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Abstract In this paper, we formulate a new Multi-Graph-View learning task, where each
object to be classified contains graphs from multiple graph-views. This problem setting is es-
sentially different from traditional single-graph-view graph classification, where graphs are
collected from one single feature view. To solve the problem, we propose a Cross Graph-
View Subgraph Feature based Learning (gCGVFL) algorithm that explores an optimal set of
subgraphs, across multiple graph-views, as features to represent graphs. Specifically, we de-
rive an evaluation criterion to estimate the discriminative power and redundancy of subgraph
features across all views, with a branch-and-bound algorithm being proposed to prune sub-
graph search space. Because graph-views may complement to each other and play different
roles in a learning task, we assign each view with a weight value indicating its importance
to the learning task, and further use an optimization process to find optimal weight values
for each graph-view. The iteration between cross graph-view subgraph scoring and graph-
view weight updating forms a closed loop to find optimal subgraphs to represent graphs for
multi-graph-view learning. Experiments and comparisons on real-world tasks demonstrate
the algorithm’s superior performance.

Keywords Multi-Graph-View · Feature Selection · Subgraph Mining · Graph Classification

J. Wu
Quantum Computation & Intelligent Systems (QCIS) Centre, FEIT,
University of Technology Sydney, NSW 2007, Australia;
School of Computer Science, China University of Geosciences, Wuhan 430074, China
E-mail: jia.wu@student.uts.edu.au

Z. Hong, S. Pan and C. Zhang
Quantum Computation & Intelligent Systems (QCIS) Centre, FEIT,
University of Technology Sydney, NSW 2007, Australia
E-mail: {zhibin.hong@student.,shirui.pan@student.,chengqi.zhang@}uts.edu.au

Z. Cai (�)
School of Computer Science, China University of Geosciences, Wuhan 430074, China,
E-mail: zhcai@cug.edu.cn

X. Zhu
Department of Computer & Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, FL, USA.
E-mail: xzhu3@fau.edu



2 Jia Wu et al.

1 Introduction

Graphs have been prevalently used in many applications to represent objects with complex
structures, such as XML document categorization [2], bug identification in a computer pro-
gram flow [5], and online product recommendation based on review [33]. In addition to
simple graph learning, numerous researches have extended graph classification to various
settings, such as multi-label graph classification [18], multi-graph classification [34], graph
stream classification [1,25], etc. For all these methods, a common challenge is that graph-
s do not have vectorized features, so generic feature-based learning algorithms cannot be
directly applied to graph classification.

One popular graph classification framework is to first mine some patterns (i.e., frequent
subgraphs [6,38], co-occurrent subgraphs [14], and subgraph distribution [8]) as features,
and then transfer each graph into a single instance. Accordingly, the generic classification
approaches can be directly applied for learning. This type of processing is similar to feature
filtering methods which separate feature section and further classification into two sequential
steps. Among them, frequent subgraphs have demonstrated good performance for graph
classification [6]. In reality, the number of frequent subgraphs may increase exponentially
with the size of training graphs, and some subgraph patterns may not have discriminative
power for learning. Therefore, finding good subgraph features to represent graph data for
learning is an essential challenge.

To address the above challenge, many approaches have been proposed for feature se-
lection from graph data [41,17,8]. To date, all existing subgraph feature selection methods
assume that training graphs are collected from a single feature view as shown in Figure 1.
For example, in image retrieval, a graph can be used to denote an image with each node
corresponding to a small region of the image and every two adjacent regions forming an
edge [10]. By using colour histogram as a feature view to describe the node content, an
image can be represented as a single-graph-view graph (i.e., a colour histogram graph). In-
deed, single-graph-view graphs are often limited to the underlying features and inadequate
to fully describe the object content. For example, both colour and textures are two feature
views commonly to represent images. By using colour histogram and textures to build t-
wo separate graphs for each image, we can obtain a multi-graph-view representation where

Fig. 1 Traditional subgraph feature based learning where graphs are collected from a single view.
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Fig. 2 Multi-Graph-View Learning where graphs are represented from different graph-views.
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Fig. 3 An example of multi-graph-view representation for images where each image is represented as graphs
with multiple graph-views (e.g., colour view #1 and texture view #2). For the same objects, patterns shared
by the objects may not exist in all feature views. For example, the two images have no common pattern in
the colour space (i.e., the graph G1 and G′1 in colour view), due to different lighting conditions, but they
share the same patterns in the texture space (i.e., the graph G2 and G′2 in texture view). Therefore, multi-
graph-view representation is more comprehensive in representing the object content than single graph-view
representation (the graph composition is detailed in Section 6.4).

each object is represented using multiple graphs, each of which is built from a single fea-
ture view. An example of the multi-graph-view representation is shown in Figure 3. Such a
multi-graph-view representation essentially combines multiple feature views to describe the
object, and is therefore potentially more comprehensive than traditional single-graph-view
representation.

The above observations raise a novel problem setting: Multi-Graph-View Feature based
Learning for Graph Classification. When learning from objects containing multi-view fea-
tures, the importance of multiple feature views have already been well studied in the liter-
ature, where a handful of works have discussed the feature extraction problem from multi-
view data [40,30]. Also, some works [7] proposed to use unlabeled data for unsupervised
multi-view feature selection. All these exiting multi-view feature selection methods are de-
signed for generic learning tasks where all samples have tabular instance-feature represen-
tations in vector space, so they cannot be directly applied to handle complex data objects.
On the other hand, existing feature section algorithms on graph data cannot handle graphs
with multi-graph-views.

To classify multi-graph-view graphs, a straightforward solution is to treat each view sep-
arately. Then, the Multi-Graph-View learning can be decomposed into multiple traditional
single-graph-view graph classification tasks. However, such a trivial solution, i.e., treating
each graph-view separately and completely discarding other views, is clearly not an ideal
solution because it will result in severe information loss. Another possible solution is to use
a concatenation strategy to combine the most informative features selected from each single
view as a new vector for learning. This intuitive method, however, cannot globally identify
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the most informative subgraph features across all graph-views, because it only locally se-
lects and combines features from each single graph-view. Not to mention that these methods
normally require users to specify the number of features to be selected from each single
view.

One slightly more intelligent design for multi-graph-view learning is to treat all graph-
views equally and concatenate graphs from all graph-views as a complete graph set, and
then apply traditional subgraph selection method to directly obtain subgraph features for
graph classification. Nevertheless, this solution is still suboptimal mainly because (1) graph-
views are not equally important for the learning tasks; and (2) the selected subgraph features
may contain redundancy because there is no treatment to handle correlations and dependen-
cy between graph-views. Therefore, no effective method exists to automatically identify
informative-irredundant subgraph features across multiple graph-views. To the best of our
knowledge, our work is the first to explore the subgraph feature selection problem across
multi-graph-view for graph classification.

