
Linear Separability in Spatial Databases

Gilberto Gutiérrez∗ Pablo Pérez-Lantero† Claudio Torres∗
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Abstract

Given two point sets R and B in the plane, with cardinalities m and n, respectively, and each
set stored in a separate R-tree, we present an algorithm to decide whether R and B are linearly
separable. Our algorithm exploits the structure of the R-trees, loading into the main memory
only relevant data, and runs in O(m logm + n log n) time in the worst case. As experimental
results, we implement the proposed algorithm and executed it on several real and synthetic point
sets, showing that the percentage of nodes of the R-trees that are accessed and the memory usage
are low in these cases. We also present an algorithm to compute the convex hull of n planar
points given in an R-tree, running in O(n log n) time in the worst case.

1 Introduction

Let R be a finite set of red points and B a finite set of blue points in the plane, with cardinalities
m and n, respectively. We say that R and B have linear separability, or that are linearly separable,
if there exists a line such that: the elements of R belong to one of the halfplanes bounded by the
line, the elements of B belong to the other halfplane, and if the line contains points from R ∪ B,
then it contains points from exactly one between R and B. It is well known that R and B are
linearly separable if and only if the convex hulls conv(R) and conv(B) have an empty intersection,
where conv(X) denotes the convex hull of X ⊂ R2. Because of this, deciding whether R and B are
linearly separable, and in the positive case finding such a separating line, can be done within the
following steps: compute conv(R) and conv(B) in times O(m logm) and O(n log n), respectively;
and test whether the intersection of conv(R) and conv(B) is empty in time O(m+n) [18]. In fact,
if conv(R) and conv(B) has an empty intersection, then there exists a separating line containing an
edge of conv(R) or conv(B) [5]. Another way of deciding linear separability of R and B, without
computing the convex hulls, is to formulate the separation problem as a linear program (LP) in
two variables and m + n constraints, and use the algorithm of Megiddo [14] or the algorithm of
Dyer [6] to solve the LP in linear O(m + n) time in the worst case. Other more practical option,
due to the big hidden constants in the O(m + n) running times of these two algorithms, is to use
the simpler randomized algorithm of Seidel [16] that solves the LP in expected O(m + n) time.
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In this paper, we study the problem of deciding whether R and B are linearly separable, and at
the same time returning a separating line when the answer is positive, in the context of the spatial
databases: We are given as input an R-tree with the points of R and a second R-tree with the
points of B. The R-tree is a secondary-storage, tree-like height-balanced data structure designed
for the dynamic indexation of a set of dimensional geometric objects [9, 13], and it is considered
an standard in the context of the spatial databases. See Section 1.1 for further details. Because of
the high data volume of the R-trees, loading from the R-trees all points of R ∪ B and running a
known algorithm for testing linear separability of R and B is considered impractical in this context.
Then, we aim to design an efficient algorithm working directly with the R-tree structure and able
of loading from the R-trees only the relevant data. Most of the algorithms in this context, apart
of producing the correct answer, aim to minimize both the running time and the number of nodes
read from the R-trees, since each node is implemented as a disk page.

The spatial databases (SDB) represent an important aid for geographical information systems (GIS)
to manage large amounts of data. However, SDB require the design of new data structures, spatial
access methods, query languages, and algorithms to manage spatial information. In this sense,
several algorithm have been designed for spatial queries such as the window query, the intersection
query, the nearest neighbor, and the spatial join [7, 17]. Many of these queries are problems that
were first tackled in the field of the computational geometry, where it is assumed that all spatial
objects fit into the main memory, and later, these problems were faced in the field of the SDB.
Following this path, several algorithms have been proposed considering that objects are stored in a
multidimensional structure, in most cases an R-tree [9]. For example, Corral et al. [4] and Hjaltason
et al. [12] presented several algorithms that solve the k-pairs (k ≥ 1) of nearest neighbors between
two sets, Roussopoulos et al. [15] showed an algorithm to find the nearest neighbor to a given point,
Gutiérrez et al. [8] showed how to find a largest rectangle containing a query object and no point
stored at an input R-tree, and Böhm and Kriegel [2] described methods for computing the convex
hull of point sets stored in hierarchical index structures such as the R-tree or its variants. Among
the geometric problems in spatial databases, this later work is well related to the results of this
paper since linear the separability of two point sets can be decided by computing the convex hull
of each set, and querying the disjointness of the convex hulls. It is worth noting that Böhm and
Kriegel’s algorithms do not exploit particular properties of R-trees such as the fact that the node
regions are minimum bounding rectangles. We explicitly exploit such a property in the algorithm
that we propose for deciding the linear separability of two point sets in the plane. Furthermore, in
many cases our algorithm can decide the linear separability without computing such convex hulls.

The linear separability of two point sets, in either the plane or higher dimensions where a hyperplane
separates the two point sets, is a concept well used in data mining and classification problems [1, 11].
In this setting, where each point set represents the data of one class, the support vector machines
(SVM) are a very robust methodology for inference [1]. The SVM is the hyperplane that separates
the point sets and maximizes the minimum distance from the points to it.

The results of this paper are the following ones:

(1) We present an algorithm working directly with the R-trees of R and B, able of deciding
whether R and B are linearly separable, and in the positive case returning a separating line.
In each step, it loads in the main memory data of only one level for each of the R-trees, and
before descending in the R-trees to the next levels, to finally end at the leaf nodes, it verifies
whether the gathered information is enough to decide the separability condition of R and B.
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The asymptotic running time in the worst case is O(m logm + n log n).

(2) The techniques used in the separability testing algorithm can be extended to design an algo-
rithm that computes the convex hull of a finite planar point set given as input in an R-tree.
If n denotes the number of input points, the asymptotic running time is O(n log n).

(3) We implement the separability testing algorithm and executed it on several real and synthetic
colored point sets, showing that in both cases the number of nodes of the R-trees that are
accessed by the algorithm, and the amount of memory used, are low for these point sets.
To generate synthetic point sets, we consider parameters such as the number of points to
generate, the distribution of the points (uniform or Gaussian), and other parameters to define
the positions of the minimum bounding rectangles of the red and blue points, respectively.

Notation: Given a set X ⊂ R2, let MBR(X) denote the Minimum Bounding Rectangle (MBR)
of X, which is the minimum-area rectangle that contains X. Every rectangle is considered axis-
aligned in this paper. Note that each of the four sides of MBR(X) contains at least one point of X.
Extending the notation, if Y is a set of subsets of R2 (e.g. a set of rectangles), then conv(Y ) (resp.
MBR(Y )) denotes the convex hull (resp. MBR) of all points contained in some element of Y , and
conv(Y ∪X) denotes the convex hull of the union of the points of conv(Y ) and conv(X).

