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Vicenç Torra

Received: Oct 03, 2014 / Revised: Nov 02, 2015 / Accepted: Mar 19, 2016

Abstract The problem of anonymization in large networks and the utility of released data
are considered in this paper. Although there are some anonymization methods for networks,
most of them cannot be applied in large networks because of their complexity. In this pa-
per we devise a simple and efficient algorithm for k-degree anonymity in large networks.
Our algorithm constructs a k-degree anonymous network by the minimum number of edge
modifications. We compare our algorithm with other well-known k-degree anonymous al-
gorithms and demonstrate that information loss in real networks is lowered. Moreover, we
consider the edge relevance in order to improve the data utility on anonymized networks.
By considering the neighbourhood centrality score of each edge, we preserve the most im-
portant edges of the network, reducing the information loss and increasing the data utility.
An evaluation of clustering processes are performed on our algorithm, proving that edge
neighbourhood centrality increases data utility. Lastly, we apply our algorithm to different
large real datasets and demonstrate their efficiency and practical utility.

Keywords Privacy · K-Anonymity · Social networks · Information loss · Data utility · Edge
measures

Jordi Casas-Roma
Internet Interdisciplinary Institute (IN3)
Faculty of Computer Science, Multimedia and Telecommunications
Universitat Oberta de Catalunya (UOC), Barcelona, Spain.
E-mail: jcasasr@uoc.edu

Jordi Herrera-Joancomartı́
Department of Information and Communications Engineering
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1 Introduction

In recent years, an explosive increase of network data has been made publicly available.
Embedded within this data, there is private information about users who appear in it. There-
fore, data owners must respect the privacy of users before releasing datasets to third parties.
In this scenario, anonymization processes become an important concern. The study of Ferri
et al. [19] reveals that though some user groups are less concerned about data owners shar-
ing data about them, up to 90% of members in others groups disagree with this principle.
Backstrom et al. [2] point out that the simple technique of anonymizing networks by re-
moving the identities of the vertices before publishing the actual network does not always
guarantee privacy. They show that there exist adversaries that can infer the identity of the
vertices by solving a set of restricted graph isomorphism problems. Some approaches and
methods have been imported from anonymization on relational data [16], but the peculiari-
ties of anonymizing network data avoid these methods to work directly on graph-formatted
data. In addition, divide-and-conquer methods do not apply to anonymization of network
data due to the fact that registers are not separable, since removing or adding vertices and
edges may affect other vertices and edges as well as the properties of the network [51].

Although some methods have been developed for graph anonymization, they are only
applicable to small and medium networks of a few thousands of vertices and edges, at most.
Anonymization in large networks is still an open problem. In addition, it is very important
to minimize the information loss during the anonymization process in order to maximize the
data utility. The process is lossless, and thus data utility is maximized, when the analysis
performed on the anonymous data should produce the same results as the ones the original
data would have led to.

In this paper we introduce an algorithm for anonymization in large networks based on the
concept of k-degree anonymity. It works with simple, undirected and unlabelled networks.
Because these networks have no attributes nor labels in the edges, information is only in
the structure of the network itself and, due to this, the adversary can use this structural
information to attack the privacy. k-Degree anonymity ensures the user’s privacy when the
attacker has degree-based knowledge about some target vertices. Moreover, we introduce the
concept of edge relevance in order to minimize information loss. The quality of anonymized
data can be improved by evaluating how to modify network structure, i.e., how to preserve
the most important edges.

1.1 Our contributions

In this paper1 we present an algorithm for privacy-preserving based on the k-anonymity
concept. We also consider edge relevance in order to reduce information loss associated
with the anonymization process, which leads to an increase of data utility. We offer the
following results:

– We introduce a polynomial time k-degree anonymous algorithm based on univariate
micro-aggregation for undirected and unlabelled graphs.

– We demonstrate that, modifying the network structure, edge relevance helps us reduce
information loss and increase data utility.

– We conduct an empirical evaluation of our algorithm on several well-known networks.
Additionally, we compare our algorithm with other well-known k-degree anonymous

1 A preliminary, short version [9] of this paper appeared at ASONAM 2013.
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algorithms and demonstrate that ours achieves lower information loss, and consequently,
better data utility.

– We prove that we are able to reduce the information loss and increase the data utility by
using the edge relevance measure to preserve important edges during the network modi-
fication process. We perform an analysis using well-known clustering algorithms and we
also show that using edge neighbourhood centrality our algorithm leads the anonymiza-
tion process to better clustering results, i.e., results closer to the ones performed on
original data.

– Finally, we conduct an empirical evaluation of our algorithm on three large real net-
works, demonstrating that it achieves the desired k-anonymity level on large networks
with thousands and millions of vertices and edges.

1.2 Notation

Let G = (V,E) be a simple graph, where V is the set of vertices and E the set of edges. We
use vi ∈ V to refer to vertex i and {vi,v j} to refer to an undirected edge between vertices
vi and v j. We define n = |V | to denote the number of vertices and m = |E| to denote the
number of edges. We use d to define the degree sequence of G, where d is a vector of length
n and di is the value of i-th element, that is, the degree of vertex vi ∈ V . We refer to the
ordered degree sequence as a monotonic non-decreasing sequence of the vertex degrees,
that is di ≤ d j ∀i < j. We denote the average degree of the network as 〈deg〉 = 2m

n , the
maximum degree as max(deg) and the set of 1-neighbourhood of vertex vi as Γ (vi).

1.3 Roadmap

This paper is organized as follows. The problem tackled in this paper is described in Section
2. In Section 3, we review the state of the art of anonymization in networks, specifically
the k-anonymity based methods. Our algorithm for k-degree anonymity in large networks is
introduced in Section 4. Then, experiments related to information loss, clustering assessment
and large scale networks are introduced in Section 5. Specifically, we compare our algorithm
with other two well-known k-degree based algorithms and discuss the results in 5.1. An
evaluation of our algorithm on clustering-specific graph mining processes is presented in
Section 5.2. Next, in Section 5.3, we conduct an empirical analysis for large networks. Last
but not least, we present the conclusions and the future work in Section 6.

2 Problem definition

Currently, large amounts of data are being collected on social and other kinds of networks,
which often contain personal and private information of users and individuals. Although
basic processes are performed on data anonymization, such as removing names or other
key identifiers, remaining information can still be sensitive, and useful for an attacker to
re-identify users and individuals. To solve this problem, methods which introduce noise
to the original data have been developed in order to hinder the subsequent processes of
re-identification. A natural strategy for protecting sensitive information is to replace iden-
tifying attributes with synthetic identifiers. We refer to this procedure as simple or naı̈ve
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Fig. 1: Simple anonymization example, where G is the original graph, G∗ is the naı̈ve anony-
mous version and G̃ is an anonymous version of the network.

anonymization. This common practice attempts to protect sensitive information by breaking
the association between the real-world identity and the sensitive data.

Figure 1a shows a simple example of a social network, where each vertex represents
an individual and each edge indicates the friendship relation between two individuals. Fig-
ure 1b presents the same graph after a naı̈ve anonymization process, where vertex iden-
tifiers have been removed and the graph structure remains the same. Its degree sequence
is dG∗ = {2,4,2,1,3,2,2,2,2}. Even though users’ privacy is supposed to be secure, an
attacker could still break the privacy and re-identify a user in the anonymous graph. For in-
stance, if an attacker knows that Dan has four friends, then he is able to re-identify user Dan
in anonymous graph, since he is the only user with four friends in graph G∗, i.e., unique ver-
tex with degree equal to four. Consequently, user’s privacy has been broken by the attacker.

Therefore, anonymization processes become an important concern in this scenario. These
methods usually modify original graph structure to hinder re-identification processes. One
of the most widely used technique to modify the graph structure is by adding or remov-
ing edges or vertices. Figure 1c depicts the same network after an anonymization process,
where edge {v2,v3} was removed and {v3,v4} was created. The new degree sequence is
dG̃ = {2,3,2,2,3,2,2,2,2}. After this stage, there is no vertex with degree equal to four,
and consequently no adversary with degree-based knowledge is able to re-identify user Dan
in the anonymous network G̃.