Motivated by the above observations, we propose a cross graph-view subgraph fea-
ture based learning framework as shown in Figure 2, where the aim is to identity the most
informative-irredundant subgraphs across all views for graph classification. To achieve the
goal, the key challenge is threefold: 1) Subgraph Feature Evaluation. Conventional feature
selection approaches cannot handle graph structured data, because they need the training da-
ta being represented as feature vectors. Meanwhile, extracting all subgraph features and then
applying feature selection to extracted features is usually infeasible, mainly because that the
number of subgraph features will grow exponentially with the graph size (e.g. number of n-
odes and edges). Furthermore, traditional feature selection on graph data is only suitable for
single view, it is desired to design a new evaluation criterion for graphs with multi-graph-
views; 2) Cross Graph-View Evaluation and Rating. The contribution of different feature
views may vary significantly, where each single view has its unique statistical property. In
addition, different feature views may also contain complementary or contradict information.
Therefore, a new evaluation and rating method is required to assess all multi-graph-views;
and 3) Cross Graph-View Redundancy. Considering the subgraph redundancy across differ-
ent views, the corresponding redundancy constraint should be added to subgraph evaluation
criteria to ensure that the selected subgraph features have minimum redundancy.

To address the above three challenges, the proposed optimization framework gCGVFL
first designs a special measure to evaluate the importance of subgraphs in each graph-view
(Challenge #1). By assigning proper weight values to different graph-views, gCGVFL can
effectively adjust each graph-view’s contribution to the cross graph-view feature selection
process (Challenge #2). Furthermore, the proposed subgraph evaluation also considers the
redundancy across all graph-views (Challenge #3). An optimization framework is then pro-
posed to iteratively update the view weights and the informative-irredundant subgraphs
across all graph-views. Experiments on two real-world learning tasks confirm the effec-
tiveness of the proposed design.

2 Related Works

The proposed multi-graph-view learning for graph classification is essentially related to
graph classification and multi-view learning.
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2.1 Graph Classification

For graph classification, the main challenge, compared to the traditional supervised clas-
sification framework, is that graph objects do not have features. To this end, researchers
have proposed many types of solutions, which can be broadly divided into the following
two aspects: 1) graph based approaches, and 2) subgraph feature based methods. Because
no feature representation is available for graph, one straightforward solution is to train some
models directly on the graphs by using graph embedding or graph kernels. This type of ap-
proaches can perform well for graph classification problem, but they cannot indicate which
part of graph makes the main contribution to the graph learning process. By contrast, sub-
graph feature based methods will explore some subgraphs from the given graph set as fea-
tures to represent graphs in feature vectors for learning. In reality, because the subgraph
searching space will increase exponentially with respect to the size of graphs, it is techni-
cally inefficient (or infeasible) to enumerate all subgraphs. To address the problem, some
additional subgraph evaluation criteria are proposed. Among them, frequency is the most
popular criterion. Yan and Han [39] proposed a Depth-First-Search (DFS) based subgraph
mining strategy, namely gSpan, which first assigns a unique minimum DFS code to each
graph, and then discovers all frequent subgraphs by a pre-order traversal of the tree. Some
other frequent subgraph feature exploration approaches (e.g., AGM [13], FSG [19], FFSM
[12], MoFa [4] and Gaston [23]) have also be proposed. Nevertheless, these frequency s-
trategies are all unsupervised, without utilizing the label information. To ensure the selected
subgraph features to have high discriminative quality, supervised subgraph feature extraction
methods have also been developed, such as LEAP [38], gPLS [27], COPK [29], etc. More-
over, Jin et al. [15] proposes an evolutionary strategy to mining discriminative subgraphs for
graph classification in large databases. Recently, Kong et al. employs a dependence evalu-
ation criteria HSIC (Hilbert-Schmidt Independence Criterion) [9] to solve the graph related
tasks (e.g., active subgraph feature mining problem [16] and multi-label subgraph feature
selection issue [18]).

2.2 Multi-view Learning

As discussed above, all existing methods intend to extract subgraph features from graphs
collected from a single-graph-view, which may not adequately describe the characteristics
of the target object. Because objects may have different representative characteristics with
respect to different feature spaces, exploring information from different graph-views can
potentially help enhance the learning performance. For traditional multi-view feature based
learning, the two essential problems include: 1) view evaluation, and 2) view combination
[36]. Because views may have different contributions to the learning, how to evaluate these
views and ensure their effectiveness has drawn many attentions. For example, Muslea et al.
[26] proposed a decision tree based view validation approach to evaluation the view suffi-
ciency. Considering that some views may inadequate for learning, Yan and Naphade [37]
proposed a semi-supervised cross-feature learning by fully utilizing the information in the
unlabeled dataset. Recently, Xia et al. [35] develop a novel multi-view spectral embedding,
where each view will receive a weight value to indicate its importance.

For the sequential view combination issue, one common strategy is to concatenate all
views to form a global view. By doing so, the multi-view problem can be translated to
a single view learning. However, this type of view combination strategy may incur over-
fitting problems especially when the training samples are insufficient. Another popular view
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combination strategy is based on Co-training [3], where a classifier is separately trained in
each single view. After that, all classifiers are integrated for final prediction.

3 Problem Formulation

In this section, we define important notations used in the paper and formulate our problem
definition.

Definition 1 (Connected Graph) A graph is represented as G = (V, E,L, l) where V =
{v1, · · · , vnv} is a set of vertices, E ⊆ V × V is a set of edges, and L is the set of symbols
for the vertices and edges. l : V ∪E → L is the function assigning labels to the vertices and
edges. A connected graph must has a path between any pair of vertices.

Definition 2 (Graph-View) A graph-view denotes a type of tuple (V, E,L, l) used to rep-
resent an object as a graph. Similarly, multi-graph-view represents multiple types of tuples
used to represent the same object.

Definition 3 (Multi-Graph-View Graph) Gi = {G1
i , · · · , Gki , · · · , Gvi }, a multi-graph-

view graph, contains a number of graphs from different views, where Gki denotes a single-
view graph (a connected graph) constructed from the kth view. A graphGi’s label is denoted
by yi ∈ Y , with Y = {c1, · · · , cL}. In this paper, we use Gi to denote a multi-graph-view
graph, and use superscript or subscript k to denote a graph or a subgraph from the kth view.

Definition 4 (Subgraph) Let G = (V, E,L, l) and gi = (V ′, E′,L′, l′) each denotes a
connected graph. gi is a subgraph of G, i.e., gi ⊆ G, iff there exists an injective function
ϕ : V ′ → V s.t. (1)∀v ∈ V ′, l′(v) = l(ϕ(v)); (2) ∀(u, v) ∈ E′, (ϕ(u), ϕ(v)) ∈ E and
l′(u, v) = l(ϕ(u), ϕ(v)). If gi is a subgraph of G, then G is a supergraph of gi. In this
paper, subgraphs and subgraph features are equivalent terms.

Definition 5 (Graph Feature Representation) Let Sk = {g1, · · · , gsk} denote a set of sub-
graph features discovered from multi-graph-view graphs. For each graphGki in the kth view,
we use a subgraph feature vector xki = [(xg1i )k, · · · , (xgski )k]> to represent Gki in the fea-
ture space, where (xgei )k = 1, 1 ≤ e ≤ sk, iff ge is a subgraph of Gki (i.e., ge ⊆ Gki ) and
(xgei )k = 0 otherwise.

Given a multi-graph-view graph set G = {G1, · · · ,Gk, · · · Gv} containing labeled
graphs from v views, the aim of multi-graph-view learning is to find the optimal subgraph
features from the training graph set G to train classification models, and predict previously
unseen multi-graph-view graphs with a maximum accuracy.

