
27 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations

Published version:

DOI:10.1007/s10115-015-0843-6

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1530122 since 2017-05-18T13:44:13Z

Knowledge and Information Systems

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations
--Manuscript Draft--

Manuscript Number: KAIS-13-4561R2

Full Title: Locality-Sensitive and Re-use Promoting Personalized PageRank Computations

Article Type: Regular Paper

Keywords: Personalized PageRank; Locality-Sensitivity; Reuse-Promotion; Scalability

Corresponding Author: Jung Hyun Kim
Arizona State University
Tempe, AZ UNITED STATES

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Arizona State University

Corresponding Author's Secondary
Institution:

First Author: Jung Hyun Kim

First Author Secondary Information:

Order of Authors: Jung Hyun Kim

K. Selçuk Candan, Ph.D

Maria Luisa Sapino, Ph.D

Order of Authors Secondary Information:

Funding Information:

Abstract: Node distance/proximity measures are used for quantifying how nearby or otherwise
related two or more nodes on a graph are. In particular, personalized PageRank (PPR)
based measures of node proximity have been shown to be highly effective in many
prediction and recommendation applications. Despite its effectiveness, however, the
use of personalized PageRank for large graphs is difficult due to its high computation
cost. In this paper, we propose a Locality-sensitive, Re-use promoting, approximate
Personalized PageRank (LR-PPR) algorithm for efficiently computing the PPR values
relying on the localities of the given seed nodes on the graph: (a) The LR-PPR
algorithm is locality sensitive in the sense that it reduces the computational cost of the
PPR computation process by focusing on the local neighborhoods of the seed nodes.
(b) LR-PPR is re-use promoting in that instead of performing a monolithic computation
for the given seed node set using the entire graph, LR-PPR divides the work into
localities of the seeds and caches the intermediary results obtained during the
computation. These cached results are then reused for future queries sharing seed
nodes. Experiment results for different data sets and under different scenarios show
that LR-PPR algorithm is highly-efficient and accurate.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Under consideration for publication in Knowledge and Information Systems

Locality-Sensitive and Re-use Promoting
Personalized PageRank Computations
Jung Hyun Kim1, K. Selçuk Candan1, and Maria Luisa Sapino2

1School of Computing, Informatics, and Decision Systems Engineering, Arizona State University,
Tempe AZ, USA; 2Dipartimento di Informatica, University of Torino, I-10149 Torino, Italy

Abstract. Node distance/proximity measures are used for quantifying how nearby or otherwise
related two or more nodes on a graph are. In particular, personalized PageRank (PPR) based
measures of node proximity have been shown to be highly effective in many prediction and rec-
ommendation applications. Despite its effectiveness, however, the use of personalized PageRank
for large graphs is difficult due to its high computation cost. In this paper, we propose a Locality-
sensitive, Re-use promoting, approximate Personalized PageRank (LR-PPR) algorithm for effi-
ciently computing the PPR values relying on the localities of the given seed nodes on the graph:
(a) The LR-PPR algorithm is locality sensitive in the sense that it reduces the computational cost
of the PPR computation process by focusing on the local neighborhoods of the seed nodes. (b)
LR-PPR is re-use promoting in that instead of performing a monolithic computation for the given
seed node set using the entire graph, LR-PPR divides the work into localities of the seeds and
caches the intermediary results obtained during the computation. These cached results are then
reused for future queries sharing seed nodes. Experiment results for different data sets and under
different scenarios show that LR-PPR algorithm is highly-efficient and accurate.

Keywords: Personalized PageRank; Locality-Sensitivity; Reuse-Promotion; Scalability

1. Introduction

In many graph applications, how a given pair of nodes on a graph is related to each other
is determined by the underlying graph topology. Node distance/proximity measures are
commonly used for quantifying how nearby or otherwise related to two or more nodes
on a graph are. Due to the wide-spread use of graphs in analysis, mining, and visualiza-
tion of interconnected data, there are many definitions of the node distance and prox-
imity. Path-length based definitions, such as those used by Palmer et al (2006), Boldi
et al (2011), Cohen et al (2003), Wei (2010), Xiao et al (2009), Zhou et al (2009), are

Received xxx
Revised xxx
Accepted xxx

Manuscript
Click here to download Manuscript: KAIS-13-4561 Manuscript.pdf
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/kais/download.aspx?id=142325&guid=0e677f95-fdec-4d77-86ae-ece9ec457993&scheme=1
http://www.editorialmanager.com/kais/viewRCResults.aspx?pdf=1&docID=4412&rev=2&fileID=142325&msid={96742CD1-4715-4798-97C2-453EB309B294}

2 J. Kim et al

useful when the relatedness can be captured solely based on the properties of the nodes
and edges on the shortest path (based on some definition of path-length). Random-
walk based definitions, such as hitting distance (Chen et al, 2008; Mei et al, 2008)
and personalized PageRank (PPR) score (Balmin et al, 2004; Chakrabarti, 2007; Jeh
and Widom, 2002; Tong et al, 2006a; Tong et al, 2007; Liu et al, 2013; Lofgren et
al, 2014; Maehara et al, 2014), of node relatedness, on the other hand, also take into
account the density of the edges: intuitively, as in path-length based definitions, a node
can be said to be more related to another node if there are short paths between them;
however, unlike in path-based definitions, random walk-based definitions of relatedness
also consider how tightly connected two nodes are and argue that nodes that have many
paths between them can be considered more related.

Naturally, any distance measure which would require all paths among two nodes to
be enumerated would require time exponential in the size of the graph and, thus, would
be intractable. Thus, random-walk based techniques encode the structure of the network
in the form a transition matrix of a stochastic process from which the node relationships
can be inferred. When it exists, the convergence probability of a node n gives the ratio
of the time spent at that node in a sufficiently long random walk and, therefore, neatly
captures the connectivity of the node n in the graph. Therefore, many web search and
recommendation algorithms, such as HITS (Kleinberg, 1999) and PageRank (Brin and
Page, 1998), rely on random-walks to identify significant nodes in the graph. The well-
known PageRank algorithm associates a single importance score to each node: Let us
consider a weighted, directed graph G(V,E), where the weight of the edge ej ∈ E is
denoted as wj(≥ 0) and where ∑

ej∈outedge(vi)

wj

 = 1.0.

The PageRank score of the node vi ∈ V is the stationary distribution of a random walk
on G, where at each step

– with probability 1−β, the random walk moves along an outgoing edge of the current
node with a probability proportional to the edge weights and

– with probability β, the walk jumps to a random node in V .

In other words, if we denote all the PageRank scores of the nodes in V with a vector ~π,
then

~π = (1− β)TG × ~π + β~j,

where TG denotes the transition matrix corresponding to the graph G (and the underly-
ing edge weights) and ~j is a teleportation vector where all entries are 1

‖V ‖ .

1.1. Measuring Proximity with PageRank

The basic definition of PageRank associates a convergence score to each node in the
graph irrespective of content and context of search. An early attempt to contextualize
the PageRank scores was the topic sensitive PageRank (Haveliwala, 2002) approach
which adjusts the PageRank scores of the nodes by assigning the teleportation proba-
bilities in vector~j in a way that reflects the graph nodes’ degrees of match to the search
topic. Candan and Li (2000) and Candan and Li (2002) were among the first works

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 3

v1

v2

v3

G

a

b

c

d

Fig. 1. Key questions: Given a graph, G, and a seed set of nodes S = {v1, v2, v3} in G,
can we rank the remaining nodes in the graph regarding their relationships to the set S?
Which of the nodes a through d is the most interesting given the seed set of nodes v1
through v3?

which recognized that random-walks can also be used for measuring the degree of as-
sociation, relatedness, or proximity of the graph nodes to a given seed node set, S ⊆ V
(Figure 1): More specifically, Candan and Li (2000) construct a transaction matrix, TS ,
where edges leading away from the seed nodes are weighted less than those edges lead-
ing towards the seed nodes. Consequently, a page with a high connectivity but separated
from the seed nodes in too many hops may be less significant within the context of seed
nodes. In fact, a node which both has a high connectivity and few hops away from the
seed nodes will have the highest convergence score. Therefore, when using the transi-
tion the convergence probabilities of the nodes capture both (a) the separations between
the seeds and the graph nodes and (b) the connectivity of the nodes in the graph relative
to nodes in S.

An alternative to this approach is to modify the teleportation vector, ~j, as in topic
sensitive PageRank (Haveliwala, 2002): instead of jumping to a random node in V with
probability β, the random walk jumps to one of the nodes in the seed set, S, given by
the user. More specifically, if we denote the Personalized PageRank scores of the nodes
in V with a vector ~φ, then

~φ = (1− β)TG × ~φ+ β~s,

where ~s is a re-seeding vector, such that if vi ∈ S, then ~s[i] = 1
‖S‖ and ~s[i] = 0,

otherwise. Intuitively, since at each step the random-walk has a non-zero probability of
jumping back to the seed nodes from its current node (independently of where the cur-
rent node is in the graph), the nodes closer to the nodes in S will have larger stationary
scores than they would have if the random walk jumped randomly in the entire graph.
One key advantage of this teleportation vector modification based approach over modi-
fying the transition matrix, as in (Candan and Li, 2000), is that the term β can be used to
directly control the degree of seeding (or personalization) of the PPR score. However,
the use of personalized PageRank for large graphs is difficult due to the high cost of
solving for the vector ~φ, given β, transition matrix TG, and the seeding vector ~s.

One way to obtain ~φ is to rewrite the stationary state equation of personalized

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 J. Kim et al

v1

v2

v3

G1
G2

G3

G

Fig. 2. Locality-sensitivity: Computation of PPR should focus on the neighborhoods
(localities) of the seeds

PageRank as

(I− (1− β)TG)× ~φ = β~s,

and solve the above equation for ~φ mathematically. Alternatively, PowerIteration meth-
ods (Kamvar et al, 2003) simulate the dissemination of probability mass by repeatedly
applying the transition process to an initial distribution ~φ0 until a convergence criterion
is satisfied.

Unfortunately, for large data sets, both of these processes are prohibitively expen-
sive. Recent advances on personalized PageRank include top-k and approximate per-
sonalized PageRank algorithms (Avrachenkov et al, 1995; Bahmani et al, 2010; Csa-
logany et al, 2005; Chakrabarti, 2007; Fujiwara et al, 2012; Gupta et al, 2008; Tong
et al, 2006b; Song et al, 2009), parallelized implementations on MapReduce or Pregel
based batch data processing systems (Bahmani et al, 2011; Malewicz et al, 2010), and
techniques to eliminate seed noise (Huang et al, 2014). The FastRWR algorithm, pre-
sented in (Tong et al, 2006b), for example partitions the graph into subgraphs and in-
dexes partial intermediary solutions. Given a seed node set S then relevant intermediary
solutions are combined to quickly solve for approximate PPR scores. Naturally, there is
a trade-off between the number of partitions created for the input graph G and the accu-
racy: the higher the number of partitions, the faster the run-time execution (and smaller
the memory requirement), but higher the drop in accuracy. Unfortunately, as we see in
Section 5, for large data sets, FastRWR requires large number of partitions to ensure
that the intermediary metadata (which require dense matrix representation) fit into the
available memory and this negatively impacts execution time and accuracy. (Maehara
et al, 2014) proposes a block-based GMRES-PPR technique to speed up online com-
putation of personalized PageRank. Experiments presented in Section 5 showed that
while GMRES-PPRs online running time can be competitive, it can fail to complete
pre-processing for large graphs as it runs out of memory – even when using a sig-
nificantly better hardware setup than used for the proposed techniques. Moreover, the
accuracy of GMRES-PPR is lower than that of the proposed techniques.

1.2. Contributions of this Paper

In this paper, we note that we can improve both scalability and accuracy through a
Locality-sensitive, Re-use promoting, approximate personalized PageRank (LR-PPR)
algorithm for efficiently computing the PPR values relying on the localities of the seed
nodes on the graph: The LR-PPR algorithm is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 5

v1

v2

v3

G1

G2

G3

G

v1

v7

v9

G1

G7

G9

v6

G6

G

(a) PPR query 1 (b) PPR query 2

Fig. 3. Re-use promotion: Two PPR queries sharing a seed node (v1) should also share
relevant work

– locality sensitive in the sense that it reduces the computational cost of the PPR com-
putation process and improves accuracy by focusing on the neighborhoods of the seed
nodes (Figure 2); and

– re-use promoting in that, instead of performing a monolithic PPR computation for a
given seed node set S (where the intermediary results cannot be re-used for a differ-
ent, but similar, seed set S′), LR-PPR divides the work into localities of the seeds and
enables caching and re-use of significant portions of the intermediary work for the
individual seed nodes in future queries (Figure 3): In other words, LR-PPR is able to
leverage temporal locality in the users queries:

· This temporal locality may be due to a slow evolution of a given users interest:
for example when a user watches a new online movie, this will change the rec-
ommendation context only slightly as the users recent movie history (say the last
10 movies watched by the user) will be mostly preserved in the seed set.

· This temporal locality may also be due to popular seeds shared by a lot of users:
for example a new hit movie (or say the top 10 movies of the week) may be shared
in the seed set of a large portion of the users. LR-PPR leverages such temporal
localities to reduce redundant work.

In the following section, we first formally introduce the problem and then present
our solution for locality-sensitive, re-use promoting, approximate personalized PageR-
ank computations. In Section 4, we discuss optimization and parallelization opportuni-
ties. We evaluate LR-PPR for different data sets and under different scenarios in Sec-
tion 5. We conclude in Section 6.

2. Proposed Approach

Let G = (V,E) be a directed graph. For the simplicity of the discussion, without any
loss of generality, let us assume that G is unweighted1. Let us be given a set S ⊆ V of
seed nodes (Figure 1) and a personalization parameter, β. Let GS = {Gh(Vh, Eh) | 1 ≤
h ≤ K} be K = ‖S‖ subgraphs2 of G, such that

– for each vi ∈ S, there exists a corresponding Gi ∈ GS such that vi ∈ Vi and
– for all Gh ∈ GS , ‖Gh‖ � ‖G‖.