Nevertheless, the noise introduced by the anonymization steps may also affect the data,
reducing its utility for subsequent data mining processes. Usually, the larger the data mod-
ification, the harder the re-identification but also the less data utility. Thus, it is necessary
to preserve the integrity of the data to ensure that the data mining step is not altered by the
anonymization step. The analysis performed on the obfuscated data should produce results
as close as possible to the ones the original data would have led to. For instance, the average
distance in G (and also G∗) is 2.278, while it is 2.416 in G̃. Hence, this process has altered
this measure, producing information loss and reducing data utility. A trade-off between data
privacy and data utility must be reached; therefore, we developed our suggested algorithm
in order to accomplish this aim. Our main goal is to develop a method which allows data
publishing without breaking the privacy of users who appear in the network, and permits the
analysis of published data minimizing the bias from the original data.
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3 k-Anonymity on networks

Generally speaking, there are four families of methods to address network data privacy [35,
26,53]:

– The first family encompasses “graph modification” approaches. These methods first
transform the data by edges or vertices modifications (adding and/or deleting) and then
release the perturbed data. The data is thus made available for unconstrained analysis.

– The second family, called “uncertain graphs”, was introduced by Boldi et al. [4]. This
approach adds or removes edges partially by assigning a probability to each edge in
anonymous network. Instead of creating or deleting edges, the set of all possible edges
is considered and a probability is assigned to each edge. More recent works, such as
[36], attempted to achieve a better trade-off between privacy and data utility by keeping
some graph properties as close as possible to those in the original graph.

– The third family envelops “generalization” or “clustering-based” approaches [24,8].
These can be essentially regarded as grouping vertices and edges into partitions called
super-vertices and super-edges. The details about individuals can be hidden properly, but
the graph may be shrunk considerably after anonymization, which may not be desirable
for analysing local structures. Some authors used the size of a partition to ensure node
anonymity, where each super-vertex represents at least k vertices, and each super-edge
represents all the edges between vertices in two super-vertices.

– Finally, the fourth family encloses “privacy-aware computation” methods [18,38,25,
26], which do not release data, but the output of an analysis computation. The released
output is such that it is very difficult to infer from it any information about an individual
input datum. Some of these methods refer to algorithms which ensure that individuals
are protected under the definition of differential privacy [17], which imposes a guarantee
on the data release mechanism rather than on the data itself. Differential privacy empha-
sizes that the structure of allowable queries on a statistical database must be designed
in a way that a malicious attacker with the ability to query the database, but without
direct access to the full database, cannot determine the unique characteristics of a spe-
cific individual. Hence, the goal is to provide statistical information about the data while
preserving the privacy of users.

Among these families, “graph modification”, “uncertain graphs” and “clustering-based”
approaches first transform the data by different types of graph’s modifications and then,
release the perturbed data. The data is thus made available for unconstrained analysis.
Nonetheless, it is important to underline that several graph metrics and algorithms must
be re-defined to be applied on uncertain graphs, since almost all of them were designed to
work with binary-edge graphs. Alternatively, “clustering-based” approaches do not enable
local structure data analysis. A comparison between a clustering-based algorithm [8] and a
graph modification algorithm [34] were conducted in [7]. The results show that the graph
modification anonymous algorithm better preserves the communities on the released graphs,
since the local structures are better preserved during anonymization process.

On the contrary, “privacy-aware computation” methods do not release data, but the out-
put of an analysis computation. We do not consider these methods in our work, since they do
not allow us to release the entire network, which provides the widest range of applications
for data mining and knowledge extraction.

Thus, if we want to analyse the structure of the network, both the local and the global, we
have to use a “graph modification” approach which enables us to deliver the entire network
structure.
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The first “graph modification” approaches emerged from the concept of randomization.
Randomization methods are based on adding random noise in original data in order to hin-
der re-identification process. Hay et al. [23] suggested a method to anonymize unlabelled
networks, called Random Perturbation, which is based on removing and then adding p edges
at random. Ying and Wu [46] developed two algorithms designed to preserve spectral char-
acteristics of the original networks: Spctr Add/Del and Spctr Switch. Ying et al. [47] pre-
sented a method, called Blockwise Random Add/Delete strategy or simply Rand Add/Del-
B, which divides the network into blocks and implements modifications on the vertices at
high risk of re-identification. Notice that the randomization approaches protect data against
re-identification in a probabilistic manner.

Other approaches consider “graph modification” to meet desired privacy constraints.
The notion of k-anonymity is included in this group. The k-anonymity model was introduced
in [41] and [42] for privacy preservation on structured or relational data. The k-anonymity
model indicates that an attacker cannot distinguish between different k records or individu-
als although he manages to find external knowledge related to the users who appear in the
anonymous datasets. Therefore, an attacker cannot re-identify an individual with a probabil-
ity greater than 1

k .
The k-anonymity model can be applied using different adversaries’ knowledge when

dealing with networks rather than relational data. A widely used option is to consider an
adversary who knows the degree of some target vertices. If the attacker identifies a single
vertex with the same degree in the anonymous graph, then he has re-identified this vertex.
That is to say, deg(vi) 6= deg(v j) ∀ j 6= i. This model is called k-degree anonymity [33] and
these methods are based on modifying the graph structure (by edge modifications) to ensure
that all vertices satisfy k-anonymity of their degree. In other words, the main objective is that
all vertices have at least k−1 other vertices sharing the same degree. Furthermore, Liu and
Terzi [33] developed a method based on integer linear programming in order to construct
k-degree anonymous graph, where V = Ṽ and E ∩ Ẽ ≈ E. Liu and Terzi’s work inspired
many other authors who tried to improve solutions with different kinds of heuristics [34,
22]. Returning to our previous example in Figure 1, we can see that graph G̃ is 2-degree
anonymous, while the naı̈ve anonymous version is only 1-degree anonymous. Hence, an
attacker with degree-based knowledge is not able to re-identify a user in G̃ with a probability
greater than 1

2 .
Chester et al. [12,14] also considered the k-degree anonymity problem, but they modi-

fied the network structure by adding new edges between fake and real vertices or between
fake vertices. Under the constraint of minimum vertex additions, they show that on vertex-
labelled networks, the problem is NP-complete. Following the same path, Bredereck et al.
[5] studied the problem of making an undirected graph k-degree anonymous by adding ver-
tices, together with incident edges. The authors explored three variants of vertex addition
and studied their computational complexity. Chester et al. [13] introduced the concept of
k-subset-degree anonymity, which produces an output network G̃ = (V,E ∪ Ẽ) such that
X ⊆ V is k-degree-anonymous and |Ẽ| is minimized. They also presented an algorithm to
k-subset-degree anonymity which is based on the use of the degree constrained sub-graph
satisfaction problem.

Instead of using a vertex degree, Zhou and Pei [51] considered an attacker with knowl-
edge based on the 1-neighbourhood sub-graph of the target vertices. For a vertex vi ∈ V ,
vi is k-anonymous in G if there are at least k− 1 other vertices v1, . . . ,vk−1 ∈ V such that
Γ (vi),Γ (v1), . . . ,Γ (vk−1) are isomorphic. Then, G is called k-neighbourhood anonymous
if every vertex is k-anonymous considering the 1-neighbourhood. However, Tripathy and
Panda [43] noted that their algorithm could not handle the situations in which an adversary
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has knowledge about vertices in the second or higher hops of a vertex, in addition to its im-
mediate neighbours. To handle this problem, they proposed a modification of the algorithm
to handle such situations. Zhou et al. [54] and Zhou and Pei [52] considered all structural
information about a target vertex and introduced a new model called k-automorphism. Hay
et al. [24] went a step further and presented a method, named k-candidate anonymity, which
uses generic queries to model the adversary’s knowledge. In this method, a vertex vi is k-
candidate anonymous with respect to question Q if there are at least k− 1 other vertices
in the network with the same answer. More recently, Cheng et al. [11] and Wu et al. [44]
introduced the k-isomorphism and k-symmetry model, respectively.

When there is little diversity in the sensitive attributes inside an equivalence class, it is
possible to obtain information from anonymized data although there are k indistinguishable
individuals in each class. If the sensitive information is the same, it is possible to infer it
unless the attacker does not know exactly which individual it is. `-Diversity [37] and t-
closeness [32] alleviate the problem of sensitive information disclosure. There are other
privacy definitions of this flavour but they have all been criticized for being ad hoc [50].

4 The UMGA Algorithm

In this section, we introduce the Univariate Micro-aggregation for Graph Anonymization2

(UMGA) algorithm, designed to achieve k-degree anonymity in large, undirected and unla-
belled networks. The algorithm performs modifications in the original network G = (V,E)
only on edge set E. Hence, the vertex set V does not change during anonymization process.

