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Approximating behavioral equivalence for scaling
solutions of I-DIDs
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Abstract Interactive dynamic influence diagram (I-DID) is a recognized graphical frame-
work for sequential multiagent decision making under uncertainty. I-DIDs concisely 
represent the problem of how an individual agent should act in an uncertain environment 
shared with others of unknown types. I-DIDs face the challenge of solving a large number 
of models that are ascribed to other agents. A known method for solving I-DIDs is to group 
models of other agents that are behaviorally equivalent. Identifying model equivalence 
requires solving models and comparing their solutions generally represented as policy trees. 
Because the trees grow exponentially with the number of decision time steps, comparing 
entire policy trees becomes intractable, thereby limiting the scalability of previous I-DID 
techniques. In this article, our specific approaches focus on utilizing partial policy trees for 
comparison and determining the distance between updated beliefs at the leaves of the trees. 
We propose a principled way to determine how much of the policy trees to consider, which 
trades off solu-tion quality for efficiency. We further improve on this technique by allowing 
the partial policy trees to have paths of differing lengths. We evaluate these approaches in 
multiple problem domains and demonstrate significantly improved scalability over previous 
approaches.
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1 Introduction

Interactive dynamic influence diagram (I-DID) [17,49] is a probabilistic graphical model 
for sequential decision making in uncertain multiagent settings. It concisely represents the 
problem of how an agent should act in an uncertain environment shared with others of 
unknown types. I-DIDs generalize the standard DIDs [44] to multiagent settings providing a 
way to model and exploit the embedded structure often present in real-world decision making.

Differing from other frameworks such as decentralized POMDPs [39] and multiagent 
influence diagrams [23], I-DIDs take the perspective of an individual agent to sequential 
decision making in multiagent settings and do not assume the common knowledge of beliefs 
between multiple agents. I-DIDs provide a graphical and naturally factored representation 
for interactive partially observable Markov decision processes (I-POMDPs) [20]. The indi-
vidual agent perspective taken by I-DIDs (and I-POMDPs) makes it a general framework 
applicable in both cooperative and competitive agent settings. For example, the I-DID-
based framework has been implemented in emerging applications of automated guided 
vehicles that communicate [27] in real-time operations. Recently, I-DID is integrated with 
the belief–desire–intention (BDI) framework [9], which enhances the BDI agent’s reasoning 
and planning capability under uncertainty. It has been coined as one principle way for dealing 
with ad hoc agent teamwork problems [7].

Sequential decision making in partially observable multiagent settings is a very hard com-
putational problem in general [4]. A solution to the decision-making problem is a sequence 
of actions and observations over multiple time steps, namely a policy of an agent, which 
prescribes the agent’s actions given specific observations. We aim to find an optimal solu-
tion/policy to sequential multiagent decision-making problems. Expectedly, solving I-DIDs 
tends to be computationally complex as they acutely suffer from both the curses of dimension-
ality and history [35]. This is because the state space in I-DIDs includes candidate behavioral 
models of other agents in addition to the traditional physical states. These models could be 
I-DIDs themselves thereby leading to a nested modeling. As the agents act, observe, and 
update beliefs, I-DIDs must track the evolution of the models over time. Consequently, I-
DIDs suffer not only from the curse of history that afflicts the modeling agent, but more so 
from that exhibited by the modeled agents. The exponential growth in the number of models 
over time also further contributes to the dimensionality of the state space. This is exacerbated 
by the nested nature of the space.

Given this complexity, principled methods for solving I-DIDs of that scale are critically 
needed. Previous work in this regard has mainly exploited behavioral equivalence (BE) of 
models to reduce the dimensionality of the state space [49]. Models that are behaviorally 
equivalent (BE) [13,36,37] prescribe identical behavior, and these may be grouped because 
it is the prescriptive aspects of the models and not the descriptive that matter to the decision 
maker. Essentially, we cluster BE models of other agents and select a representative model for 
each equivalence class. For example, [16] minimize the model space by updating only those 
models that lead to behaviorally distinct models at the next time step. While this approach 
speeds up solutions of I-DIDs considerably, it does not scale desirably to large horizons. 
This is because: (a) models are compared for BE using their solutions which are policy 
trees. As the time period of decision making increases, the size of the policy tree increases 
exponentially; (b) the condition for BE is strict: entire policy trees of two models must match 
exactly. While this can be done bottom-up, the complexity of this operation depends on the 
size of the policy tree. Finally (c) the space of models that must be compared with each other 
grows exponentially over time, as we mentioned previously.
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Significant progress could bemade by efficiently determining if twomodels are BE and by
grouping models that are approximately BE. We expect the latter to result in a fewer number
of equivalence classes. Some of these classes contain more models, thereby producing fewer
representatives at the cost of prediction error. In this article, we present new approaches
that address both these issues. We determine BE between two models more efficiently by
comparing their partial policy trees and the updated beliefs at the leaves of the policy trees.
This leads to significant savings inmemory aswe do not store entire policy trees. Furthermore,
we may group models whose partial policy trees are identical but the updated beliefs at the
leaves diverge by small amounts. This defines the first principled approximate measure of
BE to the best of our knowledge, which could group more models together.

In order to determine the partialness of the policy trees to compare, we use the insight
that the divergence between the updated beliefs at the corresponding leaves of two identical
policy trees will not be greater than the divergence between the initial beliefs. [5] show that
the change in the divergence is a contraction controlled by a rate parameter, γ . We show how
we may calculate γ in our context and use it to obtain the depth of the partial policy tree to
use for a given approximate measure of BE.

As we compute a single rate parameter, γ , given a problem domain, the partial policy
trees tend to be perfectly depth balanced. In other words, each branch of the tree consisting
of an action–observation sequence is of the same length. Motivated by the fact that the rate
parameter is a worst-case estimate, we improve the efficiency of our approach by allowing
policy trees to have branches of differing lengths. Branches of trees may be limited to a
shallower depth if the divergence at their leaves has already fallen within an approximation
measure. We present an iterative method for determining the partial policy trees to compare,
which need not be depth balanced, thereby further reducing the memory required to store
the trees. On the other hand, we may expend additional time in computing multiple updated
beliefs. This approach also allows us to group more models in a class because it relaxes the
previous approximation, possibly resulting in a larger error.

We evaluate the empirical performances of these approaches onmultiple problem domains
within the framework of I-DIDs and demonstrate that they allow us to scale the solution of
I-DIDs, particularly in the computing time, significantly more than previous techniques [49].
Additionally, we experimentwith large problem domains, one ofwhich pertains to countering
money laundering as introduced by [29] and the other uses a multiagent simulation testbed
called theGeorgia testbed for autonomous control of vehicles (GaTAC) [15], which facilitates
scalable and realistic problem domains pertaining to autonomous control of unmanned agents
such as uninhabited aerial vehicles.

We list our main contributions as follows.

1. We present the first principled formulation of approximate BE that allows for larger clus-
ters of models of the other agents resulting in solutions of I-DIDs that scale significantly
better.

2. As full policy trees grow exponentially with longer look ahead, we present an approach
that compares partial policy trees, which are obtained by solving the models. To fur-
ther improve the efficiency of the method, we introduce a technique for incrementally
comparing policy trees in order to identify models that are approximate BE.

3. We theoretically analyze the reduced computational complexity due to the approximation.
More importantly, we evaluate the performance of the algorithms on multiple problems
and demonstrate the scalability in two large pragmatic domains.

We organize the article as follows: We briefly review the concept of BE and the I-DID
framework in Sect. 2. In order to facilitate a conceptualization of an approximate BE, we
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develop a new technique to identify exact BE in Sect. 3, followed by a novel formulation of ε-
BE in Sect. 4. We may avoid fully comparing partial policy trees as we show in Sect. 5 leading 
to a further approximation. The computational savings and associated error are theoretically 
analyzed in Sect. 6. We empirically analyze the impact of these approaches on the quality and 
scalability of the solution including experimentation on a scalable UAV simulation testbed 
in Sect. 7. We discuss related frameworks and models in Sect. 8 particularly focusing on 
other ID-based frameworks for multiagent settings. Finally, we conclude this article with a 
discussion of the limitations and future work in Sect. 9.

2 Background: interactive DID and behavioral equivalence

We begin with a brief overview of interactive DIDs and then proceed to describe the usage 
of BE for solving I-DIDs.

2.1 Interactive dynamic influence diagrams

Influence diagrams (IDs) [21,41] are probabilistic graphical models well suited to represent-
ing an agent’s decision-making problem in an uncertain environment. They typically utilize 
chance nodes which model the uncertain aspects of the problem through random variables 
such as those for modeling the physical state, S, and the agent’s observations, Oi . IDs addi-
tionally use decision nodes that model the agent’s actions, Ai , and utility nodes that model 
the agent’s reward function, Ri . Usually, action(s) with the largest expected utility is selected 
on evaluating the ID for each possible setting of the decision node.

Interactive IDs (I-IDs) [17] generalize the formalism of IDs to model decision making in 
multiagent settings. In addition to the nodes found in an ID, the I-ID for an agent i includes a 
new type of node called the model node. The model node contains as its values the alternative 
computational models ascribed by i to the other agent. We denote it as the hexagonal node, 
M j,l−1, in Fig. 1, where  j denotes the other agent. Subscript l − 1 is the  strategy level, which  
emphasizes the capability for a nested modeling of i by the other agent j . Agent j’s level is 
one less than that of i , which is consistent with previous hierarchical formalizations in game 
theory [1,3] and decision theory [20]. A basis level 0 model is then an ID or a flat probability 
distribution. The interactive state space consists of the chances nodes comprising S together 
with the model node. Denote the set of models considered in the model node by M j,l−1, 
and an individual model of j as m j,l−1 = 〈b j,l−1, θ̂ j 〉, where b j,l−1 is the level l − 1 belief, 
which is a probability distribution over j’s interactive state space, and θ̂ j is the agent’s frame 
encompassing the decision, observation, and utility nodes. A model in the model node may 
itself be an I-ID or ID, and the recursion terminates when a model is an ID or a flat probability 
distribution over the actions.

In addition to the model node, I-IDs differ from IDs by having a chance node, A j , that  
represents the distribution over the other agent’s actions and a dashed link, called a policy 
link, between the model and chance nodes. This link denotes that the distribution over A j 
depends on the model selected in the model node.

We observe that the model node and the dashed policy link that connects it to the chance 
node, A j , could be represented as shown in Fig. 2a transforming the I-ID to a flat ID shown in 
Fig. 2b. In particular, the decision node of each level l − 1 I-ID or level 0 ID is mapped into a
chance node. Specifically, if OPT(m1

j,l−1) is the set of optimal actions obtained by solving the 
I-ID (or ID) denoted by m1

j,l−1, then the corresponding distribution over the mapped chance
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Fig. 1 A generic level l > 0 I-ID
for agent i situated with one other
agent j . The highlighted hexagon
in blue is the model node,
Mj,l−1, and the dashed arrow is
the policy link to other’s actions
(color figure online)

(a) (b)

Fig. 2 a The model node and policy link in Fig. 1 may be represented using chance nodes and dependencies
between the nodes. The decision nodes of the lower-level I-IDs or IDs (m1

j,l−1, m
2
j,l−1, m

3
j,l−1 where the

superscript numbers serve to distinguish the models) are mapped to the corresponding chance nodes (A1j ,

A2j , A
3
j ), respectively, which is indicated by the dotted arrows. Depending on the value of node, Mod[Mj ],

distribution of each of the action chance nodes is assigned to node A j with some probability. b The I-ID of
Fig. 1 transforms into the flat ID with the model node and policy link replaced as in a

node, A1
j , is: Pr(a j ∈ A1

j ) = 1
|OPT(m1

j,l−1)|
if a j ∈ OPT(m1

j,l−1), 0 otherwise. The different

chance nodes (A1
j , A

2
j , A

3
j )—one for each model—and additionally, the chance node labeled

Mod[Mj ] form the parents of the chance node, A j . There are as many action nodes as the
number of models in the support of agent i’s beliefs. The distribution over Mod[Mj ] is i’s
belief over j’s models given the state. The conditional probability table (CPT) of the chance
node, A j , is amultiplexer that selects the distribution of each of the action nodes (A1

j , A
2
j , A

3
j )

depending on the value of the selector, Mod[Mj ]. In other words, when Mod[Mj ] has the
value m1

j,l−1, the chance node A j assumes the distribution of the node A1
j ; A j assumes the

distribution of A2
j when Mod[Mj ] selects the value m2

j,l−1, and analogously for m
3
j,l−1. For

more than two agents, we add a model node and a chance node representing the distribution
over an agent’s action linked together using a policy link, for each other agent.

