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Abstract

The recent wide adoption of Electronic Medical Records (EMR) presents great opportuni-
ties and challenges for data mining. The EMR data is largely temporal, often noisy, irregular
and high dimensional. This paper constructs a novel ordinal regression framework for predict-
ing medical risk stratification from EMR. First, a conceptual view of EMR as a temporal image
is constructed to extract a diverse set of features. Second, ordinal modeling is applied for pre-
dicting cumulative or progressive risk. The challenges are building a transparent predictive
model that works with a large number of weakly predictive features, and at the same time, is
stable against resampling variations. Our solution employs sparsity methods that are stabilized
through domain-specific feature interaction networks. We introduces two indices that measure
the model stability against data resampling. Feature networks are used to generate two multi-
variate Gaussian priors with sparse precision matrices (the Laplacian and Random Walk). We
apply the framework on a large short-term suicide risk prediction problem and demonstrate
that our methods outperform clinicians to a large-margin, discover suicide risk factors that
conform with mental health knowledge, and produce models with enhanced stability.

1 Introduction
The recent wide adoption of Electronic Medical Records (EMRs) offers great opportunities for
mining useful patterns that support clinical research and decision making [27]. The EMR con-
tains rich information about a patient, including demographics, history of hospital visits, diag-
noses, physiological measurements, bio-markers and interventions. We consider the problem of
predicting risk stratification using EMR data. By ‘risk’ we mean unwanted outcomes such as
readmissions, length of hospitalization, intoxication and mortality. For clinical use, the outcomes
are often stratified into ordered levels such as “low”, “moderate” and “high” risk. We aim at
constructing a scalable automated framework that takes entire historical medical records for each
patient and predicts ordered risk within a window.

The challenges lie in effective and interpretable modeling of noisy, irregular, temporal and
mixed modalities [37, 66]. An EMR can be considered as a mixture of static information and
time-stamped events. Static information includes demographic variables and thus is generally
moderate in dimensions. The events are, however, complex and high dimensional. For example,
the current disease coding scheme ICD-10 has approximately 20, 000 entries, and the number
adds up quickly if we consider multiple time scales and the combination with other event types
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(e.g., medications). Events are often packed into episodes of admissions and treatments, and thus
are highly irregular.

The high dimensional data calls for sparse predictive models [61, 68]. Unfortunately, sparse
models could be unstable against data variations. The instability can be measured as the proba-
bility that a feature is selected [41] or as the variance in model parameters. In EMR, features can
be highly correlated, and thus sparse models often pick the strongest one seen in the data sample
[67, 72]. Under data resampling, another feature may be chosen next time. Second, for some
tasks, EMR-derived features could be weakly predictive, thus limiting the probability that they
are selected. Unstable models are less useful in practice because they cannot generalize from one
cohort to another, and thus undermining the research reproducibility and reducing the clinician
adoption.

In this paper, we present a two-stage stabilized sparse ordinal framework that addresses these
challenges [64]. The first stage extracts a large number of features from EMR. The extraction
builds on a novel conceptual view in which a patient’s medical records forms a temporal image,
from which filters over different time windows extract a diverse feature set. Multi-class ordinal
classification is then formulated in two main ways—with and without class-specific parameters.
For each set, risk is transparently modeled as either cumulative risk [40] or stagewise progres-
sion of risk [65, 63]. The ordinal classifiers are equipped a `1-norm penalty which yields sparse
solutions. The selection is stabilized through relational regularization, in which domain-specific
feature interaction is used to promote smoothness among related parameters. Examples of in-
teraction include the “sibling” relation between two diagnosis codes in the same disease branch,
or the progression of a disease. To measure model stability, we introduce two stability indices,
evaluated at any feature ranked list length, one accounts for the feature selection probability and
the other computes the signal-to-noise ratio in the feature weights.

Our framework is demonstrated through a large cohort of ten of thousands of mental health
patients who were under assessment for suicide risk. This problem devastates families and com-
munities: One out of ten persons develop suicidal thoughts in their lifetime [45], and 0.3 percents
attempt suicide in any given year [8]. In response, health services introduced mandatory suicide
risk assessment for vulnerable populations [2]. These assessments form the basis of suicide risk
stratification. But traditional suicide risk assessment lacks prediction accuracy [31, 54]. Provid-
ing more accurate solutions for suicide risk stratification will deliver immediate benefits. The
challenges are that data is highly sparse; many risk factors are known, but they are weakly pre-
dictive.

The framework is evaluated against several criteria: predictive accuracy against clinicians,
the degree to which discovered features conform with clinical knowledge, and model stability.
In predicting risk, the framework outperforms the mental health professionals in a large margin.
For moderate-risk prediction, machines improve the F1-score by 25%. For the high-risk class,
the improvement are as high as 200%. In terms of suicide detection, the machine detects 29− 30
cases, which are more than double the number detected by human (14 cases). The discovered
features agree with most previously reported risk factors which came out of decades of extensive
research. The results are significant as the framework relies entirely on data readily collected in
hospitals, and the risk prediction is objective and transparent. We also demonstrate the efficacy
of our feature stabilization methods vs no stabilization.

In short, this paper contains the following contributions:

• A generic and scalable risk stratification framework with three components: (i) A novel
conceptual view of EMR as a temporal image so that a diverse set of features at different
temporal scales can be extracted; (ii) Modeling of risk through ordinal classification, in
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particular the introduction of stagewise risk modeling in this context; (iii) Formulation of
methods to stabilize predictive models, through appropriate relational regularization of the
risk functional in ordinal classification.

• Two model stability indices over arbitrary feature rank list size, one is based on probability
that a feature is selected, and the other on signal-to-noise ratio of the feature weights. A
related contribution is a novel stability-based feature ranking criterion based on the signal-
to-noise ratios.

• Comprehensive evaluation of methods in comparison with clinicians, demonstrating that
machine learning methods outperform clinicians in risk stratification. It demonstrates the
value of mining EMR data for an important problem. To the best our knowledge, this is
the first study that formulates suicide risk prediction as a data mining task and leads to a
solution being clinically adopted.

• The framework can be generalized to a variety of disease. Given mixed type data com-
prising demography, clinical history (emergency attendances, admissions and diagnostic
coding), and risk assessment instruments (questions with ordinal ratings), our framework
automatically extracts the most relevant features and builds stabilized risk prediction clas-
sifiers.

The paper is organized as follows. The next section reviews related work. Section 3 presents an
overview of the framework. Section 4 describes EMR data representation and feature extraction.
Ordinal classifiers are derived in the subsequent section, followed by the relational stabilization
method in Section 6. Section 7 details implementation issues and results. Section 8 provides
further discussion, followed by the conclusion.

2 Background
Risk stratification is important in medical practice and research [59]. There are two major predic-
tion types: diagnosis (estimating the probability that a disease is present) and prognosis (predict-
ing the outcomes given current diagnoses or intervention plan). These estimation and prediction
influence clinical practices such as test ordering, treatment/discharge planning and resource allo-
cation. In medical research, knowing the risk helps selecting cohorts for randomized trials and
assessing risk aspects and confounding factors.

The established risk model construction strategy relies on small hand-picked subset of fea-
tures from highly stratified cohorts [46, 59]. As a result, previous studies were fragmented where
conclusion only holds under well-controlled conditions. Electronic Medical Record (EMR), on
the other hand, suggests a data-centric and hypothesis-free approach from which data mining
techniques can be utilized. It typically contain a diverse set of information types, including de-
mographics, admissions and diagnoses, lab tests and treatments. Research into machine learning
for EMRs is largely recent and fast growing [27]. However, automating the learning process
is still limited. In our work, we generate, select and combine thousands of weak signals in an
automated fashion.