Our algorithm is based on anonymizing the degree sequence. The degree sequence is
an interesting tool since the concept of k-degree anonymity for a network can be directly
mapped to its degree sequence, as Liu and Terzi showed in [33] and we recall in the follow-
ing definitions:

Definition 1 A vector of integers V is k-anonymous if every distinct value vi ∈V appears at
least k times.

Definition 2 A network G = (V,E) is k-degree anonymous if the degree sequence of G is
k-anonymous.

Our algorithm is based on a two-step approach:

1. Degree Sequence Anonymization. We construct a k-degree anonymous sequence d̃ =
{d̃1, . . . , d̃n} from the degree sequence d = {d1, . . . ,dn} of the original network G us-
ing Definition 1. In addition, we use the function ∆ to reduce the distance from the
anonymized sequence to the original one, computed as:

∆ =
n

∑
i=1
|d̃i−di| (1)

The lower the value of ∆ , the lower the information loss of the anonymized network.
2. Graph modification. We build a new network G̃ = (V, Ẽ) where its degree sequence

is equal to d̃ by using basic edge modification operations. These operations allow us
to modify the network structure according to the anonymized degree sequence (d̃). As
Definition 2 states, the anonymized network G̃ will be k-degree anonymous.

2 Java implementation and source code available at: https://jcasasr.wordpress.com
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4.1 Degree Sequence Anonymization

The objective of this first step is to anonymize the degree sequence of the original network
(d), constructing a k-anonymous degree sequence (d̃).

Regarding the degree sequence, notice that:

– The number of elements is n, i.e., d = {d1, . . . ,dn}.
– Each di ∈ d must be an integer in the range [0,n−1], since di is the degree of vertex vi.
– ∑

n
i=1 di = 2m, since each edge is counted twice in the degree sequence. Therefore, the

sum of all degree values must be an even number.

Taking Definition 1 into account, we have to modify the values of d in order to create
groups of k or more elements. Our method uses the optimal univariate micro-aggregation
[21] to achieve the best group distribution and then it computes the values for each group
that minimize the distance ∆ from the original degree sequence.

We assume d to be an ordered degree sequence of the original network. Otherwise, we
apply a permutation f to the sequence to reorder the elements. Let k be an integer such
that 1 ≤ k < n which is the k-degree anonymity value. Typically, k is much smaller than n.
According to Hansen and Mukherjee [21], we first construct a new directed network Hk,n.
Then, we compute the optimal partition in Hk,n, which is exactly the set of groups that
corresponds to the arcs of the shortest path from vertex 0 to vertex n in Hk,n. We denote by g
the optimal partition, where g = {g1, . . . ,gp} has n

k ≤ p≤ n
2k−1 groups, and each g j ∈ g has

between k and 2k−1 items. According to what have been stated above, each di ∈ d belongs
to a specific group g j.

Next, we compute the matrix of differences, Mp×2, using each group of the partition.
The first column contains the sum of differences between each element of the group and
the arithmetic mean of all degrees that belong to the group, using floor function to round
the mean value. The second column is computed in the same way, but using de ceiling
function instead. Conceptually, M contains the number of degrees in the first column, which
we should decrease in this group to fulfil k-degree anonymity. These values are always zero
or positive. The second column contains the number of degrees which we should increase in
this group to reach k-degree anonymity. These values are always negative or zero. Formally,
for j = {1, . . . , p}, each element m ji is computed as:

m j1 = ∑
di∈g j

(
di−

⌊
〈g j〉

⌋)
(2)

m j2 = ∑
di∈g j

(
di−

⌈
〈g j〉

⌉)
(3)

where 〈g j〉 is the average value of di ∈ g j. A group with zero values on both columns should
not apply any modification on its items because it is already k-anonymous.

Now we have to compute a solution, that is a p-vector where each element m j is chosen
from the two possible values m j1 or m j2. The closer |∑p

j=1 m j| to 0, the better the solution.
This research is a complex operation with cost O(2q) where q is the number of groups with
m j 6= 0. Because of the power-law in real networks, q is typically much smaller than p, but
still too high for large networks. For that reason, we propose two methods in order to achieve
the best combination on reasonable time:
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4.1.1 The Exhaustive Method

The first approximation is based on exhaustive search. This method selects the values m j1
or m j2 for j = {1, . . . , p} so that the minimum value of |∑p

j=1 m j| is achieved. To implement
this selection, all combinations are considered unless a solution is found with ∑

p
j=1 m j = 0.

4.1.2 The Greedy Method

Alternatively, a greedy approach can be used to reduce search complexity. Values for m j are
selected according to a probability distribution based on the size of values m j1 and m j2. The
lower the value is, the more probability to be chosen. More specifically,

p(m j = m j1) = 1−
( m j1

m j1 +m j2

)
(4)

p(m j = m j2) = 1−
( m j2

m j1 +m j2

)
(5)

The process is finished when a solution is found with ∑
p
j=1 m j = 0 or when we have a

fixed number of iterations without any improvement in the function ∑
p
j=1 m j.

Example 1 Regarding our G network example, depicted in Figure 1, its ordered degree se-
quence is d = {1,2,2,2,2,2,2,3,4}. Optimal partition is g= {{1,2,2}1,{2,2}2,{2,2}3,{3,4}4}
and p = 4, i.e., ordered degree sequence is divided into four groups. The matrix of differ-
ences is as follows:

M4,2 =


2 −1
0 0
0 0
1 −1


Group g2 = {2,2} generates (0,0) as the second row of M. For that reason, the items

of the group g2 do not need to modify their values. However, group g1 = {1,2,2} generates
the row (2,−1). Therefore, there are two possibilities to anonymize the group: decrease the
values of the second and third items to 1 or increase the value of the first item to 2.

Finally, the space of all possible p-vector values is 2q where q = 2. The exhaustive
method explores all the space until it finds an optimal solution. The set of all possible p-
vectors is {2,0,0,1}, {2,0,0,−1}, {−1,0,0,1} and {−1,0,0,−1}; but the first and the sec-
ond ones produce invalid solutions due to the fact that their sum of all degree values is not an
even number. The third and the fourth solutions can be translated into {2,2,2,2,2,2,2,3,3}
and {2,2,2,2,2,2,2,4,4}, both of them are 2-degree anonymous valid sequences. However,
the distance from the original sequence computed by ∆ function is 0 for the first one and 2
for the second one. The former preserves the same number of edges while the latter increases
the number of edges by one. The greedy method selects the value according to the follow-
ing probability distribution, where the second and the third rows do not contain probability
values since they do not need to modify their values according to M:

p(M4,2) =


0.33 0.67
− −
− −

0.5 0.5





10 Jordi Casas-Roma et al.
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Fig. 2: Basic operations for network modification with vertex invariability. Dashed lines
represent deleted edges while solid lines are the added ones.

The third and the fourth solutions are the most probable solutions to be chosen. Apart
from that, they have the same probability to be explored. �

Once exhaustive or greedy methods have finished, we have a k-degree anonymous se-
quence (d̃) which minimizes the distance computed by Equation 1. However, notice that in
case we start the process with a non-ordered degree sequence, we should apply here the
inverse transform f−1 to obtain the correct degree sequence.

4.2 Graph modification

In the second step, changes are made in the original network in order to convert it to a k-
degree anonymous network. Considering Definition 2, a network is k-degree anonymous if
its degree sequence is k-anonymous. Therefore, we have to change its degree sequence from
the original one (d) to the anonymized one (d̃) which we computed in the step above. We
have to modify the edge set to meet the k-anonymous degree sequence.

In order to modify the edge set of a given network, we define three basic operations:

– Edge switch among three vertices can be defined as follows: if vi,v j,vk ∈V , (vi,vk)∈ E
and (v j,vk) 6∈ E, we can delete (vi,vk) and create (v j,vk). Figure 2a shows this basic
operation. Such modification can be translated in the degree sequence as d̃i = di−1 and
d̃ j = d j + 1, where d̃ is the degree sequence after this basic operation. Notice that the
number of edges in the network remains the same, vi decreases its degree by one, v j
increases its degree by one and vk keeps the same degree.