Outline: We continue this section by describing the R-tree data structure in Section 1.1, and
the idea of our separability algorithm in Section 1.2. In Section 2, we present the concepts and
geometric properties that our algorithm uses. Later, in Section 4, we present our linear separability
test algorithm, together with the algorithm to compute the convex hull of a point set given in
an R-tree. In Section 5, we show the experimentation results. Finally, in Section 6, we state the
conclusions and further research.

1.1 The R-tree

An R-tree is a generalization of the B+-trees designed for the dynamic indexation of a set of k-
dimensional geometric objects [13]. It is a hierarchical, height balanced multidimensional data
structure, designed to be used in secondary storage. In inner levels the indexed objects are repre-
sented by the k-dimensional Minimum Bounding Rectangles (MBRs), which bound their children.
In this paper, we focus on two dimensions, therefore each MBR is an axis-aligned rectangle, rep-
resented only by its bottom-left and top-right vertices. By using the MBRs instead of the exact
geometrical representations of the objects, its representational complexity is reduced to two points
where the most important features of the spatial object (position and extent) are maintained. The
MBR is an approximation widely employed, and the R-trees belong to the category of data-driven
access methods, since their structure adapts itself to the MBRs distribution in the space.

An R-tree for a finite point set X ⊂ R2 satisfies the following properties. The leaves are on the
same level, and each leaf node contains indexed points of X. Every internal node contains entries
of the form (MBR,ref), where ref is a pointer to the child of the entry, and MBR is the minimum
bounding rectangle of the MBR’s (or the points if the child is a leaf node) contained in the entries of
this child. An R-tree has the property that every node, except possibly the root, contains between
m and M entries, where 2 ≤ m ≤ dM/2e. The root node contains at least two children nodes. We
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Figure 1: An R-tree for the point set {p1, p2, . . . , p23} (picture based on one from [8]).

will refer to the MBR of an entry just as the rectangle of the entry, and to the MBR’s of the entries of
a node just as the rectangles of the node. For every entry (i.e. rectangle) of a node, the rectangles
of the child node of the entry (i.e. the child rectangles) are not necessarily pairwise disjoint, so
they can overlap between them. Furthermore, points of X could be covered by different rectangles
of the R-tree, although each point of X appears only once in the leaf nodes. All nodes of an R-tree
are implemented as disk pages. We consider that the leaf nodes are at level h and the root is at
level 0, where h is the height of the R-tree.

Figure 1 depicts an R-tree. Dotted lines denote the rectangles of the entries at the root node. The
rectangles with solid lines are the rectangles in the entries of nodes parent of the leaves. Finally,
the points are the indexed objects in the leaves of the R-tree.

1.2 Idea of our algorithm

The general idea of our algorithm is based in the following observation: Suppose that have loaded
in the main memory a set NR of rectangles of the R-tree of R so that they all cover R, and a set
of rectangles NB of the R-tree of B so that they all cover B. If the convex hull conv(NR) of the
rectangles of NR does not intersect the convex hull conv(NB) of the rectangles of NB, then conv(R)
and conv(B) are disjoint since conv(R) ⊆ conv(NR) and conv(B) ⊆ conv(NB), and R and B are
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hence linearly separable.

A more concrete idea is the following: According to the relative positions of MBR(R) and MBR(B),
we choose from MBR(R) a set VR of at most three vertices, and a similar set VB from MBR(B). The
idea of choosing VR and VB is that conv(R) and conv(B) are disjoint if and only if conv(R ∪ VR)
and conv(B ∪ VB) are disjoint. We start with NR being the set of the rectangles stored in the root
node of the R-tree of R, and NB being the set of the rectangles stored at the root node of the
R-tree of B. Then, we iterate as follows: If conv(NR ∪ VR) and conv(NB ∪ VB) are disjoint, then
we report a ‘yes’ answer and build a separating line. Otherwise, for each rectangle of NR we take
the region of points that can be ensured to belong to conv(R ∪ VR) and form the set of regions
N ′R. A similar set N ′B is formed from NB. If conv(N ′R ∪ VR) and conv(N ′B ∪ VB) are not disjoint,
then we report a ‘no’ answer. Otherwise, we filter the set NR so that the new NR contains only
the rectangles (or points) that are relevant to decide the linear separation of R and B, and ‘refine’
conv(NR ∪ VR) by replacing each rectangle in NR by its respective child rectangles (or points) in
the R-tree. We do a similar procedure with NB and continue the iteration. If at some point in
the iteration both NR and NB consist of only points, then the answer is given by the intersection
condition of conv(NR ∪ VR) and conv(NB ∪ VB).

It is worth noting that we test the linear separability condition via computing the convex hulls
(or approximations of the convex hulls, e.g. conv(NR ∪ VR)) of the two point sets. We do not use
any asymptotic-faster linear-time LP separability testing algorithm [6, 14, 16] since in this case the
process of filtering rectangles is more expensive in time: We can discard a rectangle if we can ensure
that it is contained in the convex hull, and it can be done in logarithmic time, as we will see later
in the paper. Otherwise, if we do not compute the convex hull, as it happens if we use any of the
linear-time LP separability testing algorithms, then to decide whether a rectangle can be discarded
we should consider the relative position of the rectangle with respect to the other rectangles, and
this is much more expensive than determining whether the rectangle is inside a convex hull.

2 Preliminaries

Considering MBR(R) and MBR(B), we make the following definitions:

• We say that MBR(R) and MBR(B) have a corner intersection if each rectangle contains
exactly one vertex of the other one (see Figure 2a), or one of the rectangles is contained in
the other and they share exactly one vertex.

• We say that MBR(R) and MBR(B) have a side intersection if one of the rectangles contains
exactly two vertices of the other one (see Figure 2b), and is not contained within it.

• We say that MBR(R) and MBR(B) have a containment intersection if the interior of one of the
rectangles contains from the other rectangle the four vertices (see Figure 2c), or two adjacent
vertices with the other two ones contained in the boundary.

• We say that MBR(R) and MBR(B) have a piercing intersection if their interiors are not
disjoint, and no rectangle contains in the interior a vertex of the other one (see Figure 2d).

Up to symmetry, we assume without loss of generality throughout this paper that the relative
positions of MBR(R) and MBR(B), when they intersect, are those shown in Figure 2. Observe that
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Figure 2: MBR(R) and MBR(B) have a: (a) corner intersection. (b) side intersection. (c) containment
intersection. (d) piercing intersection.

if MBR(R) and MBR(B) have a piercing intersection, then R and B are not linearly separable. This
is because their convex hulls have a non-empty intersection since each side of MBR(R) contains a
red point and each side of MBR(B) contains a blue point. Furthermore, the piercing intersection
definition includes the case where MBR(R) = MBR(B). In the other cases of intersection (corner,
side, and containment) the linear separation condition cannot be directly deduced (see for examples
Figure 3). In the trivial case where MBR(R) and MBR(B) do not intersect, R and B are linearly
separable with a vertical or horizontal line.