1 Extending the proposed algorithms to weighted graphs is trivial.
2 We discuss alternative ways to select these in Section 4.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 J. Kim et al

v1 v2

G1

G2

G

outgoing bnd. node

of G1

incoming bnd. node

of G1

a shared

node

Fig. 4. Incoming and outgoing boundary nodes/edges and a node shared between two
localities

We first formalize the locality-sensitivity goal (Figure 2):
Desideratum 1: Locality-Sensitivity. Our goal is to compute an approximate PPR vec-
tor, ~φapx, using GS instead of G, such that ~φapx ∼ ~φ, where ~φ represents the true PPR
scores of the nodes in V relative to S: i.e.,

~φapx ∼ ~φ = (1− β)TG × ~φ+ β~s,

where TG is the transition matrix corresponding to G and ~s is the re-seeding vector
corresponding to the seed nodes in S.
We next formalize the re-use promotion goal (Figure 3):
Desideratum 2: Reuse-Promotion. Let S1 and S2 be two sets of seed nodes and
let vi be a node such that vi ∈ S1 ∩ S2. Let also the approximate PPR vec-
tor, ~φapx,1 corresponding to S1 have already been computed using GS1

and let us
assume that the approximate PPR vector, ~φapx,2 corresponding to S2 is being re-
quested. The part of the work performed when processing Gi ∈ GS1

(corresponding
to vi) should not need to be re-performed when processing Gi ∈ GS2 , when computing
~φapx,2 using GS2

.

2.1. Combined Locality and its Boundary

Unlike existing approximate PPR algorithms (Avrachenkov et al, 1995; Bahmani et
al, 2010; Csalogany et al, 2005; Chakrabarti, 2007; Fujiwara et al, 2012; Gupta et al,
2008; Tong et al, 2006b; Song et al, 2009), LR-PPR is location sensitive. Therefore,
given the set, S, of seed nodes and the corresponding localities, GS , the computation
focuses on the combined locality G+(V +, E+) ⊆ G, where

V + =
⋃

1≤l≤K

Vl and E+ =
⋃

1≤l≤K

El.

Given a combined locality, G+, we can also define its external graph, G−(V −, E−), as
the set of nodes and edges of G that are outside of G+ and boundary nodes and edges.
As shown in Figure 4, we refer to vi ∈ Vl as an outgoing boundary node of Gl if there

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 7

G1 G2 G3 GK

A node shared by multiple seed locality graphs

v1 v2 v3 vK

Fig. 5. An equivalence set consists of the copies of a node shared across multiple seed
locality graphs

is an outgoing edge ei,j = [vi → vj] ∈ E, where vj /∈ Vl; the edge ej is also referred
to as an outgoing boundary edge of Gl. The set of all outgoing boundary nodes of Gl

is denoted as Voutbound,l and the set of all outgoing boundary edges of Gl is denoted as
Eoutbound,l. Note that Voutbound,l ⊆ Vl, whereas Eoutbound,l ∩ El = ∅.

We also define incoming boundary nodes (Vinbound,l) and incoming boundary edges
(Einbound,l) similarly to the outgoing boundary nodes and edges of Gl, but considering
inbound edges to these subgraphs. More specifically, Einbound,l consists of edges of the
form [vi → vj] ∈ E, where vj ∈ Vl and vi /∈ Vl.

2.2. Localized Transition Matrix

Since LR-PPR focuses on the combined locality, G+, the next step is to combine the
transition matrices of the individual localities into a combined transition matrix. To
produce accurate approximations, this localized transition matrix should nevertheless
take the external graph, G−, and the boundaries between G− and G+, into account.

2.2.1. Transition Matrices of Individual Localities

Let v(l,i) (1 ≤ l ≤ K) denote a re-indexing of vertices in Vl. If v(l,i) ∈ Vl and vc ∈ V
s.t. v(l,i) = vc, we say that v(l,i) is a member of an equivalence set, Vc (Figure 5).
Intuitively, the equivalence sets capture the common parts across the localities of the
individual seed nodes. GivenGl(Vl, El) ⊆ G and an appropriate re-indexing, we define
the corresponding local transition matrix, Ml, as a ‖Vl‖ × ‖Vl‖ matrix, where

–
(
6 ∃ei,j = [v(l,i) → v(l,j)] ∈ El

)
→Ml[j, i] = 0 and

–
(
∃ei,j = [v(l,i) → v(l,j)] ∈ El

)
→ Ml[j, i] = 1

out(v(l,i))
, where out(v(l,i)) is the

number of outgoing edges of vi.

The m×m matrix M2 is also defined similarly considering edges in E2.

2.2.2. Localization of the Transition Matrix

Given the local transition matrices, M1 through MK , we localize the transition matrix
of G by approximating it as

Mapx = Mbd + M0,

where Mbd is a block-diagonal matrix of the form

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 J. Kim et al

M1

M2

M3

m n 1

v1 v2

G1 G2

G3 ~ G

Nodes in the locality
of v1

Nodes in the locality
of v2

Rest of
the

nodes

-

(a) Mbd matrix (b) corresponding graph

Fig. 6. The matrix, Mbd, (a) ignores the overlaps among the localities of the seed nodes,
(b) ignores the outgoing and incoming edges from/to the localities and collapses all
external nodes/edges to a single node


M1 0‖V1‖×‖V2‖ . . . 0‖V1‖×‖VK‖ 0‖V1‖×1

0‖V2‖×‖V1‖ M2 . . . 0‖V2‖×‖VK‖ 0‖V2‖×1
.

0‖VK‖×‖V1‖ 0‖VK‖×‖V2‖ . . . MK 0‖VK‖×1
01×‖V1‖ 01×‖V2‖ . . . 01×‖VK‖ MK+1

 ,

where MK+1 is equal to the 1× 1 matrix 01×1. Intuitively, Mbd combines the K sub-
graphs into one transition matrix, without considering common nodes/edges or incom-
ing/outgoing boundary edges and ignoring all outgoing and incoming edges (Figure 6).
All the external nodes in G− are accounted by a single node represented by the 1 × 1
matrix MK+1.

As we see later in Section 3, a key advantage of Mbd is that it is block-diagonal
and, hence, there are efficient ways to process it. However, this block-diagonal matrix,
Mbd, cannot accurately represent the graphG as it ignores potential overlaps among the
individual localities and ignores all the nodes and edges outside of G+. We therefore
need a compensation matrix to

– make sure that nodes and edges shared between the localities are not double counted
during PPR computation and

– take into account the topology of the graph external to localities G1 through GK .

2.2.3. Compensation Matrix, M0

Let t be (‖V1‖+‖V2‖+. . .+‖VK‖+1). The compensation matrix, M0, is a t×tmatrix
accounting for the boundary edges of the seed localities as well as the nodes/edges in
G−. M0 also ensures that the common nodes in V1 through VK are not double counted
during PPR calculations. M0 is constructed as follows:

Row/column indexing: Let vl,i be a vertex in Vl. We introduce a row/column indexing

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 9

v1 v2

G1 G2

G3

Nodes in the locality
of v1

Nodes in the locality
of v2

Rest of
the

nodes

copy of a

shared

node in G1

copy of a

shared

node in G2
v(1,i)

v(2,j)

w/2w-w/2

v(1,k)

v(1,k)

v(1,i)

v(2,j)

w

0

M1,2

v(1,k)

v(1,i)

v(2,j) w/2

M0

Fig. 7. Accounting for shared nodes in the compensation matrix, M0: in this example,
half of the transitions are re-routed to the copy of the node (note that, w = 1

out(G,v1,k)
)

function, ind(), defined as follows:

ind(l, i) =

 ∑
1≤h<l

‖Vh‖

+ i

Intuitively the indexing function, ind(), maps the relevant nodes in the graph to their
positions in the M0 matrix.

Compensation for the common nodes: Let el,i,j be an edge [v(l,i) → v(l,j)] ∈ El and
let v(l,j) be a member of the equivalence set Vc for some vc ∈ V . Then, if ‖Vc‖ > 1

– M0[ind(l, j), ind(l, i)] = −(1
out(Gl,vl,i)

− ‖Vc‖−1‖Vc‖ ×
1

out(G,vl,i)
) and

– ∀v(h,k) ∈ Vc s.t. v(h,k) 6= v(l,j), we have

M0[ind(h, k), ind(l, i)] =
1

‖Vc‖
× 1

out(G, vl,i)
,

where out(G, v) is the outdegree of node v in G and out(Gl, v) is the outdegree of
node v in the subgraph Gl. Intuitively, the compensation matrix re-routes a portion of
the transitions going towards a shared node in a given locality Vl to the copies in other
seed localities (Figure 7). This prevents the transitions to and from the shared node from
being mis-counted.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 J. Kim et al

v1 v2

G1 G2

G3

Nodes in the locality
of v1

Nodes in the locality
of v2

Rest of
the

nodes

edge from

G1 to G2

v(1,i)

v(2,j)

w

c*w

v(1,i)

v(2,j)

0

0

M1,2

v(1,i)

v(2,j)

c*w

w

M0

Fig. 8. Accounting for the edges that are outgoing from a locality (in this example,
w = 1

out(v1,i)
and c = bnd(v1,i))

Compensation for outgoing boundary edges: The compensation matrix needs to ac-
count also for outgoing boundary edges that are not accounted for by the neighborhood
transition matrices M1 through MK :

– Accounting for boundary edges from nodes in Vl to nodes in Vh: ∀[v(l,i) → v(h,j)] ∈
Eoutbound,l

· M0[ind(h, j), ind(l, i)] = 1
out(v(l,i))

and

· M0[ind(l, p), ind(l, i)] = −(1
out(Gk,vl,i)

− 1
out(G,v(l,i))

), where ∃ei,p = [v(l,i) →
v(l,p)] ∈ El and vl,p is not a member of the equivalence set Vc for any vc ∈ V

– Accounting for boundary edges from nodes in Vl to graph nodes that are in V −:
if ∃[v(l,i) → v] ∈ Eoutbound,l s.t. v ∈ V −

· M0[t, ind(l, i)] =
bnd(v(l,i))

out(v(l,i))
, where bnd(v(l,i)) is the number of edges of the

form [v(l,i) → v] ∈ Eoutbound,l where v ∈ V −

else M0[t, ind(l, i)] = 0

The process of compensating for outgoing boundary edges for a sample case when
K = 2 is visualized in Figure 8. The compensation matrix records all outgoing edges,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 11

v1 v2

G1 G2

G3

Nodes in the locality
of v1

Nodes in the locality
of v2

v(1,h)

copy of a

shared

node in G1

copy of a

shared

node in G2

v(1,i) v(2,j)

a

a/2 a/2

b

v(1,i)

v(2,j)

M1,2

v(1,h)

0

0

0

v(1,i)

v(2,j)

M0

v(1,h)

a/2

a/2

a

b

Fig. 9. Accounting for the edges that are originating from the nodes that are outside of
the localities of G1 and G2

whether they cross into another locality or they are into external nodes in G−. If a node
has more than one outgoing edge into the nodes in G−, all such edges are captured
using one single compensation edge which aggregates all the corresponding transition
probabilities.

Compensation for incoming boundary edges (from G−): Similarly to the outgoing
boundary edges, the compensation matrix needs also to account for incoming boundary
edges that are not accounted for by the neighborhood transition matrices M1 through
MK . Since incoming edges from other localities have been accounted for in the previ-
ous step, here we only need to consider incoming boundary edges (fromG−). Following
the formulation in Wu and Raschid (2009), we account for incoming edges where the
source is external to G+ and the destination is a vertex v(l,i) in Vl by inserting an edge
from the dummy node to v(l,i) with a weight that considers the outdegrees of all external
source nodes; i.e., ∀v(l,i) s.t. ∃[vk → v(l,i)] ∈ Einbound,l where vk ∈ V − and v(l,i) is
in the equivalence set Vc for a vc ∈ V , M0[ind(l, i), t] is equal to

1

‖Vc‖

∑
([vk→v(l,i)]∈Einbound,l)∧(vk∈V −)

1
out(G,vk)

‖V −‖
,

where out(G, v) is the outdegree of node v in G. The process of compensating for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 J. Kim et al

incoming edges originating from outside of the locality graphs of the seeds is visualized
in Figure 9.

Compensation for the edges in G−: We account for edges that are entirely in G− by
creating a self-loop that represents the sum of outdegree flow between all external nodes
averaged by the number of external nodes; i.e.,

M0[t, t] =

∑
v∈V −

out(G−,v)
out(G,v)

‖V −‖
,

where out(G−, v) and out(G, v) are the outdegrees of node v in G− and G, respec-
tively. The process of compensating for edges that are outside of the seed localities is
also visualized in Figure 9.

Completion: For any matrix position p, q not considered above, no compensation is
necessary; i.e., M0[p, q] = 0.

2.3. L-PPR: Locality Sensitive PPR

Once the block-diagonal local transition matrix, Mbd, and the compensation matrix,
M0, are obtained, the next step is to obtain the PPR scores of the nodes in V +. This can
be performed using any fast PPR computation algorithm discussed in Section 1.1.

Note that the overall transition matrix Mapx = Mbd + M0 is approximate in the
sense that all the nodes external to G+ are clustered into a single node, represented by
the last row and column of the matrix. Otherwise, the combined matrix Mapx accurately
represents the nodes and edges in the “merged localities graph” combining the seed
localities, G1 through GK . As we see in Section 5, this leads to highly accurate PPR
scores with better scalability than existing techniques.