– We define edge removal as follows: we select four vertices vi,v j,vk,vl ∈ V where
(vi,vk) ∈ E, (v j,vl) ∈ E and (vk,vl) 6∈ E. We delete edges (vi,vk) and (v j,vl), and create
a new edge (vk,vl), as shown in Figure 2b. Note that d̃i = di− 1, d̃ j = d j− 1, d̃k = dk

and d̃l = dl .
– Finally, edge addition is defined as follows: we select two vertices vi,v j ∈ V where

(vi,v j) 6∈ E and creates it. Note that d̃i = di +1 and d̃ j = d j +1. It is shown in Figure 2c.

The graph modification step starts by computing the vector δ = d̃− d, that indicates
which vertices have to modify their degree. In fact, δ indicates precisely which vertices
must increase or decrease their degree to fulfil the desired k-degree anonymity. The changes
in original network are performed using the basic operations depicted in Figure 2. From δ ,
we create the list of vertices which must decrease their degree, δ− = {vi : δi < 0} and the
list of vertices which must increase their degree, δ+ = {vi : δi > 0}.
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Let σ(d) be the sum of each element in d, σ(d) = ∑
n
i=1 di, and let σ(d̃) be the sum of

each element in d̃, σ(d̃) = ∑
n
i=1 d̃i. If σ(d) = σ(d̃), then there are the same number of edges

in the original and in the anonymized networks. Therefore, we do not need to increase or
decrease the total number of edges, but apply edge switch modifications.

If σ(d̃) < σ(d), we need to decrease |σ(d)−σ(d̃)
2 | edges from the network, as we have

shown in Figure 2b. In order to decrease by 1 the total number of edges from the network,
we choose vi,v j ∈ δ− and find two other vertices vk,vl where (vi,vk) ∈ E and (v j,vl) ∈ E.
Then we delete these two edges and create a new one (vk,vl).

On the other hand, if σ(d̃)>σ(d), we need to increase |σ(d̃)−σ(d)
2 | edges to the network,

as we have shown in Figure 2c. To increase by 1 the total number of edges, we select vi,v j ∈
δ+ where (vi,v j) 6∈ E and create it.

Lastly, we have to modify the degree of some vertices, until σ(d̃) = σ(d) = 0. This
modification is done through edge switch, shown in Figure 2a. For each vi ∈ δ− and v j ∈ δ+,
we find another vertex vk where (vi,vk) ∈ E. We delete this edge and create a new one
(vk,v j).

We suggest two approaches to select the auxiliary edges needed for the graph modifica-
tion process.

4.2.1 Random edge selection

We can simply select at random the auxiliary edges, that is, (vi,vk) and (v j,vl) for edge
deletion and (vi,vk) for edge switch. Certainly, this is the fastest way to select the needed
auxiliary edges. Nevertheless, some important edges can be removed or new bridge-like
edges can be created by this random approach, affecting considerably the local or global
structure of the resulting network.

4.2.2 Neighbourhood centrality edge selection

Alternatively, we can select the auxiliary edges by considering the relevance of each edge.
Using this approach, we can remove or create new edges with low relevance, which leads the
process to lower information loss. For example, if we remove edges with low value of edge
betweenness, we will preserve information flow in the resulting network, since we preserve
the most important edges using a measure related to information flow. Thus, identifying
a relevant measure is important for reducing the information loss. In addition, we have to
choose a measure with a low complexity, since we will compute it many times. For instance,
the measure commented above is not a good choice because calculating edge betweenness
on all edges in a network involves calculating the shortest paths between all pairs of vertices.
This takes O(n3) time with the Floyd-Warshall algorithm. In a sparse network, Johnson’s
algorithm may be more efficient, taking O(n2log(n)+nm) time. Hence, edge betweenness
is not useful for large networks, since every time we remove an edge we must re-calculate
all values of the edges.

We proposed a measure called edge neighbourhood centrality (NC) [10] for quantifying
the edge relevance in large networks. In [10] we demonstrated that edge neighbourhood
centrality identifies the most important edges in a network with low time complexity, and
therefore, this measure is able to work in medium or large networks. The neighbourhood
centrality of an edge {vi,v j} is defined as the fraction of vertices which are neighbours of vi
or v j, but not of vi and v j, simultaneously. The edge neighbourhood centrality is computed
as follows:
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Fig. 3: 2-degree anonymous networks updated using random and neighbourhood edge se-
lection.

NC{vi,v j} =
|Γ (vi)∪Γ (v j)|− |Γ (vi)∩Γ (v j)|

2max(deg)
(6)

Note that this measure can be computed on O(m) using the adjacency matrix represen-
tation of the network. An edge with high score is a bridge-like for neighbourhood vertices.
Consequently, choosing the edge with the lowest score on neighbourhood centrality we are
preserving the connectivity in the anonymous network.

Example 2 Continuing with our G graph example described in Figure 1, the original degree
sequence is d = {2,4,2,1,3,2,2,2,2} and the 2-degree anonymous sequence obtained from
the previous step is d̃ = {2,3,2,2,3,2,2,2,2}. Thus, vector δ = {0,−1,0,1,0,0,0,0,0}
clearly indicates the vertices that must change their degree. Specifically, δ− = {v2} and
δ+ = {v4}, which means that v2 has to decrease its degree by 1 while v4 has to increase
it by 1. The sum of the elements in the degree sequences is the same, i.e. σ(d) = σ(d̃).
Hence, there is no need to add or remove edges; edge switch is the only edge modification
requirement to fulfil the anonymous degree sequence.

If we choose the random edge selection method, any edge vi : {v2,vi} ∈ E and {v4,vi} 6∈
E is able to perform the structural changes that we need to apply to fulfil the anonymous
degree sequence. The set of possible candidates is vi = {v1,v3,v5}. If we randomly select v5
as the auxiliary vertex for edge switch, then edge {v2,v5} is removed and {v4,v5} is created.
The resulting network is depicted in Figure 3a. Note that the bridge-like function of vertex
v2 was removed in the anonymous version of the network, and therefore the connectivity of
the network changed considerably.

An alternative is to choose the neighbourhood edge centrality. In this case, some pos-
sible edge switches must be considered and then, the algorithm chooses the edge with the
lowest neighbourhood centrality score. In our example, edges {v2,v5}, {v1,v2} and {v2,v3}
are candidates with a neighbourhood score of 0.875, 0.5 and 0.5, respectively. As stated
previously, the first one is a bridge-like connection between two dense components, while
the second and third only affect the connectivity between involved vertices. The process se-
lects the edge with the lowest neighbourhood centrality score, which are {v1,v2} or {v2,v3}.
Figure 3b shows the resulting network after removing edge {v1,v2} and adding {v1,v4}. �
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Fig. 4: Neighbourhood centrality values of tested networks.

4.3 Complexity

The first step, degree sequence anonymization, can be divided into two phases: the first one
computes the optimal partition in a polynomial time, O(max(nlog(n),k2n)) as the authors
[21] informed. The second one computes the p-vector from the matrix of differences Mp×2.
The problem is NP for the exhaustive method (O(2q) where q is the number of groups with
m j 6= 0). However, we can get a quasi-optimal solution in polynomial time (O(wq) where
w is the number of fixed iterations) using the greedy approach. For instance, if we explore
w = log2(2q) = q, then the complexity is polynomial O(q2). Therefore, the problem of
degree sequence anonymization is a P-problem and can be resolved in polynomial time for
a quasi-optimal solution.

The second step, graph modification, can be implemented by random edge selection or
neighbourhood centrality edge selection. As we have seen, each single edge operation can
be computed in linear time; therefore, random edge selection can also be computed in linear
time. Neighbourhood centrality edge selection involves evaluating all, or at least, a fraction
of all possible combinations to preserve the most important edges. For each vertex vi and v j,
we can generate several possible candidates:

– Edge switch: Given vi and v j, we select all vk ∈ Γ (vi). We will usually find 〈deg〉 can-
didates for vk or max(deg) candidates when vi is a hub or a vertex with a high degree.
Hence, we have to check 〈deg〉 or max(deg) possible combinations for each pair vi and
v j. It is important to note that, because of the power-law in real networks, the vertices
with the highest degree do not usually meet the k-anonymity and they need to be modi-
fied.

– Edge removal: Given vi and v j, we can select vk ∈ Γ (vi) and vl ∈ Γ (v j) as candidates.
In average, there are 〈deg〉 possible vertices for vk and vl , and max(deg) in the worst
case. For every pair, we have to check whether edge (vk,vl) 6∈ E. Therefore, we have to
check 〈deg〉2 possible combinations in the average case, but it should be max(deg)2 in
the worst case, when vi and v j are hubs-like or vertices with a high degree value.