4 Overall Framework of gCGVFL

Figure 4 lists the overall framework of the proposed cross graph-view subgraph feature
based learning algorithm, which includes the following three major steps:

– Subgraph Evaluation Criteria: In order to explore the informative-irredundant sub-
graph feature across all graph-views, the subgraph discrimination criteria and subgraph
redundancy criteria are proposed. These types of subgraph feature evaluation criteria
will be unified to further obtain the cross graph-view subgraphs.
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Fig. 4 A conceptual view of Cross Graph-View Subgraph Feature based Leaning (gCGVFL) for graph clas-
sification: After representing the original dataset (e.g., images) into multi-graph-view graphs 1©, gCGVFL
intends to find optimal subgraph features to convert a multi-graph-view graph 2© as an instance in the new
feature space 4© by using proposed cross graph-view subgraph feature selection 3©. More specifically, given
a number of labeled multi-graph-view graphs with v views, gCGVFL starts from assigning equal weight val-
ues to each view. For each single graph-view, gCGVFL first builds a label distribution information embedded
matrix L, e.g., L1 or Lv (a), to help discover informative subgraphs. By combining the view evaluation and
redundancy checking, gCGVFL can obtain irredundant cross graph-view subgraphs (b). Because the initial
view weights are imprecise to capture the importance of each view, an iterative weight updating process
(detailed in Section 5.2) is proposed to update view weight value and refine the quality of selected cross
graph-view subgraphs (c).

– Cross Graph-View Subgraph Selection: In order to properly identify the cross graph-
view subgraph features, we assign an initial weight value to each view (i.e., view eval-
uation). By doing so, we can build a bridge to evaluate the subgraph features cross all
different views with the above subgraph evaluation criteria. However, the initial view
evaluation is inaccurate. In this case, a weight updating strategy is proposed to ensure
that high quality cross graph-view subgraphs are selected for further learning (detailed
in Section 5.2).

– Multi-Graph-View Graph Representation: Based on the selected cross graph-view
subgraph features, for each multi-graph-view graph Gi = {G1

i , · · · , Gki , · · · , Gvi }, we
can obtain its feature representation in vector space for each single graph-view (i.e., xki
for Gki in the kth view). To represent Gi, a feature vector concatenation [33] is used to
obtain the final vector representation across all graph-views xi = [x1

i ; · · ·xki · · · ;xvi ].

5 Multi-Graph-View Learning

5.1 Cross Graph-View Subgraph Exploration

Cross graph-view subgraph feature exploration for multi-graph-view learning intends to as-
sess subgraph candidates and find a set of most informative subgraphs with min-redundancy
crossing all graph-views to represent multi-graph-view graphs. In this section, we introduce
the details of the optimization for cross graph-view subgraph feature selection.

Assume a set of graphs G = {G1, · · · ,Gk, · · · Gv} are collected from v views, let
S = {S1, · · · ,Sk, · · · ,Sv} denote the complete set of subgraphs discovered from G, and
g = {g1, · · · ,gk, · · · ,gv} is a set of cross graph-view subgraphs selected from S with gk

representing the subgraph set selected from the kth view. Our cross graph-view subgraph
feature exploration aims to find a set of most informative subgraph features g (g ⊆ S),
meanwhile with the minimum redundancy across all views. To this end, we define I(g)
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as an evaluation function to measure the informativeness of g, with R(g) denoting the
redundancy information in g. Specifically, the objective of the subgraph feature exploration
is defined in Eq. (1), where | · | represents the cardinality of the subgraph set, and m is the
number of subgraphs to be selected from S across v views.

g? =argmax
g

(
I
(
g
))

s.t. R
(
g
)
≤ R

(
g′
)
,g ⊆ S,g′ ⊆ S;

|g| = |g′| = m;

(1)

The optimal subgraph feature g? exploration problem across all views can be decomposed
into two subproblems: cross graph-view max-discrimination (i.e., max(I(g)) and cross
graph-view min-redundancy (i.e., min(R(g)) among all alternative graph-view subgraph
feature sets).

5.1.1 Subgraph Discrimination Criterion

To address the first subproblem, subgraph exploration with maximum discrimination should
consider the following two main challenges: (1) How to utilize graph labels to find infor-
mative subgraphs, and (2) How to tackle subgraph evaluation across different views, where
every view has its specific characteristic, to find the optimal subgraphs.

To this end, we use a similarity based optimization to model each single view and carry
out a cross graph-view optimization by assigning proper weight to each view. All selected
subgraph features from different views are then unified to refine weight value of each view,
through which the most discriminative subgraph features can be discovered.

For each single graph-view, to calculate the informativeness score of a subgraph feature
set gk, i.e., I(gk), we impose the class label information embedded constraints to graphs
as follows: (a) label information embedded must-link: If two graphs Gki and Gki have the
same class labels, we form a pairwise must-link constraint between Gki and Gkj ; and (b)
label information embedded cannot-link: if Gki and Gkj have different class labels, we form
a cannot-link constraint between them. Because given the kth view, each graph Gki is as-
sociated with a known class label, the subgraph features should ensure that graphs with the
same label are highly similar to each other. For graphs with different class labels, subgraph
features should also represent the disparity between them.

In order to derive solutions to find subgraphs as features, we first formally introduce
notations as follows:

– X k: the matrix using subgraphs Sk to represent all graphs Gk in the kth view, X k =
[xk1 , · · · ,xkpk ] = [fk1 , · · · , fksk ]

> ∈ {0, 1}sk×pk , with pk denoting the size of graphs
in the kth view. fke (1 ≤ e ≤ sk, gke ∈ Sk), is an indicator vector of subgraph gke

with respect to all graphs in Gk in the kth view, i.e., fke = [f
Gk

1
e , · · · , f

Gk
pk

e ], where

f
Gk

i
e = 1, 1 ≤ i ≤ pk iff gke ⊆ Gki and fG

k
i

e = 0 otherwise.
– A andB:A = {(i, j)|yi×yj = 1} denotes the class label embedded must-link pairwise

constraint sets, while B = {(i, j)|yi × yj = −1} denotes the class label embedded
cannot-link pairwise constraint sets.
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Based on the above constraints, we derive a criterion to measure the cross graph-view
informativeness score I(g) as follows:

I(g) =
v∑
k=1

βkI(gk) =
v∑
k=1

βk
(
1

2

∑
i,j

Kg

(
Gki , G

k
j

)
Qki,j

)
(2)

where, Qki,j embeds class label information between two graphs Gki and Gkj in the kth

view. βk denotes the weight of the kth view. Kg(G
k
i , G

k
j ), which is defined in Eq. (3),

denotes an L2 norm distance between two graphs Gki and Gkj in subgraph feature space
based on the selected subgraph set gk,

Kg

(
Gki , G

k
j

)
=< φ(Gki ), φ(G

k
j ) >=< Dgkxki ,Dgkxkj >

=
∥∥Dgkxki −Dgkxkj

∥∥2 (3)

where Dgk = diag(d(gk)) is a diagonal matrix indicating which subgraph features gk

are selected from Sk to represent the graphs in the kth view, d(gk)e = I(gke ∈ gk) with
I(·) being an indicator function.

