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Abstract Multiple instance learning is a challenging task in supervised learning and data mining. How-
ever, algorithm performance becomes slow when learning from large-scale and high-dimensional data sets.
Graphics processing units (GPUs) are being used for reducing computing time of algorithms. This paper
presents an implementation of the G3P-MI algorithm on GPUs for solving multiple instance problems
using classification rules. The GPU model proposed is distributable to multiple GPUs, seeking for its scal-
ability across large-scale and high-dimensional data sets. The proposal is compared to the multi-threaded
CPU algorithm with SSE parallelism over a series of data sets. Experimental results report that the com-
putation time can be significantly reduced and its scalability improved. Specifically, an speedup of up
to 149x can be achieved over the multi-threaded CPU algorithm when using four GPUs, and the rules
interpreter achieves great efficiency and runs over 108 billion Genetic Programming operations per second.

Keywords Multi-instance learning - classification - parallel computing - GPU

1 Introduction

Multiple instance learning (MIL) is a generalization of traditional supervised learning having growing
interest [6,12,16,39]. Unlike traditional learning, in multi-instance learning, an example is called a bag
and it represents a set of non-repeated instances. The bag is associated with a single class label, although
the labels of the instances are unknown. The way in which bags are labelled depends on the multi-
instance hypothesis or assumption. The standard hypothesis, introduced by Dietterich et al. [12], assumes
a bag to be positive if it contains at least one positive instance. More recently, other generalized multi-
instance models have been formalized [16,39]. According to its own definition, MIL is highly suitable for
parallelization due to the fact that learners receive a set of bags composed by instances rather than a set
of instances directly. With this data structure, the different bags and instances could be evaluated in a
parallel way to reduce the execution time of the algorithms.

Multi-instance learning has received much attention in the machine learning community because many
real-world problems can be represented as multi-instance problems. It has been applied successfully to sev-
eral problems such as text categorization [1], content-based image retrieval [25] and image annotation [38],
drug activity prediction [35,51], web index page recommendation [52], video concept detection [21,23],
semantic video retrieval [7] and predicting student performance [47,49].

Similarly, there are many machine learning methods available to solve these problems, such as multi-
instance lazy learning algorithms [43], multi-instance tree learners [8], multi-instance rule inducers [9)],
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multi-instance bayesian approaches [27], multi-instance kernel methods [22,38], multi-instance ensem-
bles [45,51], and evolutionary algorithms [48,50]. However, most of the MIL algorithms are very slow and
cannot be applied to large data sets. The main problem is that the MIL problem is more complex than
the traditional supervised learning problem. Therefore, this type of algorithms over MIL still causes an
increase in computation time, especially for high-dimensional and large-scale input data. Since real appli-
cations often work under time constraints, it is highly convenient to adapt the learning process in order
to complete it in a reasonable time. In fact, there are several works that try to optimize the computation
time of some algorithms in MIL [4,17,34,37,40].

In this context, graphics processing units (GPUs) have demonstrated efficient performance in tra-
ditional rule-based classification [5,18]. Moreover, GPU systems have been widely used in many other
evolutionary algorithms and data mining techniques in recent years [15,24,31,33]. However, we have not
been able to find any proposal based on GPU implementation of MIL. Therefore, we think that a GPU-
based model for MIL could be an interesting alternative to reduce the excessive execution time inherent
to this learning framework. Especially, we seek the scalability of MIL algorithms to large-scale and high-
dimensional problems in which larger population sizes should be employed to achieve accurate results.

This paper presents a GPU-based parallel implementation of the G3P-MI [48] algorithm. G3P-MI is
an evolutionary algorithm based on classification rules which has proven itself to be a suitable model
because of its flexibility, rapid adaptation, excellent quality of representation, and competitive results.
However, its performance becomes slow when learning form large-scale and high-dimensional data sets.
The proposal presented here aims to be a general purpose model for evaluating multi-instance classification
rules on GPUs, which is independent to algorithm behaviour and applicable to any of the multi-instance
hypotheses. The proposal addresses the computational time problem of evolutionary rule-based algorithms
when evaluating the rules on multi-instance data sets, especially when the number of rules is high, or when
the dimensionality and complexity of the data increase. The design of the model comprises three different
GPU kernels which implement the functionality to evaluate the classification rules over the examples in
the data set. The interpreter of the rules is carefully designed to maximize efficiency, performance, and
scalability. The GPU model is distributable to multiple GPU devices, which allow to extend the application
of MIL algorithms across large-scale and high-dimensional data sets.

The proposal is evaluated over multiple multi-instance data sets and its execution times are compared
with the multi-threaded CPU ones, in order to analyze its efficiency and scalability to larger data sets
having different population sizes. Experimental results show the great performance and efficiency of the
model, achieving an speedup of up to 149x when compared to the multi-threaded CPU implementation
with SSE parallelism. The efficient rules interpreter demonstrates the ability to run up to 108 billion
Genetic Programming operations per second (GPops/s) whereas the multi-threaded CPU interpreter runs
up to 359 million GPops/s. Moreover, it has shown great scalability to two and four GPUs.