– Edge addition: Given vi and v j, we only need to check whether edge (vi,v j) 6∈ E. Only
one possible combination for every pair of vertices is found here.

The complexity of edge evaluation process is NP. Accordingly, we need to use an heuris-
tic to reduce the complexity of evaluating all possible combinations for each basic edge op-
eration. Figure 4 shows the neighbourhood centrality values of tested networks (see Table 1
for network details). As we can see, neighbourhood centrality values are distributed like a
power-law, where most edges have low score values and only few of them have a high score.



14 Jordi Casas-Roma et al.

Figures 4b and 4c show clearly this phenomenon. Therefore, we focus on preserving the
edges with high score of neighbourhood centrality. According to the distribution observed
in real networks, we do not have to evaluate all possible combinations; we only need to
evaluate a few of them to preserve the most important edges. Evaluating only the log2 of the
total possible combinations, we will find an edge with low NC score value with a very high
probability, and we will reduce the complexity of edge selection. The complexity reduction
is very important to deal with large networks, as we will demonstrate in Section 5.3. To sum
up, the problem of graph modification is a P-problem for random edge selection and NP
for neighbourhood centrality edge selection, but it can be resolved in polynomial time by
computing the log2 of all possible combinations.

5 Experimental results

In this section, we will discuss the results of our algorithm from three different perspectives.
Firstly, we use the traditional approach focused on information loss using graph theoretic
measures to compare our algorithm to other well-known k-degree anonymous algorithms.
Secondly, we claim that testing our algorithm with graph-mining processes provides useful
information. Thus, several clustering or community detection algorithms are utilized to as-
sess the data utility of our anonymous networks. And thirdly, the scalability of our method
is evaluated in large real networks.

Regarding the first perspective, several measures have been designed to evaluate the
goodness of the anonymization methods. A natural way is to evaluate to what extent the
analysis on anonymized data differs from the original data. Each measure focuses on a par-
ticular property of the data. We assume that if these metrics show little variation between
original and anonymized data, then the subsequent data mining processes will also show
little variation between the original and the anonymized one. Several measures have been
used to compare the values obtained by the original and the anonymous datasets in order to
quantify the noise introduced by the anonymization process, as illustrated in [23,24,33,46,
47,54]. When we quantify the information loss as described above, we talk about generic
information loss measures. It is important to emphasize that these generic information loss
measures only evaluate structural changes between original and anonymous data. That is,
these measures do not evaluate the data mining processes on anonymous data, and as such,
they are general or application-independent. We will evaluate our algorithm and two other
well-know k-degree anonymous algorithms using generic information loss measures in Sec-
tion 5.1.

However, the behaviour of anonymized data in the subsequent data mining processes
may not coincide with the expected results. Since evaluating the distortion introduced in the
graph is not enough, it is necessary to assess the noise introduced in the subsequent data
mining processes. In our work we consider the case of clustering-specific processes. Thus,
related to our second perspective, we will deal with specific information loss measures based
on clustering processes in Section 5.2.

Last but not least, our third perspective in this analysis is focused on evaluating the
scalability of our algorithm. In Section 5.3 we will analyse the behaviour of our algorithm
when tackling large real networks.



k-Degree Anonymity And Edge Selection: Improving Data Utility In Large Networks 15

5.1 Generic information loss analysis

In this section, we will compare the result of anonymizing several networks using our al-
gorithm and other two well-known algorithms for k-degree anonymity. Specifically, we will
use UMGA algorithm with random edge selection (UMGA-R) and neighbourhood central-
ity edge selection (UMGA-NC). We believe it is important to present a comparison to other
well-known algorithms for k-degree anonymity. They are the following ones:

– k-Degree-Anonymization (kDA) algorithm by Liu and Terzi [33]. Unfortunately, the
code of their algorithm is not publicly available. However, we use an experiment ran by
Ying et al. [47] which compared the k-degree algorithm by Liu and Terzi to a random-
based approach. We compare our algorithm to Liu and Terzi’s by running a series of
experiments identical to those of Ying et al. and comparing the performance of our
algorithm to these published values.

– VertexAddition by Chester et al. [14]. VertexAddition algorithm is focused on k-degree
anonymity by introducing fake vertices into the network and linking them to each other
and to real vertices in order to achieve the desired k-degree anonymity value.

We apply all algorithms on the same data with the same parameters and compare the
results in terms of information loss and data utility. It is important to note that the privacy
level is the same for all algorithms, as we compare results with the same k value. For this
reason, our comparison is about information loss between networks with the same privacy
level achieved through different anonymization methods. Clearly, the lower the information
loss, the better the algorithm.

5.1.1 Measures

In order to compare the algorithms, we use several structural and spectral measures. In-
formation loss was defined by the discrepancy between the results obtained between the
original and the anonymous data. The first structural measure is average distance (〈dist〉),
also known as average path length. It is defined as the average of the distances between each
pair of vertices in the network. Information diffusion and spread is closely related to this
measure. Formally, it is defined as:

〈dist〉(G) =
∑

n
i, j=1 d(vi,v j)(n

2

) (7)

where d(vi,v j) is the length of the shortest path from vi to v j, meaning the number of edges
along the path.

Harmonic mean of the shortest distance (h) is an evaluation of connectivity, similar
to the average distance. The inverse of the harmonic mean of the shortest distance is also
known as the global efficiency. Formally:

h(G) =

 1
n(n−1)

n

∑
i, j=1
i6= j

1
d(vi,v j)


−1

(8)

Modularity (Q) indicates the goodness of the community structure. It is defined as the
fraction of all edges that lie within communities minus the expected value of the same quan-
tity in a network in which the vertices have the same degree, but edges are placed at random
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Network |V | |E| 〈deg〉 k

Polbooks 105 441 8.40 1
Polblogs 1,222 16,714 27.31 1
GrQc 5,242 14,484 5.53 1

Table 1: General properties of tested networks.

without regard to the communities. Transitivity (T ) is one type of clustering coefficient,
which measures and characterizes the presence of local loops near a vertex. It measures the
percentage of paths of length 2 which are also triangles. Lastly, sub-graph centrality (SC)
is used to quantify the centrality of vertex vi based on the sub-graphs. Formally:

SC(G) =
1
n

n

∑
i=1

SCi =
1
n

n

∑
i=1

∞

∑
k=0

Pk
i

k!
(9)

where Pk
i is the number of paths from vi to vi with length k.

Moreover, two spectral measures which are closely related to many network characteris-
tics [46] are used. The largest eigenvalue of the adjacency matrix A (λ1) where λi are the
eigenvalues of A and λ1 ≥ λ2 ≥ . . .≥ λn. The eigenvalues of A encode information about the
cycles of a network as well as its diameter. The second smallest eigenvalue of the Lapla-
cian matrix L (µ2) where µi are the eigenvalues of L and 0 = µ1 ≤ µ2 ≤ . . .≤ µm ≤m. The
eigenvalues of L encode information about the tree structure of G. µ2 is an important eigen-
value of the Laplacian matrix and can be used to show how good the communities separate,
with smaller values corresponding to better community structures.

5.1.2 Tested networks

Table 1 shows a summary of the networks’ main features including number of vertices,
edges, average degree and default k-anonymity value. US politics book data (polbooks) [27]
is a network of books about US politics published around the 2004 presidential election and
sold by the online bookseller Amazon. Political blogosphere data (polblogs) [1] compiles the
data on the links among US political blogs. Finally, GrQc collaboration network [29] is from
the e-print arXiv and covers scientific collaborations between authors of papers submitted
to General Relativity and Quantum Cosmology category.