Zeng and Doshi [49] illustrate the formalism in the context of the multiagent tiger prob-
lem [20]—a two-agent generalization of the well-known single-agent tiger problem [22].
We include it here as well in order to promote understanding of the framework and for
completeness. The multiagent tiger problem also forms a running example throughout this
article.
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This problem domain involves two closed doors, one of which hides a tiger and the other
hides a pot of gold, and two agents, i and j , which face the closed doors. Each agent may
open either the left door (action denoted by OL), or the right door (OR), or listen (L). On
listening, an agent may hear the tiger growling either from behind the left door (observation
denoted by GL) or from behind the right door (GR). Additionally, the agent hears creaks
emanating from the direction of the door that was possibly opened by the other agent. This
includes creak from the left (CL), creak from the right (CR), or silence (S) if no door was
opened. All observations are assumed to be noisy. If any door is opened by an agent, the tiger
appears behind any of the two doors randomly in the next time step. An agent gets rewarded
for opening the door that hides the gold but gets penalized for opening the door hiding the
tiger. While the actions of the other agent do not directly affect the reward for an agent, they
may potentially change the location of the tiger. This multiagent formulation of the problem
differs from other formulations of this problem such as that of [28] in the presence of door
creaks and that it is not cooperative.

We set up the I-ID for the multiagent tiger problem in Fig. 3. We discuss the CPTs of the
various nodes in “Multiagent tiger problem” section of Appendix. While the I-ID illustrates
two models of j , in practice there would be as many action nodes of j if there were more
models.

I-DIDs generalize I-IDs to allow sequential decision making over multiple time steps. In
addition to the model nodes and the dashed policy link, an I-DID differs from a traditional
DID in its use of the model update link shown as a dotted arrow in Fig. 4. We briefly explain
the semantics of the model update next.

Agents in a multiagent setting typically act and make observations, which changes their
beliefs. Therefore, the update of the model node over time involves two steps: First, given
the models at time t , we identify the updated set of models that reside in the model node
at time t + 1. Because the agents act and receive observations, their models are updated to
reflect their changed beliefs. Since the set of optimal actions for a model could include all

Fig. 3 Level 1 I-ID of i for the multiagent tiger problem. Solutions of two level 0 models (IDs) of j map to 
the chance nodes, Atj

,1 and Atj
,2, respectively (illustrated using dotted arrows), transforming the I-ID into a 

flat ID. The two models differ in the distribution over the chance node, TigerLocationt
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Fig. 4 A generic two time-slice level l I-DID for agent i . The dotted arrow is the model update link that
denotes the update of the models of j and of the distribution over the models as both agents act and observe,
over time

Fig. 5 The model update link may be represented using chance nodes and dependency links between them.
Consider two models in the model node at time t . These grow exponentially in number to more models in the
model node at t + 1 as shown in bold (superscript numbers distinguish the different models). Models at t + 1
reflect the updated beliefs of j , and their solutions provide the probability distributions for the corresponding
action nodes

the actions, and the agent may receive any one of |� j | possible observations where � j is the
set of j’s observations, the updated set at time step t + 1 will have up to |Mt

j,l−1||A j ||� j |
models. Here, |Mt

j,l−1| is the number of models at time step t with a nonzero probability
in the distribution over Mod[Mt

j,l−1], |A j | and |� j | are the largest spaces of actions and
observations, respectively, among all the models.

TheCPTof chancenode,Mod[Mt+1
j,l−1], encodes the indicator function, τ(btj,l−1, a

t
j , o

t+1
j ,

bt+1
j,l−1), which is 1 if the belief b

t
j,l−1 in a model mt

j,l−1 using the action a
t
j and observation

ot+1
j updates to bt+1

j,l−1 in a model mt+1
j,l−1; otherwise it is 0. Second, we compute the new

distribution over the updated models given the original distribution and the probability of the
agent performing the action and receiving the observation that led to the updated model. The
dotted model update link in the I-DID may be implemented using standard dependency links
and chance nodes, as shown in Fig. 5, thereby transforming the I-DID into a flatDID.We show
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Fig. 6 A flat DID obtained by replacing the model nodes and model update link in the I-DID of Fig. 4 with
the chance nodes and the relationships (in bold) as shown in Fig. 5. The lower-level models are solved to
obtain the distributions for the action chance nodes

Fig. 7 Two time-slice level l I-DID of i for the multiagent tiger problem. Highlighted model nodes in blue 
contain the different models of j (color figure online)

the two time-slice flat DID with the model nodes and the model update link replaced by the 
chance nodes and the relationships between them, in Fig. 6. Chance nodes and dependency 
links not in bold are standard, usually found in single-agent DIDs.

We illustrate the two time-slice I-DID for the multiagent tiger problem in Fig. 7. The  
model update link not only updates the number of j’s candidate models due to j’s action 
and observations of growl and creak, but also updates the probability distribution over these 
models. In Fig. 8, we illustrate the update of a single model of j contained in the model node 
at time t over time.

2.2 Model solution using behavioral equivalence

As we mentioned above, the complexity on solving I-DID is due to the exponential growth 
number in candidate models of other agents over time. To reduce the model space, we may 
group together models whose solutions are identical into a single equivalence class and 
select a representative model from each class. As [36] note, it is the behavior of the other
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Fig. 8 Because agent j in the tiger problem may receive any one of the six possible observations given the
action prescribed by its model, a single model in the model node at time t could lead to six distinct models at
time t + 1

agents, which impact the decision maker’s actions regardless of how the agents are internally
modeled. We define BE more formally below:

Definition 1 (BE). Two models, m j and m̂ j , of an agent, j , are behaviorally equivalent if
OPT(m j ) = OPT(m̂ j ), where OPT(·) denotes the solution of the model.

Thus, BE models are those whose behavioral predictions for the agent are identical.
Models that are determined to be exactly BE by comparing their policy trees for equality

are grouped, and a single representative is selected from each equivalence class, thereby
reducing the set of candidate models, M j,l−1, in the model node to a behaviorally minimal
subset. We may define this subset as the largest subset of M j,l−1 such that no two models
in it are BE. Of course, the probability mass on each individual model in a class is summed
and assigned to the representative.

b̂i,l(m̂ j,l−1|s) =
∑

m j,l−1

bi,l(m j,l−1|s) (1)

where m j,l−1 is a model that is BE to m̂ j,l−1.
The solution of an I-DID (and I-ID) is implemented recursively down the levels as shown

in Fig. 9. In order to solve a level 1 I-DID of horizon T , we start by solving the base level
0 models of the other agent, which may be traditional DIDs of horizon T . Their solutions
provide probability distributions over the other agent’s actions, which are entered in the
corresponding action nodes found in themodel node of the level 1 I-DID at the corresponding
time step (lines 3–5). Subsequently, the set of j’s models is minimized by excluding the BE
models (line 6).

The solution method uses the standard look-ahead technique, projecting the agent’s action
and observation sequences forward from the current belief state, and finding the possible
beliefs that i could have in the next time step [38]. Because agent i has a belief over j’smodels
as well, the look-ahead technique includes finding out the possible models that j could have
in the future. Consequently, each of j’s level 0 models represented using a standard DID
must be solved in the first time step up to horizon T to obtain its optimal set of actions.
These actions are combined with the set of possible observations that j could make in that
model, resulting in an updated set of candidate models (that include the updated beliefs) that
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I-DID EXACT (level l ≥ 1 I-DID or level 0 DID, horizon T )

Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

Minimize M t
j,l−1

3. For each mt
j in Mt

j,l−1 do
4. Recursively call algorithm with the l − 1 I-DID (or DID)

that represents mt
j and the horizon, T − t

5. Map the decision node of solved I-DID (or DID), OPT(mt
j), to the

corresponding chance node Aj

6. Mt
j,l−1 ← PruneBEModels(Mt

j,l−1)
7. If t < T − 1 then

Populate Mt+1
j,l−1

8. For each mt
j in Mt

j,l−1 do
9. For each aj in OPT(mt

j) do
10. For each oj in Oj (part of mt

j ) do
11. Update j’s belief, bt+1

j ← SE(btj , aj , oj)
12. mt+1

j ← New I-DID (or DID) with bt+1
j as initial belief

13. Mt+1
j,l−1

∪← {mt+1
j }

14. Add the model node, Mt+1
j,l−1, and the model update link between

Mt
j,l−1 and Mt+1

j,l−1
15. Add the chance, decision, and utility nodes for t + 1 time slice and the

dependency links between them
16. Establish the CPTs for each chance node and utility node

Solution Phase
17. If l ≥ 1 then
18. Represent the model nodes, policy links and the model update links

as in Fig. 5 to obtain the DID
19. Apply the standard look-ahead and backup method to solve the expanded DID

(other solution approaches may also be used)

Fig. 9 Algorithm for exactly solving a level l ≥ 1 I-DID or level 0 DID expanded over T time steps in a 
two-agent setting

could describe the behavior of j . SE(btj , a j , o j ) is an abbreviation for the belief update (lines 
8–13). Beliefs over this updated set of candidate models are calculated using the standard 
inference methods through the dependency links between the model nodes shown in Fig. 5 
(lines 15–18). Agent i’s I-DID is expanded across all time steps in this manner. Because 
I-DIDs are transformed into flat DIDs, we point out that the algorithm in Fig. 9 may be 
realized with the help of standard implementations of DIDs such as Hugin Expert [2] and  
Netica [46]. The solution is a policy tree that prescribes the optimal action(s) to perform for 
agent i initially given its belief, and the actions thereafter conditional on its observations up 
to time T .
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3 Approximate behavioral equivalence

Although BE represents an effective exact criteria to group models, identifying BE models
requires us to compare the entire solutions of models. Because the solutions are policy
trees, all paths in the trees must be compared, which grow exponentially over time. This is
further complicated by the number of candidate models of the other agents in the model node
growing exponentially over time. In order to scale approaches utilizing BE, we seek to do
the following:

1. Reduce the complexity of identifying BE by comparing partial policy trees; and
2. Group together more models that could be approximately BE resulting in fewer repre-

sentatives and a smaller set of candidate models.