This paper is organized as follows. Section 2 defines the multi-instance problem and presents rule-
based approaches. Section 3 presents a computational analysis of the multi-instance algorithm. Section 4
presents the GPU implementation. Section 5 describes the experimental study, whose results are discussed
in Section 6. Finally, Section 7 presents the conclusions.

2 Multi-instance classification

This section defines the multi-instance problem and presents the basis of multi-instance rule-based models.

2.1 Problem definition

Standard classification consists in predicting the class membership of uncategorized examples, whose label
is not known, using the properties of the examples. An example (instance) is represented using a feature
vector Z, which is associated with a class label C'. Traditional classification models induct a prediction
function f(z) — C.

On the other hand, multi-instance classification examples are called bags, and represent a set of
instances. The class is associated with the whole bag although the instances are not explicitly associated



with any particular class. Therefore, multi-instance models induct a prediction function f(bag) — C where
the bag is a set of instances {771, 2, ..., Tn }.

The way in which a bag is classified as positive or negative depends on the multi-instance hypotheses.
In the early years of multi-instance learning research, multi-instance classification works were based on
the standard or Dietterich hypothesis [12]. The standard hypothesis assumes that if the result observed is
positive, then at least one of the instances from the bag must have produced that positive result. However,
if the result observed is negative, then none of the instances from the bag could have produced a positive
result. Therefore, a bag is positive if and only if at least one of its instances is positive. This can be
modelled by introducing a second function g(bag, j) that takes a single variant instance j and produces a
result. The externally observed result f(bag) can be defined as follows:

f(bag) = {1 if 35| gl(bag,j) = 1} "

0 otherwise

More recently, Weidmann et al. [44] defined three kinds of generalized multi-instance problems, based
on employing different assumptions of how the classification of instances determines the bag label. These
definitions are presence-based, threshold-based, and count-based.

— Presence-based is defined in terms of the presence of at least one instance of each concept in a bag (the
standard hypothesis is a special case of this assumption which considers just one underlying concept).

— Threshold-based requires a certain number of instances of each concept in a bag.

— Count-based requires a maximum and a minimum number of instances of a certain concept in a bag.

Regardless of the multi-instance hypothesis, MIL algorithms demand significant resources, taking
excessive computing time when data size increases. Their high computational cost prevent their application
in large-scale and high-dimensional real world problems within reasonable time. However, the multiple
instances learning process using data structures representation with bags and instances is inherently
parallel. Therefore, we take advantage of the parallel capabilities of GPUs to speed up the learning process.

2.2 Rule-based models

Rule-based models are white box classification techniques which add comprehensibility to the knowledge
discovery process in the form of IF-THEN rules. The comprehensibility of the knowledge discovered has
been an area of growing interest and it is considered to be as important as obtaining high accuracy [2,28].

The evaluation of the rules over a data set requires the interpreting of the conditions expressed in
the antecedent of the rule and checking whether the data examples satisfy them. The rule interpreter has
usually been implemented in a stack-based manner, i.e., operands are pushed onto the stack, and when an
operation is performed, its operands are removed from the stack and its result pushed back on. Therefore,
its performance and the amount of time taken up depend on the number of examples, the number of rules,
and their complexity (i.e. the number of conditions of the rule to evaluate).

Evolutionary Algorithms [19,20], and specifically, Genetic Programming [13], have been successfully
employed for obtaining classification rules. However, for every generation a population of rules must be
evaluated according to a fitness function. Thus, the algorithms perform slowly and their scalability is lim-
ited by the dimensionality of the data. The use of GPUs for the evaluation of individuals in evolutionary
computation has demonstrated high performance in many studies. These studies include using genetic
programming for stock trading [36], classification rules [5,18], differential evolution [11,42], image cluster-
ing [29], or optimization problems [14]. However, to the best of our knowledge there are no GPU-based
implementations of multi-instance classification rules algorithms to date.

G3P-MI [48] is a Grammar-Guided Genetic Programming (G3P) [26] algorithm for multi-instance
learning. It is based on the presence-based hypothesis and has demonstrated accurate classification and
better performance than many other multi-instance methods. However, the large population required and
the highly complex rules generated prevent the algorithm running as fast as desired, especially across large
data sets. Therefore, a GPU-based parallel implementation of the algorithm makes for a very appealing
and valuable proposal. Moreover, the GPU-based model to speed up the learning process is applicable to
any other multi-instance rule-based method with any of the multi-instance hypotheses.