Our algorithm to decide whether R and B are linearly separable starts by detecting the type of
intersection between MBR(R) and MBR(B). If they do not intersect, then we report a ‘yes’. If they
have a piercing intersection, then we report a ‘no’. Otherwise, if the intersection is of type corner,
side, or containment, then we need to elaborate a procedure that gives the correct answer and at
the same time returns a line separating R and B if the answer is ‘yes’. Suppose that MBR(R) and
MBR(B) have a containment intersection, with MBR(B) contained in MBR(R). In this case, the
rectangles MBR(R) and MBR(B∪{v}) have a corner intersection, where v is any of the four vertices
of MBR(R). Furthermore, if conv(R) and conv(B) are disjoint, then conv(R) and conv(B ∪ {v})
are also disjoint for some vertex v of MBR(R). Conversely, if conv(R) and conv(B) are not disjoint,
then conv(R) and conv(B∪{v}) will not be disjoint for every vertex v of MBR(R) since conv(B) is
contained in conv(B ∪ {v}). Hence, when MBR(R) and MBR(B) have a containment intersection,
we can test whether R and B are linearly separable by calling four times the test for the case where
MBR(R) and MBR(B) have a corner intersection. That is, the answer is ‘yes’ if and only if R and
B ∪ {v} are linearly separable for at least one vertex v of R. Because of this reduction, we will
consider in the following only intersections of type corner or side.

Definition 1. If MBR(R) and MBR(B) have a corner intersection, then let VR denote the set of
the top-right, top-left, and bottom-left vertices of MBR(R), and VB denote the set of the top-right,
bottom-left, and bottom-right vertices of MBR(B). If MBR(R) and MBR(B) have a side intersection,
then let VR denote the set of the top-left and bottom-left vertices of MBR(R), and VB denote the
set of the top-right and bottom-right vertices of MBR(B) (see figures 4a and 4b).

The idea behind the definition of VR and VB is given in the next lemmas:

Lemma 2. The convex hulls conv(R) and conv(B) are disjoint if and only if the convex hulls
conv(R ∪ VR) and conv(B ∪ VB) are disjoint.

Proof. If conv(R∪VR) and conv(B ∪VB) are disjoint, then trivially conv(R) and conv(B) are also
disjoint because conv(R) ⊆ conv(R∪VR) and conv(B) ⊆ conv(B∪VB). Then, suppose that conv(R)
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(a) (b) (c)

(d) (e) (f)

Figure 3: (a,b,c) Corner, side, and containment intersections of MBR(R) and MBR(B), where R and B
have linear separability. (d,e,f) Corner, side, and containment intersections of MBR(R) and MBR(B), where
R and B are not linearly separable. In each picture, the red points are represented as solid dots, and the
blue points as tiny disks.

and conv(B) are disjoint (see Figure 4c). Let p be a point of conv(R ∪ VR) \ conv(R). If p does
not belong to MBR(B), then p is not contained in conv(B ∪ VB). Then, assume that p belongs to
the intersection MBR(R)∩MBR(B). Let hp be the halfline with apex at p, and oriented rightwards
or downwards, such that hp contains a point q of conv(R) ∩MBR(B). Note that hp always exists
given p, and assume without loss of generality that hp is horizontal. The case where hp is vertical
(which appears only in the case of a corner intersection) is analogous. Since q does not belong to
conv(B) because conv(R) and conv(B) are disjoint, and q is in the interior of MBR(R)∩MBR(B),
q is both to the left and above of conv(B) in the case of a corner intersection, and to the left of
conv(B) in the case of a side intersection. Then, q does not belong to conv(B ∪ VB) \ conv(B)
because of the definition of VB. Hence, p is not in conv(B∪VB)\ conv(B) because of the convexity
of conv(B) and that p is to left of q. Similar symmetric arguments show that if a point p′ belongs
to conv(B ∪ VB) \ conv(B), then p′ is not in conv(R ∪ VR) \ conv(R). All of these observations
imply that conv(R ∪ VR) and conv(B ∪ VB) are disjoint.

Lemma 3. The convex hulls conv(R∪VR) and conv(B∪VB) have a non-empty intersection if and
only if one of them contains a vertex of the other one. Furthermore, the vertices of conv(R ∪ VR)
contained in conv(B ∪ VB) are all consecutive, and the vertices of conv(B ∪ VB) contained in
conv(R ∪ VR) are all consecutive.

Proof. If one of conv(R ∪ VR) and conv(B ∪ VB) contains a vertex of the other one, then they are
not disjoint. Suppose now that conv(R∪ VR) and conv(B ∪ VB) are not disjoint. Let X be a set of
red points and Y a set of blue points. If conv(X) and conv(Y ) are not disjoint and neither of them
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(a) (b)

p q hp

(c)

Figure 4: The sets of vertices VR and VB for: (a) corner intersection; (b) side intersection. The vertices of
VR are denoted as filled squares, and the vertices of VB as empty squares. (c) Proof of Lemma 2. In each
picture, the convex hulls conv(R ∪ VR) and conv(B ∪ VB) are denoted as shaded regions.

(a) (b)

Figure 5: A set NB of rectangles from the R-tree of B, in the case where MBR(R) and MBR(B) have a
corner intersection. (a) The optimistic convex hull opt(NB). (b) The pessimistic convex hull pess(NB). The
rectangles in dashed lines can be removed from NB since they are contained in pess(NB).

contains a vertex of the other one (see e.g. the piercing intersection of Figure 2d), then the convex
hull conv(X ∪ Y ) contains at least four bichromatic edges (i.e. edges connecting points of different
colors). For X = R∪VR and Y = B ∪VB, conv(X ∪Y ) contains only two bichromatic edges, given
the relative positions of MBR(R) and MBR(B) and the definitions of VR and VB. Hence, one of
conv(R∪VR) and conv(B∪VB) must contain a vertex of the other one. Furthermore, the fact that
conv(X ∪ Y ) contains only two bichromatic edges implies the second part of the lemma.

3 Optimistic and pessimistic Convex Hulls

The idea in this section is the following: Suppose that we have loaded a set of rectangles from the
R-tree of R, and a set of rectangles from the R-tree of B. We explain a way of determining from
these two sets of rectangles whether we have enough information to decide that conv(R ∪ VR) and
conv(B ∪ VB) are disjoint or that they are not disjoint, without going deeper in the R-tree loading
more rectangles or points.
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Definition 4. Let NR be a set of rectangles from the R-tree of R, and NB a set of rectangles from
the R-tree of B, such that the following properties are satisfied:

(1) conv(R ∪ VR) ⊆ conv(NR ∪R).

(2) conv(B ∪ VB) ⊆ conv(NB ∪B).

For examples of Definition 4, refer to Figure 5 and Figure 6. Since a point can be seen as a rectangle
of null perimeter, we extend the definitions of NR and NB so that these sets can be made of points.