For the sake of clarity, we assume that themodels of the other agent j have identical frames
(possibly different from i’s) and differ only in their beliefs. We discuss the implications of
this assumption for our approach in Sect. 9. We focus on the general setting where a model,
m j,l−1, is itself a DID or an I-DID, in which case its solution could be represented as a policy
tree. We denote the policy tree of horizon, T , as πT

m j,l−1
(also called a depth-T policy tree)

in which all action-observation paths are of length T ; therefore, OPT (m j,l−1)
�= πT

m j,l−1
,

where OPT (·) denotes the solution of the model. We illustrate example policy trees below:

Example 1 (Policy trees) For themultiagent tiger problem introduced previously in Sect. 2.1,
consider two level 0 models of agent j , m1

j,0 and m
2
j,0, included in the initial model node of

agent i’s I-DID shown in Fig. 7, expanded to T = 3 time steps. Letm1
j,0 = 〈0.15, θ̂ j 〉, where

0.15 is agent j’s belief that the tiger is behind the left door (TL) and θ̂ j refers to the frame
consisting of the chance nodes and the dependency links that constitute its DID. Let m2

j,0 =
〈0.5, θ̂ j 〉. We show the policy trees obtained by solving the two models below.

Recall from Definition 1 that two models of j are BE if they produce identical behaviors
for j . Formally, models m j,l−1, m̂ j,l−1 ∈ M j,l−1 are BE if πT

m j,l−1
= πT

m̂ j,l−1
.

Each path in the policy tree from the root to the leaf is an action–observation sequence
denoted by hT−1

j = {atj , ot+1
j }T−1

t=0 , where o
T
j is null. For example, the leftmost path in the

policy tree in Fig. 10a is h2j = {L,GR,L,GR,OL}. If atj ∈ A j and ot+1
j ∈ � j , where A j

(a) (b)

Fig. 10 Horizon, T = 3, policy trees obtained by solving, a m1
j,0 = 〈0.15, θ̂ j 〉 and b m2

j,0 = 〈0.5, θ̂ j 〉. The
depth of these trees is 2(= T − 1) with the root nodes at depth 0. We also show the sets of updated beliefs at
the leaves for the two policy trees
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and� j are agent j’s action and observation sets, respectively, then the set of all T −1-length
paths is HT−1

j = A j × �T−1
1 (� j × A j ).

Without loss of generality, we may impose an ordering on a policy tree by assuming
some order for the observations, which guard the arcs in the tree. An example ordering of
observations may be GR followed by GL in the policy trees in Fig. 10. Furthermore, if b0j,l−1

is the initial belief in the model, m j,l−1, then let bdj,l−1 be the belief on updating b
0
j,l−1 using

the action-observation path of length d, hdj . Let B
d
m j,l−1

be the ordered set of beliefs that
obtain on updating the initial belief using all d-length paths in the ordered policy tree of
model, m j,l−1. Therefore, a belief in Bd

m j,l−1
has an index, k, such that k ≤ |� j |d . These

are the updated beliefs at the leaves of the ordered policy tree. For illustration, we show the
sets of updated beliefs, B2

m1
j,l−1

and B2
m2

j,l−1
, at the leaves of the two ordered policy trees, in

Fig. 10. Finally, let DKL [p||q] denote the Kullback–Leibler (KL) divergence [11] or relative
entropy between probability distributions, p and q.

We may identify BE between models by comparing partial policy trees such as depth-d
policy trees, all of whose action-observation paths are of length d. Proposition 1 formally
presents the result.

Proposition 1 (Revisiting BE) Given two models of agent j , m j,l−1 is BE to m̂ j,l−1 if their
depth-d policy trees, d ≤ T − 1, are identical, πd

m j,l−1
= πd

m̂ j,l−1
, and if d < T − 1 then

beliefs at the leaves of the two ordered policy trees do not diverge: DK L [bd,k
m j,l−1 ||bd,k

m̂ j,l−1
] = 0

∀k = 1 . . . |� j |d , where bd,k
m j,l−1 ∈ Bd

m j,l−1
, bd,k

m̂ j,l−1
∈ Bd

m̂ j,l−1
.

Proof Proposition 1 holds because of the well-known fact that beliefs updated using an
action–observation sequence in a partially observable Markov process in a single-agent
[42] or a multiagent setting [20] is a sufficient statistic for the history of actions and
observations. Consequently, future behavior is predicated on the beliefs only. Furthermore,
DKL [bd,k

m j,l−1 ||bd,k
m̂ j,l−1

] = 0 if and only if the two distributions are equal. Therefore, pairs of

models that satisfy the two conditions in Proposition 1 for some d < T − 1 will necessarily
conform to Definition 1. If d = T − 1, then Proposition 1 requires the two policy trees to be
completely identical, as in Definition 1. 	


We point out that Proposition 1 is not particularly sensitive to the measure of divergence
between distributions that we utilize. While the KL divergence between two distributions is
appropriate because it is zero if and only if the two distributions are equal, the same is also
true for, say, the L1 distance. However, KL divergence has some desirable properties lacked
by other norms, which we will exploit later.

Notice that the technique on identifying BE through Proposition 1 produces the same
grouping of BE models as previously for the case d = T − 1 because it collapses into
Definition 1. For the case of d < T − 1, it may group fewer models in a BE class because
belief sets that do diverge could still result in an identical pair of complete policy trees. Hence,
the new technique may lead to more BE classes than the minimal number.

The advantage offered by Proposition 1 is that we may elegantly generalize it to the notion
of approximate BE:

Definition 2 ((ε, d)-BE) Given two models of agent j , m j,l−1 is (ε,d)-BE to m̂ j,l−1 if their
depth-d policy trees are identical, πd

m j,l−1
= πd

m̂ j,l−1
, and beliefs at the leaves of the two

ordered policy trees diverge by at most ε: maxk=1...|� j |d DK L [bd,k
m j,l−1 ||bd,k

m̂ j,l−1
] ≤ ε, for

ε ≥ 0 and d < T − 1.
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Fig. 11 Partial policy trees of depth 1 are identical, though the complete policy trees are not. The maximum
KL divergence between the corresponding beliefs at the leaves is 0.33. Therefore, models m1

j,0 and m2
j,0 are

(0.33, 1)-BE

Intuitively, two models are (ε, d)-BE if their solutions share an identical depth-d policy
tree and the divergence of pairs of the ordered beliefs at the leaves of the depth-d trees is not
larger than ε. As ε approaches zero, (ε, d)-BE converges to Proposition 1. We illustrate the
notion of (ε, d)-BE using an example.

Example 2 ((ε, d)-BE policy trees) Consider partial policy trees of depth, d = 1, extracted
from the policy trees in Fig. 10. We show these in Fig. 11 along with the sets of updated
beliefs at the leaves, B1

m1
j,0

and B1
m2

j,0
. Notice that the partial policy trees are identi-

cal. The KL divergence between the corresponding beliefs in sets B1
m1

j,0
and B1

m2
j,0

is

DKL [〈0.03, 0.97〉||〈0.15, 0.85〉] = 0.08 and DKL [〈0.5, 0.5〉||〈0.85, 0.15〉] = 0.33, and the
maximum KL divergence is 0.33. Therefore, models m1

j,0 and m
2
j,0 are (0.33, 1)-BE.

While Definition 2 above is parameterized by the depth d of the policy trees and the
measure of approximation, ε, we show in the next section that d may be determined given
some ε.

4 Depth of the partial policy

Definition 2 introduces ameasure of approximateBEbetween twomodels. It is parameterized
by both the amount of approximation, ε, and the partialness of the comparison, d. However,
we show that the depth d may be uniquely determined by the amount of approximation that
is allowed in the equivalence of two models. We begin by reviewing an important result for
a Markov stochastic process.

Consider a discrete Markov stochastic process with a general state space, S =
{s1, s2, . . . , sn}, and transition function, Q. Let pt and p̂t be two arbitrary distributions over
the state space. It is well known that a stochastic transition never increases the KL divergence
between two distributions such as pt and p̂t over the same state space in a Markov stochastic
process (e.g., see §4.4 in [11]). [5] take it a step further and show that the KL divergence
between the distributions contracts at a geometric rate with time given a stochastic transition,
and the rate of contraction is based on a mixing rate, γQ :

Lemma 1 (Contraction—[5]) For a discrete Markov stochastic process with transition func-
tion, Q, and arbitrary distributions over the state space, pt , p̂t , prior to a transition, and
pt+1, p̂t+1 post-transition:
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DKL(pt+1|| p̂t+1) ≤ (1 − γQ)DKL (pt || p̂t )
where

γQ = min
s1,s2

n∑

k=1

min(Q(sk |s1), Q(sk |s2))

Mixing rate, γQ , represents the minimal amount by which posterior distributions agree with
each other after one transition.

In our context, we may apply Lemma 1 to bound the divergence between the beliefs of
twomodels updated using an action–observation sequence. Let Fa j ,o j (s

′|s) be the “stochastic
transition” from state s to s′ obtained by multiplying the state transition probability due to
action, a j , with the likelihood of observation, o j , for j . If the models are level 0 DIDs,

Fa j ,o j (s
′|s) = α Pr(o j |s′, a j ) Pr(s′|s, a j ) (2)

where α is the normalization constant. γFa j ,o j is the minimum fraction of the probability
mass for which the updated beliefs of the two models agree, due to the transition, and is the
minimal mixing rate:

γFa j ,o j = min
s1,s2

∑

s′∈S
min{Fa j ,o j (s

′|s1), Fa j ,o j (s
′|s2)} (3)

Because Fa j ,o j depends on the state transition probabilities due to action and the obser-
vation probabilities, the mixing rate is a property of the problem domain.

If the strategy level l > 1, the stochastic transition, Fa j ,o j (·|·), is over the interactive states
of j where each such state is a pair of a physical state and model of i ; Eq. 2 becomes:

Fa j ,o j (is
′|is) = α

∑
ai∈A j

Pr(ai |mi,l−1) Pr(o j |s′, ai , a j ) Pr(s′|s, ai , a j )

∑
oi∈�i

Pr(oi |s′, ai , a j ) τ (bi,l−1, ai , oi , b′
i,l−1)

Each of the terms above may be obtained from the CPTs of the nodes in j’s I-DID. For
this case, we modify Eq. 3 as well by utilizing the transition function above in place of
Fa j ,o j (s

′|s).
Consequently, the proposition presented next shows how a pair ofmodelsmay come closer

after an action–observation sequence:

Proposition 2 (Contraction of model divergence)Divergence between initial beliefs, b0,km j,l−1

and b0,km̂ j,l−1
in models m j,l−1 and m̂ j,l−1, respectively, reduces on performing action, a j , and

observing, o j , as:

DK L(b1,km j,l−1
||b1,km̂ j,l−1

) ≤ (1 − γFa j ,o j )DKL(b0,km j,l−1
||b0,km̂ j,l−1

) (4)

where γFa j ,o j is as defined in Eq. 3.

Next, we may iteratively apply Eq. 4 over an action–observation sequence of length d
that corresponds to a path in a depth-d policy tree resulting in a geometric contraction of the
initial KL divergence:

DKL(bd,k
m j,l−1

||bd,k
m̂ j,l−1

) ≤ (1 − γF )d DK L(b0,km j,l−1
||b0,km̂ j,l−1

) (5)

Here, because a path may involve different sequences of actions and observations,

γF = min
(a j ,o j ) ∈ A j×� j

γFa j ,o j (6)
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The definition of approximate BE in the previous section (Definition 2) limits the maxi-
mum divergence between any pair of beliefs at the leaves of the partial policy trees to at most
ε. Because Eq. 5 bounds this divergence as well, we may equate the bound to ε and obtain
the equation below.

(1 − γF )d DK L (b0,km j,l−1
||b0,km̂ j,l−1

) = ε (7)

In the above equation, the only unknown isd becauseγF maybeobtained as shownpreviously,
ε is given, and b0,km j,l−1 , b

0,k
m̂ j,l−1

are the given initial beliefs in the models under comparison.