3 Computational analysis of the multi-instance algorithm

G3P-MI consists of the traditional stages of an evolutionary-based algorithm: initialization, selection,
genetic operators, evaluation, and replacement. The initialization process creates a randomly-initialized
population of rules by means of a context-free grammar that conducts the generation of the rule syntaxes.
The selection method selects the parent candidates from the population, on which the genetic operators
(crossover and mutation) are applied, generating new rules (offspring). The evaluation checks the fitness
of the offspring. The replacement selects the best rules from the parents and the offspring, leading the
population to better fitness landscapes. This process is iteratively repeated along a given number of
generations. However, it is well-known and it has been demonstrated in several studies [5,18,33] that the
evaluation phase is the one that demands most of the computational cost of the algorithm, requiring from
90% to 99% of the execution time, which increases as the data set becomes bigger. Thereby, significant
effort should be focus on speeding up this stage. Thus, we analyze the computational cost of the evaluation
function.

The evaluation consists on predicting the class membership of the examples of the data set and to
compare with the actual class to measure the prediction error. Specifically, it is measured the number of
true positives (fp), true negatives (), false positives (fp) and false negatives (fn). These values are used
to build the confusion matrix, from which any classification performance metric is obtained (sensitivity,
specificity, accuracy, etc). Each individual from the population represents a rule which comprises several
attribute—value conditions combined using logical operators. The evaluation process is usually implemented
using two nested loops. Thereby, the algorithmic complexity of the fitness function is O(population size x
number of examples). This makes the algorithm to perform slow when the population size and the number
of examples of the data set increase. The pseudo-code of the fitness function is shown in Algorithm 1,
particularized for the Dietterich hypothesis (a single positive instance makes the whole bag prediction as
positive), and Algorithm 2, particularized for the generalized hypothesis. It is noted that for the Dietterich
hypothesis, the inner loop must be stopped as soon as one instance is covered, whereas for the generalized
hypothesis it is necessary to evaluate all the instances of the bag. Therefore, performance on data sets
having large bag sizes is penalized.

Algorithm 1 Evaluation: Dietterich hypothesis

Input: population_size, number_examples

1: for each individual within the population do
2: tp < 0,fp < 0,tn < 0, fn < 0

3: for each example from the dataset do

4: for each instance from the example’s bag do
5: if individual’s rule covers actual instance then
6: if the bag is labelled as positive then
7 tp+-+

8: else

9: fp+-+

10: end if

11: continue with the next example

12: end if

13: end for

14: // None of the instances were covered

15: if the bag is labelled as positive then

16: fn4++

17: else

18: tn++

19: end if

20: end for

21:  fitnessValue < fitnessMetric(tp,tn,fp,fn)
22: end for




Algorithm 2 Evaluation: Generalized hypothesis

Input: population_size, number_examples

1: for each individual within the population do

2: tp+ 0,fp<0,tn < 0,fn <« 0

3: for each example from the dataset do

4: coverCount, < 0

5: for each instance from the example’s bag do
6: if individual’s rule covers actual instance then
7 coverCount++

8: end if

9: end for

10: if coverCount > minimumCount && coverCount < maximumCount then
11: if the bag is labelled as positive then

12: tp++

13: else

14: fp++

15: end if

16: else

17: if the bag is labelled as positive then

18: fn++

19: else
20: tn++
21: end if
22: end if
23: end for
24:  fitnessValue < fitnessMetric(tp,tn,fp,fn)
25: end for

The evaluation process is noted to have three main stages: rule-instance coverage, bag class prediction,
and confusion matrix computation. As seen, the complexity of the fitness function lies in the population
size (number of rules) and the data set size (number of bags and instances). Evaluating them along high
number of generations is the reason for the high computational cost of MIL algorithms, and motivates
their parallelization on GPUs. Fortunately, the evaluation of each rule is an independent computation
problem (population parallel approach). Moreover, the coverage of a rule against all the examples is also
a paralellizable task (data parallel approach).

3.1 Parallelization on multi-core CPUs and SSE

The parallelization of the evaluation in the CPU is straightforward by means of a population-parallel
approach. The algorithm can take advantage of multi-core CPUs and create as many CPU threads as
number of cores, evaluating independently and concurrently each of the individuals. Moreover, current
processors include instruction set extensions specifically developed for increasing the performance of par-
allel workloads. SIMD (Single Instruction Multiple Data) instructions are grouped in a instruction set
included by most general-purpose processors and known as Streaming SIMD Extensions (SSE). These
SIMD instructions provide a limited form of parallelism working at a small scale on multiple data. Never-
theless, the performance of implementations can be significantly improved as shown in other studies [10].
The evaluation function can take advantage of the SSE instructions to compute multiple instances at once,
providing a limited form of data parallelism (data-parallel approach). In particular, there are load/store
(mm_load_ps, -mm_store_ps) and arithmetic/logical (-mm_add_ps, -mm_mul_ps, _-mm_and_ps, -mm_or_ps)
functions handle four single-precision floating-point values at once, increasing the efficiency of the CPU.