Sparsity and Stability

The nature of such high-dimensional setting leads to sparse models, where only small subsets
of strongly predictive signals are kept. Such sparsity leads to better interpretability and general-
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ization; this is expected to play an important role in biomedical domains [68]. However, sparse
models alone are not enough in practice. We need stable models, that is, models that do not
change significantly with data sampling. Stable models are reproducible and generalizable from
one cohort to another. However, sparsity and stability could be conflicting goals [67], especially
when noise is present [17]. Most sparsity-inducing algorithms do not aim at producing stable
models. For example, stepwise feature selection in logistic regression produces unstable models
[3]. In the context of lasso, only one variable is chosen if two are highly correlated [72].

Model stability is related but distinct from prediction stability – the predictive power does not
change due to small perturbation in training data [9]. It is quite possible that unstable models
can still produce stable outputs. Stable models, on the other hand, lead to stable prediction under
regular conditions often seen in practice. Model stability is a stronger requirement than recently
studied feature selection stability issues [6, 33]. Stable feature selection algorithms produce sim-
ilar feature subsets under data variation; whilst model stability also considers feature weights.

Several model stability indices have been introduced recently [23, 28, 29, 33, 57]. A popular
strategy is to consider similarity between any feature set pair, each of which could be represented
using the discrete set, rank, or a weight list. The mean similarity is then considered as the sta-
bility of the collection of feature sets. One problem with this approach is that the stability often
increases as more features are included; and this does not reflect the domain intuition that a small
subset of strong features should be more stable than large, weak subsets.

A common method to improve the stability is to exploit aggregated information such as set
statistics [1], averaging [47] or rank aggregation (e.g., see [58] for a references therein). The sec-
ond approach quantifies the redundancy in the feature set, i.e., exploiting feature exchangeability
[58], and group-based selection [69, 70].

The stabilization method introduced in this paper relies on relations between features, i.e.,
similar features would have similar weights. Since this knowledge is independent of data sam-
pling, model variation due to sampling noise will be reduced. Feature networks have been previ-
ously suggested in different contexts, e.g., for regularization or improving interpretability, but the
stabilization property has been largely ignored [42, 62, 71]. Likewise, the network-based sparsity
is part of a recent body of research known as structural sparsity [26, 36]. For instance, when
the feature network is fragmented into tightly connected subnetworks (cliques), we yield a sparse
group setting [70]. However, our work does not primarily aim to select groups of features but
rather to improve the stability (hence reproducibility) of the selected subset.

Ordinal Regression

The nature of medical risk suggests the use of ordinal scales since they naturally represent human
judgment [5]. The most frequently used ordinal regression model is the Proportional Odds [40],
where the odds ratio of risk above a level and risk below it is proportional to risk factors. This
model is a special case of the assumption that risk is cumulative, and there is a natural grouping
of continuous risk into consecutive intervals, separated by thresholds. Similar ideas have been
studied in machine learning under the kernel methods [13, 25, 60, 12, 14]. Kernel methods allow
nonlinear modeling with well-studied generalization bounds. However, these methods could be
slow for large-scale problems since the learning complexity could be cubic in number of training
points and the testing complexity is linear in the number of support vectors, which could be the
number of training points in the worst case. Another approach is to reduce ordinal regression to
binary classification for which standard machine learning techniques can be applied [11, 35].

A sparse probabilistic model whose risk is linear in predictors would scale better in testing
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phase, regardless of the number of training data points. It also conforms with clinician’s reasoning
strategies under uncertainty when the risk is additive and the outcomes are stated in probability.

Medical and Suicidal Risk Stratification

Like other medical problems, suicide risk analysis is often based on a small number of well-
chosen risk factors [50][10]. Most clinical research, however, focuses on quantifying the risk
factors rather than building a prediction model. The most common practice in risk assessment
is using questionnaires to quantify aspects related to suicide ideation and attempts. Although
mandatory, this practice is inadequate in predicting future suicide [31, 54]. More recently, multi-
ple risk assessment instruments have been combined to improve the risk judgment [7].

Machine learning techniques such as SVM and neural networks applied to clinical data is typ-
ically aimed at achieving higher predictive performance, and thus interpretability may be sacri-
ficed. The application to suicide risk prediction is limited [43]. In [16], authors use impulsiveness
scale items to classify attempts from non attempts. However, it is unclear that this is prediction
into the future, or just separating recorded but ambiguous facts. The work of [53] analyzes ques-
tionnaires to discover latent features from data. The study is limited to suicide ideation, which
is poorly related to real attempted or completed suicides in the future. Another line of work is
to analyze suicidal notes [48] using NLP techniques. While this is important to understanding
suicidal drive, it may not be applicable in predicting future suicide because notes are generally
not available prior to suicidal events.

3 Framework Overview
The framework is built on the patient-specific data queried from the relational EMR systems
(denoted as A in Fig. 1). Patient data contains time-stamped events (such as emergency visits,
diagnoses, and hospitalizations) and static information (such as gender, spoken language and
occupation). For each patient, there are one or several evaluation points from which future risk
will be predicted (Fig. 2). Often clinical risk assessments, hospital admissions or discharges serve
as natural evaluation points as the outcomes will be tracked and acted upon.

The feature extraction process (D1,D2) generates event features (F1,F2) over multiple pe-
riods of times prior to an evaluation point (Section 4.2). The extraction process makes use of
pre-defined coding hierarchies (B) such as the international disease coding scheme ICD-101 and
the Australian intervention coding scheme ACHI2. In the training phase, the process also gener-
ates a feature network (E) which encodes the temporal and semantic relations between features.
For example, if depressive episodes were observed twice in the history, then the two features
representing them are temporally linked. On the other hand, if another mental disorder is also
observed, then the two disorders as semantically linked. The feature network will be used later
on to improve the model stability.

The feature extraction process effectively flattens the structured EMRs into vectors, however
temporal and hierarchical information is partially preserved. This process typically produces a
large pool of features, and thus a feature selection capacity is needed. This is realized through
model training (I) with lasso-style regularization [61]. More formally, letD = {xi, yi}ni=1 be the
training data set, where xi ∈ Rd denotes the feature vector of data instance i and yi ∈ {1, 2, .., L}

1http://apps.who.int/classifications/icd10
2http://www.aihw.gov.au/procedures-data-cubes
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Figure 1: Overview of the automated medical risk stratification framework. Models are updated
offline on a regular basis, prediction is made online at clinician’s request. The clinician reporting
system is described elsewhere [52].

the discrete ordinal output. We aim to learn a sparse, linear risk model parameterized by the
weight vector w ∈ Rd. The lasso-regularized loss function is as follows:

loss1(w) =
1

n

n∑
i=1

R(xi, yi;w) + α ‖w‖1 (1)

where R(xi, yi;w) is a convex loss function of training instance i and α > 0 is the regulariza-
tion parameter. To accommodate ordered risk classes, we employ several probabilistic ordinal
classifiers what make different assumptions about the stratification process (Section 5). The loss
function R(xi, yi;w) is therefore the negative log-likelihood of the outcomes yi given the fea-
tures xi.

Model Stabilization Using Feature Network

The lasso tends to result in sparse models with few non-zeros weights. However, we observed
that this sparsity typically comes with instability of the model under the random sampling of the
training dataD. Model instability under feature selection is indeed a known phenomenon [6], but
the theoretical study under lasso is recent [41].

The method proposed in this paper is based on the intuition that strong prior knowledge would
lead to less variation due to sampling noise since prior knowledge is independent of sampling
procedures. In clinical domains, prior knowledge could be realized by using feature networks,
exploiting the relations between diseases and disease progression over time. In Fig. 1, the feature
network (E) links related features and ensures that similar features have similar weights. This
can be nicely formulated in a Bayesian regularization fashion as the feature network serves as a
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Figure 2: Clinical events represented as a temporal image, which is convoluted with one-sided
filter bank.

backbone for a precision matrix of the multivariate Gaussian prior distribution. Section 6 presents
the network regularization in more details.