We further drive d by applying logarithm on both sides of Eq. 7 and get the following:

d ln(1 − γF ) + ln DK L (b0,km j,l−1 ||b0,km̂ j,l−1
) = ln ε

→ d ln(1 − γF ) = ln ε − ln DK L (b0,km j,l−1 ||b0,km̂ j,l−1
)

→ d =
ln ε − ln DK L (b0,km j,l−1 ||b0,km̂ j,l−1

)

ln(1−γF )

Since the depth d shall be a nonnegative integer not larger than the entire planning horizon
T , Proposition 3 derives d for a given value of ε.

Proposition 3 (Depth of comparison). For any b0,km j,l−1 , b
0,k
m̂ j,l−1

, T , computed γF and a given

ε as defined above, we may obtain the depth d as:

d = min

⎧
⎨

⎩T − 1,max

⎧
⎨

⎩0, 

ln ε − ln DK L

(
b0,km j,l−1 ||b0,km̂ j,l−1

)

ln(1−γF )
�
⎫
⎬

⎭

⎫
⎬

⎭ (8)

where 
·� gives the floor value, γF ∈ (0, 1), and ε > 0.

Proposition 3 gives the smallest depth that we could use for comparing the policy trees. In
general, as ε increases, d reduces for amodel pair until it becomes zero whenwe compare just
the initial beliefs in the models. Conversely, as ε reduces and we tolerate less approximation,
we must compare larger parts of the policy trees.

We note that the minimal mixing rate depending on the function, Fa j ,o j , may also assume
two extreme values: γF = 1 and γF = 0. The former case implies that the updated beliefs
are identical. For example, they have all probability mass in the same state, and the KL
divergence of these distributions is zero after a transition. Hence, we set d = 1. For the latter
case, there is at least one pair of states from which the updated beliefs do not agree at all:
There is no overlap among the states receiving probability masses in the two distributions.
For this null mixing rate, the KL divergence may not contract and d may not be derived.
Thus, we may arbitrarily select d ≤ T − 1.

We illustrate the computation of the minimal mixing rate using an example.

Example 3 (Computing γF ) Notice from Eq. 6 that the final mixing rate is the minimum of
all mixing rates for different combinations of action and observation of agent j .

Let us compute γFa j ,o j for the tiger problem when a j = L and o j = GL . We use Eq. 2

to first compute FL ,GL(s′ = T L|s = T L) and FL ,GL(s′ = T R|s = T L) with values from
“Multiagent tiger problem” section of Appendix:

FL ,GL(s′ = T L|s = T L) = αPr(GL|T L , L) · Pr(T L|T L , L)

= α0.85 · 1 = 0.85α
FL ,GL(s′ = T R|s = T L) = αPr(GL|T R, L) · Pr(T L|T R, L)

= α0.15 · 0 = 0
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where α is the normalization constant. Next, we compute FL ,GL(s′ = T L|s = T R) and
FL ,GL(s′ = T R|s = T R):

FL ,GL(s′ = T L|s = T R) = αPr(GL|T L , L) · Pr(T L|T R, L)

= α0.85 · 0 = 0
FL ,GL(s′ = T R|s = T R) = αPr(GL|T R, L) · Pr(T R|T R, L)

= α0.15 · 1 = 0.15α

In order to obtain γFL ,GL , we take the minimum of all FL ,GL(·|·) values as shown in Eq. 3.
In other words, γFL ,GL may be obtained by summing the minimum values across the rows or
columns of the matrix below:

s

T L T R

s′
T L 0.85 α 0
T R 0 0.15α

Therefore, γFL ,GL = 0 + 0 = 0. Because γF is the minimum across all γFa j ,o j , which
cannot be less than 0, the minimal mixing rate for the tiger problem is 0.

Because we may compute depth, d, analytically in most cases, we revise Definition 2 to
obtain a definition of ε-BE for ε ≥ 0:

Definition 3 (ε-BE) Given two models of agent j , m j,l−1 is ε-BE (ε > 0) to m̂ j,l−1 if their
depth-d policy trees, where d is computed according to Eq. 8, are identical,πd

m j,l−1
= πd

m̂ j,l−1
,

and beliefs at the leaves of the two ordered depth-d policy trees diverge by at most ε:
maxk=1...|� j |d DK L [bd,k

m j,l−1 ||bd,k
m̂ j,l−1

] ≤ ε. If ε = 0, this definition collapses into Proposition 1

with an arbitrary depth, d.

Note that ε-BE is not symmetric and not necessarily transitive.
In summary, we may group together two models that are approximately BE by a measure 

of ε or less by first determining the depth d using Eq. 8 and then ensuring that the partial 
policy trees, which are the solutions of the models, are identical down to the depth d .

5 Incremental comparison of model solutions

Notice that the mixing rate, γF , as computed using Eqs. 3 and 6 is the minimal one, and a 
single rate is computed for a problem domain. This often leads to an overly large depth, d , 
with the divergence between the updated beliefs for pairs of policy trees reducing to smaller 
than ε before the depth is reached. We introduce further efficiency in memory usage by 
addressing this limitation.

One way to avoid comparing depth-d balanced trees fully for equality is to compare 
branches of increasing length incrementally until either the divergence between the updated 
beliefs at the corresponding nodes drops to ε or smaller, or the depth reaches d . Let dL be 
the least depth at which further expansions from a node in the two trees for the purpose of 
comparison are blocked. Depth, dU , is the greatest such depth and dU ≤ d .
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(a) (b)

(c)

(e)

(d)

Fig. 12 Incrementally expanding and comparing policy tree solutions of two models for equality. A times
symbol below a node indicates that the tree need not be expanded further from that node for comparison
purposes because the KL divergence of the updated beliefs at the node pair is equal to ε or less

Example 4 (Incremental comparison) We illustrate this procedure using a pair of example
policy trees for the multiagent tiger problem, in Fig. 12. Let ε = 0.015 for this example. As
we mentioned previously, the minimal mixing rate for the multiagent tiger problem, γF = 0.
Therefore, wemay arbitrarily select a large depth, d.We begin by comparing the initial beliefs
of the two models as shown in Fig. 12a. As DKL (〈0.5, 0.5〉||〈0.6, 0.4〉) > ε, we expand the
branches from the root node breadth-wise left to right computing the updated beliefs at the
next set of nodes. Because DKL (〈0.41, 0.59〉||〈0.49, 0.51〉) < ε, we do not expand the tree
further along this branch, as shown in Fig. 12b. For our example, dL = 1. Because the
KL divergence between 〈0.53, 0.47〉 and 〈0.65, 0.35〉 remains larger than ε, we continue to
expand the trees along this branch. As we show in Fig. 12d, e, we continue comparing the
KL divergences of the updated beliefs at the corresponding leaf nodes. The KL divergence
between the updated beliefs, 〈0.87, 0.13〉 and 〈0.92, 0.08〉 at the leaf nodes being smaller
than ε, we need not expand along this branch further. As we continue expanding the policy
trees, the upper bound on the depth, dU , is larger than 2 but does not exceed d.
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The primary benefit of incrementally comparing the policy trees is now obvious: We need
not store perfect depth-d balanced trees in memory; rather, we may obtain computational
savings if dL is significantly smaller than d. Notice that we need not precompute d if we are
incrementally comparing the policy trees. Instead, further comparisons are blocked along a
branch whenever the KL divergence reduces to ε or smaller. Recall that for extreme values
of the mixing rate such as when γF = 0, Eq. 8 is unable to provide a value for d. Therefore,
a secondary benefit of the incremental comparison approach is that we need not arbitrarily
select d for pathological mixing rates.

Recall that ε-BE (as per Definition 3) can be ensured by comparing entire depth-d policy
trees. Proposition 4 points out that if two models are ε-BE, the incremental comparison will
identify the models as ε-BE as well.

Proposition 4 (Quality) Given two models of agent j , m j,l−1 is ε-BE to m̂ j,l−1, ε > 0.
Then, incremental comparison will identify the two models as ε-BE.

Proof Let πd
m j,l−1

and πd
m̂ j,l−1

be the depth-d policy trees obtained from models, m j,l−1 and

m̂ j,l−1, respectively, where d is determined using Eq. 8 given ε. Because the models are 
ε-BE, the two policy trees are identical as per Definition 3. Proceeding in a breadth-wise 
manner through the policy trees, the incremental comparison updates beliefs at the nodes and 
measures the KL divergence between them. For each pair of compared branches of the two 
policy trees, the divergence either between beliefs at the intermediate nodes of the branches 
or between beliefs at the leaf nodes reduces to smaller than or equal to ε.

If the divergence at intermediate nodes falls below ε, we do not compare any further along 
those branches. Importantly, because the branches are identical, the divergence will continue 
to reduce or remain the same, thereby satisfying the property of the divergence being smaller 
than or equal to ε. In the worst case, updated beliefs at the leaf nodes are compared, whose 
divergence is guaranteed to be smaller than ε. This holds for all pairs of branches that are 
compared. Therefore, the incremental comparison will also identify the two models as ε-BE 
for a given ε > 0. 	


On the other hand, models deemed to be ε-BE by the incremental technique may not 
precisely be ε-BE (as defined in Definition 3). This is because the incremental comparison 
does not compare the branches from the least depth dL to the depth d in the policy trees 
for being identical. Therefore, the clustering of models may now differ from the previous 
approach with additional models being possibly included in a cluster.

6 Computational savings and predictive error bound

Given that we may analytically determine d using Eq. 8, the complexity of identifying whether 
a pair of models are approximately BE is dominated by the complexity of comparing two 
depth-d trees. This is proportional to the number of comparisons made as we traverse the 
policy trees. As there are a maximum of |� j |d leaf nodes in a depth-d balanced tree, the 
following proposition gives the complexity of identifying BE classes in the model node of 
agent i’s I-DID at some time step.
Proposition 5 (Complexity of BE). The asymptotic complexity of the procedure for identify-
ing all models that are ε-BE is O(|M j,l−1|2|� j |d ), where |M j,l−1| is the number of models 
in the model node.

While the time complexity of comparing two partial policy trees is given by Proposition 5 
(set |M j,l−1| = 2), we maintain at most 2|� j |d paths (d ≤ T − 1) at each time step for
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each pair of models that are being compared, with each path occupying space proportional
to d. This avoids storing entire policy trees containing (|� j |)T−1 possible paths, leading to
significant savings in memory when d � T .

Further computational savings are typically obtained when the partial policy trees are
compared incrementally. Although in the worst case, dL = dU = d, and therefore the worst-
case asymptotic complexity continues to be defined by Proposition 5, typically dL < dU .
Consequently, the number of leaf nodes compared between two trees is significantly less
than 2|� j |d . However, these additional savings in memory are moderated by the additional
expense of updating beliefs after each observation-action branch and computing the KL
divergence between two belief distributions.

We analyze the error in the value of j’s predicted behavior. If ε = 0, grouped models are
exactly BE and there is no error. With increasing values of ε (resulting in small d values),
model, m j,l−1, may be approximately grouped with the model, m̂ j,l−1, from which it is
actually behaviorally distinct. Let m̂ j,l−1 be the model, which when associated with m j,l−1

results in the worst error. Let αT and α̂T be the exact value vectors for the entire policy
trees obtained by solving the two models, respectively. Then, if m̂ j,l−1 is selected as the
representative of the group, the error is: ρ = |αT · b0m j,l−1

− αT · b0m̂ j,l−1)
|. Let dmin be the

smallest depth of comparison across all pairs of policy trees in the model node. Because the
depth-dmin policy trees of the two models are identical (Definition 2), the error arises from
the remaining parts of the policy trees that are not compared, which could be different, and
it becomes:

ρ = max
k

|αT−dmin−1 · bdmin+1,k
m j,l−1

− αT−dmin−1 · bdmin+1,k
m̂ j,l−1

|

Here, αT−d−1 is the value vector of the policy subtree, which is optimal for bd+1,k
m j,l−1 , and

bd+1,k
m j,l−1 and b

d+1,k
m̂ j,l−1

are beliefs at which the error is maximum.