2.4. LR-PPR: Locality Sensitive and Reuse Promoting PPR

Our goal is not only to leverage locality-sensitivity as in L-PPR, but also to boost sub-
result re-use. Let us restate the problem: Given the block-diagonal local transition ma-
trix, Mbd, and the compensation matrix, M0 (that together make up the overall transi-
tion matrix, Maxp) computed as described above, and a re-seeding (or restart) proba-
bility, β, we seek to find ~φapx, where

~φapx = β(I− (1− β)Maxp)−1~s,

where ~s is the re-seeding vector for seeds. Remember that, as discussed above, the lo-
calized transition matrix Mapx is equal to Mbd +M0 where (by construction) Mbd is a
block-diagonal matrix, whereas M0 (which accounts for shared, boundary, and external
nodes) is relatively sparse. We next use these two properties of the decomposition of
Mapx to efficiently compute approximate PPR scores of the nodes in V +. In particu-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 13

lar, we rely on the following result due to Tong et al (2006b), which itself relies on the
Sherman-Morisson lemma Piegorsch and Casella (1990):

Let C = A + USV. Let also (I− cA)−1 = Q−1. Then, the equation

~r = (1− c)(I− cA)−1~e

has the solution

~r = (1− c)(Q−1~e+ cQ−1UΛVQ−1~e),

where

Λ = (S−1 − cVQ−1U)−1.

If A is a block diagonal matrix consisting of k blocks, A1 through Ak, then
Q−1 is also a block diagonal matrix consisting of k corresponding blocks,
Q−11 through Q−1k , where Q−1i = (I− cAi)

−1.

We use the above observation to efficiently obtain PPR scores by setting c = (1 − β),
C = Mapx, A = Mbd, and USV = M0. In particular, we divide the PPR computation
into two steps: a locality-sensitive and re-usable step involving the computation of the
Q−1 term using the local transition matrices and a run-time computation step involving
the compensation matrix.

2.4.1. Locality-sensitive and Re-usable Q−1
bd

Local transition matrices, M1 through MK corresponding to the seeds v1 through
vK are constant (unless the graph itself evolves over time). Therefore, if Q−1h =

(I− (1− β)Mh)
−1 is computed and cached once, it can be reused for obtaining Q−1bd ,

which is a block diagonal matrix consisting of Q−11 through Q−1K+1 (as before, the last
block, Q−1K+1, is simply equal to 11×1):

Q−11 0‖V1‖×‖V2‖ . . . 0‖V1‖×‖VK‖ 0‖V1‖×1
0‖V2‖×‖V1‖ Q−12 . . . 0‖V2‖×‖VK‖ 0‖V2‖×1

.
0‖VK‖×‖V1‖ 0‖VK‖×‖V2‖ . . . Q−1K 0‖VK‖×1

01×‖V1‖ 01×‖V2‖ . . . 01×‖VK‖ Q−1K+1

 ,

2.4.2. Computation of the LR-PPR Scores

In order to be able to use the above formulation for obtaining the PPR scores of the
nodes in V +, in the query time, we need to decompose the compensation matrix, M0,
into U0S0V0. While obtaining a precise decomposition in run-time would be pro-
hibitively expensive, since M0 is sparse and since we are looking for an approxima-
tion of the PPR scores, we can obtain a fairly accurate low-rank approximation of M0

efficiently (Tong et al, 2006b):

M0 ' Ũ0S̃0Ṽ0.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 J. Kim et al

Given this decomposition, the result vector ~φapx, which contains the (approximate) PPR
scores of the nodes in V +, is computed as

~φapx = β
(
Q−1bd ~s+ (1− β)Q−1bd Ũ0ΛṼ0Q

−1
bd ~s
)
,

where

Λ =
(
S̃−10 − (1− β)Ṽ0Q

−1
bd Ũ0

)−1
.

Note that the compensation matrix M0 is query specific and, thus, the work done
for the last step cannot be reused across queries. However, as we experimentally verify
in Section 5, the last step is relatively cheap and the earlier (costlier) steps involve re-
usable work. Thus, caching and re-use through LR-PPR enables significant savings in
execution time. We discuss the overall complexity and the opportunities for re-use next.

2.5. Accuracy Analysis

In this section, we analyze the accuracy of the proposed LR-PPR technique. As an
approximation based technique, LR-PPR has two sources of errors: (a) errors that arise
due to the use of a single node to represent the external graph G− and (b) errors due
to the use of a low-rank approximation to obtain PPR scores. In this section, we will
analyze errors due to each separately.

2.5.1. Accuracy Loss due to the Use of a Single Node to Represent G−

As discussed in the previous section, the LR-PPR algorithm collapses the portion of the
graph external to the neighborhoods of the selected seeds (i.e.,G−) into a single dummy
node – which leads to significant savings in execution time.

On the other hand, this operation can also result in a certain loss of accuracy. This
is because, while we are combining the set, V −, of nodes outside of the seeds’ locality
graphs into a single node, we also need to associate transition weights from this com-
bined dummy node into the nodes in the locality graphs (which we refer to as inbound
edges in the previous section).

Let us denote the set of all inbound edges from G− to G+ as Einbound. Let us also
denote the subset of vertices in V − that are sources of edges in Einbound as V −inbound. It
is easy to see that if for all e〈vi, vj〉 ∈ Einbound, the overall transition volume from vi
onto vj in the original graph is identical to the overall transition volume from the dummy
node, v⊥, onto vj in the compressed graph, then the overall stationary distributions for
the nodes in V + would be preserved: this is because for the purposes of the nodes
in V + all incoming and outgoing transitions would be identical before and after the
transformation. Therefore, to estimate the error due to the transformation, we need to
investigate the transition volume on the edges in Einbound.

Let e = 〈vi, vj〉 ∈ Einbound be an in-bound edge from vi ∈ V −inbound to vj ∈ V +.
Similarly, let e′ = 〈v⊥, vj〉 be the corresponding edge in the compressed graph, where
v⊥ is the dummy node:

– Volume of transitions on e: On the original graph, the total volume, vol(e), of transi-
tions from vi onto vj can be computed as

vol(e) = P (vi)×
1

outdeg(vi)
.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 15

– Volume of transitions on e′: On the compressed graph, the total volume, vol(e′), of
transitions from v⊥ onto vj , on the other hand, can be computed as

vol(e′) = P (v⊥)× ω(e′),

where we use ω(e′) to denote the transition weight associated to e′, computed by
accounting the outdegrees of all external source nodes as described in the previous
section.

Consequently the transformation is lossless if and only if ω(e′) is such that

ω(e′) =
P (vi)

P (v⊥)
× 1

outdeg(vi)
,

which would also imply that

ω(e′) =
P (vi)∑

v∈V − P (v)
× 1

outdeg(vi)
.

This implies that the value ω(e′) which would lead to a lossless transformation depends
on the stationary probability distribution of vi as well as the stationary probability dis-
tribution of v ∈ V − on the original graph. Unfortunately, these distributions are not
available ahead of the time – therefore this value cannot be set in a lossless way a pri-
ori.

Wu and Raschid (2009) provide an analysis of the L1 error between the PageRank
scores with and without the use of a dummy node and the authors show that the L1 error
of the PageRank scores of the whole graph is within a constant factor of the L1 error of
the PageRank scores of the external nodes. Their formulation, however, does not explain
under what conditions the overall error is low; moreover, the L1 based formulation has
the disadvantage that it does not provide a tight bound on the error for scores of indi-
vidual nodes – it is possible to have a relatively low total L1 error, which nevertheless
may correspond to a large error on a specific node. In the next of the section, therefore,
we aim to identify a tighter bound on the individual nodes, which also explains under
what conditions the error is low.

Let Mideal (or M for short) denote the (|V +|+1)×(|V +|+1) (orN×N for short)
transition matrix based on the ideal transformation and Mapx (or M′ for short) denote
the transition matrix obtained as described in the previous section, without having a
priori knowledge of the stationary distributions of the nodes in V −. Let δM = M−M′

denote the error matrix – note that δM matrix consists largely of zeros except for the
very last column corresponding to outgoing transitions from the dummy node.

Remember that the personalized PageRank scores, ~π, given transition matrix M can
be written as

~π = (1− β)M~π + β~s,

where β is the re-seeding probability and ~s is the re-seeding vector. Similarly, we have

~π′ = (1− β)M′~π′ + β~s,

for the approximate transition matrix M′.
Here we are interested to quantify δ~π = ~π − ~π′ which gives the errors in the

personalized PageRank scores due to the approximation. Let us, instead, consider the
δ~x = ~x− ~x′, where

~x = M~x and ~x′ = M′~x′;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 J. Kim et al

i.e., ~x and ~x′ are the steady-state distributions of the random walks based on the transi-
tion matrices M and M′, respectively. Since the seed nodes are, by construction, away
from the dummy node, the steady state distributions of the dummy node in ~x are likely
to be lower than that in ~π. However, as we have seen above, the approximation error
is due to the transitions originating from the dummy node into the nodes in V + – con-
sequently, we expect that errors in δ~x will be larger than the errors in δ~π. Therefore,
instead of studying δ~π directly, we can use δ~x to gauge the scale of the error in person-
alized PageRank scores.

Note that ~x and ~x′ are the eigenvectors with eigenvalue 1 of the transition matrices
M and M′, respectively. In general, we can formulate the eigenvalues and eigenvectors
of M and M′ as follows:

M~xh = λh~xh

and

M′~x′h = λ′h~x
′
h,

where λh is the hth largest eigenvalue and ~xh is the corresponding eigenvector. Since
both M and M′ correspond to random walk graphs, for both of them, the largest eigen-
value will be equal to 1. For convenience, let us assume the eigenvalues are ordered in
non-increasing order, such that λ1 = λ′1 = 1.

Let us first take the equation M′~x′h = λ′h~x
′
h and expand it with replacing M′ with

M + δM, and ~x′ with ~x+ δ~x, and λ′ with λ+ δλ:

M~xh + δM~xh + Mδ~xh + δMδ~xh = λh~xh + λhδ~xh + δλh~xh + δλiδ~xh.

This becomes

δM~xh + Mδ~xh + δMδ~xh = λhδ~xh + δλh~xh + δλiδ~xh

after we cancel terms using M~xh = λh~xh. To enable further simplifications, let us
replace the term δ~xh with

∑R
l=1 αhl~xl, by mapping the error vector δ~xh to the vector

space defined by the R eigenvectors, ~xl, where 1 ≤ l ≤ R ≤ N = |V +| + 1. Here R
is the rank3 of the transition matrix M and αhl are constants that are to be determined.
After we replace the term δ~xh with its description in the eigenspace, we obtain

δM~xh + M

R∑
l=1

αhl~xl + δMδ~xh = λh

R∑
l=1

αhl~xl + δλh~xh + δλhδ~xh.

Since, M~xl = λl~xl, we can rewrite this as

δM~xh +

R∑
l=1

αhlλl~xl + δMδ~xh = λh

R∑
l=1

αhl~xl + δλh~xh + δλhδ~xh.

Assuming that the eigenvectors are normalized4 to length 1 and given that they are
mutually orthogonal, we can eliminate summations by left multiplying both sides of the
above equation by ~x>k :

~x>k δM~xh + αhkλk + ~x>k δMδ~xh = λhαhk + ~x>k δλh~xh + ~x>k δλhδ~xh.

3 If the rank of M is lower than the rank of M′, then we can formulate the error term δ~xh in terms of the
eigenvectors of M′ – the rest of the discussion would be modified accordingly.
4 This would simply scale the PageRank scores and their approximation errors proportionally.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 17

Moreover, since ~x′h = ~xh + δ~xh,

~x>k δM~x′h + αhkλk = λhαhk + ~x>k δλh~x
′
h.

Rearranging this for αhk, we get

αhk =
~x>k (δM− δλh)~x′h

λh − λk
, for k 6= h.

This, however, does not give us the value of αhh. To solve for αhh, we rely on the fact
that (as stated above) the eigenvectors are assumed normalized to be orthonormal:

(~x′h)>~x′h = (~xh + δ~xh)>(~xh + δ~xh) = (~x>h + δ~x>h)(~xh + δ~xh) = 1.

From this, we get

~x>h ~xh + δ~x>h ~xh + ~x>h δ~xh + δ~x>h δ~xh = 1.

Because ~x>h ~xh = 1, we can further simplify this as

δ~x>h ~xh + ~x>h δ~xh + δ~x>h δ~xh = 0.

Here the term ~x>h δ~xh can be further simplified into αhh by considering the mapping of
δ~xh into the vector space defined by the orthonormal eigenvectors:

~x>h δ~xh = ~x>h

R∑
l=1

αhl~xl = αhh.

Similarly, we can simplify the term δ~x>h ~xh into αhh by noting that δ~x>h ~xh is also equal
to ~x>h δ~xh. Consequently, we obtain the equality

2αhh + δ~x>h δ~xh = 0.

which leads to the following term for αhh:

αhh = −1

2
δ~x>h δ~xh.

Having solved for αhk for all values of h and k, we are now ready to replace the α terms
in the eigenspace representation of δ~xh,

δ~xh = αhh~xh +

R∑
l=1
l 6=h

αhl~xl,

with the corresponding α values:

δ~xh =

(
−1

2
δ~x>h δ~xh

)
~xh +

R∑
l=1
l 6=h

(
~x>l (δM− δλh)~x′h

λh − λl
)~xl.

Note that this enables us quantify the error in all eigenvectors of the transition matrix.
However, we are interested only in the amount of error in the eigenvector corresponding
to the eigenvalue equal to 1:

δ~x = δ~x1 =

(
−1

2
δ~x>1 δ~x1

)
~x1 +

(
R∑
l=2

~x>l δM~x′1
1− λl

~xl

)
.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 J. Kim et al

Note that the term δλ1 disappeared as, when h = 1, both M and M′ have their largest
eigenvalue equal to 1; i.e., δλ1 = 1 − 1 = 0. Moreover, since the term δ~x>1 δ~x1 is the
square of the L2 norm of the error vector (which is the difference of two vectors, each
normalized to length 1), δ~x will be dominated by the second term:

δ~x ∼
R∑
l=2

~x>l δM~x′

1− λl
~xl =

R∑
l=2

Θl~xl

From this formulation of the error vector, δ~x, we can deduce the following: First of all,
the magnitude of Θl (and consequently that of the error) depends on the separation of
the largest eigenvalue (i.e., 1) and the other eigenvalues of the transition matrix M. In
fact, if for any l > 1, the eigenvalue is very close to 1 (i.e., λl ∼ λ1 = 1), then Θl and
the overall error can be large.