Furthermore, in order to calculate Qki,j in Eq. (2), we adopt a kernel function, with
respect to graphs’ class labels, to measure Qki,j as K(yi, yj) =< ϕ(yi), ϕ(yj) >. In our
experiments,Qkij = {−1/|A|, yi×yj = 1; 1/|B|, yi×yj = −1} is employed as the label
kernel, through which the class label weight information is embedded in the matrix Qk. For
Eq. (2), if two graphs Gki and Gkj have the same class labels (i.e., yi × yj = 1), then Qi,j
will be −1 to ensure that maximizing I(g) is equivalent to minimizing the corresponding
distance Kg(G

k
i , G

k
j ).

Accordingly, Eq. (2) can be rewritten as follows,

I(gk) = 1

2

∑
i,j

∥∥Dgkxki −Dgkxkj
∥∥2Qki,j

= tr
(
D>gkX k

(
Dk −Qk

)(
X k
)>Dgk

)
= tr

(
D>gkX kLk

(
X k
)>Dgk

)
=
∑

gke∈gk
(fke )

>Lkfke

(4)

where tr(·) is the trace operator for a matrix, Dk is a diagonal matrix generated from Qk,
i.e., Dki,i =

∑
j Q

k
ij . And Lk = [Lki,j ]

pk×pk = Dk − Qk is a Laplacian matrix. By
denoting the function as ~(gke , Lk) = (fke )

>Lkfke , the Eq. (2) can be rewritten as

I(g) =
v∑
k=1

I(gk) =
v∑
k=1

∑
gke∈gk

βk~(gke , Lk) (5)

5.1.2 Subgraph Redundancy Criteria

According to the above cross graph-view subgraph discriminative criterion, a potential issue
is that the selected informative subgraphs may have high discriminative scores, but may also
contain high redundancy among them. For example, if a subgraph g has a high discrimina-
tive score, its supergraph and subgraph may also have a similar score. Then all the subgraphs
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may be selected as the final subgraph features, which result in significant redundancy (and
dependency) among the selected subgraph features. Given that the final feature set only con-
tains m subgraph features, having highly redundant subgraph features may not only reduce
the representation capability of the subgraphs, but also reduce the classification accuracy
because dependent features always complicate learning algorithms’ decisions.

In this subsection, we intend to evaluate the redundancy between subgraph features in
order to find a subgraph feature set with minimum redundancy.

Definition 6 (Cross Graph-View Redundancy) Given two multi-graph-view subgraphs gk

and gk
′

(1 ≤ k ≤ v, 1 ≤ k′ ≤ v) from two views, a multi-graph-view graph set G =

{G1, · · · ,Gk, · · · ,Gk
′
, · · · ,Gv} with its size N , and its corresponding view weight β =

{β1, · · · , βk, · · · , βk
′
, · · · , βv}, 0 ≤ βk ≤ 1,

∑v
k=1 β

k = 1, the subgraph redundancy
ψ(gk, gk

′
) between gk and gk

′
is defined by using the overlap over graph set G as:

ψ(gk, gk
′
) =
|G(gk) ∩ G(gk

′
)|β

|G(gk) ∪ G(gk′)|β
=
|G∩|β
|G∪|β

|G∩|β = (
∑

gk⊆Gk∈G∩

βk +
∑

gk′⊆Gk′∈G∩

βk
′
)/2;

|G∪|β = |G∩|β +
∑

gk⊆Gk∈Gk
−

βk +
∑

gk′⊆Gk′∈Gk′
−

βk
′
;

(6)

where G(gk) = {Gki |gk ⊆ Gki ∈ Gk}, similar with G(g′k). Gk− = G(gk) − G∩, and
Gk
′
− = G(gk

′
) − G∩. ψ ∈ [0, 1]. The higher the ψ value, the more redundancy gk and gk

′

have. If gk = gk
′
, then G(gk) = G(gk

′
) = G∩, and Gk− = Gk

′
− = ∅. So ψ(gk, gk

′
) = 1

means a maximum redundancy between two subgraphs.
In order to find the optimal subgraph feature set, we need to maintain the minimum

redundancy in the selected informative subgraph set g (which contains m subgraphs)

R(g) = 1

m

m∑
i=1;gi∈g

r(gi|g) =
1

m×m

m∑
i=1;gi∈g

m∑
j=1;gj∈g

ψ(gi, gj) (7)

where gi and gj , {gi, gj} ∈ g, are subgraphs from any graph-view, and r(gi|g) = 1/m×∑m
j=1;gj∈g ψ(gi, gj) denotes the redundancy of gi given g.

5.2 Maximum Discriminative Score and Minimum Redundancy Criterion

To unify the maximum subgraph discriminative score (Sec. 5.1.1) and minimum subgraph
redundancy (Sec. 5.1.2) criteria, Eq. (1) can be rewritten as

g? = argmax
g⊆S

v∑
k=1

∑
gke∈gk

βk~(gke , Lk)

s.t.
∑v

k=1
βk = 1, 0 ≤ βk ≤ 1, |g| = m

R
(
g
)
≤ R

(
g′
)
,g′ ⊆ S; |g| = |g′|;

(8)

Noticing that, when we fix g to update β, for each view k, I(gk) is also fixed. As
a result, the solution to β is βk = 1 corresponding to the maximum I(gk) over different
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views, and β for other views will receive 0 weight otherwise. This trivial solution means that
only one view is finally selected. Therefore, the performance of this method is equivalent to
finding one single best view, which does not meet our objective of exploring complementary
knowledge across multiple graph-views. To avoid such trivial solutions, we use (βk)r (the
rth power of βk) to replace βk, then we have

g? = argmax
g⊆S

v∑
k=1

∑
gke∈gk

(βk)r~(gke , Lk)

s.t.
∑v

k=1
βk = 1, 0 ≤ βk ≤ 1, |g| = m

R
(
g
)
≤ R

(
g′
)
,g′ ⊆ S; |g| = |g′|;

(9)

where r ≤ −1. By doing so,
∑v
k=1(β

k)r achieves its maximum when βk = 1/v with
respect to

∑v
k=1 β

k = 1 and βk ≥ 0. Similarly, βk for different views can be obtained
by setting r ≤ −1. In this case, each view will have its respective contribution to the final
feature subset. Furthermore, the solution to Eq. (9) is a nonlinear−nonconvex optimization,
which needs to simultaneously optimize g and β = {β1, · · · , βk, · · · , βv}. To the best
of our knowledge, no solution exists to find its global optimal. In this paper, we derive an
iterative algorithm by using the alternation optimization, which iteratively optimizes g and
β in an alternating fashion, to obtain a near-optimal solution.

5.2.1 Optimizing g with a Fixed β

When weight value of each view βk ∈ β is fixed, the subproblem of maximizing I(g) in E-
q. (1) is equal to finding a subset of subgraphs that can maximize the sum of (βk)r~(gke , Lk).

Definition 7 (dScore: Discriminative score) For any of the graph-view (e.g. kth view),
given a label information embedded matrix Qk, with Lk denoting a Laplacian matrix as
Lk = Dk −Qk. The informative score of a subgraph gke can be measured by:

d(gke ) = (βk)r~(gke , Lk) = (βk)r(fke )
>Lkfke (10)

Because the Laplacian matrix Lk is positive semi-definite [17], for any subgraph gke in
the kth view, (βk)r(fke )>Lkfke ≥ 0, i.e., d(gke ) ≥ 0. In order to find the optimal cross
graph-view subgraph set g which maximizes the criterion I(g) defined in Eq. (1), we can
calculate dScore of each subgraph in S = {g1, · · · , gs} and sort them in a descending
order, i.e., d(g1) ≥ d(g2) · · · ≥ d(gs) and then collect top-m informative subgraphs
g = {g1, · · · , gm} across all views.