Definition 5. Given the sets NR and NB, the optimistic convex hull of R∪VR is the set opt(NR) =
conv(NR ∪ VR) which contains conv(R ∪ VR), and the optimistic convex hull of B ∪ VB is set
opt(NB) = conv(NB ∪ VB) which contains conv(B ∪ VB) (see Figure 5a and Figure 6a).

The idea of defining the optimistic convex hulls is the following observation: If opt(NR) and opt(NB)
are disjoint, then we can ensure that conv(R∪VR) and conv(B∪VB) are disjoint, and then R and B
are linearly separable because of Lemma 2. Furthermore, opt(NR) and opt(NB) are approximations
to conv(R ∪ VR) and conv(B ∪ VB), and to compute them we do not need the points covered by
their rectangles, which are located in the leaves of the R-trees.

We also need a method for determining from NR and NB whether there is enough information to
decide that conv(R ∪ VR) and conv(B ∪ VB) are not disjoint. This is explained in what follows.

Let N be a rectangle: NE(N) denotes the north-east triangle of N , that is, the subset of points
of N in or above the diagonal connecting the top-left and bottom-right vertices. Similarly, NW(N)
denotes the subset of points of N in or above the diagonal connecting the top-right and bottom-left
vertices; SE(N) denotes the subset of points of N in or below the diagonal connecting the top-right
and bottom-left vertices; and SW(N) denotes the subset of points of N in or below the diagonal
connecting the top-left and bottom-right vertices.

Suppose that MBR(R) and MBR(B) have a corner intersection, and let N be a rectangle of NR.
Since in our model of R-tree every rectangle is a minimum bounding rectangle and thus contains
points of the represented point set in every side, the set NW(N) is contained in the convex hull
conv(R ∪ VR). Similarly, if N is a rectangle of NB, then the set SE(N) is contained in the convex
hull conv(B ∪ VB). We use these observations to define the pessimistic convex hulls, which are
always contained in our goal conv(R ∪ VR) and conv(B ∪ VB).

Definition 6. Let R and B be red and blue point sets such that MBR(R) and MBR(B) have a
corner intersection. The pessimistic convex hull of R ∪ VR is the set pess(NR) = conv(N ′R ∪ VR)
which is contained in conv(R ∪ VR), where N ′R = {NW(N) | N ∈ NR}. The pessimistic convex
hull of B ∪ VB is the set pess(NB) = conv(N ′B ∪ VB) which is contained in conv(B ∪ VB), where
N ′B = {SE(N) | N ∈ NB} (see Figure 5b).

Definition 7. Let R and B be red and blue point sets such that MBR(R) and MBR(B) have a
side intersection. The pessimistic convex hull of R ∪ VR is the set pess(NR) = conv(N ′R ∪ VR ∪
{u1}) ∩ conv(N ′′R ∪ VR ∪ {u2}), where N ′R = {NW(N) | N ∈ NR}, N ′′R = {SW(N) | N ∈ NR}, and
u1 and u2 are the top-right and bottom-right vertices of MBR(R), respectively. The pessimistic
convex hull of B ∪ VB is the set pess(NB) = conv(N ′B ∪ VB ∪ {v1}) ∩ conv(N ′′B ∪ VB ∪ {v2}), where
N ′B = {SE(N) | N ∈ NB}, N ′′B = {NE(N) | N ∈ NB}, and v1 and v2 are the bottom-left and top-left
vertices of MBR(B), respectively. (see Figure 6).
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(a) (b)

(c) (d)

Figure 6: A set NB of rectangles from the R-tree of B, when MBR(R) and MBR(B) have a side intersection.
(a) The optimistic convex hull opt(NB). (b) The convex hull conv(N ′

B ∪ VB ∪ {v1}). (c) The convex hull
conv(N ′′

B ∪VB ∪{v2}). (d) The pessimistic convex hull pess(NB) = conv(N ′
B ∪VB ∪{v1})∩ conv(N ′′

B ∪VB ∪
{v2}). The rectangle in dashed lines can be removed from NB since it is contained in pess(NB).

When MBR(R) and MBR(B) have a corner intersection, the facts pess(NR) ⊆ conv(R ∪ VR) and
pess(NB) ⊆ conv(B ∪ VB) are clear. In such a case of intersection, if pess(NR) and pess(NB) are
not disjoint, then we can ensure that conv(R ∪ VR) and conv(B ∪ VB) are not disjoint, and then
R and B are not linearly separable because of Lemma 2. When MBR(R) and MBR(B) have a
side intersection, the same facts are proved in the following lemma, and then we can ensure that
conv(R ∪ VR) and conv(B ∪ VB) are not disjoint if pess(NR) and pess(NB) are not.

Lemma 8. Let R and B be red and blue point sets such that MBR(R) and MBR(B) have a side
intersection. The pessimistic convex hulls pess(NR) and pess(NB) are contained in conv(R ∪ VR)
and conv(B ∪ VB), respectively.

Proof. We will prove that pess(NB) ⊆ conv(B∪VB). The arguments to prove pess(NR) ⊆ conv(R∪
VR) are analogous. From the rectangles of NB whose top sides are aligned with the top side of
MBR(B), let t1 a left-most of the top-right vertices (see Figure 7). From the rectangles of NB whose
bottom sides are aligned with the bottom side of MBR(B), let b1 a left-most of the bottom-right
vertices. From the rectangles of NB whose left sides are aligned with the left side of MBR(B),
let `1 be a bottom-most of the top-left vertices, and `2 a top-most of the bottom-left vertices.
Observe that `2 and t1 are vertices of conv(N ′B ∪ VB ∪ {v1}), and that b1 and `1 are vertices
of conv(N ′′B ∪ VB ∪ {v2}). Let U denote the path connecting `2 with t1 along the boundary of
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Figure 7: Proof of Lemma 8.

conv(N ′B ∪ VB ∪ {v1}) and clockwise, and L denote the path connecting b1 with `1 along the
boundary of conv(N ′′B ∪ VB ∪ {v2}) and clockwise. Note that there are the following blue points
of B: a left-most blue point t in the segment connecting v2 and t1, a left-most blue point b in the
segment connecting v1 and b1, and both a top-most blue point ` and a bottom-most blue point `′

(possibly equal to `) in the edge connecting v1 and v2. By the definitions of `1 and `2, we have
that ` belongs to the segment connecting `2 and v2, and `′ belongs to the segment connecting `1
and v1. The key observation is that b, `′, `, and t are all vertices of conv(B ∪ VB). Furthermore,
the clockwise path along the boundary of conv(B ∪ VB) that connects b and `′′ is below the path
L, and the similar path that connects ` and t is above the path U . All of these observations imply
that pess(NB) ⊆ conv(B ∪ VB).