4 Representing Medical Data
This section describes the data and the process of transforming the temporal, hierarchical and
relational EMR into flat feature vectors.

4.1 EMR Data
We are mainly interested in data on emergency department presentations (ED) and admissions
to the general hospital. The most important piece of information is the diagnostic coding for
any episodes. For ease of exposition we assume that the diagnosis coding conforms with the
latest classification scheme, the ICD-10. Previous version or other schemes could be also be
applicable. The ICD-10 scheme is a hierarchy of diseases covering almost all known conditions
with approximately 20, 000 codes. The codes start with a letter followed by several digits where
the digits placed later in the sequence indicate more specific conditions. For example, injuries to
the head are classified into 10 groups, from S00 to S09. The group S01 means “open wound of
head”, the subgroup S011 means “wound in the eyelid and periocular area”.

In general, medical records for each patient contain time-stamped events of different types.
Thus the EMR at a given time can be represented as a sparse 2D image (see Fig. 2). One di-
mension is time and the other dimension represents events. The events are sparse and irregular
because clinical events are often packed into episodes. A typical episode starts with an emer-
gency visit followed hospitalization and ends with discharge or death. For certain conditions such
as mental health and cancers, formal risk assessments may be performed. Emergency visits, hos-
pitalizations and risk assessments are major events that contain sub-events. For example, each
emergency visit includes a primary ICD-10 diagnosis code, a decision to admit, transfer or return
home. Hospitalization could be planned or come through the emergency department. Each admis-
sion typically contains multiple diagnoses, intervention procedures and medication prescriptions.
A risk assessment may contain a check list or ordinal ratings on multiple risk-related items.
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4.2 Multiscale Feature Extraction using One-Sided Filter Bank
Our prediction problem is to stratify future risk within a window of time using historical records.
Thus at a prediction point, we transform the EMR into a feature vector to which risk classifiers
are applied. As medical events are irregular and sparse, standard feature extraction techniques
that rely on precise timing may not be robust. Instead, we exploit the 2D temporal image repre-
sentation using a bank of one-sided filters. The concept resembles filters in signal processing and
vision, except that the “signals” are sparse and irregular, also no future information will be used
as the filter is one-sided.

Let t be the time point of interest, H be the maximum history length. Let vj(t) be the obser-
vation of the event of type j at time t, for j = 1, 2.., D. Discrete events such as diagnosis are
typically binary, i.e., vj(t) are the presence or absence of a code. For continuing events such as
treatment episodes, vj(t) is the event duration. LetKk(t;σk) be a kernel function of t, parameter-
ized by σk and right-truncated at 0 – that is, Kk(t;σk) = 0 for t ≥ 0. The k-th feature evaluated
at t for event j is defined using the following convolution operation:

xkj (t) =

H∑
h=0

Kk(sk − h;σk)vj(t− h) (2)

where 0 ≤ sk ≤ H denotes the delay. When sk = 0, the kernel is effective at anytime before
time t. In effect, the event sequence of type j is summarized throughout the history of length H
by the convolution operation. However, when sk > 0, the kernel is ineffective until h ≥ sk. This
is equivalent to evaluating the feature at t − h, and thus this captures the temporal progression
from t− h to t.

The adjustable kernel parameter σk controls the effective range of the kernel. This is important
to differentiate acute conditions (such as suicide ideation) from chronic conditions (such as Type
I diabetes). One useful kernel is the truncated Gaussian

Kk(h;σk) =

√
2

πσ2
k

exp

(
− h2

2σ2
k

)
(3)

where Kk(h;σk) > 0 for h ≥ 0 and 0 otherwise. The hyper-parameter σk defines the effective
width of the kernel, i.e., the response drops drastically as h goes beyond σk. The behavior is
similar to the uniform kernel with specified width σk

Kk(h;σk) =
1

σk
1 [h ∈ [0, σk]] (4)

This kernel counts the normalized number of events falling within a given period of time. Wavelet-
like kernels could also be used to detect the trends and recurrences.

5 Modeling Ordinal Risk
We describe a set of ordinal regression models of risk associated with loss functions R(xi, yi;w)
as in Eqs. (1). We assume that the observed outcomes y ∈ {1, 2, ..., L} are the discretized
version of underlying random risks z ∈ Rm. The probabilistic models are natural to estimate
the probability of a particular risk class being observed. Maximum likelihood learning leads to
the risk R(xi, yi;w) = − logP (yi | xi;w). Two set of classifiers are presented: classifiers with
and without shared parameters.
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5.1 Models with Shared Parameters
For now we assume that all the classes share the same set of parameters w. Relaxation will be
considered in the next subsection.

5.1.1 Cumulative Classifier

This model assumes that the discrete outcomes y are generated from the one-dimensional under-
lying random risk z ∈ R as follows [40]:

y =


1 if z ≤ τ1
l if τl−1 < z ≤ τl
L otherwise

where τ1 ≤ τ2 ≤ ...τL−1 are thresholds. This essentially says that the discrete outcome is a
coarse version of the real-valued risk. The risk spectrum is the real line divided into intervals,
each of which determines the corresponding outcome. In the form of probability distribution we
have:

P (y = l | x) = P (τl−1 ≤ z ≤ τl | x)

= F (τl | x)− F (τl−1 | x)

where F (τl | x) is the cumulative distribution evaluated at τl. Choosing the form of F (τl | x) is
usually the matter of practical convenience since x is unobserved and we do not know the true un-
derlying distribution. For example, the logistic distributionF (τl | x) =

[
1 + exp

(
−(τl −w>x)

)]−1
has

an interesting interpretation:

log

(
P (r ≤ l | x)

P (r > l | x)

)
= τl −w>x

i.e., the log odds at the split level l is proportional to the risk factors3. . The parameters to be
estimated are w and {τl}L−1

l=1 .

5.1.2 Stagewise Classifier

Cumulative models assume a single risk variable that can explain the ordinal outcomes. This
assumption does not address the nature of the risk progression – for some patients, the risk may
not reach a certain level immediately. It may, alternatively, start from a normal condition, and
then progress upward. This suggests a stagewise model of outcomes. The next outcome level
may be attained only if the lower levels have not been attained [65, 63]. The stagewise process
can be formalized as follows:

y =


1 if z1 ≤ τ1
l if {zm ≥ τm}l−1

m=1 & zl ≤ τl
L otherwise

3This is known as the proportional odds model.
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where m = 1, 2, .., l − 1 is the index of the risk levels below the current level l. Here, the
transition from level l to level l+ 1 is signified by the event that the risk value passes through the
level-specific threshold τl. The probability that the outcome is the lowest is then given as:

P (y = 1) = P (z1 ≤ τ1) = F (τ1)

If the condition z1 ≤ τ1 does not hold, then we consider level 2,

P (y = 2 | z ≥ 2) = P (z2 ≤ τ2) = F (τ2)

This process continues until some level has been accepted, or we must accept the last level L.
Thus the probability of having the highest level of risk, given all the lower levels have not been
accepted, is

P (y = L | y > L− 1) = 1− F (τL−1)

As all the decision steps rely on the same distribution F (τ), it is natural that τ1 < τ2 < ... <
τL−1.

Note that the probabilities above are conditional. The marginal probability of selecting a
particular discrete outcome is

P (y = l) =


F (τ1) if l = 1

F (τl)
∏l−1
m=1 (1− F (τm)) if l ∈ {2, .., L− 1}∏L−1

m=1 (1− F (τm)) otherwise

With the choice F (τl) as a logistic distribution, we have a nice interpretation

log

(
P (y = l | x)

P (y ≥ l | x)

)
= τl −w>x

i.e., the log odds of the probability of choosing the next level, given that all previous levels
have failed, is proportional to the risk factors x. Similar to the case of cumulative models, the
parameters to be estimated are w and {τl}L−1

l=1 .