Irredundant Subgraph Exploration: To discover subgraphs for evaluation, one s-
traightforward solution is exhaustive enumeration, i.e., all subgraphs in a graph dataset will
be enumerated, with their dScore values being calculated for ranking. However, the number
of subgraphs grows exponentially with respect to the size of graphs in each view, which
makes the exhaustive enumeration approach impractical for real-world data. Furthermore,
the redundancy between subgraphs should also be considered to mine subgraphs with max-
imum informativeness and minimum redundancy.

Alternatively, we employ a Depth-First-Search (DFS) algorithm gSpan [39] to iteratively
enumerate subgraphs. The key idea of gSpan is to first assign a unique minimum DFS code
to each graph, and then discover all frequent subgraphs by a pre-order traversal of the tree.
Specifically, gSpan labels a subgraph with a DFS code and then produces child DFS codes
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Algorithm 1 CGVSE: Cross Graph-View Subgraph Exploration
Input:
G = {G1, · · · ,Gk, · · · ,Gv}: A multi-graph-view graph set;
β = {β1, · · · , βk, · · · , βv}: A graph-view weight set;
min sup: The threshold of the frequent subgraph;
m: the number of subgraph features to be selected;

Output:
g = {g1, · · · , gm}: A set of cross graph-view subgraphs;

1: g = ∅, τ = 0;
2: for all each Gk in G do
3: while Recursively visit the DFS Code Tree in gSpan do
4: gke ← current visited subgraph in DFS Code Tree;
5: if freq(gke ) < min sup, then
6: return;
7: g← g

⋃
gke ;

8: if |g| > m, then
9: Compute the iScore i(gi|g) for each gi ∈ g with βk;

10: g← g/argmingi∈g i(gi|g);
11: τ = mingi∈g i(gi|g);
12: if î(gke ) ≥ τ , then
13: Depth-first search the subtree rooted from node gke ;
14: end while
15: end for
16: return g;

from the right-most path of the DFS Code Tree. If the child DFS code is a minimum DFS
code, which is defined by a lexicographic order of the discovery time during the search
process, the corresponding graph is processed (i.e. the DFS Code Tree, where each node is
a subgraph, is obtained). By employing a depth first search strategy on the tree, gSpan can
effectively enumerate all frequent subgraphs efficiently.

Definition 8 (iScore: Irredundant dScore) Given a cross graph-view subgraph set g, the
irredundant dScore of a subgraph gi, i(gi|g), is measured as

i(gi|g) = d(gi)/r(gi|g) (11)

where the dScore d(gi) is calculated via Eq. (10) with r(gi|g) been calculated by E-
q. (7).

In this paper, because subgraph search for each graph-view is independent, we combine
discriminative score and redundancy to derive a upper bound for the iScore to prune the
search space in the DFS-code tree, which is defined as follows:

Theorem 1 Upper bound of iScore: Given two subgraphs gke , g′ke ∈ Sk in the kth view,
g′ke is a supergraph of gke (i.e., g′ke ⊇ gke ). The iScore of g′ke , i(g′ke |gke ) given gke , is bounded
by î(gke ), i.e., i(g′ke |gke ) ≤ î(gke ), with î(gke ) been defined as:

î(gke ) = (fke )
>L̂kfke ∗ (fke )>Ifke (12)

where the matrix L̂k is defined as L̂kij = max(0, Lkij).

Thus, for any g′ke ⊇ gke , i(g′ke ) ≤ î(gke ) in the kth view. The corresponding proof is
given in Appendix.

This upper bound is used to prune DFS-code tree in gSpan by using branch-and-bound
pruning. Algorithm 1 lists the proposed dual criterion (i.e., maximum discriminative s-
cores and minimum redundancy) embedded cross graph-view subgraph feature exploration
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method, which starts from an empty feature set g and the minimum iScore τ = 0. The
algorithm continuously enumerates subgraphs by recursively visiting the DFS Code Tree of
each graph-view dataset, by using the gSpan algorithm. If a subgraph gke in the kth view is
not a frequent subgraph, both gke and its subtree will be pruned (line 5-6). Otherwise, if g
has less than m subgraphs (i.e., g is not full), gke is added to the subgraph set g (lines 7).

When the size of g exceeds the predefined value m, the algorithm needs to remove one
subgraph with the least discriminative power and also maintains the minimum redundancy
in g. Accordingly, we first calculate the iScore i(gi|g) of each gi ∈ g, and then remove the
subgraph with the least iScore value (lines 8-10). After that, the size g will be reduced to
m again, and then we update the iScore for each gi ∈ g to set the minimum iScore i(gi|g)
as the threshold τ for future process to prune the search space (line 11). Subsequently, the
upper bound pruning module will check if î(gke ) is less than the threshold τ . If so, it means
that the iScore value of any supergraph g′ke of gke (i.e. g′ke ⊇ gke ) will not be greater than τ .
Thus, we can safely prune subtrees rooted from g′ke in the search space. If î(gke ) is indeed
greater than the threshold τ , the depth-first search will continue by following the children of
gke (line 12-13), until the mining process is completed.

5.2.2 Optimizing β with a Fixed g

After the above process, we fix g to update β. For Eq. (9), by using a Lagrange multiplier λ
to take the constraint

∑v
k=1 β

k = 1 into consideration, we have the Lagrange function as
follows,

f(β, λ) =
v∑
k=1

∑
gke∈gk⊆g

(βk)r~(gke , Lk)− λ
( v∑
k=1

βk − 1
)

(13)

By setting the derivative of f(β, λ) with respect to βk and λ to zero, we have

∂f(β, λ)

∂βk
= r(βk)r−1

∑
gke∈gk⊆g

~(gke , Lk)− λ = 0

∂f(β, λ)

∂λ
=

v∑
k=1

βk − 1 = 0

(14)

Then, we can obtain βk accordingly,

βk =

(
1/
∑
gke∈gk⊆g ~(gke , Lk)

)1/(r−1)

∑v
k=1

(
1/
∑
gke∈gk⊆g ~(gke , Lk)

)1/(r−1)
(15)

Because Laplacian matrixLk is positive semi-definite, for any subgraph gke , ~(gke , Lk) ≥
0 [17], thus βk ≥ 0. According to Eq. (15), if r → −∞, βk in all views will be close to each
other. On the other hand, if r → 1, only βk = 1 corresponding to the maximum max I(g)
across different views, and βk = 0 otherwise. Noticing that when r = 0, (βk)r will always
be 1. In this case, the view weights are useless. So, in our experiments, we set r ≤ −1.