4 Algorithms

In this section, we present our separability testing algorithm for R and B in the R-tree model. We
start by presenting the ingredient algorithms for the separability algorithm: computation of the
optimistic and pessimistic convex hulls (Section 4.1), deciding whether the convex hulls are disjoint
and finding a separating line in the positive case (Section 4.2), and filtering the sets of rectangles
NR and NB (Section 4.3). Then, we show the separability algorithm (Section 4.4). Finally, we
show how the techniques to previous computations can be used to compute the convex hull of a
point set given in an R-tree (Section 4.5).

4.1 Convex hulls computation

We explain how to compute the optimistic and pessimistic convex hulls for NB in both cases of
intersections of MBR(R) and MBR(B): corner and side. The algorithms to compute these convex
hulls for NR are analogous by symmetry.

Let t1 (resp. t2) be a left-most vertex from the top-right (resp. top-left) vertices of the rectangles
of NB whose top sides are aligned with the top side of MBR(B); b1 (resp. b2) a left-most vertex
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Figure 8: Algorithm to compute opt(NB) and pess(NB): (a) The filled vertices are the points of S, and
the hollow vertices are the points of S′. (b) The vertices of the set S0. (c) The filled vertices are the points
of S1, and the hollow vertices are the points of S2.

from the bottom-right (resp. bottom-left) vertices of the rectangles of NB whose bottom sides are
aligned with the bottom side of MBR(B); `1 (resp. `′1) a bottom-most vertex from the top-left
(resp. bottom-left) vertices of the rectangles of NB whose left sides are aligned with the left side of
MBR(B); and `2 (resp. `′2) a top-most vertex from the bottom-left (resp. top-left) vertices of the
rectangles of NB whose left sides are aligned with the left side of MBR(B). All of these points can
be found in O(|NB|) time, by a single pass over the elements of NB (see Figure 8).

Suppose that MBR(R) and MBR(B) have a corner intersection. To compute opt(NB), we need to
compute the convex hull of the top-left vertices of the rectangles of NB and the set VB. Observe
that such vertices that are not in the triangle T with vertex set {v2, `′2, t2} cannot be vertices of
opt(NB) (see Figure 8a). Then, we first find in O(|NB|) time the set S of the top-left vertices
of the rectangles of NB which belong to T , and after that compute opt(NB) = conv(S ∪ VB) in
O(|S| log |S|) time, using a standard algorithm for computing the convex hull. Doing this, we apply
the convex hull algorithm for only the relevant set of points. Ideas similar to these ones are going
to be used in the following. To compute pess(NB), we find in O(|NB|) time the set S′ of the
bottom-left and top-right vertices of the rectangles of NB that belong to the triangle with vertices
{v2, `2, t1} (see Figure 8a), and then compute pess(NB) = conv(S′ ∪ VB) in O(|S′| log |S′|) time.
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When MBR(R) and MBR(B) have a side intersection, we proceed as follows: To compute opt(NB),
we compute in O(|NB|) time the point set S0 consisting of the top-left vertices of the rectangles of
NB that belong to the triangle with vertices {v2, `′2, t2}, and the bottom-left vertices that belong to
the triangle with vertices {v1, `′1, b2} (see Figure 8b). Then, we compute opt(NB) = conv(S0∪VB) in
O(|S0| log |S0|) time. To compute pess(NB), we first find in O(|NB|) time the set S1 containing the
bottom-left and top-right vertices of the rectangles in NB that belong to the triangle with vertices
{v2, `2, t1}, and the set S2 containing the top-left and bottom-right vertices of the rectangles in NB

that belong to the triangle with vertices {v1, `1, b1} (see Figure 8c). After that, we compute the
convex hulls C1 = conv(N ′B ∪VB ∪{v1}) = conv(S1∪VB ∪{v1}) and C2 = conv(N ′′B ∪VB ∪{v2}) =
conv(S2∪VB ∪{v2}) in times O(|S1| log |S1|) and O(|S2| log |S2|), respectively. Finally, we compute
pess(NB) as the intersection C1 ∩C2. If |C1| and |C2| denote the numbers of vertices of C1 and C2,
respectively, a representation of C1 ∩C2 can be computed in O(log |C1| · log |C2|) time in the worst
case: If the point `1 is not above the point `2, then the boundary C1 ∩C2 consists of the clockwise
boundary path L of C2 connecting b1 with `1, the segment connecting `1 with `2, the clockwise
boundary path U of C1 connecting `2 with t1, and the similar path of C1 that connects t1 with b1.
Hence, in this case, a representation of C1∩C2 can be found in O(1) time. Otherwise, if `1 is above
`2, a representation of C1 ∩ C2 is given by such above paths and the intersection point p between
L and U . Observe that both L and U are x-monotone paths, and in each of them the edges are
sorted from left to right. To find p, we need to find the edge of L that intersects U . This can be
done with a binary search over the edges of L. Given any edge e of L, deciding whether e is to the
left of U , intersects U , or is to the right of U , can be done by querying to which side of U is each
endpoint of e (i.e. if the endpoint is or not inside C1). Determining whether a given point belongs
to a convex hull can be done with a binary search on the edges, running in O(log k) time, where
k is the number of vertices. Then, each query costs O(log |C1|) time, and O(log |C2|) queries are
performed, with a total running time of O(log |C1| · log |C2|).

4.2 Deciding convex hulls intersection

We show how to decide whether = opt(NR) and opt(NB) are disjoint. A similar procedure can be
applied for pess(NR) and pess(NB).

Let C1 = opt(NR) and C2 = opt(NB). Suppose that MBR(R) and MBR(B) have a corner in-
tersection. By Lemma 3, we can orient clockwise the edges of C2 and consider the sequence S of
consecutive edges that starts with the edge with source endpoint the bottom-left vertex of MBR(B),
and ends with the edge with target endpoint the top-right vertex of MBR(B). The sequence S con-
sists of three intervals: consecutive edges outside C1 which point to C1, consecutive edges which
have at least one endpoint inside C1, and consecutive edges outside C1 which do not point to C1.
If the first edge of S does not point to C1, then C1 and C2 are disjoint. In general, given any edge
of C2, querying to which interval of S the edge belongs to can be done with a binary search on the
edges of C1 from the top-right vertex to the bottom-left vertex clockwise, in O(log |C1|) time. Fur-
thermore, deciding whether there exists an edge of S that has at least one endpoint inside C1 can be
done with a binary search in S. The search performs O(log |C2|) queries, and each query will cost
O(log |C1|) time. Deciding whether C1 and C2 are disjoint can thus be done in O(log |C1| · log |C2|)
time. To find a line separating C1 and C2, in the case where they are disjoint, we need to find
the first edge e in S that does not point to C1. This edge can be found, similarly as above, in
O(log |C1| · log |C2|) time. Let e denote the same edge e, but oriented in the contrary direction. If e

13



does not point to C1, then the straight line through e is a separating line. Otherwise, in O(log |C1|)
time we can find the edge e′ of C1 pointed by e, and the line through e′ is a separating line.