Otherwise, the value of Θl depends mostly on the magnitude of the term δM~x′ in
the numerator, which can be summarized as a vector, ~ε, where all entries except for
those corresponding to nodes that have incoming edges from the dummy node are 0.
For those nodes that have incoming edges from the dummy node, ~ε records the steady-
state probability of the dummy node, multiplied with the error in the corresponding
edge transition probabilities. Consequently, ~ε consists mostly of 0s and values close to
0; when this vector is multiplied by ~x>l (which is transpose of a vector normalized to 1)
to obtain the contribution of the eigenvector ~xl to the overall error, δ~x, this will result
in a small Θl – and hence a small error contribution.

2.5.2. Accuracy Loss due to the Use of Low Rank Approximation

As described earlier, the second source of loss of accuracy is due to the use of low rank
approximation when decomposing the compensation matrix M0, for example (with-
out loss of generality) using the graph partitioning approach presented by Tong et
al (2006b). In their paper authors argue that, under certain strict conditions, given an
N ×N transition matrix W, if a low rank approximation, ~̂π, of the corresponding per-
sonalized PageRank scores, ~π, is obtained by partitioning the corresponding graph into
t partitions, then the corresponding error, ‖~π − ~̂π‖2, can be shown to be inversely pro-
portional to 1 − λi (for i > 1) where λi is the ith largest eigenvalue of W. While this
observation is well aligned with our error analysis described in the previous section, the
conditions described in (Tong et al, 2006b) do not perfectly reflect our case. Therefore,
in this subsection, we will reanalyze the error due to the low rank approximation of the
compensation matrix M0.

Recall from previous section that the personalized PageRank scores, ~π, given tran-
sition matrix M can be written as

~π = (1− β)M~π + β~s,

where β is the re-seeding probability and ~s is the re-seeding vector. In approach, we
replace the original transition matrix M with

Mapx = Mbd + M0,

where Mapx is the transition matrix obtained by collapsing nodes in V − into a single
dummy node, Mbd is a block diagonal matrix and M0 is a compensation matrix. The
low rank approximation is then applied on M0. Let us denote the perturbation caused
by the low rank approximation on M0 as δM0; i.e., instead of Mapx, we need to use

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 19

M′
apx, where

M′
apx = Mbd + M0 + δM0 = Mapx + δM0.

Consequently, we can write the equation for the personalized PageRank scores as

~π′ = (1− β) (Mapx + δM0)~π + β~s.

Note that, in the extreme case, the perturbation δM0 may be such that it isolates the
seed nodes (by removing all the edges from seeds to the others), effectively nullifying
the transition matrix, resulting in ~π′ = β~s. In general, the more the perturbations on
the transition matrix due to the low rank approximation of M0 are correlated with the
seeds, the higher will be the error. Therefore, in the rest of the discussion, we will focus
on the error independent of the seeds; i.e., we will aim to quantify δ~x = ~x− ~x′, where

~x = Mapx~x and ~x′ = (Mapx + δM0)~x′.

Note that this formulation of the error due to the low rank approximation, as a pertur-
bation on the transition matrix, is analogous to the formulation of the error due to the
clustering of the nodes in V − into a single node discussed in the previous subsection.
In both cases, the transition matrix is perturbed with a small perturbation matrix – the
difference between the two cases is that in the case discussed in the previous section,
the perturbations are structurally localized in the graph and are guaranteed to result in a
random walk matrix, whereas in the case of perturbations due to low rank approxima-
tion, perturbations may be distributed across the entire matrix and Mapx + δM0 may
not be a random walk matrix. Given these, (following similar steps) we can derive the
following expression for the error, δ~x:

δ~x ∼
R∑
l=2

~x>l (δM− δλ1)~x′

1− λl
~xl,

where R is the number of eigenvectors of Mapx and λl is the lth largest eigenvalue and
~xl is the corresponding eigenvector.

Note that, unlike the error term in the previous subsection, here the term δλ1 may
not disappear; this is because, while Mapx has its largest eigenvalue equal to 1, this may
not be the case for Mapx + δM0, which may not be a random walk matrix.

From this formulation of the error vector, δ~x, we can deduce the following: First of
all, as before (and as also observed by Tong et al (2006b), though under different con-
ditions), the magnitude of the error depends on the separation of the largest eigenvalue
(i.e., 1) and the other eigenvalues of the transition matrix.

Secondly, the magnitude of the error depends on the magnitude of the term δM0~x
′

in the numerator. Since the entries in ~x′ are likely to be larger for the nodes with high
PageRank scores in the graph defined by Mapx, this implies that the magnitude of the
error depends on how correlated the perturbations on the compensation matrix (due to
its low rank approximation) are with the nodes with high PageRank scores. In general,
however, if the compensation matrix is low rank, we expect a small δM0 (which consists
mostly of 0s and values close to 0) which would lead to a small overall error.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 J. Kim et al

3. Complexity and Re-use

We can divide the work underlying the LR-PPR algorithm into five sub-tasks, each
processed using only local nodes and edges:

Sub-task 1. The preparatory step in which the localities of the seeds are identified. The
computational cost of this depends on the definition of locality. But, in general, the cost
of this is linear in the size of the network G+; i.e., O(‖G+‖), where ‖G+‖ � ‖G‖.
Note that the work in this sub-task is entirely re-usable.

Next, the combined local transition matrix, Mbd, and the compensation matrix, M0,
are computed:

Sub-task 2a. Assuming a sparse matrix representation, computation and storage of the
combined local transition matrix, Mbd, takes O(

∑
1≤l≤K ‖Gl‖) time and space. Note

that (while the matrix Mbd is not re-usable, unless the same set of seeds are provided)
the constituting matrices M1 through MK are re-usable.

Sub-task 2b. With a sparse representation, computation and storage of the compensa-
tion matrix takes O(K ×max in degree× ‖V ‖+ (‖E‖ −

∑
1≤l≤K ‖El‖)) time and

space:

1. Row/column indexing: This takes O(
∑

1≤l≤K ‖Vl‖) time.
2. Identification of common nodes (i.e., equivalence classes): To locate the common

nodes and to create the equivalence classes, we need to go over each node once and
see if the node occurs in which of the remaining K − 1 localities. Thus, assuming a
hash-based implementation, this step takes O(

∑
1≤l≤K ‖Vl‖) to identify the equiva-

lence classes.
3. Identification of outgoing boundary edges: In order to identify the outgoing boundary

edges, we go over the nodes in V1 through VK and check if their outgoing edges are to
a node within the same locality or not. If not, we check whether it is to a node within
V + or not; if it is to a node in V +, then the edge is labeled as an outgoing boundary
edge among localities, otherwise, it is labeled as an outgoing boundary edge to G−.
Assuming that the nodes are labeled with their equivalence classes in the previous
step, the cost of this operation is O(

∑
1≤l≤K

∑
v∈Vl

out(v)).
Note that, while the sub-task as a whole is not re-usable when the seed set changes,
the part of the work involving identification of the outgoing edges from an individual
locality is re-usable.

4. Identification of incoming boundary edges fromG−: In order to identify the incoming
boundary edges from G−, we go over the nodes in V1 through VK and check if their
incoming edges are from a node marked with an equivalence class label. If not, the
edge is from a node in G−. The cost of this operation is O(

∑
1≤l≤K

∑
v∈Vl

in(v)).
Note that, while the sub-task as a whole is not re-usable when the seed set changes,
the part of the work involving identification of the incoming edges into a single indi-
vidual locality from nodes outside of the locality is re-usable.

5. Compensation for the common nodes: Once the ‖V +‖ equivalence classes are iden-
tified, the edges in the localities’ incoming edges need to be rerouted (at most K
times), leading to O(K ×

∑
1≤l≤K ‖El‖) time cost in the worst case.

6. Compensation for the outgoing boundary edges: This step involves considering once
each outgoing boundary edge. Since all necessary information can be collected during
the earlier identification pass (Subtask 2b. 3), the worst case time complexity of this
operation is the same as that of the corresponding identification step.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 21

7. Compensation for the incoming boundary edges: This step involves considering once
each incoming boundary edge identified earlier. For each vertex, v, with one or more
incoming edges, we create an edge whose weight captures the out-degrees of all
corresponding external source nodes. Assuming that all nodes in the graph have been
annotated with their out-degrees during a pre-processing step, the worst-case time
complexity is the same as that of the corresponding identification step (Subtask 2b. 4).

8. Compensation for the edges in G−: In the first look, it appears that this step cannot
be executed without considering all nodes in V −. However, this is not true: First
of all, assuming that we know ‖V ‖, we can compute ‖V −‖ using ‖V ‖ and ‖V +‖.
Secondly, the term

∑
v∈V − out(G

−, v)/out(G, v) can be rewritten as

∑
v∈V

out(G, v)

out(G, v)
−
∑

v∈V +

out(G+, v)

out(G, v)
−

∑
〈v → vj〉 ∈

(inbound(G+)∪

outbound(G+))

1

out(G, v)
,

where inbound(G+) and outbound(G+) are the incoming and outgoing edges to
G+, both of which have been computed in earlier steps. Also, the first term is simply
‖V ‖. Thus, this step can be computed using only local information, in worst-case time
complexity the same as the identification steps (Subtask 2b. 3 and Subtask 2b. 4).

Sub-task 3. Next, the Q−1bd matrix is obtained. The execution cost of this step is
O(
∑

1≤l≤K matrix inversion cost(Ml)). There exists a O(n2.373) algorithm for
matrix inversion (Williams, 2011), where n × n is the dimensions of the input matrix.
Thus, we can rewrite the execution cost as O(

∑
1≤l≤K ‖Vl‖2.373). Assuming a sparse

matrix representation, we need O(
∑

1≤l≤K ‖Vl‖2) space to store the resulting matrix
Q−1bd . Note that the work in this sub-task is, again, entirely re-usable.

Sub-task 4. Next, the compensation matrix, M0 is decomposed. While exact matrix
decomposition is expensive, we use highly efficient approximate low-rank (r) decom-
position (Tong et al, 2006b), which leverages sparsity of M0, where r is the selected
rank.

Sub-task 5. The matrix, Λ, is obtained. The matrix multiplications and inversions in
this step take O(r2.373 + r × ‖V +‖2 + r2 × ‖V +‖) time, where r is the selected rank.

Sub-task 6. Finally, ~φapx of PPR scores is computed through matrix multiplications in
O(r × ‖V +‖2 + r2 × ‖V +‖) time.

Summary. This cost analysis points to the following advantages of the LR-PPR: First
of all, computation is done using only local nodes and edges. Secondly, most of the
results of the expensive sub-tasks 1, 2, and 3 can be cached and re-used. Moreover,
costly matrix inversions are limited to the smaller matrices representing localities and
small matrices of size r × r.

It is important to note that various subtasks have complexity proportional to ‖V +‖2,
where ‖V +‖ =

∑
1≤l≤K ‖Vl‖. While in theory the locality Vl can be arbitrarily large,

in practice we select localities with a bounded number of nodes; i.e., ∀1≤l≤K , ‖Vl‖ ≤ L
for some L� ‖V ‖.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 J. Kim et al

4. Optimizations

The LR-PPR scheme involves: (a) initialization (where localities are identified and the
local transition and compensation matrices are computed); (b) local transition matrix
inversion, and (c) compensation matrix decomposition, r× r matrix inversion, and PPR
computation. As mentioned above, tasks for (a) and (b) are cacheable and re-usable,
whereas decomposition needs to be executed in query time. In this section, we discuss
various optimization and parallelization opportunities.

4.1. Locality Selection

In the initialization phase of the algorithm, the first task is to identify localities for the
given seed nodes (if they are not already identified and cached). A locality graph con-
sists of a set of graph nodes that are nearby or otherwise related to a seed node. Note
that localities can be distance-constrained or size-constrained. Common definitions in-
clude h-hop neighborhoods (Boldi et al, 2011; Cohen et al, 2003; Wei, 2010; Xiao
et al, 2009; Zhou et al, 2009), reachability neighborhoods (Cohen et al, 2003),
cluster/partition neighborhoods (Feige et al, 2005; Karypis and Kumar, 1998; New-
man, 2006), or hitting distance neighborhoods (Chen et al, 2008; Mei et al, 2008). One
straight-forward way to identify the locality of a seed node n is to perform breadth-first
search around n to locate the closest L nodes in linear time to the size of the local-
ity. Alternatively, one can use neighborhood indexing algorithms, such as INI (Kim et
al, 2012), to identify the neighborhood of a given node in a way that captures topological
characteristics (e.g., density of the edges) of the underlying graph.

4.2. Caching

As described above LR-PPR algorithm supports caching and re-use of some of the in-
termediary work. Sub-tasks 1 and 2 result in local transition matrices, each of which can
be cached in O(‖El‖) space (where El is the number edges in the locality) assuming a
sparse representation. Sub-task 3, on the other hand, involves a matrix inversion, which
results in a dense matrix; as a result, caching the inverted matrix takes O(‖Vl‖2) space
(where Vl is the number of vertices in the locality). If the locality is size-constrained,
this leads to constant space usage of O(L2), where L is the maximum number of nodes
in the locality. If the inverted matrix of a locality is cached, then the local transition
matrix does not need to be maintained further. Once the cache-space is full, we need
to either push the cached inverted matrices into the secondary storage or drop some ex-
isting cached results from the memory. For cache replacement, any frequency-based or
predictive cache-replacement policy can be used.