Notice that the global alignment objective function
∑v
k=1(β

k)r
∑
gke∈gk⊆g ~(gke , Lk)

increases when the number of iterations increases, so the discovered g can always increase
the objective function value with the fixed β, and vice versa. As a result, gCGVFL aims to
achieve a near-optimal solution.
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Algorithm 2 gCGVFL: Cross Graph-View Feature based Learning
Input:
G = {G1, · · · ,Gk, · · · ,Gv}: A multi-graph-view graph set;
min sup: The threshold of the frequent subgraph;
m: the number of subgraph features to be selected;

Output:
The target class label yt of a test multi-graph-view graph Gt;
// Training Phase:

1: β ← The βk value is initially set to 1/v.
2: while not convergence for β do
3: g← CGV SE(G,β,min sup,m); // Alogirthm 1
4: β ← Apply g to update β via Eq. (15);
5: end while
6: g∗ ← g // Set of near-optimal cross graph-view features
7: X∗ ← Apply g∗ to G to obtain its feature representation.
8: H ← Apply X∗ to built a classifier.

// Testing Phase:
9: xt ← multi-graph-view graph representation for Gt.

10: yt ← h(xt|H).
11: return yt.

Algorithm 2 lists the detailed procedures of using an iterative optimization process to
obtain a near-optimal solution for cross graph-view subgraph exploration (lines 2-5 in Al-
gorithm 2). By using the obtained subgraph set g to represent the graph in vector space,
gCGVFL trains a classifierH (line 8) for graph classification. During the test phase, a multi-
graph-view graph Gt is transferred into a feature vector by using g (line 9), and predicted
by the classifierH to obtain its class label yt (line 10).

6 Experiments

6.1 Experimental Settings

All reported results are based on 10 times 10-fold cross-validation with classification ac-
curacy being used as the main performance metrics. For comparisons, the baselines and
the proposed gCGVFL all use LibSVM, which is popularly used for classification, as the
classifier during the learning process. In addition, the parameter r in gCGVFL is set to -1.
Unless specified otherwise, the number of selected subgraph features is 100, and the mini-
mum support threshold min sup = 3% for scientific publication dataset (Section 6.3) and
min sup = 2% for content-based image retrieval dataset (Section 6.4). All experiments are
conducted on a Linux cluster node with an Interl(R) Xeon(R) @3.33GHZ CPU and 3GB
fixed memory size.

6.2 Baseline Methods

Because there is no existing multi-graph-view learning method available for graph classifi-
cation, for comparison purposes we implement three baseline approaches and validate their
performance by using three types of view combination strategies. For view combination, we
compare the algorithm performance from both single graph-view and combined multiple
graph-views, respectively.
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6.2.1 Single Graph-View Approaches

In the first type of baseline approaches, we separate a multi-graph-view dataset into multiple
graph datasets, each of which containing only one single graph-view. Our purpose is to
demonstrate the performance of subgraph feature based learning on a single graph-view
and further validate the performance gain/loss of the cross graph-view learning. For the
single graph-view based subgraph feature learning baseline approaches, we implement the
following methods:

IG: In this method, a set of frequent subgraphs are mined from all graphs in a given
single graph-view. An Information Gain (IG) based feature selection criterion is used to
select m subgraphs with the highest IG scores as the subgraph features to represent graphs
for classification.

Topk: This method is similar to the IG based algorithm, but uses frequency as the mea-
sure to select top-k subgraphs with the highest frequency values as m subgraph features in
each graph-view.

gHSIC: This is a state-of-the-art discriminative subgraph mining methods, which em-
ploys a dependence evaluation criterion named Hilbert-Schmidt Independence Criterion (H-
SIC). This method has been successfully applied to graph related classification tasks (e.g.,
active feature selection [16]). Because this method is a recently developed subgraph ex-
ploration approach, it will help evaluate the proposed multi-graph-view graph learning al-
gorithm. In our implementation, gHSIC employs the HSIC evaluation criterion to mining
m subgraphs for each single graph-view, and uses selected subgraph features to represent
graphs for classification.

Our proposed multi-graph-view learning method is denoted by gCGVFL. Meanwhile,
in order to evaluate the redundancy checking module of gCGVFL, we also implement a
rgCGVFL approach which is identical to gCGVFL except that it does not have redundancy
checking. This baseline (rgCGVFL) will help study the impact of feature redundancy on the
graph classification (detailed in Section 6.5.1).

6.2.2 Multiple Graph-View Approaches

For comparison purposes, we also implement the following three baseline strategies which
concatenate subgraphs discovered from different graph-views for learning. The three type-
s of cross graph-view subgraph feature combination strategies will serve as baselines to
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Fig. 5 Comparisons on DBLP dataset on each single view: (A) Reference Relationship (B) Abstract.
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Fig. 6 Comparisons on DBLP dataset from multiple views via different view combination methods.

demonstrate whether concatenating subgraph features selected from each single graph-view
can result in comparable performance as our proposed method.

View Combination Strategy I: It concatenates the top-m/v subgraph features selected
from each view by using IG, Topk, or gHSIC to form concatenated m-dimensional cross
graph-view subgraph features. This is similar to a state-of-the-art filter based feature selec-
tion approach for multi-view learning [28] with the number of features from each single
view being pre-specified.

View Combination Strategy II: This type of baseline first concatenates frequent sub-
graphs enumerated in all graph-views (i.e., the complete frequent subgraph set by treating
each view equally) and then directly explores the m-dimensional features via IG, Topk, or
gHSIC. This type of baseline does not need to specify the number of subgraph features for
each single graph-view.

View Combination Strategy III: We further compare our model with a state-of-the-
art view combination strategy [22]. Specifically, after obtaining the top-m/v features via
subgraph selection methods, such as the above IG, Topk, or gHSIC, from each single graph-
view, a LibSVM classifier is first trained independently for each view and then the classifiers
are combined to predict class label of a test graph.

6.3 Scientific Publication Categorization Results

A scientific publication can be represented as a graph by using correlations of keywords in
the abstract which contains rich content information [34]. This abstract graph will represent
the content and the context information inside the abstract of each publication. In addition
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to the abstract graph-view, we also build a second graph for each paper, where each node
corresponds to the Paper ID or a keyword appearing in the paper title, and each edge de-
notes the citation relationship between papers or keyword relations in the title (similar to the
approach used in [25]). As a result, each paper is represented by two graphs (i.e., one from
abstract graph-view and one from reference citation graph-view).

The Digital Bibliography & Library Project (DBLP) dataset (http://dblp.uni-trier.de/xml/)
consists of bibliography data in computer science, where each record contains information
such as abstract, authors, year, title, and references. To build a multi-graph-view graph, we
select papers published in three main fields: Artificial Intelligence (AI: IJCAI, AAAI, NIPS,
UAI, COLT, ACL, KR, ICML, ECML and IJCNN), Computer Vision (CV: ICCV, CVPR,
ECCV, ICPR, ICIP, ACM Multimedia and ICME), and Database (DB: SIGMOD, PODS,
VLDB, ICDE, CIKM, DASFAA, ICDT, SSD, DASFAA) to form a three class multi-graph-
view graph classification task. The objective is to predict whether a paper belongs to the
AI, CV or DB field by using the multiple graph-view representation. For each abstract in
the abstract graph-view, a fuzzy cognitive map (E-FCM) [21] based approach is used to ex-
tract a number of keywords and correlations between keywords. In our experiments, we use
keywords as nodes and correlations between two keywords as edge weight values to build a
graph. A threshold (0.005) was used to remove edges whose correlation values are less than
the threshold. At the last step, the graph is converted into an unweighted graph by setting the
weight values of all remaining edges as “1”. The same graph representation was also used
in previous works [32,34]. In our experiments, we choose 1500 papers with each class (AI,
CV, or DB) containing 500 multi-graph-view graphs.