5.2 Models with Separate Parameters
Models with shared parameters described in the previous subsection treat outcome risk as one-
dimensional. However, risk classes could be qualitatively different – for example, some peo-
ple never cross the line from an attempted suicide to a completed suicide. This suggests treat-
ing risk classes with separate parameter sets. In general, we have L − 1 parameter sets w =
{w1,w2, ...,wL−1}.

Let us return to the stagewise model studied in Sec. 5.1.2. Since there are several stages, we
need not assume that there is only one underlying risk distribution. Instead, class-specific risk
distribution Fl(τl;wl) can be used, where each class has their own parameter wl and threshold
τl for l = 1, 2, ..., L− 1. The marginal distribution is then:

P (y = l) =


F (1τ1) if l = 1

Fl(τl)
∏l−1
m=1 (1− Fm(τm)) if l ∈ {2, .., L− 1}∏L−1

m=1 (1− Fm(τm)) otherwise
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6 Stabilizing Predictive Models
Under lasso-regularized training (Eq. (1)), the selected features and their weights form a model.
Unfortunately, under the sparsity constraints, models may be unstable under data variations. The
medical domain amplifies this problem even more. First, features extracted from EMR (see
Sec. 4.2) are highly redundant and correlated. Lasso-based regularization, however, tends to
select only one feature between two strongly correlated ones [72]. Second, as features are often
weakly predictive, their selection probability is usually less than 1. When training data vary, this
results in unstable models – the selected feature subset and their weights change significantly
from one training setting to another. This instability is problematic in clinical settings because
the learned model does not generalize from one cohort to another.

This section presents a remedy for this problem. First we define measures of model stability
and show how to exploit existing relational structures in the data to stabilize the learned models.

6.1 Stability Indices
To quantify model stability, we assume that the models are trained on samples drawn randomly
from an unknown data distribution D̂ ∼ P (D) of the same size n. Each sample b produces a set
of features and their weights wb. Suppose that features are ranked through some criteria π, that is
we have a sequence of features

{
xπ(1), xπ(2), ..., xπ(d)

}
, we suggest two model stability indices:

• Averaged selection probability (ASP) at length T . This measures how strong the features
are against both selection and ranking criteria, where T ≤ d is the length of the selected
rank list:

ASP@T =
1

T

T∑
t=1

∑
D

I
(
wDπ(t) 6= 0

)
P (D) (5)

The term
∑
D I
(
wDπ(t) 6= 0

)
P (D) is probability that a feature is selected [41]. This index

is bounded within [0, 1].

• Averaged signal-to-noise ratio (SNR) at length T . Assume that the mean and standard
deviation of feature weights are {(w̄j , σj)}dj=1. The average SNR at T is defined as:

SNR@T =
1

T

T∑
t=1

∣∣w̄π(t)

∣∣
σπ(t)

(6)

When no regularization is imposed, the SNR square is the well-known Wald statistic.

In practice, since P (D) is unknown, we propose to draw B � 1 random sets from the orig-
inal set D. One way is using bootstrap [18] in that each set is resampled with replacement.
Alternatively, we can subsample 50% of the data [41]. The ASP@T reduces to ASP@T =

1
TB

∑T
t=1

∑B
b=1 I

(
wbπ(t) 6= 0

)
. The SNR@T stays in the same form given that mean and stan-

dard deviations {(w̄j , σj)}dj=1 are estimated from the samples.

The next issue is the ranking criteria π. Selection probability [41] and the individual SNR |w̄j |
σj

could be natural criteria. Under the regression framework, one can also employ the importance
score [21] as:

Ij = |w̄j | std(xj) (7)

where std(xj) is the standard deviation of xj . The importance is largely scale-invariant.
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ICD code 6M_Shift6M: F19 (Mental and behavioural disorders due to multiple drug use and use of other psychoactive substances)

ICD code 6M_Shift6M: F15 (Mental and behavioural disorders due to use of other stimulants, including caffeine)

ICD code 3M_Shift3M: F15 (Mental and behavioural disorders due to use of other stimulants, including caffeine)

ICD code 3M_Shift3M: F19 (Mental and behavioural disorders due to multiple drug use and use of other psychoactive substances)

ICD code 3M_Shift3M: F17 (Mental and behavioural disorders due to use of tobacco)

ICD code 6M_Shift6M: F17 (Mental and behavioural disorders due to use of tobacco)

ICD code 3M_Shift3M: F13 (Mental and behavioural disorders due to use of sedatives or hypnotics)

ICD code 6M_Shift6M: F12 (Mental and behavioural disorders due to use of cannabinoids)

ICD code 3M_Shift3M: F12 (Mental and behavioural disorders due to use of cannabinoids)

ICD code 6M_Shift6M: F13 (Mental and behavioural disorders due to use of sedatives or hypnotics)

ICD code 3M_Shift3M: F10 (Mental and behavioural disorders due to use of alcohol)

ICD code 6M_Shift6M: F10 (Mental and behavioural disorders due to use of alcohol)

ICD code 3M_Shift3M: F11 (Mental and behavioural disorders due to use of opioids)

ICD code 6M_Shift6M: F11 (Mental and behavioural disorders due to use of opioids)

ICD code 3M: F15 (Mental and behavioural disorders due to use of other stimulants, including caffeine)

ICD code 3M: F19 (Mental and behavioural disorders due to multiple drug use and use of other psychoactive substances)

ICD code 3M: F12 (Mental and behavioural disorders due to use of cannabinoids)

ICD code 3M: F17 (Mental and behavioural disorders due to use of tobacco)

ICD code 3M: F13 (Mental and behavioural disorders due to use of sedatives or hypnotics)

ICD code 3M: F10 (Mental and behavioural disorders due to use of alcohol)

ICD code 3M: F11 (Mental and behavioural disorders due to use of opioids)

ICD code 1Y_Shift1Y: F19 (Mental and behavioural disorders due to multiple drug use and use of other psychoactive substances)

ICD code 1Y_Shift1Y: F15 (Mental and behavioural disorders due to use of other stimulants, including caffeine)

ICD code 1Y_Shift1Y: F12 (Mental and behavioural disorders due to use of cannabinoids)

ICD code 1Y_Shift1Y: F13 (Mental and behavioural disorders due to use of sedatives or hypnotics)

ICD code 1Y_Shift1Y: F17 (Mental and behavioural disorders due to use of tobacco)

ICD code 1Y_Shift1Y: F10 (Mental and behavioural disorders due to use of alcohol)

ICD code 1Y_Shift1Y: F11 (Mental and behavioural disorders due to use of opioids)

ICD code 2Y_Shift2Y: F15 (Mental and behavioural disorders due to use of other stimulants, including caffeine)

ICD code 2Y_Shift2Y: F19 (Mental and behavioural disorders due to multiple drug use and use of other psychoactive substances)

ICD code 2Y_Shift2Y: F17 (Mental and behavioural disorders due to use of tobacco)

ICD code 2Y_Shift2Y: F10 (Mental and behavioural disorders due to use of alcohol)

ICD code 2Y_Shift2Y: F11 (Mental and behavioural disorders due to use of opioids)

ICD code 2Y_Shift2Y: F13 (Mental and behavioural disorders due to use of sedatives or hypnotics)

ICD code 2Y_Shift2Y: F12 (Mental and behavioural disorders due to use of cannabinoids)

(a) ICD-10 code network (b) Mental health sub-network

Figure 3: (a) Feature sub-networks for ICD-10 diagnoses from a mental health cohort when a
2-character sharing is counted as a link. (b) Subnet of mental health diagnoses. Fully connected
cliques are for related codes in the same extraction period. As example, one clique in (b) rep-
resents the group (F10-F13,F15,F17,F19) (Mental and behavioral disorders due to psychoactive
substance use). Rare diagnoses are not presented. See Section 7.1 for data description.