4.3. Parallelization Opportunities

Sub-task 1, which involves identifying localities of the seeds, is highly parallelizable:
each seed can be assigned to a different processing unit; and the locality search can be
parallelized through graph partitioning. If being leveraged, the INI algorithm (which
relies on hash signatures) is highly parallelizable through signature partitioning (Kim
et al, 2012). Sub-task 2, which involves construction of the local transition matrices
and the compensation matrix is also parallelizable. Different localities and edges can be

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 23

Table 1. Data sets
Data Set Overall Graph Characteristics Locality Graph Characteristics

nodes # edges # nodes per neighborhood # edges per neighborhood
Epinions ∼76K ∼500K from ∼200 to ∼2000 from ∼10K to ∼75K
SlashDot ∼82K ∼870K from ∼700 to ∼5000 from ∼10K to ∼75K
WikiTalk ∼2.4M ∼5M from ∼700 to ∼6000 from ∼10K to ∼75K

LiveJournal ∼4.8M ∼69M from ∼900 to ∼6000 from ∼10K to ∼75K
Data Set Seeds

seeds seed distances (hops)
Epinions 2-3 3-4
SlashDot 2-3 3-4
WikiTalk 2-3 3-4

LiveJournal 2-3 3-4

mapped to different servers for parallel processing. Sub-task 3, which involves matrix
inversion of the local transition matrices is also parallelizable: different local matri-
ces can be assigned to different processors; moreover, each matrix inversion itself can
be parallelized (Pease, 1967). Sub-task 4 involves decomposition of the compensation
matrix M0. Since M0 is sparse, this step can also be parallelized effectively (Gupta
et al, 1997). Finally, Sub-tasks 5 and 6 involve matrix multiplications and inversions.
As discussed above, matrix inversion operation can be parallelized. Similarly, there
are well-known classical algorithms for parallelizing matrix multiplication (Gunnels
et al, 1998).

5. Experimental Evaluation

In this section, we present results of experiments assessing the efficiency and effec-
tiveness of the Locality-Sensitive, Re-use Promoting Approximate Personalized PageR-
ank (LR-PPR) algorithm. Table 1 provides overviews of the four data sets (from
http : //snap.stanford.edu/data/) considered in the experiments. We considered
graphs with different sizes and edge densities. We also varied numbers of seeds and the
distances between the seeds (thereby varying the overlaps among seed localities). We
also considered seed neighborhoods (or localities) of different sizes.

Unless otherwise specified, experiments were carried out using a 4-core Intel Core
i5-2400, 3.10GHz, machine with 1024 KB L2 cache size, 6144 KB L3 cache size,
8GB memory, and 64-bit Windows 7 Enterprise. Codes were executed using Matlab
7.11.0(2010b). All experiments were run 10 times and averages are reported.

5.1. Alternative Approaches

In this section, we consider the following approaches to PPR computation:

– Global PPR: This is the default approach where the entire graph is used for PPR
computation. We compute the PPR scores by solving the equation presented in Sec-
tion 1.1.

– FastRWR: This is an approximation algorithm, referred to as NB LIN in (Tong et
al, 2006b). The algorithm reduces query execution times by partitioning the graph
into subgraphs and preprocessing each partition. The pre-computed files are stored
on disk and loaded to the memory during the query stage.

– GMRES-PPR: This is a recent alternative for computing PPR scores effi-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 J. Kim et al

ciently (Maehara et al, 2014). We compare the PPR results obtained by our proposed
algorithms’ to those provided by GMRES-PPR5, both in execution time and accuracy.

– L-PPR: This is our locality sensitive algorithm, where instead of using the whole
graph, we use the localized graph created by combining the locality nodes and edges
as described in Section 2.2. Once the localized transition matrix is created, the PPR
scores are computed by solving the equation presented in Section 1.1.

– LR-PPR: This is the locality sensitive and re-use promoting algorithm described in
detail in Section 2.4.

In the experiments, we set the restart probability, β, to 0.15 for all approaches.

5.2. Evaluation Measures

We consider three key evaluation measures:

– Efficiency: This is the amount of time taken to load the relevant (cached) data from
the disk plus the time needed to carry out the operations to obtain the PPR scores.

– Accuracy: For different algorithm pairs, we report the Spearman’s rank correlation∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
,

which measures the agreement between two rankings (nodes with the same score are
assigned the average of their positions in the ranking). Here, x and y are rankings
by two algorithms and x̄ and ȳ are average ranks. To compute the rank coefficient,
a portion of the highest ranked nodes in the merged graph according to x are con-
sidered. As default, we considered 10% highest ranked nodes; but we also varied the
target percentage (5%, 10%, 25%, 50%, 75%) to observe how the accuracy varies
with result size.

– Memory: We also report the amount of data read from the cache.

5.3. Results and Discussions

5.3.1. Proposed Algorithms (L-PPR and LR-PPR) versus FastRWR and
GMRES-PPR

In our experiments, we compared the proposed algorithms against FastRWR and
GMRES-PPR.

Settings. GMRES-PPR takes a bag size (d) as input parameter. Authors show that the
algorithm runs faster when the value of d is smaller. In our experiments, we set d =
10 – a relatively small value that leads to fast executions for GMRES-PPR as shown
in (Maehara et al, 2014). Unfortunately, even with this small value of d, GMRES-PPR
did not successfully complete its preprocessing phase. In particular, the LU step of the
process failed for the large data set, even when we repeated the experiment with an
alternative, substantially better hardware involving an 8-core Intel Core i7-4770, 3.40
GHz machine with 32.0 GB memory and 1024 L2Cache and 8192 Cache size.

Similarly, FastRWR takes as input the number, t, of partitions, which impacts its

5 We obtained the source code for the preprocessing phase for this algorithm from the authors.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 25

Table 2. FastRWR settings and impact on its performance: In our experiments, we
compared the proposed algorithms against FastRWR (Tong et al, 2006b). To ensure
that our comparison is fair to FastRWR (Tong et al, 2006b), we selected the number
of FastRWR partitions in a way that minimizes its execution time and memory and
maximizes its quality. This table shows the FastRWR performance for different data
sets and configurations; the bold entries correspond to the high accuracy low time and
memory configuration selected for the experiments in this section.

Data Set # part. Time (sec.) Top-10 Memory
Disk I/O In-Memory Sp. Correl. (MB)

Epinions 3 18.02 0.58 0.96 1547
∼76K nodes 40 0.22 0.04 0.97 178
∼500K edges 400 0.15 0.03 0.95 140

1000 0.16 0.02 0.95 138
SlashDot 3 Out of memory in Q−1

1 calculation
∼82K nodes 10 0.79 0.23 0.96 616
∼870K edges 40 0.40 0.08 0.96 302

400 0.27 0.05 0.92 244
1000 0.28 0.04 0.95 250

WikiTalk 3 Out of memory in Q−1
1 calculation

∼2.4M nodes 40 Out of memory in Q−1
1 calculation

∼5M edges 200 Out of memory in Q−1
1 calculation

400 24.03 17.60 0.86 1454
1000 16.75 15.15 0.87 1429

LiveJournal 1000 Out of memory in Λ̂ calculation
∼4.8M nodes 3000 Out of memory in Λ̂ calculation
∼69M edges 5000 Out of memory in Λ̂ calculation

execution time, query time memory usage, as well as approximation quality. As shown
in Table 2, in our experiments, to be fair against FastRWR, we selected the number of
its partitions in a way that minimizes its execution time and memory and maximizes
its quality. Note that, especially for large data sets, FastRWR requires large number of
partitions to ensure that the intermediary metadata (which requires dense matrix repre-
sentation) fits into the available memory (8GB) and this negatively impacts accuracy.
For the LiveJournal data set, even with large number of partitions, the pre-computation
stage of FastRWR could not be completed due to memory requirements. To see whether
this phase could complete with a machine with better hardware specifications, we also
repeated the experiment with an alternative 8-core Intel Core i7-4770, 3.40 GHz ma-
chine with 32.0 GB memory and 1024 L2Cache and 8192 Cache size. Unfortunately,
FastRWR ran out of memory even with this substantially better hardware.

Execution Time: Table 3 presents execution time results for FastRWR, GMRES-PPR,
L-PPR, LR-PPR, as well as Global PPR on two different locality graph sizes (10K and
75K edges, respectively).

First of all, we see that all four algorithms are much faster than Global PPR. As Ta-
ble 3 shows, when the seed locality graph size is small, L-PPR and LR-PPR significantly
outperform FastRWR and GMRES-PPR.

We also see that, the major contributor on the execution times of L-PPR and LR-
PPR is not the size of the whole graph but the size of the merged network of localities.
Since locality graphs are generally small relative to the size of the whole graph, L-PPR
and LR-PPR can be calculated very efficiently.

In small data sets (Epinions and Slashdot) FastRWR and GMRES-PPR work
slightly faster than L-PPR and LR-PPR when we consider the large locality size (75K
edges per locality) In large data sets (WikiTalk), however, both L-PPR and LR-PPR

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26 J. Kim et al

Table 3. Execution time results for different algorithms and configurations
Seeds Merged Network Execution Time (sec.)

Data set # # Avg Avg Global Fast GMRES- L- LR-
seeds hops # nodes # edges PPR RWR PPR PPR PPR

Seed Localities with∼10K Edges
Epinions 2 3 ∼0.7K ∼17K 26.44 0.20 0.12 0.05 0.03
∼76K nodes 2 4 ∼0.6K ∼15K 28.06 0.21 0.12 0.05 0.04
∼500K edges 3 3 ∼0.7K ∼19K 30.40 0.22 0.12 0.07 0.04

3 4 ∼0.8K ∼20K 30.36 0.22 0.12 0.17 0.05
SlashDot 2 3 ∼1.3K ∼15K 21.56 0.34 0.20 0.08 0.07
∼82K nodes 2 4 ∼1.9K ∼17K 21.96 0.34 0.18 0.08 0.07
∼870K edges 3 3 ∼1.8K ∼19K 22.25 0.35 0.18 0.10 0.09

3 4 ∼2.5K ∼25K 22.54 0.35 0.19 0.15 0.10
WikiTalk 2 3 ∼4.1K ∼19K 677.32 17.18 0.39 0.23 0.21
∼2.4M nodes 2 4 ∼4.8K ∼20K 741.08 16.51 0.40 0.29 0.26
∼5M edges 3 3 ∼4.4K ∼24K 709;35 16.71 0.42 0.34 0.31

3 4 ∼5.2K ∼29K 763.10 16.61 0.41 0.37 0.21
LiveJournal 2 3 ∼2.0K ∼19K - - - 0.16 0.17
∼4.8M nodes 2 4 ∼0.9K ∼20K - - - 0.24 0.22
∼69M edges 3 3 ∼3.0K ∼30K - - - 0.21 0.19

3 4 ∼1.0K ∼30K - - - 0.26 0.18
Seed Localities with∼75K Edges

Epinions 2 3 ∼2.2K ∼90K 26.44 0.21 0.12 0.37 0.14
∼76K nodes 2 4 ∼3.0K ∼99K 27.58 0.22 0.12 0.51 0.20
∼500K edges 3 3 ∼2.7K ∼108K 27.30 0.21 0.12 0.58 0.26

3 4 ∼3.5K ∼120K 27.90 0.22 0.12 0.76 0.36
SlashDot 2 3 ∼5.9K ∼117K 21.79 0.35 0.20 0.70 0.53
∼82K nodes 2 4 ∼5.7K ∼125K 21.85 0.35 0.18 0.78 0.42
∼870K edges 3 3 ∼7.1K ∼141K 21.74 0.36 0.18 1.12 0.95

3 4 ∼7.2K ∼159K 22.93 0.38 0.19 1.39 0.83
WikiTalk 2 3 ∼5.7K ∼102K 681.08 16.28 0.39 0.75 0.37
∼2.4M nodes 2 4 ∼5.8K ∼100K 693.44 16.22 0.40 0.73 0.37
∼5M edges 3 3 ∼6.3K ∼101K 701.34 16.32 0.42 0.75 0.37

3 4 ∼6.7K ∼103K 706.26 16.34 0.41 0.78 0.36
LiveJournal 2 3 ∼7.9K ∼144K - - - 1.66 0.83
∼4.8M nodes 2 4 ∼2.9K ∼149K - - - 1.06 0.32
∼69M edges 3 3 ∼9.8K ∼207K - - - 3.05 1.01

3 4 ∼4.8K ∼213K - - - 2.63 0.57

significantly outperform FastRWR and LR-PPR takes less time than GMRES-PPR in
terms of query processing efficiency. An important observation is that, as described
earlier, the preprocessing phases of FastRWR and GMRES-PPR did not complete for
the very large LiveJournal data set, even on significantly boosted hardware setups. Our
proposed algorithms, however, successfully completed the preprocessing phase in the
original set up and provided very fast query execution times as reported in the table.

Memory Usage: As we see in Table 4, GMRES-PPR, L-PPR, and LR-PPR, all provide
significant gains relative to FastRWR in terms of memory usage.

When the localities consist of ∼ 10K edges, LR-PPR and GMRES-PPR have com-
parable memory requirements, while L-PPR outperforms all in terms of the run-time
memory needed during the on-line phase. When the localities are larger (75K edges),
on the other hand, L-PPR and GMRES-PPR have comparable memory requirements,
while LR-PPR needs more memory. As we see below, however, the lower memory re-
quirements of GMRES-PPR relative to LR-PPR come with a significant drawback in
terms of its accuracy relative to proposed algorithms.