Proposition 6 The worst-case error in the value of j’s predicted behavior due to grouping
models that are ε-BE is bounded as,

ρ ≤ (Rmax
j − Rmin

j )(T − dmin − 1) · 2ε

where Rmax
j and Rmin

j are the maximum andminimum rewards of j over any state and action,
respectively.

The proof of this proposition is given in “Appendix 1”. On the other hand, if we incre-
mentally compare policy trees for equality as described in Sect. 5, then the worst error occurs
when all the branches of the two policy trees are blocked from further comparisons at depth,
dL = dU , which is smaller than dmin . We may obtain the error by substituting dmin with dL
in the final inequality above due to which the error bound becomes:

ρ ≤ (Rmax
j − Rmin

j )(T − dL − 1) · 2ε

Note that because dL < d, this error bound is larger than the previous one, implying that
the error could be worse.

Of course, these errors are tempered by the probability that agent i assigns to the model,
m j,l−1, in the model node at time step, d.
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7 Experimental results

We implemented our methods of determining ε-BE between models and use them to group
models into classes. Specifically, for a given value of ε, we group models together that are
ε-BE with a representative thereby resulting in approximate equivalence classes, which par-
titions the model space. This is followed by retaining the representative for each class while
pruning others, analogously to using exact BE. This procedure now implements PruneBe-
haviorEq (line 6) in Fig. 9. Flat DIDs obtained by transforming the I-DIDs are solved as
limited memory DIDs [25] using the Hugin Expert API.

Because our approach is the first to formalize an approximation of BE (to the best of our
knowledge), we compare it with the previous most efficient algorithm that exploits exact BE
while solving I-DIDs.This technique [49] groupsBEmodels using their entire policy trees and
updates only those models that will be behaviorally distinct from existing ones; we label it as
DMU. As a second baseline, we transform the I-DIDs into limited memory DIDs [25] at each
level with the decision node in each time-slice remembering the previous decision only.Mod-
els are not grouped for pruning in the model nodes, and we label this approach as LIM I-DID.

We demonstrate the properties of the methods using two standard problem domains: the
two-agent tiger problem (|S| = 2, |Ai | = |A j | = 3, |�i | = 6, |� j | = 3) described previously
in Sect. 2, and the multiagent version of the concert problem (|S| = 2, |Ai | = |A j | = 3,
|�i | = 4, |� j | = 2).1 In particular, we hypothesize that (a) as we increase the measure
of approximation, ε, fewer equivalence classes appear in the partition of the model space,
M j,l−1, and (b) the quality of the I-DID’s solution approximation approaches that of the
exact DMU as ε reduces.

Equally importantly, we also evaluate the scalability of the methods by applying it to
a larger domain related to money laundering and using a scalable multiagent testbed with
practical implications called theGeorgia testbed for autonomous control of vehicles (GaTAC)
[15,43]. We simulate a much larger problem domain in GaTAC: the two-agent unmanned
aerial vehicle (UAV) interception problem in a 5 × 5 grid (|S| = 81, |Ai | = |A j | = 5,
|�i | = |� j | = 5). I-DIDs for all problem domains are provided in “Appendix”.

7.1 Anytime performance and equivalence classes

We report on the performance of the techniques—ε-BE, DMU, and LIM I-DID—when used
for solving level 1 I-DIDs of increasing horizon in the context of the small domains.We show
that ε-BE produces a better-quality solution than DMU and LIM I-DID in the same amount
of allocated time and computational resources, and the quality of the solution generated by
ε-BE converges to that of the exact DMU as ε decreases and more computational resources
are available (with the corresponding increase in d). The multiagent tiger problem exhibits
a minimal mixing rate of zero, due to which the partial depth, d, is selected arbitrarily. We
increase d as ε reduces.

In Fig. 13a, we show the best solution possible on average for a given time allocation for
the multiagent concert and tiger problems. Notice that ε-BE consistently produces better-
quality solution thanDMU and LIM I-DID. This is because it solves for a longer horizon than
the latter techniques in the same time. A lack of any pruning of the models in LIM I-DID
is predominantly responsible for its relatively poor performance and its inability to generate
better-quality solutions. Figure 13b shows the average rewards gathered by simulating the

1 We adapt the single-agent concert problem from the POMDP repository at http://
www.cs.brown.edu/research/ai/pomdp/.

http://www.cs.brown.edu/research/ai/pomdp/
http://www.cs.brown.edu/research/ai/pomdp/
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(a) (b)

Fig. 13 a For a given allocation of time, ε-BE may produce solutions of significantly better quality than
DMU and LIM I-DID by running for more horizons and greater number of initial models. This clearly shows
the benefit of the approximation. Experiments were run using a level 1 I-DID on a Linux platform with Intel
Core2 2.4GHz with 4GB of memory. b The approximations converge to the exact DMU as ε reduces and this
is consistent for differing numbers of initial models, M0

j,0

solutions obtained for decreasing ε for each of the two problem domains. We used a horizon
of 10 for the small domains. Each data point is the average of 500 runs where a model of
j is sampled according to i’s initial belief and assigned to j in the simulations. For a given
number of initial models, Mj,0, the solutions improve and converge toward the exact (DMU)
as ε reduces. While the derived partial depths vary from 0 up to the horizon minus 1 for
extremely small ε, we point out that the solutions converge to the exact for d < T − 1,
including the tiger problem (at d = 3) despite the zero mixing rate.

Interestingly, Fig. 14 confirms our intuition that ε-BE leads to significantly fewer model
classes for large ε, and therefore smaller d. However, the number of classes when ε = 0 is
more than DMU because diverging leaf beliefs may still lead to BE of models as mentioned

Multiagent concert

 0

 2

 4

 6

 8

 10

10 9 8 7 6 5 4 3 2 1

M
od

el
 c

la
ss

es

Horizon

DMU
ε-BE (ε=0,d=7)

ε-BE ε=0.01(d=7)
ε-BE ε=0.10(d=4)
ε-BE ε=0.90(d=1)

Multiagent tiger

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 7 6 5 4 3 2 1

M
od

el
 c

la
ss

es

Horizon

DMU
ε-BE (ε=0,d=3)

ε-BE ε=0.45(d=3)
ε-BE ε=0.60(d=2)
ε-BE ε=0.80(d=1)

Fig. 14 Model space partitions by ε-BE andDMU across the different horizons while solving a level 1 I-DID.
As ε increases, more models are grouped into a single class due to increased tolerance resulting in less classes
in the partition
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previously in Sect. 3. Importantly, comparing partial policy trees is sufficient to obtain almost
the same model space as in the exact case, which is responsible for the early convergence to
the exact reward we observe in Fig. 13b.

Next, we evaluate the benefit of incrementally comparing the model solutions. We label
this approach as ε-BE-Inc and particularly compare it with ε-BE. In the context of the
two problem domains we are using, ε-BE-Inc leads to solutions of the level 1 I-DIDs that
are of better quality than those by ε-BE in the same amount of allocated time. Although
incrementally comparing the trees often leads to a greater approximation, the associated
computational savings allow us to solve I-DIDs of longer horizons and with more models in
the given time. We show this in Fig. 15.

Aswemay expect, ε-BE-Inc groupsmoremodels together due to its comparison of smaller
portions of the trees for equality, which leads to less equivalence classes in the partition of
the model space. In Fig. 16, we see that ε-BE-Inc results in a fewer number of classes for
about half the horizons.

In the context of fewer numbers of equivalence classes, what are the values of dL that
emerge aswe comparemodels?We investigated this question and discovered that for a typical
model space, dL surprisingly remained smaller than d. In Fig. 17, we show the percentage
of all model comparisons, which exhibited different values of dL .

Finally, in Table 1, we compare the different techniques based on the time each takes to
solve problems of increasing horizons. We additionally include a heuristic approach [47],
labeled TopK, that samples K paths from a policy tree that are approximately most likely
to occur and uses just these paths to compare for equivalence, and we include an additional
problem domain involving UAV reconnaissance of a fugitive who intends to reach a safe
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Fig. 15 Incrementally comparing policy trees as in ε-BE-Inc often leads to early terminations along some
branches and is significantly more efficient in general than ε-BE
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Multiagent concert
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(a) (b)

Fig. 17 Percentages of all model comparisons, which exhibited the different values of dL . a dU = d = 5, b
dU = d = 6. Interestingly, notice that dL remained less than d for all comparisons

Table 1 ε-BE-based approaches
show scalability to a very large
horizon in the context of I-DIDs,
in multiple problem domains

Experiments were run on a Linux
platform with Intel Core2
2.4GHz with 4GB of memory
The bold values highlight the
scalability of the proposed BE
methods over the planning
horizons

Level 1 T Time (s)

I-DID DMU TopK ε-BE ε-BE-Inc

Concert 6 0.29 0.36 0.31 0.11

10 2.3 2.4 1.9 0.22

25 * 336.24 13.1 9.1

Tiger 6 0.34 0.31 0.21 0.16

8 1.3 3.7 0.37 0.21

20 * 218 3.1 2.49

UAV3 6 19.3 10.1 8.9 8.1

8 186.7 111 27 19

10 * 462 55 48

20 * * 98 76

25 * * * 132

sector, which is played out in a 3 × 3 grid (|S| = 25, |Ai | = |A j | = 5, |�i | = |� j | = 5)
[15]. Both ε-BE and ε-BE-Inc demonstrate significant scalability over DMU, solving for
much longer horizons than exactly possible. They show significant run time speedup over
TopK as well, which needs to maintain complete paths, though not all, that grow long. ε and
K were varied to get the same reward asDMU if appropriate, otherwise until the model space
stabilized. Additional savings obtained by ε-BE-Inc allow us to solve the UAV3 problem up
to a horizon of 25 in a reasonable amount of time. We point out that expanding I-DIDs to 20
or more time steps surpasses previous horizon-centric scalability results for such domains
by a large margin [49], and the resulting solutions are of quality that is sufficiently high for
these problem domains, which would satisfy most requirements.

7.2 Scalable performance

We demonstrate scalability of the techniques by utilizing them to counter money laundering
cast as an adversarial decision-making problem (Sect. 7.2.1) and to solve the sequential
decision-making problem of a UAV I tasked with intercepting another hostile UAV J , which
intends to raid an immobile allied military base (Sect. 7.2.2).
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7.2.1 Countering money laundering

The money laundering problem, introduced by [29] and possessing realistic underpinnings,
is a game between law enforcement (blue team) and the money launderers (red team) who
aim to move their assets from a “dirty” pot to a “clean” one through a series of financial
transactions while evading capture by the blue team. The blue team can place sensors at
various locations such as bank accounts, trusts, and real estate to detect the presence of
the “dirty” money. The physical state is defined by the joint location of the dirty money
and that of the sensor. The possible locations of the red team’s assets are: dirty pot, bank
accounts, insurance, securities, offshore accounts, shell companies, trusts, corporate loan,
casino accounts, real estate, and clean pot. The possible locations of the blue team’s sensor
are: bank accounts, insurance, securities, shell companies, trusts, corporate loan, casino
accounts, real estate, and none. The red team may perform any of the three nondeterministic
actions of placement, layering or integration to move its assets from one location to another
or it could listen to gain noisy information about the location of the blue team’s sensor. The
blue team may place its sensors in one of the eight locations or it could confiscate the assets
of the red team. As [29] mention, this problem is about 20 times larger than the previous
small problem domains. It exhibits a physical state space of 99 states for the subject agent
(blue team), 9 actions for the subject agent and 4 for the opponent, and 11 observations for
the subject and 4 for the other. More details on this domain including the I-DID models are
discussed in “Money laundering problems” section of Appendix.