However, the hardware industry provide today 4-cores desktop processors, which limit the parallelism
of this approach. Nevertheless, fortunate users having a CPU cluster or a grid environment may exploit
this parallel approach having multiple nodes connected through a network. The data-parallel approach
may be also employed for distributing rule evaluation among multiple hosts. However, this complicates the
evaluator code by means of including more complex message transfer between the hosts and the network,
which eventually reduces the efficiency of the process.



4 Multi-instance rules evaluation on GPUs

The evaluation of the rules is divided into three steps, each implemented in separate GPU kernel. The
coverage kernel checks the coverage of the rules over the instances within the bags. The hypothesis kernel
identifies bag instances that satisfy the concepts of the rule. Finally, the fitness kernel computes the quality
of the rules. The data and computation flow is overviewed in Fig. 1, whereas the GPU evaluation model
is shown in Fig. 2. Data memory transactions between CPU and GPU memories are shown dashed and
light gray, whereas GPU kernels computation are shown dotted and black gray.
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Fig. 1 Data and computation flow overview

The data set is allocated transposed in the GPU global memory to facilitate memory coalescing.
Data set values are copied at the beginning of the algorithm’s execution and they can be transferred
asynchronously while the population is being initialized. This means that no delay is introduced to the
algorithm execution due to data set transfer to GPU memory. Rules and fitness are also stored in global
memory, but they require synchronous transfers, meaning that the evaluation process cannot begin until
the rules are copied to the GPU memory, and the evolutionary process cannot continue until the fitness
values are copied in the host memory. Fortunately, the data size for both elements is very small and
memory transfers complete within few nanoseconds, as measured by the NVIDIA Profiler tool.

4.1 Coverage kernel

The coverage kernel interprets the rules and checks whether the instances of the data set satisfy the
conditions of the rules. Example of a rule:

IF [(At; > Vi AND Ate < Va) OR Atz > V3] THEN Classy

where At1, Atg, and Ats are attributes of the data set, and Vi, Vs, and V3 are numeric values. Rules
are easily represented in prefix notation and evaluated using stack-based operations due to its ability to
distinguish the order of operations without parentheses. The example rule in prefix notation is:

IF [OR > Ats V3 AND > Aty Vi < Ato VQ] THEN Classy

The implementation of a prefix interpreter require a stack and every operand/operator perform
push/pop operations. Thus, the number of operations over the stack increases with the length of the
rule. However, seeking for an efficient implementation on GPUs is not straightforward. GPUs are not
especially designed for stack-based memory operations. Therefore, we propose to employ an intermediate
rule representation to take advantage of the flexibility of the stack-based operations and minimize as well
the number of stack operations. The conditions are internally represented in prefix notation whereas the
rule set is written in postfix. The rule can be rewritten as:

IF [< Ato Vo > Aty Vi AND > At V3 OR] THEN Classy
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Fig. 2 GPU evaluation model using three kernels

The evaluation of every rule over single instance can be parallelized on the GPU using a two dimensional
matrix of threads. The kernel checks the coverage of the rules over the instances of the data set, and
stores the results of the coverage matching into an array. Threads are grouped into a 2D grid of thread
blocks, whose size depends on the number of rules (width) and instances (height). Eventually, a warp
(group of threads that are evaluated concurrently at a given time in the multiprocessor) represents the
evaluation of a given rule over multiple data, following a SIMD model. Thereby, there is no divergence
in the instruction path of the kernel, which is one of the known main reasons for decreasing performance
and we avoid this issue. Moreover, reading from multiple data is guaranteed to be coalesced since threads
are responsible of handling adjacent memory addresses. The array of the coverage result is also coalesced
by addressing adjacent memory addresses. Coalescing avoids memory addressing conflicts and permits to
improve efficiency of memory transactions.

4.2 Hypothesis kernel

The hypothesis kernel performs the class prediction for the bags, using the coverage results from the
previous kernel. Three functions implement the different hypothesis concerning their requirements based
on the presence-based, threshold-based, or count-based multiple instance hypotheses. The presence-based
kernel only requires that one instance is active in order to predict the bag to be positive (Dietterich
hypothesis) as previously shown in Algorithm 1. The threshold-based kernel computes first the count of
the number of instances from the bag that satisfy the concepts of the rule. It predicts as positive if the
count is higher than a minimum number of instances. The count-based kernel counts the number of active
instances as does the threshold-based, but its prediction depends on a minimum and maximum number
of active instances. The threshold-based and count-based are known as the generalized hypothesis which
was shown in Algorithm 2. Counting is a reduction operation and there are several parallel ways to count
using the GPU. However, the average bag size of the multiple instances datasets available is relatively
very small, usually having less than 10 instances per bag. Therefore, a parallel reduction scheme of the
counting process would be excessive and inefficient for such small number of values. Thereby, it is more
efficient to propose a parallel prediction model in which a thread is responsible of the prediction of a single
bag, and the thread iterates among the instances from the bag to check the number of covered instances.