Accuracy: Table 5 compares FastRWR, GMRES-PPR, L-PPR, and LR-PPR in terms
of accuracy. As we see in this table, the proposed locality sensitive techniques, L-PPR
and LR-PPR, constantly outperform FastRWR and GMRES-PPR and the accuracy gap
is especially large in large data sets, such as WikiTalk. This is because, for FastRWR,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 27

Table 4. Memory requirements for different algorithms and configurations
Seeds Merged Network Memory Usage (MB)

Data set # # Avg Avg Fast GMRES- L- LR-
seeds hops # nodes # edges RWR PPR PPR PPR

Seed Localities with∼10K Edges
Epinions 2 3 ∼2.2K ∼90K 0.63 4.40
∼76K nodes 2 4 ∼3.0K ∼99K 178.3 8.55 0.71 5.69
∼500K edges 3 3 ∼2.7K ∼108K 0.96 7.30

3 4 ∼3.5K ∼120K 1.03 8.09
SlashDot 2 3 ∼5.9K ∼117K 0.64 4.40
∼82K nodes 2 4 ∼5.7K ∼125K 302.1 12.16 1.43 16.66
∼870K edges 3 3 ∼7.1K ∼141K 2.08 27.92

3 4 ∼7.2K ∼159K 2.17 23.36
WikiTalk 2 3 ∼5.7K ∼102K 5.66 26.74
∼2.4M nodes 2 4 ∼5.8K ∼100K 1429.0 20.97 5.51 31.44
∼5M edges 3 3 ∼6.3K ∼101K 8.82 40.46

3 4 ∼6.7K ∼103K 8.49 76.08
LiveJournal 2 3 ∼2.0K ∼19K 1.70 23.55
∼4.8M nodes 2 4 ∼0.9K ∼20K - - 3.19 17.96
∼69M edges 3 3 ∼3.0K ∼30K 3.25 37.97

3 4 ∼6.7K ∼103K 3.64 22.71
Seed Localities with∼75K Edges

Epinions 2 3 ∼2.2K ∼90K 2.9 36.3
∼76K nodes 2 4 ∼3.0K ∼99K 178.3 8.55 3.1 55.2
∼500K edges 3 3 ∼2.7K ∼108K 4.6 57.6

3 4 ∼3.5K ∼120K 4.7 77.7
SlashDot 2 3 ∼5.9K ∼117K 5.0 228.1
∼82K nodes 2 4 ∼5.7K ∼125K 302.1 12.16 4.9 172.8
∼870K edges 3 3 ∼7.1K ∼141K 7.6 325.9

3 4 ∼7.2K ∼159K 7.2 256.0
WikiTalk 2 3 ∼5.7K ∼102K 15.5 114.5
∼2.4M nodes 2 4 ∼5.8K ∼100K 1429.0 20.97 16.2 120.7
∼5M edges 3 3 ∼6.3K ∼101K 24.0 211.6

3 4 ∼6.7K ∼103K 28.7 197.5
LiveJournal 2 3 ∼7.9K ∼144K 10.99 322.87
∼4.8M nodes 2 4 ∼2.9K ∼149K - - 8.24 68.10
∼69M edges 3 3 ∼9.8K ∼207K 15.12 374.91

3 4 ∼4.8K ∼213K 13.48 138.25

it tries to approximate the whole graph, whereas the proposed algorithms focus on the
relevant localities. As also discussed in Section 5.1, FastRWR requires large number of
partitions to ensure that the intermediary metadata (which requires dense matrix repre-
sentation) fits into memory and this negatively impacts accuracy. Our locality-sensitive
algorithms, L-PPR and LR-PPR, avoid this and provide high accuracy with low memory
consumption, especially in large graphs, like WikiTalk.

Figure 10 reconfirms that the accuracies of L-PPR and LR-PPR both stay high as we
consider larger numbers of top ranked network nodes for accuracy assessment, whereas
the accuracies of FastRWR and GMRES-PPR suffer significantly when we consider
larger portions of the merged locality graph.

A Detailed Look at the Execution Times, Accuracies, and Memory Usage of the
Alternative Approaches:
• Epinions Data Set: Figure 11 compares in further detail the execution times, accura-
cies, and amounts of data read by L-PPR, LR-PPR, FastRWR, and GMRES-PPR from
the cache per query as a function of the size of the merged locality network for differ-
ent seeds and target locality sizes of the Epinions data set. As the figure re-confirms,
L-PPR and LR-PPR provide significantly higher accuracies than other algorithms. LR-
PPR needs more space than L-PPR to fetch the cached localities for reuse, but it uses
this memory effectively to significantly reduce the execution time. The figure also re-
confirms the execution time results presented in Table 3: as the figure shows, the time

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28 J. Kim et al

Table 5. Accuracy results for different algorithms and configurations: note that, since
computation of the Global PPR (which is the ground truth for accuracy) is not feasible
for the very large Live Journal data set, we only include accuracy computations for the
other three data sets

Seeds Merged Network Top-10% Correl. (vs Global PPR)
Data set # # Avg Avg Fast GMRES- L- LR-

seeds hops # nodes # edges RWR PPR PPR PPR
Seed Localities with∼10K Edges

Epinions 2 3 ∼0.7K ∼17K 0.954 0.826 0.990 0.988
∼76K nodes 2 4 ∼0.6K ∼15K 0.959 0.825 0.992 0.993
∼500K edges 3 3 ∼0.7K ∼19K 0.958 0.823 0.991 0.986

3 4 ∼0.8K ∼20K 0.958 0.823 0.987 0.985
SlashDot 2 3 ∼1.3K ∼15K 0.921 0.810 0.984 0.958
∼82K nodes 2 4 ∼5.7K ∼125K 0.922 0.818 0.987 0.977
∼870K edges 3 3 ∼1.8K ∼19K 0.921 0.813 0.973 0.973

3 4 ∼2.5K ∼25K 0.921 0.818 0.982 0.974
WikiTalk 2 3 ∼4.1K ∼19K 0.868 0.853 0.957 0.983
∼2.4M nodes 2 4 ∼4.8K ∼20K 0.871 0,854 0.994 0.984
∼5M edges 3 3 ∼4.4K ∼24K 0.866 0.852 0.986 0.988

3 4 ∼5.2K ∼29K 0.855 0.852 0.973 0.964
Seed Localities with∼75K Edges

Epinions 2 3 ∼2.2K ∼90K 0.963 0.823 0.997 0.990
∼76K nodes 2 4 ∼3.0K ∼99K 0.960 0.824 0.998 0.990
∼500K edges 3 3 ∼2.7K ∼108K 0.967 0.826 0.998 0.990

3 4 ∼3.5K ∼120K 0.967 0.825 0.997 0.991
SlashDot 2 3 ∼5.9K ∼117K 0.955 0.816 0.973 0.990
∼82K nodes 2 4 ∼5.7K ∼125K 0.943 0.816 0.965 0.983
∼870K edges 3 3 ∼7.1K ∼141K 0.957 0.815 0.971 0.990

3 4 ∼7.2K ∼159K 0.958 0.815 0.976 0.986
WikiTalk 2 3 ∼5.7K ∼102K 0.868 0.851 0.958 0.944
∼2.4M nodes 2 4 ∼5.8K ∼100K 0.870 0.848 0.930 0.929
∼5M edges 3 3 ∼6.3K ∼101K 0.877 0.852 0.937 0.927

3 4 ∼6.7K ∼103K 0.869 0.851 0.976 0.967

0.97	
 0.94	
 0.93	

0.87	
 0.84	

0.96	
 0.95	

0.89	
 0.86	

0.80	

0.92	

0.85	

0.70	

0.49	

0.26	

0.92	

0.85	

0.68	

0.44	

0.24	

0.0	

0.5	

1.0	

5	
 10	
 25	
 50	
 75	

Sp
ea
rm

an
's	

co
rr
el
.	

top-­‐K%	

top-­‐K%	
 Spearman's	
 Corel.	
 against	
 Global	
 PPR	
 	

(WikiTalk,	
 3seeds,	
 4hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

Fig. 10. Accuracies of L-PPR, LR-PPR, FastRWR, and GMRES-PPR against the Global
PPR for different numbers of target nodes

cost increases for all algorithms as the number of seeds increases; but, the cost of LR-
PPR (which leverages re-use) increases much slower than the cost of L-PPR. In the
case of the Epinions data set, FastRWR works slightly faster than LR-PPR for large
numbers of seeds and larger neighborhoods; however, this comes with a significant loss
in accuracy and also higher memory usage than L-PPR and LR-PPR. Note that, since
FastRWR does not scale as well as L-PPR and LR-PPR with the overall graph size, this
slight execution time advantage of FastRWR also disappears in the case of large graphs

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 29

60%	

70%	

80%	

90%	

100%	

0	
 1000	
 2000	
 3000	
 4000	
 5000	

Co
rr
el
a3

on
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Spearman's	
 Rank	
 Correla3on	
 for	
 Top-­‐10%	
 nodes	
 	

(Epinions,	
 2	
 seeds,	
 dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

60%	

70%	

80%	

90%	

100%	

0	
 1000	
 2000	
 3000	
 4000	
 5000	

Co
rr
el
a'

on
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Spearman's	
 Rank	
 Correla'on	
 for	
 Top-­‐10%	
 nodes	
 	

(Epinions,	
 3	
 seeds,	
 dist~4hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

(a) Accuracies for 2 seeds, ∼ 3 hops (b) Accuracies for 3 seeds, ∼ 4 hops

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

0	
 1000	
 2000	
 3000	
 4000	
 5000	

to
ta
l	
 e
xe
c.
	
 *
m
e	

(s
ec
)	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

L-­‐PPR	
 vs	
 LR-­‐PPR	
 vs	
 FastRWR	
 vs	
 GMRESPPR	
 execu*on	

*me	
 for	
 #	
 of	
 nodes	
 (Epinions,	
 2	
 seeds,	
 dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

0	
 1000	
 2000	
 3000	
 4000	
 5000	

to
ta
l	
 e
xe
c.
	
 *
m
e	

(s
ec
)	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

L-­‐PPR	
 vs	
 LR-­‐PPR	
 vs	
 FastRWR	
 vs	
 GMRES-­‐PPR	
 execu*on	

*me	
 for	
 #	
 of	
 nodes	
 (Epinions,	
 3seeds,	
 dist~4hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

(c) Exec. times for 2 seeds, ∼ 3 hops (d) Exec. times for 3 seeds, ∼ 4 hops

0	

30	

60	

90	

120	

150	

180	

0	
 1000	
 2000	
 3000	
 4000	
 5000	

Ca
ch
ed

	
 d
at
a	

(M

B)
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Size	
 of	
 the	
 Cached	
 Data	
 Read	
 for	
 Computa>on	

(Epinions,	
 2	
 seeds,	
 dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

0	

30	

60	

90	

120	

150	

180	

0	
 500	
 1000	
 1500	
 2000	
 2500	
 3000	
 3500	
 4000	
 4500	
 5000	

Ca
ch
ed

	
 d
at
a	

(M

B)
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Size	
 of	
 the	
 Cached	
 Data	
 Read	
 for	
 Computa>on	

(Epinions,	
 3	
 seeds,	
 dist	
 4~hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

(e) Data for 2 seeds, ∼ 3 hops (f) Data for 3 seeds, ∼ 4 hops

Fig. 11. Performances of L-PPR, LR-PPR, FastRWR, and GMRES-PPR as a function
of the size of the combined localities network (Epinions data set) for different numbers
of seeds, selected at varying hop distances from each other

like WikiTalk (as was seen in Table 3 and also summarized in Figure 12). L-PPR and
LR-PPR may take more time than GMRES-PPR when the combined network of locali-
ties is large, however as we had also observed earlier, this comes with a significant loss
in accuracy.
• SlashDot Data Set: The results for the SlashDot data set (which have similar graph
structure as the Epinions data set; see Table 1) are similar to the Epinions results and,
hence, presented in the Appendix.
• WikiTalk Data Set: The WikiTalk data set however has a different structure and, thus,
we present the execution times, accuracies, and amounts of data read by L-PPR, LR-
PPR, FastRWR, and GMRES-PPR for the WikiTalk data set in Figure 13. The most

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30 J. Kim et al

0.01	

0.10	

1.00	

10.00	

100.00	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

Ti
m
e	

(s
ec
.)	

Execu.on	
 Times	
 	
 of	
 Different	
 Algorithms	
 for	
 Dat	
 Sets	
 of	

Different	
 Sizes	
 (WikiTalk,	
 ~10K,	
 3seeds,	
 ~4hops)	

Epinions(N:76K;E:500K)	
 Slashdot(N:82K,E:870K)	
 WikiTalk(N:2.4M,E:5M)	

Fig. 12. Execution times of the algorithms L-PPR, LR-PPR, FastRWR, and GMRES-
PPR for different data sets of varying sizes

important thing to recognize when comparing Figures 11 (for the Epinions data set)
and 13 (for the WikiTalk data set) is that when the graph is larger (i.e., for the WikiTalk
data set), the execution time gains of L-PPR and LR-PPR relative to other alglorithms
are even more pronounced. Similarly, as the problem size gets larger (e.g., WikiTalk
data, 3 seeds, ∼ 4 hops), the accuracy gains of L-PPR and LR-PPR relative to Fas-
tRWR and GMRES-PPR also become even more significant. This re-confirms that the
proposed locality-sensitive (and re-use promoting) techniques provide not only better
scalabilities, but also better accuracies than existing algorithms.
• LiveJournal Data Set: Since the overall pattern is similar to the others, we present the
execution times and amounts of data read for the LiveJournal data set in the Appendix.

5.3.2. Detailed Analysis of L-PPR and LR-PPR

As we have seen in Figure 10 and Tables 3 through 5, locality-sensitive and re-use
promoting LR-PPR constantly outperforms only locality-sensitive L-PPR (∼ 1.5× to
2×), while returning almost as accurate results.

Distribution of the Execution Times of L-PPR and LR-PPR. Figure 14 further in-
vestigates how the execution times of L-PPR and LR-PPR are distributed among their
sub-tasks. As predicted in Section 2.4, LR-PPR spends significant portions of its time
in loading data from the cache, reindexing nodes, and creating compensation matrices.
Creating the low-rank approximation of M0, computing the matrix Λ, and solving for
PPR scores take relatively little time.