Blue team’s decision making in the money laundering problem is modeled using a level
1 I-DID, which ascribes level 0 models to the red team. The blue team ascribes 40 or more
models to the other in the initial model node. Its initial belief is a uniform distribution over the
physical states andmodels of the other team.Aswe notice fromFig. 18a,DMU’s performance
is close to that of ε-BE for small time allocations until ε-BE breaks away by solving I-DIDs of
horizons up to 10 and considering more models. In comparison,DMU is unable to move past
I-DIDs of horizon 8 for this large problem, while LIM I-DID does not solve past 4 horizons
despite forgetting all but the previous decision. Each data point is the average of 150 runs of
the blue team’s I-DID. The blue team is able to account for more models on using ε-BE-Inc
compared to ε-BE and solve I-DIDs of horizon 12, which is longer than that by ε-BE, as we
show in Fig. 18b.
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Fig. 18 a ε-BE continues to demonstrate improved value in comparison with DMU and LIM I-DID for the 
same allocation of time, for this large problem domain. We may solve a level 1 I-DID up to horizon 10 with 
more than 40 initial models in approximately 35 s. Experiments were run using a level 1 I-DID on a Linux 
platform with Intel Core2 2.4 GHz with 4 GB of memory. b Terminating comparisons early allows ε-BE-Inc 
to account for more models thereby improving on ε-BE
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Fig. 19 The number of behaviorally distinct model classes drops for the initial time steps, as we relax ε

allowing partial policy trees of smaller depth to be compared and more models to be grouped into a class, in
comparison with DMU
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Level 1 T Time (s)
I-DID DMU TopK -BE -BE-Inc

6 148.8 85.8 78.3 67.7
Money 8 787.6 582.5 220.1 208.6

Laundering 10 * * 1320 1210
12 * * * 2410

(b)

Fig. 20 a Proportion of all policy tree comparisons in the money laundering problem for which dL < dU is
high, where dU = d = 5 for ε = 0.025. b Run times of different approaches on a Linux platform with Intel
Core2 2.4GHz with 4GB of memory. ‘Asterisk’ indicates that the solution ran out of memory

In order to understand the reason behind the improved performance of ε-BE, we again find
out the number of model classes at each time step in the model node of the blue team’s I-DID.
As we show in Fig. 19a, more than 40 initial models are grouped into 19 model classes by
DMU, and just 11 classes by ε-BE for ε = 0.015, which leads to partial policy trees of depth
4. This number of model classes steadily drops as we increase ε. The incremental comparison
of ε-BE-Inc produces a slightly fewer number of model classes because more models get
grouped as approximately BE due to the partial comparisons. As shown in Fig. 20a, about
60% of the model pair comparisons exhibited a reduced comparison depth of, dL = 2, along
at least one branch of the policy trees, while the remaining exhibited, dL = 3. This primarily
results in the improved performance of ε-BE-Inc seen previously. Figure 20 shows the time
taken to solve a level 1 I-DID using different approaches while attaining the same value
as DMU. Partial policy comparisons compress the model space substantially allowing more
models and taking less than half as much time as that by the exact approach. While [29]
reported solving the money laundering problem with a maximum look ahead of 4, we may
scale in horizon up to 12 using ε-BE-Inc with |M j,0| = 40. This scalability is in part due to
a factored representation of the state space enabled by graphical models, as well.

7.2.2 UAV reconnaissance and interception in GaTAC

We assume that the UAV scenario is played out in a 5×5 grid of sectors as shown in Fig. 21a.
We formulate the problem from the perspective of UAV I . The state space is modeled using
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(a) (b)

Fig. 21 a A larger problem domain involving UAV reconnaissance and interception in a 5×5 combat theater. 
UAV I is tasked with intercepting J before the latter raids the allied military base. b Architectural design of 
GaTAC showing two networked instances of a flight simulator one of which is autonomous and the other is 
manually controlled

the possible relative locations of UAV J with respect to I . In a 5× 5 theater, this space con-
sists of 81 physical states including same, north, south, east, west, north-west, north-east. J ’s 
physical state space consists of its absolute location in the grid. Both the UAVs may move in 
one of the four cardinal directions, or loop in their current locations in a full surveillance mode. 
Thus, the actions for I and J are {move_north, move_south, move_east, move_west, listen}. 
Typical UAVs such as the MQ-1B predator possess an infrared sensor and a color TV camera, 
which allows them to carry out ground and aerial reconnaissance. Consequently, we assume 
that both UAVs have the following observational capabilities: {sense_north, sense_south, 
sense_level, sense_found}, where  UAV  I ’s sensing target is J and J ’s target is the allied mil-
itary base, and while sense_north and sense_south are self-explanatory, sense_level denotes 
that the target is in the same column and sense_found denotes that the target is in the same 
sector as the UAV. At a strategy level of 0, UAV J ’s transition function straightforwardly 
models the nondeterministic movements of J . However,  I ’s transitions are contingent on the 
joint actions of both UAVs. The noise in determining the next state is not only due to a small 
amount of nondeterminism in its movement but also due to the state being relative. UAV J 
knows the location of the base in the theater. However, because it is not perfectly aware of 
its own location, it may sense the base noisy only when it is within a radius of 1 sector from 
it. On the other hand, UAV I senses J accurately as being north of it if J is in any sector 
that is north of I , and analogously for the other observations. The reward functions penalize 
excessive action taking by associating each action with a small cost and rewards the UAVs 
for performing an action and receiving an observation of sense_found, indicating that the 
UAVs may intercept their respective targets.

We modeled UAV I ’s decision-making problem using a level 1 I-DID modeling J using 
level 0 DIDs. Four distinct classes of models of J were included, which were grouped into 
approximate BE classes for differing values of ε using the approaches of ε-BE and ε-BE-Inc. 
These models differ in the initial beliefs that I thinks J has about its location. They imply 
that J is in the lower part of the grid and in the same column, or slightly to the left or right of 
UAV I . We show example policy trees for I computed using the two approaches of ε-BE and 
ε-BE-Inc, in Fig. 22. Here, UAV I believes that J is to its north-west. To permit illustration, 
we show policies for a horizon of 3.
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(a) (b)

Fig. 22 Horizon 3 policy trees for UAV I computed using, a ε-BE, and b ε-BE-inc approaches. Here,
ε = 0.42 leading to d = dU = 2. The distinctions between the two policies are highlighted

Policy computed using ε-BE in Fig. 22a improves on the policy in Fig. 22b by recom-
mending a final action of listen on sensing UAV J south of I . This is because the game has
reset previously as J was intercepted—indicated by the observation of sense_found—and is
now to the north-west of I . Furthermore, its preferable to move west or east on observing
sense_level thereby making another intercept possible, instead of listening.

Extended policies of UAV I were run in the theater of Fig. 21a simulated in GaTAC, which
is a hyper-realistic simulation environment for evaluating control of autonomous robotic vehi-
cles such as UAVs. GaTAC provides a low-cost and open-source (GNUAffero public license
version 3) alternative to highly expensive simulation infrastructures for an academic labo-
ratory setting. A simplified architectural design of GaTAC is shown in Fig. 21b where an
autonomous UAV interacts with a manually controlled one. Briefly, GaTAC deploys multiple
instances of an open-source flight simulator called FlightGear [34] with 3D scenery from
TerraGear, possibly on different networked platforms which communicate through an exter-
nal server. Multiple UAVs may communicate with each other using the multicast protocol.
GaTAC provides a complete workflow to users which facilitates setting up cooperative or
noncooperative environments and parsing policies produced by recognized decision-making
frameworks including decentralized POMDPs.

The use of ε-BE allows us to solve UAV I ’s decision-making problems for horizons
of up to 10. This represents a significant step forward toward meaningfully applying these
sophisticated frameworks to real-world problem domains. We show the impact of ε-BE and
ε-BE-Inc with identical ε and dU of 6 and 8 on the space of models of the other UAV J in
Fig. 23. Models whose numbers could reach greater than fifty thousands by the last time step
may be grouped together to result in a tractable model space. As we may expect, ε-BE-Inc
continues to group more models together compared to ε-BE, thereby resulting in a reduced
number of model classes.

We simulated policies of horizons 8 and 10 for UAV I with three different initial beliefs,
in GaTAC. Policies were generated using both ε-BE and ε-BE-Inc. Our procedure involved
sampling amodel ofUAV J and the initial locations ofUAVs I and J , all distributed according
to I ’s particular initial belief. UAVs I and J then pursued trajectories in the theater of Fig. 21a
guided by their policies.2 We ran 25 simulations for each horizon and approach in GaTAC,
resulting in a total of 100 simulations. Each run ends when either J is intercepted or it reaches
the allied base.

We did not observe a significant difference in the average reward performance between the
two policies of different horizons, as we show in Table 2. This is primarily because a horizon

2 The starting locations of the UAVs may differ from those shown in Fig. 21a.
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Fig. 23 Models are grouped into a tractable number of classes by the approaches, ε-BE and ε-BE-Inc, for
the large UAV interception problem. Solving for d = dU results in a value of 6 for ε = 0.3 and a value of 8
for ε = 0.25 in this problem domain

Table 2 Average rewards and run times for expanding the large I-DIDs and solving them on a platform with
a 2.4GHz processor and 4GB of memory

Level 1 T ε-BE ε-BE-Inc

I-DID Avg. Rwd Time (s) Avg. Rwd Time (s)

Expansion Solution Expansion Solution

UAV 8 38.20 202 0.98 37.32 199 0.91

5 × 5 10 43.64 1026 3.8 46.68 811 2.2

Notice that the policy obtained using ε-BE did not consistently obtain a better reward than that of ε-BE-Inc. 
We do not include the time it takes to extract and write out the policy trees, which becomes substantial for 
large horizon trees. Nevertheless, solutions of longer horizon I-DIDs are now possible

of 8 and consequently 10 are both sufficient in order to obtain a good quality policy for 
UAV I in our theater. Furthermore, both ε-BE and ε-BE-Inc generated policy trees that were 
similar for most parts although not identical due to which we did not observe a significant 
difference in performance between them. This could be an indication that the two approaches 
yield comparative results for large problems. However, Table 2 demonstrates a significant 
reduction of about 20 % between the two techniques in the time it takes to expand and solve 
the large I-DIDs for a horizon of 10. See Fig. 9 for details on the two phases of the algorithm. 
This is primarily due to the reduced number of model classes maintained by ε-BE-Inc at 
many of the time steps as demonstrated in Fig. 23b. We were able to further scale the horizon 
to 12 with ε-BE consuming a total of 2033 s and ε-BE-Inc taking 30 % less time, before the 
solution phase ran out of memory for longer horizons.