It is very important to note that the Dietterich hypothesis only requires one instance to be active
to predict the bag class as positive. Therefore, as soon as one instance is found to be active, there is no
need to check the remaining instances in the bag. This allows a significantly amount of time to be saved,
especially when the size of the bag increases. The CPU evaluator checks the instances from the bag from
the first to the latest, and it is not known a priori if a positive instance is going to be found earlier or
later. On the other hand, the GPU model checks in parallel all the instances at a given time. Therefore,
the GPU checking process always requires a single scan to find any positive instance.

Furthermore, the generalized hypotheses (threshold-based and count-based) require all of the instances
to be processed in order to predict the bag class using the count values. This means that the runtime of
the CPU process is inevitably increased as the number of instances increases, not existing the possibility
of an earlier loop breaking. On the other hand, the GPU approach keeps its efficiency and is capable of
counting the number of positives instances for all bags in a single call. Therefore, it is expected to have
better efficiency and speedups on the generalized hypotheses.

4.3 Fitness kernel

The fitness computation kernel evaluates the quality of the rule, i.e., its ability to perform accurate classi-
fications. It computes the confusion matrix values to calculate some well-known indicators in classification
such as sensitivity, specificity, precision, recall, F-Measure, etc. For instance, the goal of the G3P-MI [48]
algorithm is to maximize both sensitivity and specificity, computing fitness as their product.

The confusion matrix values result from a reduction operation [46] of the bag class predictions and the
actual values. The naive reduction operation is conceived as an iterative and sequential process. However,
this operation can be parallelized using a 2-level parallel reduction with shared memory storage, and it is
illustrated in Fig. 3.
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Fig. 3 Fitness computation using 2-level parallel reduction

The first level of the reduction reads the bag class prediction and compares with the actual bag class.
The outcome is one of the four possible values of the confusion matrix, which are stored in shared memory.
The second level counts the partial results from shared memory and computes the fitness of the rules.
To this end, 128 threads are employed. The reason for using 128 threads is that all threads in a thread
block must share shared memory, which is limited in many architectures to 16 KB. Since a thread must
employ 4 32-bit integers to count the confusion matrix values, it gives that a thread block requires 512



integers (2 KB) on shared memory. This limits the number of concurrent blocks to 8 per multiprocessor.
Doubling the number of threads would only reduce the number of concurrent blocks capable of running
in a multiprocessor, which reduces effective performance. Fortunately, this is parametrizable to adapt the
number of threads to the capacities of the GPU, adapting automatically the configuration parameters in
order to be capable of achieving maximum performance. The key point of the reduction is that accesses
are fully coalesced to avoid memory addressing divergences, and shared memory, which provides fast and
low latency access, is efficiently employed. This process is run in parallel for all the rules of the population.

5 Experimental Setup

This section presents the experiments, hardware and setup to evaluate the performance of the GPU model.

5.1 Hardware configuration

The experiments were run on a machine equipped with an Intel Core i7 quad-core processor (i7-3820)
running at 3.6 GHz and 12 GB of DDR3-1600 host memory. The video cards used were two dual-GPU
NVIDIA GTX 690 equipped with 4 GB of GDDR5 video RAM. Each GTX 690 video card had two GPUs
with 1,536 CUDA cores. In total there were 4 GPUs and 6,144 CUDA cores at default clock speeds. The
host operating system was GNU/Linux Ubuntu 12.10 64 bit along with CUDA runtime 5.0, NVIDIA
drivers 310.40, and GCC compiler 4.6.3 (O3 optimization level).

5.2 Configuration settings

The G3P-MI algorithm is implemented in the JCLEC software [41] and its main parameters (collected
from the author’s proposal) are shown in Table 1.

Table 1 G3P-MI parameter configuration

Parameter Value
Population size 1000
Number of generations 100
Crossover probability 0.95
Mutation probability 0.3
Elitist probability 0.05
Parent selector Binary Tournament
Maximum tree depth 50

On the other hand, the coverage and hypothesis kernels require to setup the number of threads per
block. Table 2 shows the GPU occupancy data for the different number of threads per block. Occupancy
is the ratio of the number of active warps per multiprocessor to the maximum number of possible active
warps. 64 and 128 threads per block reports a multiprocessor occupancy of 38% and 75% respectively, lim-
ited by the shared memory per multiprocessor. 256, 512, and 1024 threads per block report an occupancy
of 100%. In both cases the number of active threads per multiprocessor is 2048, but they differ in the
number of active thread blocks per multiprocessor. Best choice is 256 threads per block since it provides
full occupancy and a trade-off between the number of active thread blocks per multiprocessor and the
total number of thread blocks. This guarantees the scalability of the model design for future GPUs with
larger number of multiprocessors.
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Table 2 Threads per block and multiprocessor occupancy

Threads per block 64 128 256 512 1024
Active Threads per Multiprocessor 768 1536 2048 2048 2048
Active Warps per Multiprocessor 24 48 64 64 64
Active Thread Blocks per Multiprocessor 12 12 8 4 2
Occupancy of each Multiprocessor 38% 7% 100% 100%  100%

5.3 Experiments

The experimental study comprises two experiments. Firstly, the performance and efficiency of the rules
interpreter is evaluated. Secondly, the rule-based classification performance is evaluated over a series of
data sets. Detailed information about the experimental study is provided as additional material at link®.

