8

MLP 4.263e-10 9.696e-12 0.173

Fig. 12 Comparison of mean absolute prediction error for 100 values using signpost, trilateration and MLP
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the MLP provides lower estimation errors than the signpost and trilateration by themselves,
that is, without modeling the RSSI and position behaviors.

In order to compare the results obtained without using the MLP to model the ground reflec-
tion effect, the final positions were calculated by means of the logarithmic regression model.
This method was chosen because it provided the best results of all the methods compared
(only MLP achieved better results). Figure 14 shows the obtained results. Comparing this
figure with Fig. 12, we can see that if the neural network that models the ground reflection
effect is not used, the error increases in the cases of MLP and trilateration, whereas it remains
constant in the case of signpost. This is because the signpost technique uses the RSSI levels
directly to determine which reader is closest to each tag.

Table 3 shows the mean and the standard deviation of error obtained when the MLP or the
logarithmic regression model is applied to approximate the distances from RSSI levels. As
can be seen in this table, both the mean and the standard deviation of error are lower when the

Fig. 13 Box plot diagrams representing the location errors for the different locating techniques compared

Fig. 14 Absolute error for each of the locating techniques after applying the logarithmic regression model to
approximate distances
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Table 3 Mean error, standard deviation (in meters) and T Test of the compared locating techniques after
applying MLP and logarithmic regression models

Model MLP Logarithmic

Mean Deviation T-Test (MLP) Mean Deviation T Test (MLP)

Signpost 3.19 2.43 2.2e-16 3.35 2.42 4.732e-9

Trilateration 1.64 1.57 3.47e-6 2.17 1.68 0.01018

MLP 0.82 0.78 1.54 1.00

Table 4 Mann–Whitney’s data
distribution equality test for the
distance errors using trilateration
and MLP after applying the
logarithmic regression model and
the MLP

Trilateration MLP
logarithmic logarithmic

Trilateration 0.003396

MLP

MLP 8.171e-10

MLP

MLP was applied than when the logarithmic regression model was used. The T test for both
approximations (MLP and logarithmic regression) was performed to determine whether the
difference between MLP and the other techniques (signpost and trilateration) is significant.
As can be seen in the results in Table 3, the difference between results is significant.

The result of applying the Mann–Whitney U test for the obtained errors is shown in Table 4.
As can be seen, the differences in the calculation of the final positions when applying the
logarithmic regression model or the MLP are significant. The signpost technique was not
considered because it does not use distances for the calculation of the tags positions.

5 Conclusions and future work

Among the wide range of WSNs applications, RTLSs are emerging as one of the most excit-
ing research areas available. Healthcare, surveillance or work safety applications are only
some examples of the possible environments where RTLSs can be exploited. There are also
different wireless technologies that can be used on these systems. The ZigBee standard offers
more interesting features than the other technologies; it can use large mesh networks of low-
power devices and can integrate with many other applications as it is an international standard
using unlicensed frequency bands.

The operation of RTLSs can be affected by undesired phenomena such as the multipath
effect, and more specifically, the ground reflection effect. This paper proposes a new mathe-
matical model aimed at improving the precision of RTLSs based on WSNs. As demonstrated
in this study, the use of ANNs to forecast distances from RSSI levels improves the estima-
tion of distances when using SVR or regression models. In addition, focusing the forecast
according to time series can reduce the ground reflection effect that occurs when considering
only the last RSSI measurement.

The use of measurements from several readers as inputs of the MLP in the proposed model
also reduces the prediction error by mitigating the ground reflection effect and improving the
approximations provided by other methods with high adjustment goodness, such as the log-
arithmic regression model. This improvement in distance forecasting is very relevant when
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estimating the positions of the tags, thus optimizing the overall calculations of locating tech-
niques. The results presented in this paper demonstrate that the use of ANNs improved the
approximations provided by the locating techniques. Nevertheless, a previous data gathering
stage is required. In this paper, this stage was carried out both manually and automatically
by means of the trilateration technique.

Plans for future work involve the reduction of the readers needed to perform the locating
process, as well as the implementation in larger environments. Future work also includes the
study of more detailed multipath models such as Ricean and Rayleigh fading or shadowing
[30].
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