A closer look at our simulations reveals that out of the total 100 runs, UAV I intercepted 
J in 65 of the simulation runs. Among the remaining runs, J reached the allied base in 22 of 
them, while the remaining 13 did not yield any result. Consequently, J was intercepted about 
three times more than it reached the base despite the considerable amount of uncertainty in 
the problem. However, the overall capture rate was 65% indicating that there is room for 
improvement. We show selected trajectories of UAVs I and J utilizing the two techniques for 
a horizon of 8 in Fig. 24. We select example trajectories where UAV J reaches the allied base 
and those where I intercepts J before it does so. We point out that I is unsure of the exact 
initial location of J due to which in some of the runs, J narrowly escapes being intercepted, 
as in the lower theater of Fig. 24b.
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(a) (b)

Fig. 24 Two example runs depicting UAV J , a reaching the base, and b being intercepted by I . The numbers
on the trajectories denote the policy steps of the two UAVs; they move continuously and concurrently in the
simulation. The dots indicate their starting locations. Notice that the policies produce trajectories for I that
can get sophisticated

In summary, our empirical analysis using multiple problem domains shows that ε-BE-Inc
results in quicker solutions compared to ε-BE though at the expense of greater approximation.
However, the improved efficiency may be leveraged to solve for larger dimensions. Both
generate solutions of flexible quality. In general, ε-BE-based approaches show improved
scalability: We solved a 5 × 5 UAV theater for a horizon of 8 in time that is less by an
order of magnitude than the time it took previously for a comparable domain [49], and scaled
further to longer horizons. These results were obtained within the confines of a commercial,
off-the-shelf software for IDs.

8 Related work

Dynamic influence diagrams [44] occupy an important place in the spectrum of formalisms
available for modeling and solving sequential decision-making problems. I-DIDs generalize
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the influence diagrams to multiagent settings facilitating decision making in the presence of 
other sophisticated decision makers of uncertain types. They may be viewed as graphical 
counterparts of finitely nested interactive partially observable Markov decision processes 
(POMDP) [20].

Other prominent generalizations of IDs to multiagent environments include multiagent 
influence diagrams (MAIDs) [23,24] and networks of influence diagrams (NIDs) [18,19]. All 
of these formalisms structure the complex problem domains by decomposing the situation 
into chance and decision random variables, and the dependencies between the variables. 
MAIDs objectively analyze the game, efficiently computing the Nash equilibrium profile by 
exploiting the conditional independence structure. NIDs extend MAIDs to include agents’ 
uncertainty over the game being played and over models of the other agents allowing for 
nested modeling. Solving NIDs involves transforming them into MAIDs. [17] observe that 
both MAIDs and NIDs provide an analysis of the game from an external viewpoint and adopt 
Nash equilibrium as the solution concept.

However, equilibrium is not unique—there could be many joint solutions in equilibrium 
with no clear way to choose between them—and is incomplete—the solution does not pre-
scribe a policy when the policy followed by the other agent is not part of the equilibrium. 
Furthermore, the process of equilibration in noncooperative settings continues to remain 
poorly understood. In comparison with I-DIDs, MAIDs do not allow us to define a distribu-
tion over nonequilibrium behaviors of other agents. This is especially problematic when the 
perspective is that of a decision maker in the presence of others. Furthermore, the applicability 
of MAIDs and NIDs is limited to static single-shot games. Of course, interactions are more 
complex when they are extended over time, where predictions about others’ future actions 
must be made using models that change as the agents act and observe. I-DIDs seek to address 
this gap by offering an intuitive way to extend sequential decision making as formalized by 
DIDs to multiagent settings.

As we mentioned before, a predominant factor in the complexity of I-DIDs is due to 
the exponential growth in the candidate models over time. Using the heuristic that models 
whose beliefs are spatially close are likely to be BE, [50] employed a k-means approach to 
cluster models together and selected K representative models in the model node at each time 
step. However, the K representatives are not guaranteed to be behaviorally distinct due to 
which the set is not minimal. Furthermore, all representatives are expanded to obtain the set 
of possible models at the next time step before clustering is applied, which may consume 
excessive memory for storing the models. We may preemptively avoid expanding models 
that will turn out to be BE to others in the next time step [16,49]. By discriminating between 
model updates, the approach generates a minimal set of models in each noninitial model 
node. Another attempt on approximating BE is to identify the BE by comparing probability 
distributions over the subject agent’s action-observation paths, which, however, turns out to 
be internally contradictory [6,14]. As we mentioned previously, this line of investigation 
exploits the concept of BE, introduced previously [36,37].

While exploiting BE makes the general space of models parsimonious, identifying that two 
models are BE requires comparing their solutions, which are often policy trees. The trees grow 
exponentially in size with the horizon of decision making. In a different approach, [47] sought 
to cluster models by comparing the K -most probable paths in the policy trees. However, 
computing path probabilities becomes computationally hard as the paths become longer, 
and bounding the prediction error is not possible. We may further prune the model space 
by clustering models whose predicted actions at a particular time step are identical [48,49]. 
While the clusters may change at each time step, the benefit is that the number of clusters is 
bounded by the total number of actions of the agent, leading to a small model space. Various
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I-DID solution techniques that exploit the notion of equivalence were recently compared
[49] and their effectiveness demonstrated on several problem domains including in GaTAC.
Building upon the current BE-based I-DID solutions [51,52], this paper formally develops
the BE identification techniques and further improves the solutions by approximating the
techniques. The solution quality is proved in a theoretical way. We conduct additional results
in a larger testbed as well as in one new problem domain. Recently, Chen et al. [8] initiate
the study of online I-DID solutions by developing true behavior of other agents during their
interactions. Ross et al. [10] focus on learning agents behavior from available data, which
provide prior knowledge on refining model space in I-DIDs.

While graphical models remain as yet unexplored in the context of cooperative deci-
sion making modeled using frameworks such as decentralized POMDPs [40], factored
representations of the state space are becoming prevalent. [32] demonstrated that factored
representations of the state space provided a speedup of about two orders of magnitude
while solving small team problems exactly, because the representations facilitated exploiting
conditional independence. Such factored representations also facilitate solutions to decen-
tralized POMDPs with many agents by exploiting the interaction structure among the agents
[30]. Another approach [33] utilizes factored representations in a dynamic Bayesian network
to project agents’ beliefs forward and utilizes expectation maximization to learn stochas-
tic finite-state controllers. Factored representations for decentralized POMDPs operate on
a common initial belief over the state space variables for all agents, and a common reward
function. Meanwhile, [45] used influence-based abstraction to decouple local agents’ inter-
actions in decentralized POMDPs, which is further generalized to quantify the complexity
of multiagent planning [31].

9 Discussion

We show how we may utilize partial solutions of models to determine approximate BE and
applied it to significantly scale solutions of I-DIDs. Our insight is that comparing partial
solutions of models is likely sufficient for grouping models similarly to using exact BE, as
our experiments indicate. We use a principled technique to determine the partialness given
the approximation measure, though not all problem domains may allow this.

While we demonstrate the utility of approximate BE in the context of a decision-making
framework, it may serve to make the model space tractable for game playing, user modeling,
and plan recognition as well. Approaches in these areas of multiagent systems confront
large model spaces, which are often trimmed in an ad hoc manner using either data, domain
knowledge, or restrictive assumptions. [36] demonstrated an application of BE in a social
simulation setting related to class bullying. Here, both the teacher and the bully maintain
several mental models of each other’s possible behaviors.

I-DIDs allow the model frames to differ as well, thereby permitting the modeling of
situations where the subject agent believes that the other agent may have a different model
of the decision-making problem. The minimal mixing rate may then differ for models with
differing frames and would need to be recomputed. Despite the multiple mixing rates and
therefore multiple depths down to which the policy trees must be identical, we may continue
to partition the model space using approximate BE.

Given its efficacy in two-agent settings, our immediate line of future work is to evaluate
this approach for N > 2 agents. In general, the model space grows exponentially with
the number of agents. While considerations of exact and approximate BE will continue to
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compact the individual agents’ model spaces as we show in this article, the minimization
may be very effective for anonymous games [12]. These are decision-making contexts where
the focus is on the actions performed by the other agents, without identifying which agent
in particular or how many agents performed an action. In this case, we may apply BE to
compact the collective model space of all agents.
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Appendix 1: Proofs of propositions

We begin by proving the bound in Proposition 6. We may evaluate the error, ρ, as:

ρ = |αT−d · bd,k
m j,l−1 − αT−d · bd,k

m̂ j,l−1
|

= |αT−d · bd,k
m j,l−1 + α̂T−d · bd,k

m j,l−1 − α̂T−d · bd,k
m j,l−1

−αT−d · bd,k
m̂ j,l−1

| (add zero)

≤ |αT−d · bd,k
m j,l−1 + α̂T−d · bd,k

m̂ j,l−1
− α̂T−d · bd,k

m j,l−1

−αT−d · bd,k
m̂ j,l−1

| (α̂T−d · bd,k
m̂ j,l−1

≥ α̂T−d · bd,k
m j,l−1)

= |bd,k
m j,l−1 · (αT−d − α̂T−d) − bd,k

m̂ j,l−1
· (αT−d − α̂T−d)|

= |(αT−d − α̂T−d) · (bd,k
m j,l−1 − bd,k

m̂ j,l−1
)|

≤ |αT−d − α̂T−d |∞ · |(bd,k
m j,l−1 − bd,k

m̂ j,l−1
)|1 (Hölder’s ineq.)

≤ |αT−d − α̂T−d |∞ · 2DKL(bd,k
m j,l−1 ||bd,k

m̂ j,l−1
) (Pinsker’s ineq.)

≤ (Rmax
j − Rmin

j )(T − d) · 2DKL(bd,k
m j,l−1 ||bd,k

m̂ j,l−1
)

≤ (Rmax
j − Rmin

j )(T − d) · 2ε (by definition)

Here, Rmax
j and Rmin

j are the maximum and minimum rewards of j , respectively.

Appendix 2: Problem domains

Detailed descriptions of all the problem domains utilized in our evaluations, including their 
I-DID models, are given in “Multiagent tiger problem” section to “UAV reconnaissance and 
interception problem” section of Appendix.

Multiagent tiger problem

As we mentioned previously, our multiagent tiger problem is a noncooperative generalization 
of the well-known single-agent tiger problem [22] to the multiagent setting. It differs from 
other multiagent versions of the same problem [28] by assuming that the agents hear creaks 
as well as the growls and the reward function does not promote cooperation. Creaks are 
indicative of which door was opened by the other agent(s). While we described the problem 
in Sect. 2, we quantify the different uncertainties here. We assume that the accuracy of creaks 
is 90 %, while the accuracy of growls is 85 % as in the single-agent problem. The tiger location 
is chosen randomly in the next time step if any of the agents opened any doors in the current
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Table 3 CPT of the chance node
T iger Locationt+1 in the I-DID
of Fig. 7

〈ati , atj 〉 TigerLocationt TL TR

〈OL , ∗〉 * 0.5 0.5

〈OR, ∗〉 * 0.5 0.5

〈∗, OL〉 * 0.5 0.5

〈∗, OR〉 * 0.5 0.5

〈L , L〉 T L 1.0 0

〈L , L〉 T R 0 1.0

Table 4 CPT of the chance node, Growl&Creakt+1, in agent i’s I-DID

〈ati , atj 〉 TgrLoct+1 〈GL, CL〉 〈GL, CR〉 〈GL, S〉 〈GR, CL〉 〈GR, CR〉 〈GR, S〉

〈L , L〉 T L 0.85*0.05 0.85*0.05 0.85*0.9 0.15*0.05 0.15*0.05 0.15*0.9

〈L , L〉 T R 0.15*0.05 0.15*0.05 0.15*0.9 0.85*0.05 0.85*0.05 0.85*0.9

〈L , OL〉 T L 0.85*0.9 0.85*0.05 0.85*0.05 0.15*0.9 0.15*0.05 0.15*0.05

〈L , OL〉 T R 0.15*0.9 0.15*0.05 0.15*0.05 0.85*0.9 0.85*0.05 0.85*0.05

〈L , OR〉 T L 0.85*0.05 0.85*0.9 0.85*0.05 0.15*0.05 0.15*0.9 0.15*0.05

〈L , OR〉 T R 0.15*0.05 0.15*0.9 0.15*0.05 0.85*0.05 0.85*0.9 0.85*0.05

〈OL , ∗〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6

〈OR, ∗〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6

step. Figure 7 shows an I-DID unrolled over two time-slices for the multiagent tiger problem.
We give the CPTs for the different nodes below:

We assign the marginal distribution over the tiger’s location from agent i’s initial belief
to the chance node, T iger Locationt . The CPT of T iger Locationt+1 in the next time step
conditioned on T iger Locationt , At

i , and At
j is the transition function, shown in Table 3.