5.3.1 Rules interpreter performance

The efficiency of rules interpreters is often reported using the number of primitives interpreted by the
system per second, similarly to Genetic Programming (GP) interpreters, which determine the number of
GP operations per second (GPops/s) [3,30-32]. GP interpreters evaluate expression trees, which represent
solutions to perform a user-defined task. In this experiment, the performance of the rules interpreter is
evaluated by running over different number of instances and rules. This way, it achieves a sensitivity
analysis of the effect of these parameters on the speed of the interpreter in terms of GPops/s.

5.8.2 Rule-based classification performance

The second experiment evaluates the performance of the proposal across a series of 13 real-world multi-
instance data sets. However, these data sets may be categorized as medium size. In order to evaluate
larger data, we generated 7 artificial data sets which comprise a wide dimensionality range, containing
from 100 to 1 million instances. The objective of this experiment was to analyze the scalability of the GPU
model regarding the data sets’ complexity and dimensionality (number of bags, instances and attributes).
Moreover, the use of one, two, and four GPUs will provide useful information about its scalability to big
data and multiple GPU devices. Experiments were run 100 times and the average runtimes are reported.

6 Results

This section presents and discusses the experimental results obtained from different experimental studies.

6.1 Rules interpreter performance

Table 3 shows the rules interpreter performance regarding the number of rules and the number of instances,
which determine the total number of GP operations (GPops) to be interpreted by the evaluator. The table
provides the evaluation times expressed in milliseconds for the multi-threaded CPU with SSE parallelism
and the GPU-based interpreter using one, two, and four GPUs. The number of GP operations per second
(GPops/s) is calculated using the number of GPops evaluated and the time required. The multi-threaded
CPU interpreter with SSE parallelism achieves up to 359 million GPops/s, whereas the GPU interpreter
achieves up to 108 billion GPops/s when distributing the computation into four GPUs. Maximum perfor-
mance is achieved when the number of rules or the number of instances are high enough to fill the GPU

IThe GPU kernels code and the data sets are publicly available to facilitate the replicability of the experiments
and future comparisons at:

http://www.uco.es/grupos/kdis/kdiswiki/MIL-GPU
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Table 3 Rules interpreter performance

Runtime (ms)

GPops/s (Million)

Rules Instances GPops | 4 CPUs 1 GPU 2 GPUs 4 GPUs | 4CPUs 1GPU 2GPUs 4 GPUs
100 1,000 4.90x106 31 5.10 2.89 1.91 158 961 1,692 2,561
5,000 2.45%107 110 5.54 3.75 2.08 221 4,415 6,534 11,760

50,000 2.45x108 989 13.65 7.23 4.09 247 17,931 33,858 59,834

100,000 4.90x108 1,922 20.84 11.66 5.02 254 23,489 41,987 97,555

250 1,000 1.22x107 46 7.84 4.32 2.49 268 1,557 2,826 4,900
5,000 6.10x107 219 7.89 5.32 2.77 278 7,734 11,474 22,027

50,000 6.10x108 2,183 25.03 13.86 9.59 279 24,390 44,061 63,672

100,000 1.22x10° 4,518 48.86 24.66 14.55 270 24,991 49,505 83,910

500 1,000 2.41x107 87 11.51 6.26 3.85 277 2,091 3,849 6,248
5,000 1.20x108 394 14.64 7.91 4.83 305 8,222 15,214 24,924

50,000 1.20x10° 3,685 47.22 25.29 13.09 326 25,491 47,596 91,962

100,000 2.41x10° 7,683 90.11 46.99 23.73 313 26,717 51,239 101,465

1,000 1,000 4.85x107 160 15.59 8.17 4.10 302 3,114 5,941 11,836
5,000 2.43x108 699 16.13 11.60 7.83 347 15,047 20,923 30,999

50,000 2.43x10° 6,919 93.79 47.63 25.31 350 25,881 50,960 95,917

100,000 4.85x10° 13,504  179.43 89.38 44.58 359 27,057 54,315 108,908

GPops/s
1x10""

8x10"°

6x10"

4x10"

2x10"

100,000
80,000
60,000

Instances 40,000
20,000

Fig. 4 GPU interpreter performance regarding the number of instances and rules

I 1x10"
9x10"°

8x10"
7x10"°
6x10"

I 5x10"
4x10"
3x10"°
I 2x10"
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multiprocessors with enough thread blocks. In other words, maximum performance is achieved when the

GPU cores are fully occupied by a large number of threads.