Figures 5(A) and 5(B) report the accuracy comparisons on each single graph-view (i.e.,
reference relationship graph-view and abstract graph-view) on the DBLP dataset. Clearly,
the proposed gCGVFL achieves the best performance in all case on the reference relation-
ship view. For the abstract view, although IG and gHSIC based approaches have similar
accuracies, they are both inferior to the proposed gCGVFL. Moreover, the results in Figures
6(A)-6(C) show the performance comparisons using cross graph-view subgraphs with dif-
ferent view combination strategies. In some cases, we noticed that gCGVFL is less accurate
than IG based approach with view combination strategy I, when the number of selected sub-
graphs is small (i.e., ≤ 30). Nevertheless gCGVFL can achieve a much better performance
than the baselines when the number of cross graph-view subgraphs increase. This is mainly
because that when the size of the subgraph feature set increases, it becomes easier for the
feature set g to attract redundant subgraph features. As a result, the redundant subgraph
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Fig. 7 Comparisons on Image dataset on each single view: (A) HSV (Colour) (B) LBP (Texture).
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Fig. 8 Comparisons on Image dataset from multiple views via different view combination methods.

features will reduce the classification accuracies. By using the informative-irredundant dual
subgraph evaluation criterion in gCGVFL, the quality of the cross graph-view subgraphs
can be improved.

In Section 6.5.1, we will carry out irredundancy analysis to assess the quality of the
selected subgraph set g from the informativeness scores and the redundancy perspectives.

6.4 Content-based Image Retrieval Results

In this section, we report gCGVFL’s performance for content based image retrieval. The
original images [20] from Corel dataset1 are preprocessed and segmented using Statistical
Region Merging (SRM) [24], which has achieved a better performance on the Berkeley
Segmentation Database compared to state-of-the-art techniques. In this case, each image is
considered as a graph consisting of a set of nodes and edges which correspond to image
regions and the adjacency between two regions, respectively.

In order to build multiple graph-view representation for each image, we employ different
types of features [31,11], including Hue-Saturation-Value (HSV) in colour space and Local
Binary Patterns (LBP) in the texture space, to construct graphs with different feature views.
Specifically, HSV is a commonly used colour model, where HSV stands for hue, saturation
and intensity, and LBP is a model to represent texture in a local region. For HSV feature,
we first extract a 3-channel HSV feature for each pixel. The extracted HSV representations
are fed to a k-means clustering algorithm to construct a 256-dimensional codebook. After

1 https://sites.google.com/site/dctresearch/Home/content-based-image-retrieval
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that, a one-dimensional code is assigned to each pixel based on the similarity between the
pixel representation and the cluster centers. The HSV-based representation for a region is
constructed as a 256-dimensional histogram-based vector by computing the statistics of the
occurrences of the codes. For the LBP representation, we adopt the uniform LBP and gen-
erate a 59-bin code for each pixel, where each pixel is assigned to one bin according to the
local texture pattern. Subsequently, a 59-dimensional histogram representation is construct-
ed for each region encoding its statistics.

Furthermore, we collect categories “Tiger”, “Lizard”, “Eagle”, and “Porp” to form a
four-class classification problem containing 400 multi-graph-view graphs (100 for each
class). Figures 7 and 8 report the accuracy performance comparison on each single graph-
view and multiple graph-views with selected subgraph features varying from 10 to 100,
respectively. Overall, the IG related baselines show the best performance compared to all
other baselines. However, they are all consistently inferior to the proposed gCGVFL, which
explores most informative subgraph features with minimum redundancy for classification.

6.5 Detailed Algorithm Performance Studies

6.5.1 Effectiveness of Irredundancy checking in gCGVFL

One of the unique features of the proposed gCGVFL is that it uses a minimum redundancy
criterion to ensure the quality of the selected discriminative subgraphs. In order to under-
stand the actual role of the minimum redundancy criterion in the gCGVFL, we implement
a rgCGVFL approach which is identical to gCGVFL, except that it does not have redun-
dancy checking module. More specifically, rgCGVFL selects the optimal subgraph set by
directly using the discriminative evaluation criteria (detailed in Section 5.1.1). We empiri-
cally compare gCGVFL and rgCGVFL throughout the whole experiments, so we can clearly
understand the efficiency of the redundancy checking module. The experimental results on
both DBLP dataset (as shown in Figures 5 and 6) and Image dataset (as shown in Figures
7 and 8) show that gCGVFL significantly outperforms rgCGVFL, which demonstrates that
redundancy has a significant impact on the learning performance. Without considering the
redundancy among the selected subgraph features, rgCGVFL may be inferior to the baseline
approaches.

6.5.2 Algorithm Convergence Study

In order to obtain the final informative-irredundant subgraph feature set g, gCGVFL em-
ploys a first-order incremental search strategy. Specifically, suppose the subgraph set g is
full (i.e., containing m subgraphs), gCGVFL needs to update the subgraph set by using
the next explored subgraph candidate gi. It first adds gi to g, and calculates the iScore
i(gi|g) = d(gi)/r(gi|g) for each subgraph. After that, the subgraph with smallest iScore
is removed in order to ensure g only contains m subgraphs. By doing so, we expect that
the final set g will achieve the near-optimal solutions with maximum discriminative scores
and minimum redundancy. In order to verify that gCGVFL’s greedy search strategy can in-
deed result in continuously improved subgraph feature set with an increasing discriminative
scores and decreasing redundancy (i.e., gCGVFL can reach the convergence), we further re-
port the detailed discriminative scores and the redundancy of the subgraph set g with respect
to the number of explored subgraph candidates in Figure 9(a). In our experiments, we record
the order of the subgraph candidates explored by the subgraph mining process (i.e. the gke
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outputs from Step 4 in Algorithm 1), and report the discriminative scores (left y−axis) and
the redundancy (right y−axis) of g with respect to the order of the subgraph candidates
(x− axis). In addition, we also report the discriminative score of gke in Figure 9(b) where
the x−axis has the same meaning as Figure 9(a). In other words, for each gke from Step 4
in Algorithm 1, we immediately calculate its discriminative scores (Figure 9(b)), and also
report the corresponding subgraph feature set g’s discriminative scores and redundancy in
Figure 9(a).

The results from Figure 9(a) confirm that with the number of subgraph candidates in-
crease, the discriminative power of g can be continuously enhanced, and the corresponding
redundancy is also reduced, which empirically confirms the convergence of the algorithm.

One interesting finding is that when comparing results from Figures 9(a) and 9(b), we
can find that informative subgraphs do appear in clusters. In other words, if a subgraph has
a high discriminative score, its descendent or sibling may also have a high discriminative
score (shown as group of spikes in Figure 9(b)). By employing the redundancy checking
module, gCGVFL can effectively include the good subgraphs and reduce the redundancy
when multiple correlated good subgraphs appear (shown as sharp increase of the discrimi-
native scores and the dramatic decrease of the redundancy in Figure 9(a)). This observation
not only demonstrates gCGVFL’s convergence but also confirms its effectiveness in finding
high quality cross graph-view subgraph features for graph classification.