6.2 Stabilizing Sparse Models using Relational Structures
To stabilize models, we exploit known structures in the features. The first structure is temporal,
wherein each event type is evaluated at different time-scales and points, as parameterized by
the kernel width σk and the delay sk in Eq. (2) respectively. The other structure is the coding
hierarchy, where the code is either a diagnostic code, procedure, DRG or medication class. The
common property of the two structures is the relation among features of the same type. For
simplicity, we do not distinguish between relations due to time-scale and those due to delay.
Further, any two codes that share the same prefix are considered to be correlated. See Fig. 3 for
the sub-network of diagnostic codes used in the experiments.

Let W ∈ Rn×n be the nonnegative matrix that encodes the relation between features, i.e.,
Wij > 0 if features i and j are related and Wij = 0 otherwise. Let S = g(W ) ∈ Rn×n be
some transform of the relation matrix into the correlation matrix. When all classes share the same
parameter set (Section 5.1), the loss function in Eq. (1) is modified as follows:

loss2(w) =
1

n

∑
i

R(xi, yi;w) + α ‖w‖1 + βw>Sw (8)

where β > 0 is the correlation parameter.
When S is semi-definite positive, this is equivalent to a compound prior of a Laplace and a

Gaussian of mean 0 and covariance matrix of βS−1. Minimizing the loss could be interpreted as
finding maximum a posterior (MAP) solution. Let Ω(w;S) = w>Sw, we discuss two interesting
transforms from W to S:

• Linear association. This assumes that correlation is a linear function of relation, that is
S = D −W , where D is a positive diagonal matrix. This translates to the regularizer:

Ω(w;S) =
∑
j

Djjw
2
j −

∑
j

∑
k

Wjkwjwk
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Thus minimizing the loss tends to encourage positive correlation between paired feature
weights. The quadratic term in the left hand side is needed to prevent the weights from
going too large. One special case is the Laplacian smoothing [34, 20], where Djj =∑
kWjk, and the above equation can be rewritten as:

Ω(w;S) =
∑
j

(∑
k

Wjk

)
w2
j −

∑
j

∑
k

Wjkwjwk

=
1

2

∑
jk

Wjk (wj − wk)
2 (9)

This regularizer treats all the relations equally.

• Random walk. Assume that W is a probabilistic matrix, i.e.,
∑
kWjk = 1 for all j, Wjk

is the probability of random walk from “state” j to state k. This suggests the following
regularizer [56]:

Ω(w;S) =
∑
j

(
wj −

∑
k

Wjkwk

)2

= w>(I −W )>(I −W )w (10)

where I is the identity matrix. That is, S = (I −W )>(I −W ), which is symmetric non-
negative definite. This regularizer distributes the smoothness equally among all features.

The Laplacian and random walk regularizations encourage correlated features to have similar
weights. This prevents the cases where only one in a group of strongly correlated, predictive
features is selected by sparsity methods [67]. The `1 regularizer, however, effectively pushes
weaker feature groups toward zero weights. The overall effect is that strong feature groups are
more frequently selected, but weak feature groups have less chance compared to the case without
network regularization. Thus the effect bears some similarity with the sparse group methods
[70]. The difference is that our method is much more flexible with correlation structures such as
non-overlapping grouping.

The extension to the case of class-specific parameters (Section 5.2) is straightforward:

loss3(w) =
1

n

∑
i

R(xi, yi;w) +

L−1∑
l=1

(
α ‖wl‖1 + βw>l Slwl

)
(11)

For simplicity we assume that Sl = S for all l = 1, 2, ..., L − 1 although Sl can encode
class-specific prior knowledge (e.g., diabetes and hypertension are correlated under the high-risk
scheme).

7 Implementation and Results
This section details an real-world application of the proposed framework for suicide risk pre-
diction. The cohort under study consists of mental health patients who were under suicide risk
assessments. Suicide stratification has been widely acknowledged to be extremely difficult for
clinicians as there are a large number of possible risk factors but none of them are strong enough
[55]. This has led to recent doubts that predictive models may not be useful at all [31].
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Horizon (day) 30 60 90 180
C1 16,323 15,750 15,272 14,291
C2 834 1,172 1,436 19,25
C3 409 644 8,58 1,350
Suicide 24 32 41 63

Table 1: Outcome class distribution following risk assessments.

7.1 Data
7.1.1 Mental Health Dataset

We collected the EMR data from Barwon Mental Health, Drugs and Alcohol Services, the only
provider in the region of 350,000 people in the central western region of Victoria in South-eastern
Australia. For emergency attendances (ED), there are 42K+ recorded mental cases for 8K+
patients in the period of 2005–2012. For hospital admissions (HA), there are approximately 67K
recorded mental cases in the period of 1995–2012. The number of recorded emergency atten-
dances and admissions has increased over the years, e.g., from 7,068 admissions in 2009 to 8,143
in 2010 and 8,956 in 2012. The hospitals perform suicide risk assessments for every mental
patient under its care. The instrument has ordinal assessments for 18 items covering all mental
aspects such as suicidal ideation, stressors, substance abuse, family support and psychiatric ser-
vice history. The system recorded approximately 25K assessments on 10K patients in the period
of 2009-2012. The majority of patients have only one assessment (62%), followed by two as-
sessments (17%), but there are about 3% patients who have more than 10 assessments. For those
with more than one assessment, the time between two successive assessments are: 30% within
one week, 64% within 3 months.

We focus our study on those patients who have had a least one event prior to a risk assessment.
The dataset then has 7, 578 patients and 17, 566 assessments. For each patient, we collect age,
gender, spoken language, country of birth, religion, occupation, marital status, indigenous status,
and the postcodes over time. Among patients considered, 49.3% are male and 48.7% are under
35 of age at the time of assessment.

The risk assessments are natural evaluation points for future prediction within a given window.
Future outcomes are broadly classified into three levels of risk, based on a senior psychiatrist
at Barwon Health: class C1 refers to low-risk outcomes, class C2 refers to moderate-risk (low
lethality attempts), and class C3 the high-risk (high lethality outcomes). The classes are assigned
using a look-up table from the diagnosis codes.

The convention is that among all events occurring within the prediction period, the class of
the highest risk is chosen. For example, the ICD-10 coded event S51 (open wound of forearm)
is moderate-risk, while S11 (open wound of neck) would be considered as high-risk. Typically
the completed suicides are rare, and the class distributions are imbalanced. For example, for 1-
month period following the risk assessment, there are only 24 suicides among 409 lethal attempts
(2.3%), and 834 moderate-risk attempts (4.8%). Further class distributions are summarized in
Table 1.

7.1.2 Data Preprocessing

The filter bank technique (Sec. 4.2) assumes that the discrete events are given. In addition to
primitive events such as emergency visits, we use several derived events. First, ICD-10 codes
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(i) Max of (overall ratings) over time
(ii) Sum of (max ratings over time) over 18 items
(iii) Sum of (mean ratings over time) over 18 items
(iv) Mean of (sum ratings over 18 items) over time
(v) Max of (sum ratings over 18 items)

Table 2: Derived features from risk assessments. Features (iii,iv) can be obtained by applying the
filters twice, one over time, the other over items.

#Ordered levels 3
#Patients 7,578
#Data points 17,566
#Features 5,376
#Edges in feature network 79,072

Table 3: Data statistics.

and intervening procedures are mapped into their higher level codes in their corresponding hier-
archies. For example, the code “F32.2” (Severe depressive episode without psychotic symptoms)
would be mapped into “F32” if level 3 in the ICD-10 hierarchy is used. This is to make the feature
list robust by reducing the number of rare codes. Second, diagnosis-related groups (DRGs) are
computed from diagnoses and interventions taking into account of disease severity and treatment
complexity. Following [44], we derive Mental Health Diagnosis Groups (MHDGs) from ICD-
10 codes using the mapping table. The MHDGs offer an alternative view to the mental health
code groups in the ICD-10 tree. Likewise, we also map diagnoses into 30-element comorbidi-
ties [19], as they are known to be predictive of mortality/readmission risk. From demographic
data, postcode changes are tracked on the hypothetical basis that a frequent change could signify
socio-economic problems.