On the other hand, performance is reduced when the number of rules or instances is small, i.e, there are
less threads to compute. Nevertheless, even with a low number of rules or instances, the performance of the
GPU-based interpreter is still significantly better than the multi-threaded CPU with SSE parallelism. The
increasing performance of the interpreter is shown in Fig. 4, which illustrates the interpreter performance

regarding the number of rules to evaluate and the number of instances of the data set.

Moreover, Table 3 also shows the good scalability of the model from one to two and four GPUs,
regardless the number of instances and rules to evaluate. In best performance scenarios with a high number
of rules and instances, doubling the number of GPU devices doubles the interpreter’s performance.
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6.2 Rule-based classification performance

Table 4 shows the performance of the G3P-MI algorithm using the Dietterich hypothesis. The table shows
the runtime for evaluating the population of rules over multiple data sets, considering different number
of attributes, bags and instances. The speedup is the ratio of multi-threaded CPU time to GPU time.
Similarly to the interpreter performance, results indicate that the higher the dimensionality of the data,
the better the speedup achieved. The best performance scenario in which the highest speedup is achieved
(131x) corresponds with the process data set when using four GPUs, which allows the evaluation time to
be reduced from 18 minutes to only 8.43 seconds, which is a significant reduction.

Table 4 UCI data sets evaluation performance (Dietterich Hypothesis)

Evaluation Time (s) Speedup
Data set Atts Bags Instances | 4 CPUs 1 GPU 2 GPUs 4 GPUs | 1GPU 2 GPUs 4 GPUs
Component 201 3,130 36,894 360.84 11.15 5.85 3.92 32.37 61.67 92.09
EastWest 25 20 213 2.51 2.25 2.06 1.00 1.11 1.22 2.52
Elephant 231 200 1,391 16.41 1.76 1.36 1.15 9.31 12.10 14.32
Fox 231 200 1,320 16.05 1.90 1.69 1.17 8.46 9.48 13.73
Function 201 5,242 55,536 544.53 15.33 8.62 4.58 35.53 63.15 118.81
Musk1 167 92 476 5.41 1.77 1.01 1.13 3.05 5.36 4.80
Musk2 167 102 6,598 38.25 2.26 1.71 1.21 16.92 22.41 31.68
Mut-atoms 11 188 1,618 15.37 2.17 1.44 1.61 7.09 10.66 9.53
Mut-bonds 17 188 3,995 28.38 2.06 1.91 1.75 13.79 14.83 16.23
Mut-chains 25 188 5,349 36.08 2.55 1.35 1.07 14.15 26.66 33.68
Process 201 11,718 118,417 | 1,106.58 29.99 16.25 8.43 36.90 68.11 131.24
Suramin 21 11 2,378 17.99 3.53 2.09 1.04 5.10 8.60 17.29
Tiger 231 200 1,220 14.15 2.48 1.67 1.08 5.71 8.45 13.06
Artificiall 100 10 1,000 3.00 2.90 2.15 1.42 1.03 1.40 2.11
Artificial2 100 100 1,000 9.80 3.16 1.62 1.85 3.11 6.04 5.29
Artificial3 100 100 1x10* 18.48 4.49 2.88 1.84 4.11 6.43 10.07
Artificial4 100 1,000 1x10* 57.58 4.55 2.52 1.51 12.65 22.82 38.12
Artificials 100 1,000 1x105 152.71 20.42 10.50 6.10 7.48 14.54 25.04
Artificial6 100 1x10* 1x10° 475.06 25.07 13.45 6.55 18.95 35.31 72.52
Artificial7? 100 1x10° 1x106 4,654.65  213.21 109.38 57.38 21.83 42.55 81.12

On the other hand, good speedups are also achieved over small data sets with a low number of instances.
It is important to note that even with a small data set, the speedup is greater than one, i.e., GPU runtimes
are always lower than CPU ones. Thus, we can conclude that we recommend the use of GPU evaluation
regardless of the size of the data set. This is non-trivial because in some computation problems, it is only
recommended to use GPUs when the problem size is higher than a certain threshold.