When MBR(R) and MBR(B) have a side intersection, a similar sequence S can be considered. In
this case, S is the sequence of consecutive edges that starts with the edge with source endpoint the
bottom-right vertex of MBR(B), and ends with the edge with target endpoint the top-right vertex
of MBR(B). Deciding whether C1 and C2 are disjoint can be done in O(log |C1| · log |C2|) time.

4.3 Filtering rectangles

We show how to filter the rectangles of NR and NB, that is, to refine these sets by removing some
elements, so that the new NR and NB still satisfy the properties (1) and (2) of Definition 4. We
use the natural way of removing rectangles, say from NB, which consists in removing all rectangles
completely contained in the pessimistic convex hull (see the rectangle in dashed lines in Figure 6d
and Figure 7). If the rectangle has a part outside the pessimistic convex hull, then it cannot be
removed because such a part could contain blue points that are vertices of conv(B ∪ VB).

Note that a rectangle N of NB is contained in pess(NB) if and only if the two left vertices of N
belong to pess(NB). Thus, once we have computed pess(NB), determining whether N is contained
in pess(NB) can be done by querying twice whether a point belongs to pess(NB). In this case,
the two points are the two left vertices of N . Each query runs in O(log k) time, where k is
the number of vertices of pess(NB). The running time to filter the rectangles of NB is then
O(|NB| · log k) = O(|NB| · log |NB|). Symmetrically, a rectangle N of NR is contained in pess(NR)
if and only if the two right vertices of N belong to pess(NR), and similar decision and filtering
algorithms can be used, where the filtering algorithm runs in O(|NR| · log |NR|) time.

4.4 Separability algorithm

The algorithm consists of an outer procedure and an inner procedure. The outer procedure (see the
pseudocode DecideSeparability of Figure 9) receives R and B as input, both represented in R-
trees, and decide the linear separability of R and B. It also returns a separating line in the positive
case. In this procedure, we first initialize the rectangle set NR as the rectangles contained in the root
node of the R-tree of R, and the rectangle set NB as the rectangles contained in the root node of the
R-tree of B. This allows to compute both MBR(R) = MBR(NR) and MBR(B) = MBR(NB). Then,
we proceed as follows: If the intersection between MBR(R) and MBR(B) is empty, then we return a
‘yes’ answer together with an axis-aligned line containing an edge of MBR(R) that separates R and
B. If MBR(R) and MBR(B) have a piercing intersection, then we return a ‘no’ answer. Otherwise,
if MBR(R) and MBR(B) have a containment, corner, or side intersection, then the inner procedure
(see the pseudocode DecideSeparabilityCS of Figure 10) is called accordingly. This procedure
decides the linear separability when MBR(R) and MBR(B) have corner or side intersection. Recall
that when MBR(R) and MBR(B) have a containment intersection, the linear separation question
can be reduced to solve (at most) four instances of the same question in which MBR(R) and MBR(B)
have a corner intersection (see Section 2). This is done by extending the inner rectangle to contain
one vertex of the outer rectangle. The inner procedure is as follows:

We start by computing the vertex sets VR and VB, according to the relative positions of MBR(R)
and MBR(B), which are necessary to the algorithm to distinguish between a corner and a side in-
tersection. Then, the following actions with NR and NB are performed. We compute both opt(NR)
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Algorithm DecideSeparability(R,B):
1. NR ← the set of rectangles in the root node of the R-tree of R
2. NB ← the set of rectangles in the root node of the R-tree of B
3. MBR(R)← MBR(NR)
4. MBR(B)← MBR(NB)
5. if MBR(R) ∩MBR(B) is empty then
6. return true
7. else if MBR(R) and MBR(B) have a piercing intersection then
8. return false
9. else if MBR(R) and MBR(B) have a containment intersection then
10. if MBR(B) ⊂ MBR(R) then
11. for each vertex v of MBR(R) do
12. (∗ MBR(R) and MBR(MBR(B) ∪ {v}) have a corner intersection ∗)
13. if DecideSeparabilityCS(NR, NB ,MBR(R),MBR(MBR(B) ∪ {v})) then
14. return true
15. return false
16. else
17. for each vertex v of MBR(B) do
18. (∗ MBR(MBR(R) ∪ {v}) and MBR(B) have a corner intersection ∗)
19. if DecideSeparabilityCS(NR, NB ,MBR(MBR(R) ∪ {v}),MBR(B)) then
20. return true
21. return false
22. else
23. (∗ MBR(R) and MBR(B) have a corner or side intersection ∗)
24. return DecideSeparabilityCS(NR, NB ,MBR(R),MBR(B))

Figure 9: Algorithm to compute the linear separability of R and B.

and opt(NB) (see Section 4.1), and test whether opt(NR) and opt(NB) are disjoint (see Section 4.2).
If they are disjoint, then we report a ‘yes’ answer and find a separating line (see Section 4.2). Oth-
erwise, if opt(NR) and opt(NB) are not disjoint, we continue as follows. We compute both pess(NR)
and pess(NB), and decide whether they are disjoint (see sections 4.1 and 4.2). If the are not disjoint,
then we report a ‘no’ answer. Otherwise, for each point set X ∈ {R,B} such that NX is made of
rectangles, we filter NX (see Section 4.3), and replace each remaining rectangle in NX by its child
rectangles, or points, in the corresponding R-tree. Observe that the new rectangles of NX are all
a level down to the level of the former rectangles in NX . If at least one of the new NR and NB is
made of rectangles (it can happen that one of NR and NB is made of rectangles and the other one
is made of points since the R-trees of R and B can have different heights), then we repeat all this
actions with these new NR and NB. Otherwise, if both NR and NB are made of points, we test
whether opt(NR) = conv(R) and opt(NB) = conv(B) are disjoint, and find a separating line in the
positive case, to finally decide whether R and B are linearly separable.

In the following, we analyse the asymptotic running time of the algorithm in the worst case. Let
m = |R| and n = |B|, and r = O(logm) and b = O(log n) denote the heights of the R-trees of R
and B, respectively. Assume r ≤ b without loss of generality. For i = 0, 1, . . . , r, let mi denote

the number of rectangles in the i-th level of the R-tree of R, and N
(i)
R the set of rectangles NR

15



Algorithm DecideSeparabilityCS(NR, NB ,MBR(R),MBR(B)):
1. Compute VR and VB according to MBR(R) and MBR(B)
2. optR ← OptimisticConvexHull(NR, VR)
3. optB ← OptimisticConvexHull(NB , VB)
4. while (true) do
5. if optR and optB are disjoint then
6. return true
7. else if (NR is made of points) and (NB is made of points) then
8. return false
9. else
10. if NR is made of rectangles then
11. pessR ← PessimisticConvexHull(NR, VR)
12. else
13. pessR ← optR
14. if NR is made of rectangles then
15. pessB ← PessimisticConvexHull(NB , VB)
16. else
17. pessB ← optB
18. if pessR and pessB are not disjoint then
19. return false
20. else
21. if NR is made of rectangles then
22. NR ← Filter(NR)
23. NR ←