For robustness we only consider separate items (e.g., codes) with more than 100 occurrences.
Other items that do not satisfy these conditions are considered rare events. Such rare events,
though statistically less important, are critical in identifying risks if combined. We empirically
find that using diagnostic features at level 3 in the ICD-10 hierarchy gave the best result as they
appears to balance generality and specificity. Similarly, for intervention procedures, we use code
blocks instead of detailed codes.

The convolution operators in the filter bank (Section 4.2) could be applied several times to
obtain compound sum/mean statistics. The filters, however, do not support min/max statistics.
Medical risks, on the other hand, are of great importance at the extreme, suggesting the use
of max operators. For example, out of risk items in an assessment, an extreme risk would be
sufficient to raise the alarm. Similarly, for an item, an extreme value within the last 3 months
would suggest serious surveillance even though the current assessment is moderate. Thus we
create an extra subset of features with the max statistics, as listed in Table 2.

7.2 Implementation
7.2.1 Feature Extraction and Network Construction

We choose uniform kernels for ease of interpretation with the following scale/delay pairs: (σk; sk) ∈
{(3, 0) ; (3, 3) ; (6, 6) ; (12, 12) ; (24, 24)} (months), see also Eq. (2). This means that the 4-year
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history is divided into non-overlapping segments: {[0− 3],[3− 6],[6− 12],[12− 24],[24− 48]}
(months). The segment size increases from the most recent to the distant past, and this encodes
the belief that old information is less specific to the current health state. Filter responses are then
normalized into the range [0,1] and then squared.

The construction of feature network follows feature extraction. We consider two types of
network relations: Same-Code (any two features corresponding to the same code at different ex-
traction periods), and Shared-Ancestor (any two codes that belong to the same branch in their
code hierarchy and the same extraction period). There are four coding types: diagnoses, interven-
tion procedures, MHDGs, DRGs, and medications. For each coding type, the first two characters
and digits are used to identify the Shared-Ancestor relation. For example, diagnosis code F31
(Bipolar affective disorder) and F32 (Depressive episode) would be linked, but F31 and F20
(Schizophrenia) would not. The resulting network has 5.4K nodes and 97.1K edges. Fig. 3(a)
shows the entire ICD-10 network (less the rare diagnoses), and Fig. 3(b) displays the sub-network
corresponding to mental health diagnoses. Table 3 summarizes the statistics of the data.

7.2.2 Learning Classifiers

For cumulative and stagewise classifiers (Sec. 5.1.1 and Sec. 5.1.2), logistic distributions for the
underlying random risks are used. We approximate the `1-norm |x| in Eqs. (1,8,11) by the Huber-
like loss function, where H(w) = 0.5w2/ε if |w| ≤ ε and H(w) = |w| − 0.5ε otherwise for
some small ε > 0. This loss function behaves like |w| when |w| is large compared to ε. However,
the gradient is smooth: H ′(w) = w/ε if |w| ≤ ε and H ′(w) = sign(w) otherwise. This makes it
possible to use fast large-scale optimization algorithms such as L-BFGS. Once the optimization
has converged, features are selected if their absolute weights are larger than 10−3.

7.2.3 Evaluation Protocol

We use 10-fold cross-validation in the patient space, that is, the set of unique patients is divided in
to subsets of equal size. Classifiers are trained on data for 9 subsets and tested on the remaining
subset. The results are reported for all validation subsets combined. Note that this can be a
stronger test than the cross-validation in the data space because it removes any potential patient-
specific correlation (also known as random-effects). We employ several performance measures:
For each outcome class, we use recall R – the portion of groundtruth class that is correctly
identified; the precision P – the portion of identified class that is actually correct; and the F-score
– their harmonic mean F1 = 2RP/(R + P ). While these measures are appropriate for class-
specific performance, they do not represent misclassification in the ordinal setting well. For that
reason, we also use Macro-averaged Mean Average Error (Macro-MAE) [4] – the discrepancy
between the true and the predicted risk levels, adjusted for data imbalance.

7.3 Risk Prediction
7.3.1 Sensitivity to Hyperparameters

There are two hyperparameters in our objective function in Eq. (8): the `1-norm regularization
factor α and the network regularization factor β. These two factors serve different purposes: The
`1-norm regularization as an embedded feature selection mechanism, and the network regulariza-
tion for stabilizing the models. To investigate the sensitivity of the final performance against these
hyperparameters, we perform a grid search in the set {10−5,3 × 10−5,10−4,3 × 10−4,10−3,3 ×
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Figure 4: Performance (F -scores) of the cumulative classifier (Section 5.1.1) against hyperpa-
rameters in Eq. (8): α (sparsity) and β (stability, using Laplacian methods, Eq. (9)). β = 0
reduces to standard lasso-based sparse models. Similar behaviors are also observed with other
classifiers.

C2 C3

Macro-MAE Cases R P F1 Cases R P F1

Clinician 0.826 338 23.5 11.7 15.6 70 8.2 12.9 10.0
CUMUL 0.675 429 29.9 14.8 19.8 282 32.9 26.0 29.0
STW (Shared) 0.681 417 29.0 14.4 19.3 263 30.7 25.6 27.9
STW (Multi) 0.672 418 29.1 14.5 19.3 289 33.7 26.7 29.8

Table 4: Predicting 3-month risk on EMR data without model stabilization (standard sparse mod-
els). C2 = moderate-risk, C3 = high-risk, R = Recall, P = Precision, in percentages. CUMUL =
Cumulative model, STW = Stagewise model.

10−3,10−2} for each. Figs. 4(a,b) report the F1-score measures for the moderate-risk (C2 class)
and high-risk (C3 class) outcomes within 3 months under cumulative classifiers (Section 5.1.1).
The F1-scores in both risk classes critically depends on α but are relatively stable against β. The
former dependency is expected: large α generally leads to sparser models, and thus less overfit-
ting. When the sparsity reaches the right level – at α = 3 × 10−4 – the predictive power peaks.
The small effect of β on the performance is interesting but not surprising. As large β forces linked
features to have similar weights, the feature influence is rearranged but overall their total effect
remains largely unchanged. Thus in what follows, unless specified otherwise, we fix the sparsity
hyperparameter as α = 3× 10−4 for all classifiers.

7.3.2 Comparison Against Clinicians

We first evaluate the predictive power of the mandatory risk assessments being performed by
Barwon Health. Using the overall assessment (risk ratings of 3 and 4 are high-risk, 2 moderate-
risk, and ratings of 1 and 0 are low-risk), the performance on the high-risk class for 3 month
horizons is quite poor: R = 8.2%, P = 12.9%, F1 = 10.0%. There are 14 suicide cases (34%)
detected from the C2 and C3 assignments. Tab. 4 lists more details. Machine learning algorithms
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Suicide Resource FN
(out of 41) cost (↑ %) (↓ %)

Clinician 14 3,444 (0.0) 1,530 (0.0)
CUMUL 30 3,821 (10.1) 1,309 (29.5)
STW (Shared) 29 3,920 (13.8) 1,138 (38.8)
STW (Multi) 29 3,973 (15.4) 1,108 (40.4)

Table 5: Predicting 3-month risk on EMR data without model stabilization (standard sparse mod-
els). CUMUL = Cumulative model, STW = Stagewise model. Resource cost is the total number
of cases assigned as moderate/high-risk. FN = false negatives, which are the risky cases wrongly
classified as low-risk. The symbols ↑ and ↓ denote the amount increase or decrease relative to the
reference figures by clinicians.

applied to EMR data significantly outperform the mental health professionals to a large margin.
For moderate-risk prediction, the F1-score by machines reach roughly 19.5%, which are 25%
improvement over the score by clinicians. The differentials are even better for the high-risk class:
the improvement are more than 180%. When accounting for class imbalance (Table 1), machine
learning models win by roughly 18% on the Macro-averaged MAE measure.