Table 5 shows the performance of the G3P-MI algorithm using the generalized hypothesis. Similarly to
the presence-based hypothesis, the speedup follows the same trend line when the data set size is increased
and also shows good scalability to multiple GPU devices. However, there is a significant difference which
can be observed when analyzing performance over the artificial data sets. Specifically, note and compare
the CPU evaluation times for the Artificial5 and Artificial6 data sets in Tables 4 and 5. These data sets
have the same number of instances, but the Artificial6 data set has 10 times the number of bags. For the
presence-based hypothesis, Artificial6 triples the evaluation times of the Artificial5 data set, whereas for
the generalized hypothesis their times are similar. This difference in the runtime is due to the Dietterich
hypothesis behaviour. As described in Section 4.2, the presence-based hypothesis allows instances matching
to be stopped. However, for the generalized hypotheses, it is necessary to complete rule matching with
all the instances of the bag to compute counts. Therefore, evaluation times for the generalized hypotheses
depend on the number of instances rather than the number of bags, having the GPU higher speedups.
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Table 5 UCI data sets evaluation performance (Generalized Hypothesis)

Evaluation Time (s) Speedup
Data set Atts Bags Instances 4CPUs 1GPU 2GPUs 4GPUs | 1GPU 2GPUs 4 GPUs
Component 201 3,130 36,894 644.86 15.94 8.47 4.32 40.47 76.11 149.42
East West 25 20 213 4.74 1.84 1.18 0.94 2.57 4.02 5.06
Elephant 231 200 1,391 27.51 1.73 1.21 0.77 15.93 22.83 35.83
Fox 231 200 1,320 25.80 1.72 1.23 0.73 14.99 20.98 35.32
Function 201 5,242 55,536 976.79 25.36 14.37 7.84 38.52 67.95 124.59
Musk1 167 92 476 9.70 1.55 1.04 0.72 6.25 9.30 13.40
Musk2 167 102 6,598 121.49 2.55 1.47 1.05 47.72 82.39 115.21
Mut-atoms 11 188 1,618 27.49 1.76 1.18 0.79 15.63 23.24 34.72
Mut-bonds 17 188 3,995 60.61 2.17 1.24 0.79 27.95 48.99 77.04
Mut-chains 25 188 5,349 80.61 2.20 1.38 0.94 36.71 58.23 85.55
Process 201 11,718 118,417 1,964.10 85.03 45.64 24.20 23.10 43.04 81.17
Suramin 21 11 2,378 44.74 2.76 2.07 1.14 16.19 21.58 39.36
Tiger 231 200 1,220 23.24 1.71 1.12 0.87 13.56 20.72 26.60
Artificiall 100 10 1,000 23.43 2.79 1.65 1.48 8.40 14.23 15.78
Artificial2 100 100 1,000 23.88 2.59 1.61 1.44 9.21 14.83 16.58
Artificial3 100 100 1x10% 165.56 4.52 2.55 1.41 36.61 64.80 117.19
Artificiald 100 1,000 1x10% 170.54 4.95 2.67 1.31 34.42 63.94 130.09
Artificialb 100 1,000 1x10° 1,513.44 44.93 24.39 12.63 33.69 62.04 119.87
Artificial6 100 1x10% 1x10° 1,422.38 45.97 24.97 12.62 30.94 56.97 112.73
Artificial7 100 1x10° 1x106 | 14,107.76  454.68 243.40 124.15 31.03 57.96 113.63

Speedup

* 4 GPU

S

m— — — 2GPUs
A------ 1GPU
T T T 1
100 1.000 10.000 100.000 1.000.000

Number of examples

Fig. 5 Analysis of performance scalability using 1, 2, and 4 GPUs

Finally, the scalability of the model performance regarding to the increasing size of the data set is

shown in Fig. 5 (log scale), which illustrates and summarizes the speedup values achieved with one, two,
and four GPUs when compared to the multi-threaded CPU performance. This figure shows the speedup
trend line and proves the great efficiency and scalability of GPUs. The figure indicates that as soon as
the data set size is big enough, the high costs of the MIL algorithm makes the GPU parallelization highly
recommended to run within reasonable time.

7 Concluding Remarks

Multi-instance classification is a challenging task which has been solved using evolutionary rule-based
algorithms such as G3P-MI. Evolutionary rule-based algorithms become slow when the dimensionality
and complexity of the data set increases. In this paper we proposed a GPU-based model for evaluating
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multi-instance classification rules to speed up the algorithm process. The GPU evaluation model was
evaluated to analyze its efficiency regarding to the rules interpreter and classification performance, and
compared to the multi-threaded CPU SSE implementation over multiple data sets. The performance of
the GPU rules interpreter achieved up to 108 billion GPops/s. The GPU evaluation model demonstrated
efficient performance and to speedup the classification task up to 149x. Moreover, its efficiency increased
as the dimensionality of the data. The distributed implementation into multiple GPUs allowed scalability
across large-scale and high-dimensional data sets, in which the application of evolutionary rule-based
algorithms, until now, was difficult within reasonable time.

Nevertheless, it is noteworthy to mention that highest speedups were obtained when using 4 high-
performance GPUs on very big data sets, where GPUs are capable to show their full power. These scenarios
are ideal for GPU parallelization (millions of parallel threads), while on other data sets with average size,
GPUs show not such impressive speedups. Indeed, when comparing single GPU performance, it was
achieved similar performance than other related works in literature. Using 4 high-performance GPUs is
a non-trivial contribution while most of related works focus only on single-GPU designs, which prevent
their scalability to multiple GPU devices.
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