6.5.3 Efficiency of the Pruning Strategy

In this subsection, we evaluate the efficiency of the proposed pruning module for searching
subgraphs in gCGVFL as described in Section 5.2.1. For comparisons, we implement a
UgCGVFL approach with no pruning module and compare its runtime performance with
gCGVFL, through which we can demonstrate the efficiency of the pruning module. In our
implementation, UgCGVFL first uses gSpan to find a frequent subgraph set, and then selects
the optimal subgraph set by using the same evaluation criteria as gCGVFL.

In Figures 10(A) and 10(B), we report the average CPU runtime performance with re-
spect to different minimum supportmin sup values, with the number of selected subgraph-
s being fixed to 100 (with the default settings as in Section 6.1), on the DBLP and Image
datasets, respectively. The results show that as the min sup values decrease, the runtime
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Fig. 9 (a) Discriminative capability of selected subgraphs and the corresponding redundancy, and (b) Dis-
criminative capability for the subgraph updating candidate, respectively.
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Fig. 10 Average CPU runtime comparison between gCGVFL v.s. unbounded gCGVFL (UgCGVFL) with
respect to different min sup values on DBLP (A) and Image (B) dataset, respectively.

of unbounded UgCGVFL increase dramatically, mainly because a smaller min sup value
will substantially increase the number of candidates for validation. By using pruning strat-
egy (i.e., the upper bound τ = mingi∈g i(gi|g) for each multi-graph-view as shown in
Algorithm 1), gCGVFL’s runtime performance is relatively stable with respect to different
support min sup values. Overall, gCGVFL demonstrates clear advantage compared to un-
bounded UgCGVFL, especially when the minimum support value min sup is small. For
example, on multi-graph-view Image dataset as shown in Figure 10(B), UgCGVFL need-
s about 9000ms to mine the discriminative subgraphs, whereas by using the upper bound
pruning gCGVFL only takes about 2000ms, which results in a remarkable efficiency gain
for gCGVFL.

6.5.4 Study of the Effect of Parameter r

Table 1 reports the performance of gCGVFL with respect to different r values. The results
show that when r = −1 and −2, gCGVFL has the best performance on the Image dataset,
and the best performance on DBLP dataset is achieved when r = −10. As discussed in
the last paragraph of Section 5.2: r values are directly related to the view correlations. Our
experiments indicate that the above two datasets have similar complementary information
across different views. Our experiments show that the above two datasets have similar com-
plementary information among different views. Overall, the accuracy for DBLP dataset is
relatively less stable for different r values, indicating that the impact of the r values for
DBLP dataset is larger than that for Image dataset.

Table 1 Comparison of gCGVFL w.r.t. different r: %.

Data r=-1 r=-2 r=-3 r=-4 r=-5 r=-6 r=-7 r=-8 r=-9 r=-10

Image 79.0 79.0 78.8 78.8 78.8 78.8 78.8 78.8 78.8 78.8
DBLP 85.0 84.5 84.8 84.7 84.6 84.6 84.6 84.6 84.6 85.2
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7 Conclusion

This paper investigated a new multi-graph-view learning task for graph classification, where
the object is a graph containing multiple graph-views. We argued that many real-world ap-
plications involve graph structured data with multiple graph-views, where each graph-view
provides valuable information to represent the content and structure relationships of the ob-
ject. To build a learning model for multi-graph-view classification, we first proposed a dual
criterion to find the cross graph-view subgraph set with maximum discriminative scores
and minimum redundancy. After that, an iterative optimization framework was proposed
to improve the quality of the selected informative-irredundent subgraphs across all views
for graph classification. Experiments and comparisons on real-world tasks showed that the
proposed cross graph-view gCGVFL approach significantly outperforms baseline methods.

Acknowledgments

The work was supported by the Key Project of the Natural Science Foundation of Hubei
Province, China (Grant No. 2013CFA004), and the National Scholarship for Building High
Level Universities, China Scholarship Council (No. 201206410056), and National Natural
Science Foundation of China (Grant No. 61403351 and 61370025), the Chinese National
“111” Project hosted by SA Centre for Big Data Research in Renmin University of China.
It is also partially supported by the Australian Research Council Discovery Projects under
Grant No. DP140100545 and DP140102206.

Appendix: Proof of the Theorem 1

Theorem 1 Upper bound of iScore: Given two subgraphs gke , g′ke ∈ Sk in the kth view,
g′ke is a supergraph of gke (i.e., g′ke ⊇ gke ). The iScore of g′ke , i(g′ke |gke ) given gke , is bounded
by î(gke ), i.e., i(g′ke |gke ) ≤ î(gke ), with î(gke ) been defined as:

î(gke ) = (fke )
>L̂kfke ∗ (fke )>Ifke (16)

where the matrix L̂k is defined as L̂kij = max(0, Lkij).

Proof

i(g′ke |gke ) = d(g′ke )/r(g′ke |gke ) (17)

For d(g′ke ), 0 ≤ βk ≤ 1, we have

d(g′ke ) ≤ (f ′ke )>Lkf ′ke =
∑

i,j:Gk
i ,G

k
j∈G(g′ke )

Lkij (18)

where G(g′ke ) = {Gki |g′ke ⊆ Gki , 1 ≤ i ≤ pk}. f ′ke , an indicator vector of subgraph g′ke
with respect to all graphs in Gk in the kth view, is similar with fke denoted as above. Because
g′ke is the supergraph of gke (i.e. g′ke ⊇ gke ), according to the anti-monotonic property, we
have G(g′ke ) ⊆ G(gke ). Besides, and L̂kij = max(0, Lkij), so L̂kij ≥ Lkij and L̂kij ≥ 0.
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Thus, Eq. (18) could be rewritten as

d(g′ke ) =
∑

i,j:Gk
i ,G

k
j∈G(g′ke )

Lkij ≤
∑

i,j:Gk
i ,G

k
j∈G(g′ke )

L̂kij

≤
∑

i,j:Gk
i ,G

k
j∈G(gke )

L̂kij = (fke )
>L̂kfke

(19)

Moreover, for 1/r(g′ke |gke ) in i(g′ke |gke ), because g′ke ⊇ gke , we have G(g′ke ) ⊆ G(gke ), so
G(g′ke ) ∩ G(gke ) = G∩ = G(g′ke ) and G(g′ke ) ∪ G(gke ) = G∪ = G(gke ). Meanwhile, G(g′ke )
and G(gke ) are not empty, because in our irredundant subgraph exploration only frequent
subgraph will be considered for further selection. According to the Eqs. (6) and (7), we have

1/r(g′ke |gke ) = 1
/(∑

gk⊆Gk∈G(g′ke ) β
k∑

gk⊆Gk∈G(gke )
βk

)

=
∑

gk⊆Gk∈G(gke )

1

/ ∑
gk⊆Gk∈G(g′ke )

1

≤
∑

gk⊆Gk∈G(gke )

1 = (fke )
>Ifke ;

(20)

By unifying the numerator d(g′ke ) in Eq. (19) and denominator r(g′ke |gke ) in Eq. (20) of
î(gke ), we have

i(g′ke |gke ) ≤ (fke )
>L̂kfke ∗ (fke )>Ifke = î(gke ) (21)

Thus, for any g′ke ⊇ gke , i(g′ke ) ≤ î(gke ) in the kth view.
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