5.1.3 Empirical results

Results are disclosed in Table 2. Each row indicates the scored value for the corresponding
measure and algorithm; and each column corresponds to an experiment with a different k-
anonymity value. For each dataset and algorithm, we vary k from 1 to 10 (k = 1 correspond
to the original dataset) and compare the results obtained on λ1, µ2, 〈dist〉, h, Q, T and SC.
The last column corresponds to the average error 〈E 〉. Each characteristic is reported from
two to four times, corresponding to UMGA-R (indicated by R), UMGA-NC (indicated by
NC), kDA and VertexAddition (indicated by VA). A bold row points out the best algorithm
for each measure and network. Values of Liu and Terzi’s algorithm (kDA) are taken from
Ying et al. [47], and values of Chester et al. algorithm (VertexAddition) are taken from [14].
Unfortunately, values for all measures and algorithms are not available. Perfect performance
in a row would be indicated by achieving exactly the same score as in the original network



k-Degree Anonymity And Edge Selection: Improving Data Utility In Large Networks 17

2 4 6 8 10

0
.2

9
0
.3

1
0
.3

3
0
.3

5

k−anonymity value

T
ra

n
s
it
iv

it
y

UMGA−R

UMGA−NC

kDA

(a) Polbooks network

2 4 6 8 10

2
.4

4
2
.4

6
2
.4

8
2
.5

0
2
.5

2

k−anonymity value
H

a
rm

o
n

ic
 m

e
a

n

UMGA−R

UMGA−NC

kDA

VertexAddition

(b) Polblogs network

0 10 20 30 40 50

4
2

4
3

4
4

4
5

k−anonymity value

λ
1

UMGA−R

UMGA−NC

(c) GRQC network

Fig. 5: Examples of information loss evolution during anonymization process using T , h and
λ1 measures in Polbooks, Polblogs and GRQC datasets.

(the k = 1 column). Although deviation is undesirable, it is inevitable due to the edge or
vertex modification process. Complementary information is introduced in Figure 5, where
we can see graphical details about algorithms’ behaviour during anonymization process.
These are the same values we reported in Table 2, but we believe that visual analysis can
help us to understand where data come from.

The first tested network, Polbooks, is a small collaboration network. We present values
for UMGA-R, UMGA-NC and kDA algorithms (except for average distance, which is not
available from Ying et al. [47]). As shown in Table 2, UMGA-R and UMGA-NC algorithms
introduce less noise in all datasets and measures, except for UMGA-R algorithm on T ,
where kDA achieves a slightly better result. For instance, we can deepen on the behaviour of
transitivity in Figure 5a. Transitivity value for the original network (k = 1) is 0.348. As can
be seen, values of UMGA-NC remain close to the original one over all anonymization range,
while values are similar for UMGA-R and kDA. The results of the comparability are very
encouraging. UMGA-NC outperforms on all measures, except on µ2 where the values are
close to UMGA-R and the average error (〈E 〉) is almost equal. kDA produces much more
information loss than UMGA-R and UMGA-NC, specifically on λ1, µ2, Q and SC where
the average error is between two and four times greater than UMGA-NC.

Polblog is the second tested network. UMGA-R and UMGA-NC obtain similar values,
which are the best values on all measures. The values of kDA are presented for all measures
(except average distance), but the results are far from our algorithm. For instance, the aver-
age error is close to 0.26 for UMGA-R and UMGA-NC, while it outbursts to 1.75 for kDA
on λ1. As stated previously, eigenvalues encode information about cycles and the diameter
of a network. Thus, keeping λ1 values close to the original one implies better preserving
path lengths and cycles in anonymous data. Similar results appear on h, Q, T and SC. Val-
ues for VertexAddition are presented for h, T and SC (other values are not available from
Chester et al. [14]). Clearly, the noise introduced by our algorithm is much less than the
noise introduced by theirs. For example, the average error on h is 0.039 for VertexAddition,
while the same value is close to 0.005 for ours. As shown in Figure 5b, perturbation on h is
lower when anonymization process is done by UMGA-R or UMGA-NC. That is, values of
UMGA-R and UMGA-NC remain much closer to the original ones than values of kDA and
VertexAddition. Lower information loss on h indicates that connectivity and path lengths are
less affected in anonymous data, i.e. more similar to the original ones. The same behaviour
is observed in other measures. UMGA-R and UMGA-NC have obtained an average error
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Polbooks k=1 2 3 4 5 6 7 8 9 10 〈E 〉

λ1

R
11.93

12.11 12.00 12.17 11.82 11.84 12.18 12.25 12.25 11.89 0.163
NC 12.09 11.97 11.85 11.85 11.95 12.09 12.08 12.08 11.86 0.090
kDA 12.00 12.05 12.11 12.22 12.30 12.31 12.64 12.72 12.85 0.383

µ2

R
0.324

0.359 0.428 0.497 0.330 0.398 0.653 0.593 0.593 0.495 0.143
NC 0.360 0.451 0.453 0.453 0.383 0.599 0.524 0.524 0.640 0.147
kDA 0.430 0.450 0.600 0.600 0.790 0.630 0.650 0.970 0.880 0.312

〈dist〉 R 3.079 2.928 2.826 2.770 3.029 2.861 2.647 2.694 2.694 2.795 0.247
NC 2.987 2.883 2.896 2.896 2.988 2.765 2.856 2.856 2.762 0.182

h
R

2.450
2.392 2.343 2.314 2.428 2.356 2.252 2.276 2.276 2.326 0.109

NC 2.416 2.371 2.379 2.379 2.418 2.312 2.350 2.350 2.312 0.077
kDA 2.350 2.320 2.280 2.280 2.230 2.270 2.260 2.200 2.190 0.167

Q
R

0.402
0.400 0.396 0.388 0.398 0.389 0.377 0.379 0.379 0.394 0.012

NC 0.400 0.393 0.396 0.396 0.401 0.386 0.386 0.386 0.385 0.009
kDA 0.390 0.390 0.380 0.380 0.360 0.370 0.370 0.340 0.350 0.027

T
R

0.348
0.350 0.330 0.316 0.330 0.325 0.298 0.304 0.304 0.313 0.027

NC 0.350 0.342 0.339 0.339 0.347 0.326 0.322 0.322 0.324 0.013
kDA 0.330 0.330 0.320 0.330 0.300 0.310 0.320 0.290 0.300 0.023

SC R
2.524

2.779 2.189 2.372 2.145 1.933 2.132 2.336 2.336 1.976 0.303
NC 2.774 2.358 2.224 2.224 2.338 2.363 2.389 2.389 2.110 0.204

(×103) kDA 2.480 2.560 2.530 2.760 2.440 2.680 3.600 3.580 4.120 0.431
Polblogs k=1 2 3 4 5 6 7 8 9 10 〈E 〉

λ1

R
74.08

73.88 73.78 73.95 73.93 73.67 73.70 73.82 73.74 73.63 0.260
NC 73.93 73.81 73.92 73.95 73.74 73.80 73.75 73.63 73.61 0.256
kDA 74.89 74.50 75.16 75.10 76.32 75.82 76.67 77.42 78.42 1.758

µ2

R
0.168

0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.000
NC 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.000
kDA 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.168 0.000

〈dist〉 R 2.738 2.724 2.721 2.739 2.737 2.730 2.731 2.730 2.732 2.728 0.007
NC 2.733 2.729 2.725 2.724 2.724 2.732 2.726 2.731 2.727 0.009

h

R

2.506

2.496 2.494 2.507 2.505 2.500 2.501 2.501 2.502 2.500 0.005
NC 2.501 2.499 2.496 2.496 2.496 2.502 2.498 2.502 2.499 0.006
kDA 2.500 2.484 2.494 2.475 2.469 2.461 2.462 2.486 2.458 0.026
VA 2.506 2.486 2.476 2.476 2.456 2.456 2.446 2.436 2.426 0.039

Q
R

0.405
0.403 0.403 0.405 0.405 0.403 0.403 0.403 0.403 0.402 0.001

NC 0.404 0.403 0.403 0.403 0.403 0.403 0.402 0.403 0.402 0.002
kDA 0.402 0.401 0.401 0.396 0.394 0.395 0.389 0.387 0.385 0.010

T

R

0.226

0.224 0.223 0.225 0.224 0.223 0.223 0.224 0.223 0.223 0.002
NC 0.224 0.224 0.224 0.224 0.223 0.225 0.224 0.223 0.224 0.001
kDA 0.225 0.223 0.224 0.221 0.222 0.220 0.219 0.221 0.221 0.004
VA 0.219 0.215 0.207 0.205 0.200 0.226 0.190 0.185 0.183 0.020

SC
R

1.218

1.003 0.905 1.069 1.054 0.806 0.832 0.939 0.872 0.782 0.270
NC 1.052 0.932 1.040 1.068 0.871 0.921 0.875 0.776 0.765 0.266
kDA 2.730 1.870 3.610 3.400 1.450 6.940 6.250 4.460 4.040 2.386

(×1029) VA 1.300 1.410 2.160 2.880 2.660 5.550 5.370 11.000 8.250 2.969
GrQc k=1 5 10 15 20 25 30 35 40 50 〈E 〉