Performances of LR-PPR as a Function of the Size of the Merged Locality Net-
work. Figure 15 shows the execution times, accuracy, and amount of data read by
LR-PPR from the cache per query as a function of the size of the merged locality net-
work. As the figure shows, the execution time (Figure 15(a)) tracks the amount of data
brought into the memory (Figure 15(b)), whereas the accuracy is relatively constant
(Figure 15(c)).

Impact of the Boundary Edges on the Performances of L-PPR and LR-PPR. Recall
from Section 2.2.3, Figures 8 and 9, that the merged graph represents nodes outside of
the seed localities using a single combined node, which is then connected to the nodes
in the seed localities, with outgoing and incoming boundary edges. Figure 16 shows the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 31

75%	

80%	

85%	

90%	

95%	

100%	

0	
 2000	
 4000	
 6000	
 8000	
 10000	
 12000	
 14000	

Co
rr
el
a2

on
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Spearman's	
 Rank	
 Correla2on	
 for	
 Top-­‐10%	
 nodes	
 	

(WikiTalk,	
 2	
 seeds,	
 dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

75%	

80%	

85%	

90%	

95%	

100%	

0	
 2000	
 4000	
 6000	
 8000	
 10000	
 12000	
 14000	

Co
rr
el
a2

on
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Spearman's	
 Rank	
 Correla2on	
 for	
 Top-­‐10%	
 nodes	
 	

(WikiTalk,	
 3	
 seeds,	
 dist~4hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

(a) Accuracies for 2 seeds, ∼ 3 hops (b) Accuracies for 3 seeds, ∼ 4 hops

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0	
 2000	
 4000	
 6000	
 8000	
 10000	
 12000	
 14000	

to
ta
l	
 e
xe
c.
	
 0
m
e	

(s
ec
)	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

L-­‐PPR	
 vs	
 LR-­‐PPR	
 vs	
 FastRWR	
 vs	
 GMRES-­‐PPR	
 execu0on	

0me	
 for	
 #	
 of	
 nodes	
 (WikiTalk,	
 2	
 seeds,	
 dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0	
 2000	
 4000	
 6000	
 8000	
 10000	
 12000	
 14000	

to
ta
l	
 e
xe
c.
	
 0
m
e	

(s
ec
)	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

L-­‐PPR	
 vs	
 LR-­‐PPR	
 vs	
 FastRWR	
 vs	
 GMRES-­‐PPR	
 execu0on	

0me	
 for	
 #	
 of	
 nodes	
 (WikiTalk,	
 3	
 seeds,	
 dist~4hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

(c) Exec. times for 2 seeds, ∼ 3 hops (d) Exec. times for 3 seeds, ∼ 4 hops

0	

200	

400	

600	

800	

1,000	

1,200	

1,400	

1,600	

0	
 2000	
 4000	
 6000	
 8000	
 10000	
 12000	
 14000	

Ca
ch
ed

	
 d
at
a	

(M

B)
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Size	
 of	
 the	
 Cached	
 Data	
 Read	
 for	
 ComputaEon	

(WikiTalk,	
 2	
 seeds,dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

0	

200	

400	

600	

800	

1,000	

1,200	

1,400	

1,600	

0	
 2000	
 4000	
 6000	
 8000	
 10000	
 12000	
 14000	

Ca
ch
ed

	
 d
at
a	

(M

B)
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Size	
 of	
 the	
 Cached	
 Data	
 Read	
 for	
 ComputaEon	

(WikiTalk,	
 3	
 seeds,	
 dist~4hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

(e) Data for 2 seeds, ∼ 3 hops (f) Data for 3 seeds, ∼ 4 hops

Fig. 13. Performances of L-PPR, LR-PPR, and FastRWR as a function of the size of the
combined localities network (WikiTalk data set) for different numbers of seeds, selected
at varying hop distances from each other

impact of the amount of edges at this boundary. As the figure shows, for a fixed merged
locality graph size, the larger the number of boundary edges, the higher the execution
times for both L-PPR and LR-PPR; moreover, the larger the merged graph, the faster the
increase in the cost. However, the figure also shows that LR-PPR is much less affected
from the boundary edges than the basic L-PPR.

Figure 17 confirms the impact of the boundary edges on a second data set. As we
have seen in Tables 3 through Table 5, for the SlashDot data set, LR-PPR shows a
slightly different behavior than for Epinions and WikiTalk data sets: while LR-PPR
still outperforms basic L-PPR, the difference is smaller under some configurations. Fig-
ure 17(a) and (b) explain the reason in terms of the ratio of the boundary edges: in the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32 J. Kim et al

Combine	
 all	

subgraphs	

9%	

Reindex	
 of	

node	
 ids	

32%	

Create	
 a	

transi:on	

matrix	

2%	

Calcula:ng	

PPR	

56%	

Load	
 from	

cache	

1%	

L-­‐PPR	
 Execu:on	
 (Epinions,	
 2seeds,	
 dist~4hops,	

300	
 to	
 2000	
 nodes	
 per	
 neighborhood)	

(a) L-PPR

Load	
 from	
 cache	

25%	

Compensa3on	

matrices	

26%	

Reindex	
 and	

remove	
 duplicates	

21%	

Obtain	
 Qbd
-­‐1	

15%	

Calculate	
 low	
 rank	

approxima3on	

1%	

Calculate	
 Lambda	

4%	

Calculate	
 PPR	

8%	

LR-­‐PPR	
 	
 Execu3on	
 Overview	
 (Epinions,	
 2seeds,	
 	
 dist~4hops,	
 	

300	
 to	
 2000	
 nodes	
 per	
 neighborhood)	

(b) LR-PPR

Fig. 14. Distribution of the execution times for L-PPR and LR-PPR for the Epinions
data set

SlashDot data set, when the seeds are close (i.e., when localities overlap significantly),
the boundary edges are relatively few and the impact of the boundary edges are sim-
ilar for both LR-PPR and L-PPR; when the seeds are further away, on the other hand
there are more boundary edges and LR-PPR’s effectiveness in dealing efficiently with
the boundary edges becomes more pronounced. Thus, since the accuracy is not affected
and stays high for both LR-PPR and L-PPR, the ratio of the boundary edges in the
merged graph can be used as an indicator for when to use LR-PPR and when to simply
leverage basic locality-sensitive L-PPR.

Parallelization of the Off-line Process. As we see in Section 4.3, there are various
opportunities for parallelization of the tasks involved in the off-line and on-line steps of
L-PPR and LR-PPR.

One of the costliest steps of the process is Sub-Task 1, which is the generation of
the locality graphs and calculation of Q−1h for the seed nodes. Figure 18 shows the
execution time of this sub-task with and without parallelization. In this figure, ’no-
parallel’ refers to the situation where all available cores of the machine are used during
the calculation of this step, but without explicit parallelization of the steps. ’1 core’ to ’4
cores’ refer to scenarios where different numbers of cores are assigned to an explicitly

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 33

(a) Execution times for LR-PPR

(b) Data read into the buffer for LR-PPR

(c) Accuracy for LR-PPR

Fig. 15. Performance of LR-PPR as a function of the size of the combined localities
network (Epinions data set, 3 seeds,∼4 hops): execution time of the LR-PPR is propor-
tional to the data read from the cache

parallelized implementation of this step. As we see in this figure, as we allocate more
cores 6, explicitly parallelized implementations are able to pull the execution times down
for all data sets and all locality sizes.

6 For the Epinions, SlashDot, and WikiTalk data sets, we used a machine with 4 cores, 8GB memory, 1024
KB L2 cache, and the 6144 KB L3 cache. For the much larger LiveJournal data set, we used a machine
with 8 cores, 32GB memory, 1024 KB L2 cache, and the 8192 KB L3 cache. With lesser cache space, the
parallelization lost its effectiveness for the LiveJournal data set.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34 J. Kim et al

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	

to
tal

	
 ex
ec
.	
 *

me
	
 (s
ec
)	

#	
 of	
 boundary	
 edges	
 /	
 #of	
 edges	
 in	
 the	
 merged	

neighborhood	

	
 L-PPR	
 vs	
 LR-­‐PPR	
 (Epinions,	
 3	
 seeds,dist~4hops)	

L-PPR	
 LR-­‐PPR	

Fig. 16. The impact of the ratio of the boundary edges on the execution time for L-PPR
and LR-PPR (Epinions, 3 seeds, with distance∼ 4 hops): the larger the ratio of boundary
edges, the higher the execution times for both L-PPR and LR-PPR; but, LR-PPR is less
affected from the ratio of the boundary edges than the basic L-PPR

(a) effect of the boundary for 3 seeds, ∼3 hops

(b) effect of the boundary for 3 seeds, ∼4 hops

Fig. 17. Impact of the boundary edges for the SlashDot data set (3 seeds): note that in
the SlashDot data set, when the seeds are close (a) the boundary edges are relatively
fewer

6. Conclusions

In this paper, we presented a Locality-sensitive, Re-use promoting, approximate Person-
alized PageRank (LR-PPR) algorithm for efficiently computing the PPR values relying
on the localities of the seed nodes on the graph. Instead of performing a monolithic com-
putation for the given seed node set using the entire graph, LR-PPR divides the work

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 35

0	

5	

10	

15	

20	

25	

30	

35	

No	
 parallel	
 1	
 core	
 2	
 cores	
 3	
 cores	
 4	
 cores	

to
ta
l	
 e
xe
c.
	
 4
m
e	

(s
ec
)	

Offline	
 Parallel	
 Execu4on	
 Time	
 on	
 Different	
 #	
 of	
 Cores	

and	
 Subgraph	
 Sizes	
 (Epinions)	

10000	
 25000	
 50000	
 75000	

0	

20	

40	

60	

80	

100	

No	
 parallel	
 1	
 core	
 2	
 cores	
 3	
 cores	
 4	
 cores	

To
ta
l	
 e
xe
c.
	
 6
m
e	

(s
ec
)	

Offline	
 Parallel	
 Execu6on	
 Time	
 on	
 Different	
 #	
 of	
 Cores	

and	
 Subgraph	
 Sizes	
 (Slashdot)	

10000	
 25000	
 50000	
 75000	

(a) Exec. times for Epinions data set (b) Exec. times for Slashdot data set

0	

20	

40	

60	

80	

100	

120	

140	

No	
 parallel	
 1	
 core	
 2	
 cores	
 3	
 cores	
 4	
 cores	

to
ta
l	
 e
xe
c.
	
 5
m
e	

(s
ec
)	

Offline	
 Parallel	
 Execu5on	
 Time	
 on	
 Different	
 #	
 of	
 Cores	

and	
 Subgraph	
 Sizes	
 (WikiTalk)	

10000	
 25000	
 50000	
 75000	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

No	
 parallel	
 1	
 core	
 2	
 cores	
 3	
 cores	
 4	
 cores	

to
ta
l	
 e
xe
c.
	
 4
m
e	

(s
ec
)	

Offline	
 Parallel	
 Execu4on	
 Time	
 on	
 Different	
 #	
 of	
 Cores	

and	
 Subgraph	
 Sizes	
 (LiveJournal)	

10000	
 25000	
 50000	
 75000	

(c) Exec. times for WikiTalk data set (d) Exec. times for LiveJournal data set

Fig. 18. Execution time needed for generating locality graphs and calculating Q−1h on
different number of cores (4 seeds, different curves corresponds to different locality
sizes)

into localities of the seeds and caches the intermediary results obtained during the com-
putation. These cached results can then be reused for future queries sharing seed nodes.
Experiments showed that the proposed LR-PPR approach provides significant gains in
execution time relative to existing approximate PPR computation techniques, where the
PPR scores are computed from scratch using the whole network. LR-PPR also outper-
forms L-PPR, where the PPR scores are computed in a locality-sensitive manner, but
without significant re-use, with negligible impacts on accuracy.

Acknowledgements. This work is supported by NSF Grants 1318788 “Data Management for
Real-Time Data Driven Epidemic Spread Simulations” and 1339835 “E-SDMS: Energy Simula-
tion Data Management System Software”. A preliminary version of this work appeared as (Kim
et al, 2013): Jung Hyun Kim, K. Selçuk Candan, and Maria Luisa Sapino. LR-PPR: Locality-
Sensitive, Re-use Promoting, Approximate Personalized PageRank Computation. ACM Interna-
tional Conference on Information and Knowledge Management (CIKM’13), October 2013. We
especially thank Leonardo Allisio and Ilario Dal Grande for their feedback and corrections on
the manuscript and authors of (Maehara et al, 2014) for sharing with us their source code for the
preprocessing stage of their algorithm.

References

Avrachenkov K, Litvak N, Nemirovsky D, Smirnova E, Sokol M (2011) Quick Detection of Top-k Personal-
ized PageRank Lists. WAW’11, pp 50-61, 2011.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

36 J. Kim et al

Bahmani B, Chakrabarti K, Xin D (2011) Fast personalized PageRank on MapReduce. In SIGMOD’11. 973-
984. 2011.

Bahmani B, Chowdhury A, Goel A (2010) Fast incremental and personalized PageRank. PVLDB. 4, 3, 173-
184, 2010.

Balmin A, Hristidis V, Papakonstantinou Y (2004) ObjectRank: Authority-based keyword search in databases.
VLDB, 2004.

Boldi P, Rosa M, Vigna S (2011) HyperANF: Approximating the neighbourhood function of very large graphs
on a budget. WWW’11, 2011.

Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. Computer Networks and
ISDN Systems 30: 107-117, 1998.

Candan K.S and Li W.S (2000) Using random walks for mining web document associations. In PAKDD, pp.
294-305, 2000.

Candan K.S and Li W.S (2002) Reasoning for Web document associations and its applications in site map
construction. Data Knowl. Eng. 43(2),2002.

Chakrabarti S (200) Dynamic personalized pagerank in entity-relation graphs. WWW ’07, 2007.
Chen M, Liu J, and Tang X (2008) Clustering via random walk hitting time on directed graphs. AAAI’08, pp.