⋃
N∈NR

children(N)
24. optR ← OptimisticConvexHull(NR, VR)
25. if NB is made of rectangles then
26. NB ← Filter(NB)
27. NB ←

⋃
N∈NB

children(N)
28. optB ← OptimisticConvexHull(NB , VB)

Figure 10: Algorithm to compute the linear separability of R and B when MBR(R) and MBR(B) have a cor-
ner or side intersection: OptimisticConvexHull(·) returns the optimistic convex hull; PessimisticConvexHull(·)
returns the pessimistic convex hull; Filter(·) removes from the argument the rectangles contained in the
pessimistic convex hull; and children(N) returns the rectangles (or points) that are children of the rectangle
N in the corresponding R-tree.
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when NR is formed by rectangles of the i-th level, where |N (i)
R | ≤ mi and mr = m. Similarly, for

j = 0, 1, . . . , b, let nj denote the number of rectangles in the j-th level of the R-tree of B, and N
(j)
B

the set of rectangles NB when NB is formed by rectangles of the j-th level, where |N (j)
B | ≤ nj and

nb = n. For level number i = 0, 1, . . . , r, the algorithm in the worst case:

• computes both opt(N
(i)
R ) and pess(N

(i)
R ) in O(|N (i)

R | · log |N (i)
R |) time;

• computes both opt(N
(i)
B ) and pess(N

(i)
B ) in O(|N (i)

B | · log |N (i)
B |) time;

• decides opt(N
(i)
R ) ∩ opt(N

(i)
B ) = ∅ in O(log |N (i)

R | · log |N (i)
B |) time;

• decides pess(N
(i)
R ) ∩ pess(N

(i)
B ) = ∅ in O(log |N (i)

R | · log |N (i)
B |) time;

• filters N
(i)
R in O(|N (i)

R | · log |N (i)
R |) time, for i < r; and

• filters N
(i)
B in O(|N (i)

B | · log |N (i)
B |) time, for i < b.

For level number j = r + 1, . . . , b, the algorithm in the worst case:

• computes both opt(N
(j)
B ) and pess(N

(j)
B ) in O(|N (j)

B | · log |N (j)
B |) time;

• decides opt(N
(r)
R ) ∩ opt(N

(j)
B ) = ∅ in O(log |N (r)

R | · log |N (j)
B |) time;

• decides pess(N
(r)
R ) ∩ pess(N

(j)
B ) = ∅ in O(log |N (r)

R | · log |N (j)
B |) time; and

• filters N
(j)
B in O(|N (j)

B | · log |N (j)
B |) time, for j < b.

Summing up, the running time in the worst case is:

r∑
i=0

(
O
(
|N (i)

R | · log |N (i)
R |
)

+ O
(
|N (i)

B | · log |N (i)
B |
)

+ O
(

log |N (i)
R | · log |N (i)

B |
))

+

b∑
i=r+1

(
O
(
|N (i)

B | · log |N (i)
B |
)

+ O
(

log |N (r)
R | · log |N (i)

B |
))

=

r∑
i=0

(
O(mi logmi) + O(ni log ni) + O(logmi log ni)

)
+

b∑
i=r+1

(
O(ni log ni) + O(logm log ni)

)

=
r∑

i=0

(
O(mi logmi) + O(ni log ni)

)
+

b∑
i=r+1

(
O(ni log ni) + O(logm log ni)

)

= O

(
r∑

i=0

mi logmi +

b∑
i=0

ni log ni +

b∑
i=r+1

logm log ni

)

= O

(
logm ·

r∑
i=0

mi + log n ·
b∑

i=0

ni + (b− r) logm log n

)
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= O

(
logm ·

r∑
i=0

mi + log n ·
b∑

i=0

ni + logm log2 n

)
.

Since an R-tree has the property that every node contains at least two children nodes, we have
that mr = m, mr−1 ≤ m/2, mr−2 ≤ m/4, mr−3 ≤ m/8, and so on. That is, mi ≤ m/2r−i for
i = 0, 1, . . . , r. Similarly, nj ≤ n/2b−j for j = 0, 1, . . . , b. The above running time is then:

O

(
logm ·

r∑
i=0

m/2i + log n ·
b∑

i=0

n/2i + logm log2 n

)
= O

(
m logm + n log n + logm log2 n

)
= O(m logm + n log n).

The worst case of our algorithm occurs when all nodes of the two R-trees, and all rectangles
and points, need to be loaded to decide the linear separability of R and B. This happens in
the following example. Suppose that all elements of B belong to the line y = x, for example,
B = {(i, i) : i = 1, 2, . . . , n}, and that |R| = |B| = n with R = {(i − ε, i + ε) : i = 1, 2, . . . , n} for
ε = 1/2. In this case, R and B are linearly separable, and MBR(R) and MBR(B) have a corner
intersection, where MBR(R) contains the top-left vertex of MBR(B), and MBR(B) contains the
bottom-right vertex of MBR(R). Consider any step of our algorithm (refer to Figure 10), with
NR and NB representing the rectangles from the R-trees of R and B, respectively. Observe that
in every rectangle of NB the diagonal connecting the bottom-left vertex with the top-right vertex
is contained in the line y = x. This implies that the pessimistic convex hull pess(NB) equals the
triangle with vertices (1, 1), (n, 1), and (n, n), and that no rectangle of NB is contained in pess(NB).
A similar situation occurs with NR: the pessimistic convex hull pess(NR) equals the triangle with
vertices (1 − ε, 1 + ε), (1 − ε, n + ε), and (n − ε, n + ε), and no rectangle of NR is contained
in pess(NR). Then, no rectangle of NR or NB can be discarded in any step of the algorithm.
Furthermore, pess(NR) and pess(NB) are disjoint, whereas the optimistic convex hulls opt(NR) and
opt(NB) are not disjoint (due to the way we choose ε). All of these observations imply that the
algorithm will stop alfter loading all points, hence all nodes and rectangles, from both R-trees.