The practical significance of the difference is remarkable. Assuming for simplicity that the
management cost, on average, is similar for both the moderate and high risk classes. Thus a de-
tection of moderate or high risk costs one basic resource unit. The machine algorithms typically
use slightly more resource units than clinicians but with less false negatives (Table 5). For ex-
ample, the stagewise classifier with shared parameters (Sec. 5.1.2) leads to 3, 920 resource units
(13.8% higher than those by clinicians), but with 1, 138 false negatives (25.6% lower than those
by clinicians). The significance may be amplified considering that the social cost for false neg-
atives is much more serious than hospital resources. In terms of suicide detection, the machine
detects 29− 30 cases, which are more than double the number detected by human (14 cases).

Next we examine whether using machine learning can improve the prediction using the risk
assessments itself. We ran all classifiers on both assessment-based features, and EMR-based
features using the Laplacian stabilization. The prediction horizons were 1,2, 3 or 6 months. As
reported in Tables 6 and 7, machine learning methods trained on risk assessments consistently
outperform clinicians. The results also demonstrate that using EMR alone is even better. This
is significant because EMRs already exist in the data warehouse, that is, we can make predict
without any extra cost.

7.4 Model Stability
We now examine the models stability against data sampling and evaluate the stabilizing prop-
erty of the proposed method (Sec. 6.2). For each fold, we generated 30 samples, each of which
was drawn randomly from 50% of training data. Each example resulted in a model, and the
feature weights were recorded and finally the results of all 10 folds – 300 models – were com-
bined. Figs. 5(a–d) show the ASP@T indices (Eq. (5)) as functions of the rank list size T , for
all ordinal classifiers. The instability is clearly an issue – the average selected probability drops
as more features are included. Using both the Laplacian and random walk regularization meth-
ods (Eqs. (9,10)), the improvement in stability is evidenced in all settings. The instability and
stabilizing effect were similarly obtained with the SNR@T indices (Figs. 6(a–d)).
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C2 C3

Classifier Data 1mm 2mm 3mm 6mm 1mm 2mm 3mm 6mm
Clinician RA 11.9 14.7 15.6 15.7 9.0 9.1 10.0 10.0

CUMUL RA 13.1 16.0 17.4 19.3 13.3 16.2 20.0 25.3
EMR 13.8 17.7 19.0 20.1 16.5 22.1 27.9 27.7

STW (Shared RA 11.9 15.68 16.9 19.0 13.6 18.3 22.2 27.2
EMR 13.8 18.4 19.2 19.9 16.7 25.4 29.4 30.9

STW (Multi) RA 13.0 16.1 17.1 19.6 14.2 17.1 21.9 26.7
EMR 14.0 17.4 19.5 20.6 16.7 22.5 28.4 29.7

Table 6: F1-scores (%) at different prediction horizons (1,2,3,6 months). C2 = moderate-risk,
C3 = high-risk, CUMUL = Cumulative model, STW = Stagewise model, RA = Risk assessments,
EMR = Electronic Medical Record. Laplacian stabilization was used, α = 3× 10−3.

Classifier Data 1mm 2mm 3mm 6mm
Clinician RA 0.786 0.811 0.826 0.852

CUMUL RA 0.727 0.735 0.735 0.745
EMR 0.688 0.677 0.675 0.712

STW (Shared RA 0.722 0.720 0.724 0.737
EMR 0.671 0.655 0.681 0.704

STW (Multi) RA 0.721 0.726 0.725 0.740
EMR 0.670 0.682 0.672 0.705

Table 7: Macro-MAE at different prediction horizons (1,2,3,6 months). CUMUL = Cumulative
model, STW = Stagewise model, RA = Risk assessments, EMR = Electronic Medical Record.
Laplacian stabilization was used, α = 3× 10−3.
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Figure 5: Average selection probability (ASP@T – see Eq. (5)), evaluated at different rank list
sizes (the larger probability, the more stable models). “No Stabilization” means the standard lasso
framework with β = 0. For others, α = 3× 10−4, β = 3× 10−3.
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Figure 6: Average signal-to-noise ratio (SNR@T– see Eq. (6)), evaluated at different rank list
sizes (the larger average SNR, the more stable model). “No Stabilization” means the standard
lasso framework with β = 0. For others, α = 3× 10−4, β = 3× 10−3.
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Feature (σk; sk) Importance SNR
Number of EDs (3; 0) 59.6 8.5
Number of EDs (3; 3) 32.5 6.6
Moderate-lethality attempts (C2) (12; 12) 10.9 5.1
Moderate-lethality attempts (C2) (6; 6) 9.1 4.1
High-lethality attempts (C3) (3; 0) 14.6 4.4
Moderate-lethality attempts (C2) (24; 24) 12.1 4.4
Number of EDs (6; 6) 22.6 4.3
Number of postcode changes & Male (3; 0) 26.0 4.0
High-lethality attempts (C3) (3; 3) 10.3 4.0
ICD code: F19 (Mental disorders due to drug abuse) (6; 6) 9.8 3.8
ICD code: Z91 (History of risk-factors, unclassified) (24; 24) 9.0 3.6
High-lethality attempts (C3) (6; 6) 8.0 3.3
ICD code: T50 (Poisoning) (3; 0) 14.6 3.2
ICD code: Z29 (Need for other prophylactic measures) (3; 0) 24.0 3.2
Number of postcode changes & Male (3; 3) 10.8 3.0
Comorbidity: Alcohol abuse (6; 6) 5.2 2.9
Number of EDs (12; 12) 12.6 2.8
ICD code: S06 (Intracranial injury) (3; 0) 2.9 2.7
ICD code: U73 (Other activity) (3; 0) 6.8 2.5
ICD code: T43 (Poisoning by psychotropic drugs) (3; 0) 7.4 2.5

Table 8: Top 20 predictive and stable features associated with risky outcomes in the next 3 months,
ranked by signal-to-noise ratios, as produced by the stagewise classifier with shared parameters
(Sec. 5.1.2), under Laplacian regularization (Eq. 9). The uniform kernel width σk and the delay
sk are measured in months; ED = Emergency Attendance, MHDG = Mental Health Diagnosis
Group.

7.5 Discovered Features
Cumulative classifiers and stagewise classifiers with shared parameters do not distinguish the
parameters between classes and thus we have a single list of features at the end of the training
phase. Tab. 8 presents top 20 features ordered by their SNRs, as produced by the stagewise
classifier with shared parameters (Sec. 5.1.2). Predictive features include: Recent emergency
visits, recent high-risk attempts (C3), moderate-risk attempts (C2 & self-poisoning) within 24
months, recent history of mental problems and of drug abuse, socioeconomic problems (frequent
home moving).

Stagewise classifiers with class-specific parameters can offer re-ranking of features forC2 and
C3 separately. Tabs. 9 list top-ranked class-specific features for C2 and C3, respectively, under
the stagewise classifiers. A noticeable aspect is the strong association between prior C3 attempts
with future C3 outcomes.