616-621, 2008.
Cohen E, Halperin E, Kaplan H, Zwick U (2003) Reachability and distance queries via 2-hop labels. SIAM

Journal of Computing, vol. 32, no. 5, 2003.
Csalogany K, Fogaras D, Racz B, Sarlos T (2005) Towards Scaling Fully Personalized PageRank: Algorithms,

Lower Bounds, and Experiments Internet Math. 2,3, 333-358, 2005.
Feige U, Hajiaghayi M, Lee J.R (2005) Improved approximation algorithms for minimum-weight vertex

separators. STOC, 2005.
Fouss F, Pirotte A, Renders J, Saerens M (2007) Random-walk computation of similarities between nodes of

a graph with application to collaborative recommendation. TKDE, 2007.
Fujiwara Y, Nakatsuji M, Onizuka M, Kitsuregawa M (2012) Fast and exact top-k search for random walk

with restart. PVLDB. 5, 5, 442-453. 2012.
Gunnels J, Lin C, Morrow G, De Geijn R.V (1998) Analysis of a Class of Parallel Matrix Multiplication

Algorithms. http://www.cs.utexas.edu/users/plapack/papers/ipps98/ipps98.html, 1998.
Gupta A, Karypis G, Kumar V (1997) IEEE Trans. Parallel Distrib. Syst. 8(5): 502-520, 1997.
Gupta M, Pathak A, Chakrabarti S (2008) Fast algorithms for Top-k Personalized PageRank Queries. In

WWW’08. 1225-1226. 2008.
Haveliwala T.H (2002) Topic-sensitive PageRank. WWW’02. 517-526. 2002.
Huang S, Li X, Candan K S, Sapino M L. (2014) ”Can you really trust that seed?”: Reducing the Impact of

Seed Noise in Personalized PageRank. International Conference on Advances in Social Network Analysis
and Mining (ASONAM). Beijing, China. 2014

Jeh G, Widom J (2002) Scaling personalized web search. Stanford University Technical Report. 2002.
Kamvar S.D, Haveliwala T.H, Manning C.D, Golub G.H (2003) Extrapolation methods for accelerating

PageRank computations. In WWW’03 261-270. 2003.
Karypis G and Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs.

SIAM Journal on Scientific Computing, 1998.
Kim J.H, Candan K.S, Sapino M.L (2013) LR-PPR: Locality-Sensitive, Re-use Promoting, Approximate

Personalized PageRank Computation. ACM International Conference on Information and Knowledge
Management (CIKM’13), October 2013.

Kim J.H, Candan K.S, Sapino M.L (2012) Impact neighborhood indexing (INI) in diffusion graphs. CIKM’12.
2184-2188, 2012.

Kleinberg J (1999) Authoritative sources in a hyperlinked environment. Journal of the ACM 46 (5): 604632.
1999.

Liu W, Li G, Cheng J. (2013) Fast PageRank approximation by adaptive sampling. Journal of Knowledge and
Information Systems (KAIS), 2013.

Lofgren P., Banerjee S., Goel A., Seshadhri C., Fast-PPR: Scaling Personalized PageRank Estimation for
Large Graphs. in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD’14), pp. 1436-1445, 2014.

Maehara T, Akiba T, Iwata Y, Kawarabayashi K (2014) Computing Personalized PageRank Quickly by Ex-
ploiting Graph Structures. VLDB’14, 2014.

Malewicz G, Austern M, Bik A, Dehnert J, Horn I, Leiser N, Czajkowski G (2010) Pregel: a system for
large-scale graph processing. SIGMOD’10, 2010.

Mei Q, Zhou D, Church K (2008) Query suggestion using hitting time, CIKM’08, 2008.
Newman M, Finding community structure in networks using the eigenvectors of matrices, Phys. Rev. E 74,

036104, 2006.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 37

Palmer C, Gibbons P, Faloutsos C (2002) Anf: a fast and scalable tool for data mining in massive graphs.
KDD’02, 2002.

Pease Marshall C (1967) Matrix Inversion Using Parallel. Processing. J. ACM 14, 4, 757-764, Oct. 1967.
Piegorsch W, Casella G.E (1990) Inverting a sum of matrices. In SIAM Review, 1990.
Sarkar P, Moore A.W, Prakash A (2008) Fast incremental proximity search in large graphs. ICML’08, 2008.
Song H.H, Cho T.W, Dave V, Zhang Y, Qiu L (2009) Scalable proximity estimation and link prediction in

online social networks. In Internet Measurement Conference, pp. 322–335. ACM, 2009.
Tong H, Faloutsos C (Center-piece subgraphs: problem definition and fast solutions. In KDD pp. 404–413,

2006.
Tong H, Faloutsos C, Koren Y (2007) Fast direction-aware proximity for graph mining. KDD, pp. 747–756,

2007.
Tong H, Faloutsos C, Pan J.Y (2006) Fast Random Walk with Restart and Its Applications. In ICDM’06.

613-622. 2006.
Wei F (2010) Tedi: efficient shortest path query answering on graphs. SIGMOD’10.
Williams V.V (2011) Breaking the Coppersmith-Winograd barrier. Unpublished manuscript.

http://www.cs.berkeley.edu/ virgi/matrixmult.pdf, 2011.
Wu Y, Raschid L (2009) ApproxRank: Estimating Rank for a Subgraph, ICDE’09, 54-65, 2009.
Xiao Y, Wu W, Pei J, Wang W, He Z (2009) Efficiently indexing shortest paths by exploiting symmetry in

graphs. EDBT, 2009.
Zhou L, Chen L, Ozsu M.T (2009) Distance-join: pattern match query in a large graph, VLDB, 2009.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

38 J. Kim et al

50%	

60%	

70%	

80%	

90%	

100%	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	
 9000	

Co
rr
el
a'

on
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Spearman's	
 Rank	
 Correla'on	
 for	
 Top-­‐10%	
 nodes	
 	

(Slashdot,	
 2	
 seeds,	
 dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRESPPR	

50%	

60%	

70%	

80%	

90%	

100%	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	
 9000	

Co
rr
el
a'

on
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Spearman's	
 Rank	
 Correla'on	
 for	
 Top-­‐10%	
 nodes	
 	

(Slashdot,	
 3	
 seeds,	
 dist~4hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

(a) Accuracies for 2 seeds, ∼ 3 hops (b) Accuracies for 3 seeds, ∼ 4 hops

0	

0.5	

1	

1.5	

2	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	
 9000	

to
ta
l	
 e
xe
c.
	
 *
m
e	

(s
ec
)	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

L-­‐PPR	
 vs	
 LR-­‐PPR	
 vs	
 FastRWR	
 vs	
 GMRESPPR	
 execu*on	

*me	
 for	
 #	
 of	
 nodes	
 (Slashdot,	
 2	
 seeds,	
 dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRESPPR	

0	

0.5	

1	

1.5	

2	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	
 9000	

to
ta
l	
 e
xe
c.
	
 *
m
e	

(s
ec
)	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

L-­‐PPR	
 vs	
 LR-­‐PPR	
 vs	
 FastRWR	
 vs	
 GMRES-­‐PPR	
 execu*on	

*me	
 for	
 #	
 of	
 nodes	
 (Slashdot,	
 3seeds,	
 dist~4hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

(c) Exec. times for 2 seeds, ∼ 3 hops (d) Exec. times for 3 seeds, ∼ 4 hops

0	

50	

100	

150	

200	

250	

300	

350	

0	
 1000	
 2000	
 3000	
 4000	
 5000	
 6000	
 7000	
 8000	
 9000	

Ca
ch
ed

	
 d
at
a	

(M

B)
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Size	
 of	
 the	
 Cached	
 Data	
 Read	
 for	
 Computa>on	

(Slashdot,	
 2	
 seeds,	
 dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRESPPR	

0	

50	

100	

150	

200	

250	

300	

350	

0	
 2000	
 4000	
 6000	
 8000	

Ca
ch
ed

	
 d
at
a	

(M

B)
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Size	
 of	
 the	
 Cached	
 Data	
 Read	
 for	
 Computa>on	

(Slashdot,	
 3	
 seeds,	
 dist	
 4~hops)	

L-­‐PPR	
 LR-­‐PPR	
 FastRWR	
 GMRES-­‐PPR	

(e) Data for 2 seeds, ∼ 3 hops (f) Data for 3 seeds, ∼ 4 hops

Fig. 19. Performances of L-PPR, LR-PPR, and FastRWR as a function of the size of the
combined localities network (SlashDot data set) for different numbers of seeds, selected
at varying hop distances from each other

Appendix

• SlashDot Data Set: Figure 19 compares in further detail the execution times, accura-
cies, and amounts of data read by L-PPR, LR-PPR, FastRWR, GMRES-PPR from the
cache per query as a function of the size of the merged locality network for different
seeds and target locality sizes of the SlashDot data set. Since the SlashDot and Epinions
Data sets are similar (Table 1), the results in Figure 19 are also similar to the results for
the Epinions data set presented in Section 5.3.1, Figure 11.
• LiveJournal Data Set: Figure 20 also shows and compares the execution times and
amounts of data read by L-PPR and LR-PPR from the cache per query as a function

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Locality-Sensitive and Re-use Promoting Personalized PageRank Computations 39

0	

1	

2	

3	

4	

5	

6	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

to
ta
l	
 e
xe
c.
	
 *
m
e	

(s
ec
)	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

L-­‐PPR	
 vs	
 LR-­‐PPR	
 execu*on	
 *me	
 for	
 #	
 of	
 nodes	
 	

(LiveJournal,	
 2	
 seeds,	
 dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	

0	

1	

2	

3	

4	

5	

6	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

to
ta
l	
 e
xe
c.
	
 *
m
e	

(s
ec
)	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

L-­‐PPR	
 vs	
 LR-­‐PPR	
 execu*on	
 *me	
 for	
 #	
 of	
 nodes	
 	

(LiveJournal,	
 3seeds,	
 dist~4hops)	

L-­‐PPR	
 LR-­‐PPR	

(a) Exec. times for 2 seeds, ∼ 3 hops (b) Exec. times for 3 seeds, ∼ 4 hops

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ca
ch
ed

	
 d
at
a	

(M

B)
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Size	
 of	
 the	
 Cached	
 Data	
 Read	
 for	
 Computa>on	

(LiveJournal,	
 2	
 seeds,	
 dist~3hops)	

L-­‐PPR	
 LR-­‐PPR	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ca
ch
ed

	
 d
at
a	

(M

B)
	

#	
 of	
 nodes	
 in	
 the	
 combined	
 network	

Size	
 of	
 the	
 Cached	
 Data	
 Read	
 for	
 Computa>on	

(LiveJournal,	
 3	
 seeds,	
 dist	
 4~hops)	

L-­‐PPR	
 LR-­‐PPR	

(c) Data for 2 seeds, ∼ 3 hops (d) Data for 3 seeds, ∼ 4 hops

Fig. 20. Performances of L-PPR, LR-PPR, and FastRWR as a function of the size of
the combined localities network (LiveJournal data set) for different numbers of seeds,
selected at varying hop distances from each other

of the size of the merged locality network for different seeds and target locality sizes
of the LiveJournal data set. Note that we could not compare the accuracies because we
could not compute Global PPR. The difference from other datasets is that the number
of nodes in 3 hops is larger than the number of nodes in 4 hops. The results show that it
follows the same pattern as other data sets’ results on the execution time and the size of
cached data.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

40 J. Kim et al

Author Biographies

Jung Hyun Kim received a BS degree in information and communication engi-
neering from Sungkyunkwan university, South Korea in 2003 and a MS degree
from Illinois Institute of Technology, USA in 2005, where he did research works
in the database group. He is currently a Ph.D. student at the School of Comput-
ing, Informatics, and Decision Systems Engineering, Arizona State University,
USA. His research interests include information propagation in social network,
large-scale data mining, information retrieval, and recommender systems.

K. Selçuk Candan is a Professor of Computer Science and Engineering at the
Arizona State University. His research interests include scalable data manage-
ment of large, heterogeneous data sets. He has published over journal and peer-
reviewed conference articles, one book, and 16 book chapters. He has 9 patents.
Prof. Candan served as an associate editor of the Very Large Databases (VLDB)
journal. He currently serves as associate editor for the ACM Transactions on
Database Systems, IEEE Transactions on Multimedia, and the Journal of Mul-
timedia. He has served in the organization and program committees of various
conferences. He has successfully served as the PI or co-PI of numerous grants,
including from the National Science Foundation, Air Force Office of Research,
Army Research Office, Mellon Foundation, and HP Labs. He is a member of the
Executive Committee of ACM SIGMOD and an ACM Distinguished Scientist.

Maria Luisa Sapino is a Professor of Computer Science at the University of
Torino. She leads the Heterogeneous Data Management (HDM) group at UNITO
and has published extensively in data management, multimedia, and social media
analysis venues, including a recent textbook on “Data Management for Multime-
dia Retrieval,” published by the Cambridge University Press. She served as the
chair for the International Workshop on Ambient Media Delivery and Interactive
Television (AMDIT08), as general chair for the KDD Workshop on Multimedia
Data Mining 2008, as a program co-chair for the SIAM Workshop on Multimedia
Data Mining 2009. She served as a workshops chair for ACM Multimedia 2011,
a publicity chair for ACM SIGMOD 2012, and a workshops chair for the IEEE
International Conference on Multimedia and Expo (ICME) 2013. Her past and
current industrial collaborations in the areas of digital media and smart television
include RAI, Telefonica Madrid, and Telecom Italia.

Correspondence and offprint requests to: Jung Hyun Kim, School of Computing, Informatics, and Decision
Systems Engineering, Arizona State University, Tempe, AZ, USA. Email: jkim294@asu.edu

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Click here to download Supplementary material: KAIS-13-4561 Supplementary material.zip

http://www.editorialmanager.com/kais/download.aspx?id=142326&guid=e8b2d91a-9578-43bc-bb2e-469db9b2d5ac&scheme=1