λ1
R 45.61 45.12 44.77 43.99 43.23 43.28 41.89 42.01 41.76 41.62 2.450
NC 45.37 45.28 44.78 44.14 44.49 43.02 43.72 43.55 43.05 1.353

µ2 R -1.26 -3.98 -2.37 -4.09 -3.33 -2.67 -3.55 -2.00 -1.91 -4.40 1.966
(×10−14) NC -3.06 -2.71 -1.95 -2.01 -4.34 -1.57 -2.35 -2.76 -2.48 1.300

〈dist〉 R 6.049 6.002 5.942 5.918 5.862 5.861 5.864 5.892 5.816 5.915 0.150
NC 6.026 6.009 5.955 5.948 5.922 5.904 5.935 5.876 5.897 0.102

h R 8.863 8.784 8.696 8.650 8.568 8.571 8.571 8.607 8.597 8.639 0.229
NC 8.821 8.794 8.718 8.702 8.664 8.641 8.682 8.589 8.626 0.162

T R 0.630 0.622 0.612 0.603 0.588 0.585 0.579 0.571 0.560 0.548 0.044
NC 0.625 0.617 0.611 0.588 0.595 0.589 0.589 0.578 0.584 0.033

SC R 1.235 0.754 0.530 0.244 0.114 0.120 0.030 0.034 0.027 0.023 0.951
(×1016) NC 0.971 0.882 0.538 0.283 0.402 0.093 0.187 0.158 0.096 0.776

Table 2: Results for UMGA-R (R), UMGA-NC (NC), kDA [33] and VertexAddition (VA)
[14] algorithms. Bold rows indicate the algorithm that achieves the best results (i.e., the
lowest information loss) for each measure. The values for kDA are taken from Ying et al.
[47] and the ones for VertexAddition are taken from [14].
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smaller than kDA and VertexAddition on all measures, showing that the information loss is
reduced and the data utility is clearly improved.

Finally, GrQc is larger than other networks (in terms of the number of vertices), so re-
sults for this network are evaluated on k ∈ [1,50]. In addition, Q is not evaluated since this
network does not have community labels. Unfortunately, there is no data for kDA or Vertex-
Addition algorithms for this network. Thus, we cannot compare our algorithm versus theirs,
but we include this network in order to evaluate our two approaches with a larger network.
On GrQc the UMGA-NC achieves the best results on all metrics, reducing considerably the
information loss and raising data utility, as can be seen in Figure 5c.

5.2 Clustering-specific information loss analysis

In this section we want to compare our random-based (UMGA-R) and neighbourhood centrality-
based (UMGA-NC) edge selection approaches on graph-mining processes. We define the
specific information loss measures as a task-specific measure for quantifying the data utility
and the information loss associated to a data publishing process. We focus on clustering-
specific processes, since it is an important application for social and healthcare networks.
We want to analyse the utility of the perturbed data by evaluating it on different clustering
processes. Like generic measures, we compare the results obtained both by the original and
the perturbed data in order to quantify the level of noise introduced in the perturbed data.
This measure is specific and application-dependent, but it is necessary to test the perturbed
data in graph-mining processes.

5.2.1 Clustering evaluation framework

We ran 4 graph clustering algorithms to evaluate our anonymization algorithm using the
implementations from the igraph library. All of them are unsupervised algorithms based
on different concepts and developed for different applications and scopes. An extended re-
vision and comparison of them can be found in [28,49]. The selected clustering algorithms
are: (1) Fastgreedy [15], a hierarchical agglomeration algorithm for detecting community
structure based on modularity optimization; (2) Walktrap [39] intends to find densely con-
nected sub-graphs, i.e. communities, in a graph via random walks; (3) Infomap [40] opti-
mizes the map equation, which exploits the information-theoretic duality between the prob-
lem of compressing data and the problem of detecting significant structures in the graph;
and (4) Multilevel [3], a multi-step technique based on a local optimization of Newman-
Girvan modularity in the neighbourhood of each node. Although some algorithms permit
overlapping among different clusters, we did not allow it in our experiments by setting the
corresponding parameter to zero, mainly for ease of evaluation.

We consider the following approach to measure the clustering assessment for a particular
anonymization and clustering method: (1) apply the anonymization process p to the original
data G and obtain G̃; (2) apply a particular clustering method c to G and obtain clusters c(G)

and apply the same method to G̃ to obtain c(G̃); and (3) compare the clusters c(G) to c(G̃),
as shown in Figure 6. In relation to information loss, it is clear that the more similar c(G̃)
is to c(G), the less information loss. Thus, clustering-specific information loss measures
should evaluate the divergence between both sets of clusters c(G) and c(G̃). Ideally, results
should be the same. That is, the same number of sets with the same elements in each set. In
this case, we can say that the anonymization process has not affected the clustering process.
When the sets do not match, we should be able to calculate a measure of divergence.
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G G̃

Original clusters
c(G)

Precision
index

Perturbed clusters
c(G̃)

Anonymization

process p

Clustering
method c

Clustering
method c

Fig. 6: Framework for evaluating the clustering-specific information loss measure.

Network |V | |E| 〈deg〉 k

Zachary’s karate club 34 78 4.588 1
American college football 115 613 10.661 1
Erdős 433 1,314 6.069 1
Enron 36,692 183,831 10.020 1

Table 3: General properties of tested networks.

For this purpose, we use the precision index [6]. Assuming we know the true commu-
nities of a graph, the precision index can be directly used to evaluate the similarity between
two cluster assignments. Given a graph of n vertices and q true communities, we assign
the same labels ltc(·) to vertices which belong to the same community. In our case, the true
communities are the ones assigned in the original dataset (i.e. c(G)), since we want to obtain
communities as close as possible to the ones we would get on non-anonymized data – we are
not interested in the ground truth communities. Assuming the anonymous graph has been
divided into clusters (i.e. c(G̃)), we examine all the vertices for each cluster and assign them
the most frequent true label in that cluster as the predicted one lpc(·). Then, the precision
index can be defined as follows:

precision index(G, G̃) =
1
n ∑

v∈G
1ltc(v)=lpc(v) (10)

where 1 is the indicator function such that 1x=y equals 1 if x = y and 0 otherwise. Note that
the precision index is a value in range [0,1], which takes value 0 when there is no overlap
between the sets, and value 1 when the overlap between the sets is complete.

5.2.2 Tested networks

Four different network are evaluated in this section. They present different sizes and struc-
tures, as shown in Table 3. Zachary’s karate club [48] is a small social graph widely used
in clustering and community detection. American college football [20] is a graph of Ameri-
can football games among Division IA colleges during regular season Fall 2000. Erdős net-
work presents a list of mathematician Paul Erdős’ co-authors and their respective co-authors.
Lastly, Enron email communication network [31] covers all the email communication within
a dataset of around half million emails.
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Network Method IM ML FG WT

Karate
UMGA-R 0.205 0.238 0.300 0.232

UMGA-NC 0.141 0.226 0.191 0.282

Football
UMGA-R 0.086 0.052 0.157 0.035

UMGA-NC 0.086 0.003 0.053 0.039

Erdős
UMGA-R 0.147 0.291 0.191 0.069

UMGA-NC 0.122 0.259 0.187 0.114

Enron
UMGA-R 0.081 0.248 0.128 0.182

UMGA-NC 0.103 0.199 0.121 0.126

Table 4: Average precision index error over 10 levels of k-anonymity for UMGA-R and
UMGA-NC on 4 clustering algorithms. Bold values indicate the method that achieves the
best result (i.e. the lowest information loss) in each metric and dataset.
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Fig. 7: Precision index values for UMGA-R and UMGA-NC using Fastgreedy, Infomap and
Multilevel clustering algorithms on Karate, Erdős and Enron datasets.

5.2.3 Empirical results

Table 4 presents the error on precision index computed using the four clustering algorithms
previously described. It is crucial to consider the results on graph-mining processes, since
the main goal of the anonymous data is to provide valuable information to researchers and
third-parties to understand the structure and the behaviour of real networks. Hence, we have
considered clustering as an important graph mining task that can be useful to quantify data
utility in our experimental framework.