8 Discussion
Compared against existing work in medical risk models, our machine learning method is hypothesis-
free, i.e., without collection bias nor prior assumptions about specific risk factors. As the model
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Feature (σk; sk) Importance SNR
Moderate-risk class (C2)

Number of EDs (3; 0) 59.1 9.0
Number of EDs (3; 3) 32.9 7.3
Moderate-lethality attempts (C2) (6; 6) 13.6 5.6
Moderate-lethality attempts (C2) (12; 12) 13.7 4.9
Number of EDs (6; 6) 18.3 4.6
Moderate-lethality attempts (C2) (24; 24) 15.6 4.3
ICD code: Z91 (History of risk-factors, unclassified) (24; 24) 8.5 4.1
Comorbidity: Alcohol abuse (6; 6) 7.0 4.1
Moderate-lethality attempts (C2) (3; 3) 9.4 3.6
Comorbidity: Alcohol abuse (3; 3) 8.1 3.6
Number of postcode changes & Male (3; 0) 20.0 3.4
ICD code: Z29 (Need for other prophylactic measures) (3; 0) 28.2 3.3
Moderate-lethality attempts (C2) (3; 0) 9.7 3.3
Comorbidity: Alcohol abuse (3; 0) 9.0 3.2
ICD code: F19 (Mental disorders due to drug abuse) (6; 6) 7.8 3.1

High-risk class (C3)
ICD code: T43 (Poisoning by psychotropic drugs) (3; 0) 24.0 5.0
High-lethality attempts (C3) (3; 0) 30.6 4.8
ICD code: T43 (Poisoning by psychotropic drugs) (3; 3) 15.2 4.1
High-lethality attempts (C3) (3; 3) 24.0 4.1
ICD code: T42 (Poisoning by antiepileptic, (3; 0) 15.3 3.6
sedative-hypnotic and antiparkinsonism drugs)
ICD code: U73 (Other activity) (3; 3) 10.6 3.4
ICD code: T42 (Poisoning by antiepileptic, (3; 3) 11.0 3.2
sedative-hypnotic and antiparkinsonism drugs)
ICD code: T50 (Poisoning) (3; 0) 17.3 3.1
ICD code: X61 (Intentional self-poisoning) (3; 0) 10.0 3.0
Occupation: student & Female NA 69.5 2.8
High-lethality attempts (C3) (6; 6) 13.3 2.7
ICD code: U73 (Other activity) (3; 0) 11.4 2.7
ICD code: X61 (Intentional self-poisoning) (3; 3) 6.3 2.7

Table 9: Top 15 predictive and stable features associated with risk classes in the next 3 months,
ranked by signal-to-noise ratios, as produced by the stagewise classifier without parameter shar-
ing (Sec. 5.1.2). The uniform kernel width σk and the delay sk are measured in months; MHDG
= Mental Health Diagnosis Group.
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is derived from routinely collected administrative hospital data, it can be readily embedded into
existing EMR systems. Second, as all available information is utilized, there is less chance that
importance risk factors will be overlooked. In fact, the features we have just discovered (Tables 8
and 9) resemble ones well-documented in the clinical literature [10]. For example, male, socio-
economic issues, psychiatric factors, previous attempts are known to be positively correlated with
subsequent suicide attempts [22, 24, 39]. Factors distantly related to psychological distress such
as prior hospitalization, ED visits or physical illnesses were also previously reported [15, 38, 51].
Our results, however, differentiate from the previous work since they are more precise in timing,
and do not rely on hand-crafted prior hypotheses.

The result is significant as the discovery is essentially free and automated, as compared to
expensive and time-consuming medical studies. However, as EMR data may contain noise and
depend on system implementation, discovered risk factors may not totally universal, and our
system thus should be used as a fast screening tool for further in-depth clinical investigation.

Unlike existing machine learning work applied to healthcare, our goal was to achieve not
only high performance but also interpretability and reproducibility. The prediction is transparent
and for each patient, it explains specific risk factors involved in the risk estimate, and how stable
the risk factors are (Tables 8 and 9). Although feature stability has gained significant attention
recently [3, 28], this has not been studied in the context of clinical prediction models. Further, we
contribute to the literature two new stability indices, the ASP@T and SNR@T, where the SNR@T
measures not only the feature stability but also its statistical significance (the Wald statistic). This
statistic is largely ignored in data mining practice.

Our work demonstrated that model stability for high-dimensional problems could be signifi-
cantly enhanced by exploiting known relations between features. This validates our intuition that
prior knowledge would help as it is independent of data sampling procedures. Consistent with
prior studies, our results confirm that such prior relations, as realized in feature network regular-
ization, improve the generalization when no other regularization schemes are in place [20][56].
However, interestingly, when combined with lasso, their effect on predictive performance is in-
significant, as shown in Fig. 4. It is surprising because model stability could potentially lead to
better prediction stability, and which is a sufficient condition for generalization [9, 49]. This sug-
gests that the two stability concepts may not be strongly correlated, as it is known that random
forests, for example, can generate very different tree ensembles (model instability) but the end
results can be quite stable (prediction stability).

This paper grew from an effort to predict suicide, following difficulty in practice at Barwon
Health, Australia. However, this goal was quickly deemed impossible, partly because of the long-
standing conjecture that suicide is clinically unpredictable [32, 30]. From the machine learning
perspective, suicide is a rare event, and thus a robust estimation would require detailed clinical
data from millions of mental health patients, which is an impractical task. Instead, the men-
tal health literature has concentrated on predicting suicide attempts without stratifying lethality.
However, it is possible that the mental processes in low-lethality attempts differ significantly from
those in high-lethality attempts, as suggested in Table 9. In practice, clinicians would want to tar-
get the latter group because of the high chance of subsequent death. Thus our paper contributes
to the literature by separating the lethality classes in an ordinal regression framework. The lesson
is that when facing rare events, instead of predicting the events itself, we should target regions
where the events are likely to occur. Another finding is that, in medical domains, machine learn-
ing systems are most useful when data is large, comprehensive and complex, the risk factors are
abundant, time-sensitive but weakly predictive. This is because clinicians, in their busy practice,
may not able to consider a large number of relevant factors in the distant history.
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This study has several limitations. First the framework has only been validated on data from
a single hospital and has not been independently tested by external investigators. However, the
framework has been tested on a variety of medical problems and cohorts (results are reported else-
where), and the results so far have been encouraging: The predictive performance either matches
or exceeds the state-of-the-arts in the clinical literature, and the discovered features resembles
most important reported risk factors from multiple prior studies. Second, our labels were not
perfect: (i) labels were collected at Barwon Health alone and we did not track transfers or read-
missions to other institutions; (ii) labels were based on ICD-10 diagnosis codes and these may not
be perfectly accurate due to the coding practices. This suggests that our performance estimates
are conservative.

9 Conclusion
We have proposed a stabilized sparse ordinal regression framework for future risk stratification.
The objectives are deriving and validating predictive algorithms from the rich source of elec-
tronic health records, and at the same time, offering clear explanation on how prediction is made.
Central to the work is discovery of stable subset of factors that are predictive of future risk. The
framework has several novel elements: (i) two model stability indices; (ii) a stability-based feature
ranking criterion; and (iii) feature network regularization where similar features are encouraged
to have similar weights, under the lasso-based sparsity framework.

The framework introduced in this paper is generalizable as the information extracted from
the data warehousing is standardized. The EMR-based models make no use of human resources,
except for the risk definition done only once. Our framework has been validated on a challenging
problem of predicting suicide risk against clinicians. We demonstrated in this paper that the
proposed system could (a) discover risk factors that are consistent with mental health knowledge;
(b) significantly outperform clinicians using just readily collected data in hospitals; and (c) exploit
feature relations improved model stability significantly.

Work in progress is testing the framework on a series of other predictive problems: Risk of
hospitalization/mortality in diabetes, stroke, COPD, mental health, heart failure, heart attack and
pneumonia, and cancers. The framework has been adopted by the hospitals and deployment is
underway. This poses an interesting research question: How can we deal with the situation where
the physicians modify their treatment strategy based on the machine prediction, and thus alter the
outcome, leading to the poorer match between the actual outcome and the predicted one?
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