The CPT of the observation node, Growl&Creakt+1, is shown in Table 4. CPTs of the
observation nodes in level 0 DIDs are identical to the observation function in the single-
agent tiger problem.

Decision nodes, At
i and At+1

i , contain possible actions of agent i such as L, OL, and OR.
Model node,Mt

j,l−1, contains the differentmodels of agent j which areDIDs if the I-DID is at
level 0, otherwise they are I-DIDs themselves. The distribution over the associated Mod[Mt

j ]
node (see Fig. 8) is the conditional distribution over j’s models given physical state from
agent i’s initial belief. The CPT of the chance node, Mod[Mt+1

j ], in the model node, Mt+1
j,l−1,

reflects which prior model, action and observation of j results in a model contained in the
model node.

Finally, the utility node, Ri , in the I-DID relies on both agents’ actions, At
i and At

j , and
the physical states, T iger Locationt . The utility table is shown in Table 5. These payoffs
are analogous to the single-agent version, which assigns a reward of 10 if the correct door is
opened, a penalty of 100 if the opened door is the one behind which is a tiger, and a penalty
of 1 for listening. A result of this assumption is that the other agent’s actions do not impact
the original agent’s payoffs directly, but rather indirectly by resulting in states that matter to
the original agent. The utility tables for level 0 models are exactly identical to the reward
function in the single-agent tiger problem.
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Table 5 Utility table for node,
Ri , in the I-DID

Utility table in the I-DID for
agent j is the same with column
label, 〈ai , a j 〉, swapped

〈ai , a j 〉 TL TR

〈OR, OR〉 10 −100

〈OL , OL〉 −100 10

〈OR, OL〉 10 −100

〈OL , OR〉 −100 10

〈L , L〉 −1 −1

〈L , OR〉 −1 −1

〈OR, L〉 10 −100

〈L , OL〉 −1 −1

〈OL , L〉 −100 10

Fig. 25 Level l I-DID for concert i in the multiagent concert problem

Multiagent concert problem

We extend the single-agent concert problem available in the POMDP repository3 to a two-
agent setting. The problem involves a concert organizer whomust decidewhether to advertise
the concert on TV, over the radio, or do nothing. The problem is inspired by real-world
marketing problems involvingmultiple brands, changing attitudes about brands and the effect
of advertising [26].

In the multiagent concert problem, two separate concerts are involved, each of which may
be advertised onTV (we denote this action as T V ), over the radio (denoted as Radio), or none
(denoted as Nothing). The state of this problem is two different attitudes or predispositions
that the target audiencemay have about both the concerts in general: Theymay be interested in
them (denoted as I ) or bored with them (denoted as B). The output of the actions could make
the target audience definitelywant to attend a particular concert (we denote this observation as
Go), may attend the concert (denoted asMayGo), may not attend it (denoted asMayNoGo),
or definitely not want to attend the concert (NoGo).

Figure 25 shows a level l I-DID unrolled over two time-slices for the multiagent concern
domain.

3 http://www.pomdp.org/pomdp/examples/index.shtml.

http://www.pomdp.org/pomdp/examples/index.shtml
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Table 6 CPT of the chance
node, Liket+1, in agent i’s I-DID
of Fig. 25

〈ati , atj 〉 Liket Interested Bored

〈T V, T V 〉 I 0.90 0.10

〈T V, T V 〉 B 0.60 0.40

〈T V, Radio〉 I 0.85 0.15

〈T V, Radio〉 B 0.45 0.55

〈T V, Nothing〉 I 0.70 0.30

〈T V, Nothing〉 B 0.35 0.65

〈Radio, T V 〉 I 0.85 0.15

〈Radio, T V 〉 B 0.45 0.55

〈Radio, Radio〉 I 0.80 0.20

〈Radio, Radio〉 B 0.30 0.70

〈Radio, Nothing〉 I 0.65 0.35

〈Radio, Nothing〉 B 0.20 0.80

〈Nothing, T V 〉 I 0.70 0.30

〈Nothing, T V 〉 B 0.15 0.85

〈Nothing, Radio〉 I 0.65 0.35

〈Nothing, Radio〉 B 0.20 0.80

〈Nothing, Nothing〉 I 0.50 0.50

〈Nothing, Nothing〉 B 0.10 0.90

The decision node, Ai , contains the possible marketing actions for concert i , such as T V ,
Radio, or Nothing. The chance node, Like, represents audience attitude toward concerts.
As attitudes vary in general, we begin with a uniform distribution over them as the initial
belief. We show the CPT of Liket+1, which is the transition function, in Table 6. It models
the fact that a TV marketing campaign may change the attitudes with a higher probability or
maintaining interest compared to a radio campaign, while doing nothingmay have an adverse
impact.

The observation node, Outi , models the observed indications of the target audience toward
going out to attend the concert, i , through the values, Go, MayGo, MayNoGo, and NoGo.
The CPT of the node, Outt+1

i , is shown below table 7 and models the notion that TV
advertisements would be more effective in translating the predispositions and making the
target audience want to attend the conference even if they are bored, compared to radio
advertisements. On the other hand, doing nothing does not have much effect and would
result in a direct translation of predispositions to wanting to attend the conference or not.

Finally, we show the reward function in the utility node, Ri , in the I-DID table 8. The
rewards combine the cost of the differentmarketing campaignswithTVbeingmost expensive,
and a quantified efficacy of the different campaigns with TV being most effective. We show
the reward function in Fig. 8.

Money laundering problems

As [29] mention, money laundering is a process of transferring “dirty” money to “clean”
money through a series of criminal transactions. It normally contains three steps, namely
placement , layering, and integrating. In the placement phase,money launderers introduce
the dirtymoney into some common targets of financial systems like bank accounts, insurance,
and securities. Then, in the layering phase, they transfer the money into some businesses like
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Fig. 26 Level l I-DID of agent i for the money laundering problem

trusts, offshore accounts and shell companies. The transactions may obscure the money
source. Finally, in the integration phase, the money launderers involve the laundered money
into more legitimate businesses including real estate, loans, and casinos. On the other hand,
as an anti-money laundering body, law enforcement monitors the money laundering flow by
placing physical sensors at each possible location of dirty money. It analyzes the received
information and accordingly confiscates the dirtymoney once it correctly identifies themoney
location.

The law enforcement andmoney launderers are denoted as the blue team (agent i) and red
team (agent j), respectively, in the problem domain. The blue team is represented as a level
l I-DID shown in Fig. 26, while the red team is at level l − 1. The joint state of level l I-DID
contains bothmoney locations of the red team (11 possible states),MLt , and sensor locations
installed by the blue team (9 possible states), SLt . The blue team has 9 possible actions in
the decision node, At

i , including the placement of possible sensors and the confiscation of
the dirty money. The CPTs of chance nodes, MoneyLoct+1 and Sensor Loct+1, encode the
probabilities of the sensor installation in possible money locations. In particular, only when
the blue team places the sensors in the same location as where the dirty money is transferred,
it confiscates the dirty money and resumes its states.

The blue team receives observations in terms of reports generated from most of the installed
sensors. The chance node, Reporti

t+1, has 9 states and its CPT provides the sensing capability 
of the blue team. On average, blue team correctly detects the real location of the dirty money 
80 % of the times given a positive report on the location.

The utility node, Ri , is the reward assigned to the blue team when the agent acts at the 
joint state. The blue team gets 100 if it confiscates dirty money while it costs −10 for placing 
any sensor in the targeted location. The actual CPT tables are large and we do not show them 
here.

UAV reconnaissance and interception problem

We show a level l I-DID for the multiagent UAV problem in Fig. 27. Models of agent j , which  
may play the role of a fugitive or a hostile UAV J at the lower level differ in the probability 
that the fugitive assigns to its position in the grid. The UAV’s (agent i) initial beliefs are
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Table 7 CPT of the chance node, Outt+1, in concert i’s I-DID. The CPT of the corresponding node in concert
j’s I-DID is similar with the joint actions reversed

〈ati , atj 〉 Liket+1 〈Go〉 〈MayGo〉 〈MayNoGo〉 〈NoGo〉

〈T V, T V 〉 I 0.64 0.16 0.16 0.04

〈T V, T V 〉 B 0.49 0.21 0.21 0.09

〈T V, Radio〉 I 0.56 0.24 0.14 0.06

〈T V, Radio〉 B 0.16 0.24 0.24 0.36

〈T V, Nothing〉 I 0.72 0.08 0.18 0.02

〈T V, Nothing〉 B 0.07 0.63 0.03 0.27

〈Radio, T V 〉 I 0.56 0.24 0.14 0.06

〈Radio, T V 〉 B 0.28 0.12 0.42 0.18

〈Radio, Radio〉 I 0.49 0.21 0.21 0.09

〈Radio, Radio〉 B 0.16 0.24 0.24 0.36

〈Radio, Nothing〉 I 0.63 0.07 0.27 0.32

〈Radio, Nothing〉 B 0.04 0.36 0.06 0.54

〈Nothing, T V 〉 I 0.72 0.18 0.08 0.02

〈Nothing, T V 〉 B 0.07 0.63 0.03 0.27

〈Nothing, Radio〉 I 0.63 0.27 0.03 0.07

〈Nothing, Radio〉 B 0.04 0.06 0.36 0.54

〈Nothing, Nothing〉 I 0.81 0.09 0.09 0.01

〈Nothing, Nothing〉 B 0.01 0.09 0.09 0.81

Table 8 Utility table for node,
Ri , in the I-DID

Note that the utility table is
symmetric over the joint actions

〈ai , a j 〉 I B

〈T V, T V 〉 4 2

〈T V, Radio〉 2 −5

〈T V, Nothing〉 2 0

〈Radio, T V 〉 2 −5

〈Radio, Radio〉 8 −2.5

〈Radio, Nothing〉 3 −5

〈Nothing, T V 〉 2 0

〈Nothing, Radio〉 3 −5

〈Nothing, Nothing〉 6 0

probability distributions assigned to the relative position of the fugitive decomposed into
the chance nodes, FugRel PosXt and FugRel PosY t , which represent the relative location
of the fugitive along the row and column, respectively. Its CPTs assume that each action
(except listen) moves the UAV in the intended direction with a probability of 0.67, while
the remaining probability is equally divided among the other neighboring positions. Action
listen keeps the UAV in the same position.

The observation node, SenFug, represents the UAV’s sensing of the relative position of
the fugitive in the grid. Its CPT assumes that the UAV has good sensing capability (likelihood
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Fig. 27 Level l I-DID of agent i for our UAV reconnaissance problem

of 0.8 for the correct relative location of the fugitive) if the action is listen, otherwise the
UAV receives random observations during other actions.

The decision node, Ai , contains five actions of the UAV, which includes moving in the
four cardinal directions and listening. The edge incident into the node indicates that the UAV
ascertains the observation on the relative position of the fugitive before it takes an action.

The utility node, Ri , is the reward assigned to the UAV for its actions given the fugi-
tive’s relative position and its actions. The UAV gets rewarded 50 if it captures the fugitive;
otherwise, it costs -5 for performing any other action.

Because the actual CPT tables are very large, we do not show them here. All problem
domain files are available upon request.
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