As we can see, our algorithm using edge neighbourhood centrality (UMGA-NC) gets
better results on most of our clustering algorithms and datasets. For instance, it accom-
plishes the best results on 3 of 4 tested algorithms in Karate, Erdős and Enron networks.
We can deepen in some specific analysis presented in Figure 7. The result of precision in-
dex using Fastgreedy algorithm in Karate network is introduced in Figure 7a. As the figure
shows, the number of corrected classified vertices is always greater using the UMGA-NC
algorithm, instead of using the random-based edge selection process. The results are clear:
the algorithm leads to a better data utility using edge neighbourhood centrality. A similar be-
haviour can be seen in Figure 7b, where Infomap algorithm in Erdős dataset is used. Lastly,
the largest network tested in these experiments presents alike results, as shown in Figure 7c.
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Network |V | |E| 〈deg〉 k

Caida 26,475 53,381 2.016 1
Amazon 403,394 2,443,408 6.057 1
Yahoo! 1,878,736 4,079,161 2.171 1

Table 5: General properties of our tested large networks.

5.3 Scalability analysis

After generic and clustering-specific information loss analysis we have performed in pre-
vious sections, we want to test our algorithms with large networks. Our main goal is to
prove that they are able to deal with large networks of thousands and millions of vertices
and edges. We cannot perform the previous analysis with large networks due to fact that the
complexity of some measures is very expensive and they cannot be computed in reasonable
time. All tests in this section are made on a 4 CPU Intel Xeon X3430 at 2.40GHz with 32GB
RAM running Debian GNU/Linux.

5.3.1 Tested networks

We have tested our algorithm with three real and large networks. All these networks are
undirected and unlabelled. Table 5 shows a summary of the networks’ main features in-
cluding number of vertices, edges, average degree and k-anonymity value. Caida [29] is an
undirected network of autonomous systems of the Internet connected with each other from
the CAIDA project, collected in 2007. Amazon [30] is based on “customers who bought X
also bought Y” feature of the Amazon website. Yahoo! Instant Messenger friends connectiv-
ity graph (version 1.0) [45] contains a non-random sample of the Yahoo! Messenger friends
network from 2003.

5.3.2 Performance of our algorithm

Table 6 shows the results of our scalability experiments in large networks. We apply the
UMGA algorithm to our tested networks, using both exhaustive and greedy search methods
with random edge selection (UMGA-E-R and UMGA-G-R) and neighbourhood centrality
edge selection (UMGA-E-NC and UMGA-G-NC). We test our algorithm for values of k =
{10,20,50,100} in each network and compute the number of possible combinations (2q)
in order to provide an approximation of the complexity. For each method, we show the
computation time of the algorithm (time), the difference between the original edge set E
and the anonymized one Ẽ (ed = |E|−|Ẽ|), and the percentage of modified edges (%mod =

1− |E∩Ẽ|
|E∪Ẽ| ).
Caida is a quite sparse network. More than 49% of their vertices have a degree between

1 and 10, 21.71% between 11 and 100, 18.66% between 101 and 1,000 and 10.26% have a
degree greater than 1,000. The maximum degree is 2,628. Because of this, it is necessary to
modify more than 6% of the edges in order to obtain a k = 10. This percentage augments
when the value of k grows. For k = 50 and k = 100 the algorithm needs to modify the
total number of edges, decreasing 9 and increasing 41, respectively. These 41 edges only
represent 0.018% of the total edges, so we believe that the noise introduced in the network
is minimum. We can see similar times and results for exhaustive and greedy methods, but
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General Exhaustive Method Greedy Method
Network k 2q ed %mod R time NC time ed %mod R time NC time
Caida 10 224 0 6.06% 0:00:06 0:00:36 0 6.06% 0:00:06 0:00:34

20 221 0 11.65% 0:00:07 0:01:05 0 11.65% 0:00:07 0:01:05
50 213 -9 18.43% 0:00:08 0:01:45 -9 18.43% 0:00:08 0:01:45

100 29 -9 25.81% 0:00:10 0:01:48 41 25.85% 0:00:10 0:01:46
Amazon 10 254 0 0.16% 0:14:16 0:22:47 0 0.16% 0:11:54 0:19:47

20 250 0 0.26% 2:57:37 3:07:58 0 0.26% 0:11:55 0:22:25
50 232 0 0.39% 0:12:07 0:33:07 0 0.39% 0:12:07 0:31:17

100 230 -1 0.53% 2:11:47 2:42:48 -1 0.53% 0:13:57 0:53:37
Yahoo! 10 238 0 0.05% 1:34:34 1:52:25 0 0.05% 1:31:40 1:50:24

20 228 0 0.07% 2:19:21 2:46:47 0 0.07% 1:31:57 1:59:34
50 219 0 0.13% 1:33:09 2:22:59 0 0.13% 1:32:12 2:20:54

100 216 0 0.18% 1:34:27 2:46:33 0 0.18% 1:34:32 2:47:58

Table 6: UMGA’s results for tested networks. For each network, we test our algorithms for
values of k = {10,20,50,100} and computes the number of possible combinations (2q). For
each method, we show the difference between the original edge set E and the anonymized
one Ẽ (ed), the percentage of modified edges (%mod) and the computation time for UMGA-
R (R time) and UMGA-NC (NC time).

UMGA-R consumes much less time than UMGA-NC. The number of possible combinations
is small and the exhaustive method can deal with it.

Amazon is a network larger than Caida, so we can see greater differences between ex-
haustive and greedy methods. The complexity rises to 254 when k = 10. Notice that smaller
k-values imply bigger complexity since more group of vertices (g j) are possible; and there-
fore, more possible combinations. When k = 100 there is no solution with ∑

p
j=1 m j = 0. For

that reason, the exhaustive method explores all the possible combinations. In this case, it is
230 and it can be done with reasonable time. For other values of k, there is a solution equal
to 0, so the exhaustive method does not explore all combinations. Indeed, it explores less
than 0.1% in all cases. However, the greedy method finds the same results in all experiments
and it spends much less time. The time used by UMGA-NC is only two or three times larger
than the one used by UMGA-R, much less than the difference in Caida network.

Yahoo! network is the largest tested network, but it is less sparse than others: 99.21%
of the vertices have a degree between 1 and 100, 0.75% between 101 and 1,000, and only
0.03% have a degree greater than 1,000. Vertices with a degree value less than 100 are well
protected and they are more than 99%. These characteristics imply that k-degree anonymous
networks from k = 10 to k = 100 can be achieved with less than 0.20% of modifications in
the edge set. Hence, the utility of the anonymized network will be almost intact. As the
previous examples illustrate, UMGA-NC consumes more time than UMGA-R, but time is
reduced to less than double.

Notice that UMGA-NC spends more time in all experiments, but the time does not grow
exponentially with the network because of the heuristic approach applied. Consequently, we
can see that neighbourhood centrality edge selection can deal with large networks, improv-
ing the data utility with reasonable time consuming.
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6 Conclusion

In this paper we have presented a new algorithm for anonymization in large networks. It is
based on edge set modification in order to fulfil the desired k-degree anonymity value. The
new algorithm, called Univariate Micro-aggregation for Graph Anonymization (UMGA), is
based on the modification of the degree sequence using univariate micro-aggregation tech-
nique. This process obtains an anonymized degree sequence which is k-degree anonymous
and minimizes the distance from the original one. Then, we use the three basic operations to
translate the modifications made on anonymized degree sequence to the network edge set.

In addition, we have proposed a method to preserve the most important edges in the
network. Instead of modifying one of the possible edges randomly, this method considers the
edge relevance and preserves the most important edges in the network. We demonstrate that
using this method we can clearly improve the data utility, reducing the information loss on
anonymized data. We also demonstrated that our algorithm is better, in terms of information
loss and data utility, than the two other well-known k-degree anonymous algorithms.

Moreover, we have introduced a framework for testing our algorithm on clustering pro-
cesses. We performed an analysis using clustering algorithms and proved that using edge
neighbourhood centrality our algorithm leads the anonymization process to better clustering
results, i.e. results closer to the ones performed on original data.

We have also shown that the algorithm is able to anonymize large networks. We have
used three different real networks to test our algorithm based on the exhaustive and greedy
methods. Both methods show good results in all networks, but the greedy method spends less
time to get similar (in much cases, the same) results. In addition, the greedy method remains
much more stable over time than exhaustive method. The tests proved that our algorithm can
anonymize large networks based on k-degree anonymity concept.

Many interesting directions for future research have been uncovered by this work. It
would be very interesting to investigate how this method can deal with other type of net-
works (directed or edge-labelled networks, for example). Additionally, other graph-mining
processes can be considered to evaluate the real data utility, such as information flow, con-
tagion processes.
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