4.5 The convex hull of a point set

Let P be a finite point set in the plane, given in an R-tree. In this section, we present an algorithm
to compute conv(P ). Let NP be a set of rectangles from the R-tree of P such that NP satisfies
conv(P ) ⊆ conv(NP ) (similar as Definition 4). To compute conv(P ), we first discard rectangles N
from NP such that all points of P contained in N are not vertices of conv(P ). After that, we replace
each rectangle N that remains in NP by its child rectangles (or points) in the R-tree. We stop when
all elements of NP are points, and return conv(NP ). Let v1, v2, v3, and v4 be the top-left, bottom-
left, bottom-right, and top-right vertices of MBR(P ), respectively. To discard rectangles from NP ,
we compute the following convex hulls by following ideas similar to those given in Section 4.1:
C1 = conv({SE(N) | N ∈ NP } ∪ {v2, v3, v4}), C2 = conv({NE(N) | N ∈ NP } ∪ {v1, v3, v4}),
C3 = conv({NW(N) | N ∈ NP } ∪ {v1, v2, v4}), and C4 = conv({SW(N) | N ∈ NP } ∪ {v1, v2, v3}).
Given a rectangle N of NP , if N is contained in the intersection C1∩C2∩C3∩C4, then no point of
P contained in N can be a vertex of conv(P ). Furthermore, N is contained in C1 ∩C2 ∩C3 ∩C4 if
and only if the top-left, bottom-left, bottom-right, and top-right vertices of N are contained in C1,
C2, C3, and C4, respectively. Once such four convex hulls are computed, these four decisions can
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Algorithm ConvexHull(P ):
1. NP ← the set of rectangles in the root node of the R-tree of P
2. MBR(P )← MBR(NP )
3. repeat
4. C1 ← conv({SE(N) | N ∈ NP } ∪ {v2, v3, v4})
5. C2 ← conv({NE(N) | N ∈ NP } ∪ {v1, v3, v4})
6. C3 ← conv({NW(N) | N ∈ NP } ∪ {v1, v2, v4})
7. C4 ← conv({SW(N) | N ∈ NP } ∪ {v1, v2, v3})
8. NP ← NP \ {N ∈ NP | N ⊂ C1 ∩ C2 ∩ C3 ∩ C4}
9. NP ←

⋃
N∈NP

children(N)
10. until NP is made of points
11. return conv(NP )

Figure 11: Algorithm to compute the convex hull of a point set P given in an R-tree.

be made in times O(log |C1|), O(log |C2|), O(log |C3|), and O(log |C4|), respectively. The algorithm
to compute conv(P ) is described in the pseudocode of Figure 11. The running time is O(n log n),
where n is the number of points, and can be obtained from arguments similar to those of Section 4.4.

5 Experimental results

In this section, we describe the experiments that we implemented to evaluate the performance of
our separability testing algorithm in terms of running time (via counting the number of access to
nodes of the R-trees) and memory usage. The algorithm was implemented in the C++ language,
using the implementation of the R-tree data structure of the library LibSpatialIndex [10]. Nodes
of size 1K were used to build the R-trees. The experiments were executed in a Lenovo ThinkPad

x240 computer, with 8GB of RAM memory, and an Intel Core i5 4300U microprocessor, and both
real and synthetic data were considered.

5.1 Real data

We consider a first data set consisting of 200 thousands of MBRs representing spatial objects of
California roads, and a second data set consisting of 2.2 millions of MBRs representing spatial
objects of rivers of Iowa, Kansas, Missouri, and Nebraska [3]. From the first set we generate a
set of red points by taking from each MBR its center point, and perform a similar operation to
the second data set to obtain a set of blue points. To test our algorithm, we mapped both point
sets to the space [0, 1] × [0, 1]. Each colored point set was stored in a different R-tree, and the
numbers of blocks used in the R-trees are shown in Table 1. In Figure 12a, we make a graphic
representation of both colored point sets, where we plot only about the 10% of the points of each
set. In Figure 12b, we draw the MBR of each colored point set, showing that they have a side
intersection with a considerably high overlapping, precisely, the common area of the MBRs is
above the 98% of the total area. In Table 1 we show the results of the execution of our linear
separability testing algorithm: a 2.79% of the nodes (i.e. memory blocks) of the red R-tree are
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accessed, whereas a 1.36% of the nodes of the blue R-tree are accessed. To solve this particular
instance of the problem, only 40Kb of main memory is required.

(a) (b)

Figure 12: a) Colored point sets generated from real data. Each red points is represented by a +, and
each blue point by a ◦. b) The MBR of each point set, where the MBRs has a side intersection and their
intersection area is above the 98% of the total area.

size % nodes accessed size of R-tree (# of blocks)

Red points 200,000 2.79% 12,178

Blue points 2,200,000 1.36% 35,965

Table 1: Results of experiments on real data.

5.2 Synthetic data

We extecute our algorithm on several synthetic data sets, each data set consisting of colored point
sets randomly generated in the range [0, 1] × [0, 1] = [0, 1]2. To generate a point set R ∪ B, we
proceed in the following steps:

1. We pick the number of points that each color class will contain. This number is either 1, 2,
5, or 10 millions.

2. We define two rectangles Rr, Rb ⊂ [0, 1]2 of equal areas, so that R and B will be generated
inside Rr and Rb, respectively, and the area of Rr ∩Rb represents a given percent of the areas
of Rr and Rb. We select such a percent among 1%, 5%, 10%, and 50%. Furthermore, we
also fix the type of intersection of Rr and Rb (hence the type of intersection of MBR(R) and
MBR(B)): corner or side.

3. We select the distribution in which each point set (R and B) is generated inside its corre-
sponding rectangle. We consider two distributions: uniform and Gaussian.
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Size of point sets Red R-tree Blue R-tree Total
(in millions) (disk blocks) (disk blocks) (disk blocks)

1 61,386 61,388 122,774

2 122,210 122,226 244,436

5 304,494 304,858 609,352

10 608,671 609,749 1,218,420

Table 2: Number of blocks (i.e. nodes) used in average to build the R-trees.

Size of point sets
(in millions)

Type of intersection
Corner Side

% of intersection % of intersection
1% 5% 10% 50% 1% 5% 10% 50%

1 0.54 0.31 0.41 0.34 0.34 1.14 1.08 2.11

2 0.23 0.13 0.09 0.35 0.22 0.39 0.58 0.19

5 0.08 0.11 0.03 0.05 0.12 0.36 0.28 0.36

10 0.18 0.03 0.03 0.44 0.09 0.18 0.2 0.27

Table 3: Percentage of the nodes of the R-trees that were accessed, in the cases where the points were
generated by using the uniform distribution.

In total, we run our algorithm on 64 synthetic data sets, accounting from 4 possibilities for the
generated number of points, times 4 percents of intersection area, times 2 types of intersection of
MBR(R) and MBR(B), times 2 distributions. In Figure 13, we show examples of colored point sets
generated with a Gaussian distribution having their MBRs a corner intersection.

For each possible number of points in the generated point sets, the average size of the R-trees,
expressed as the number of disk blocks (i.e. nodes), is shown in Table 2. We also measured the
percentage of the nodes of the R-trees that were accessed by our algorithm, as shown in Figure 14,
Table 3, and Table 4.

Size of point sets
(in millions)

Type of intersection
Corner Side

% of intersection % of intersection
1% 5% 10% 50% 1% 5% 10% 50%

1 0.45 0.13 0.41 0.13 0.41 0.16 0.29 0.01

2 0.25 0.24 0.23 0.17 0.18 0.08 0.09 0.19

5 0.03 0.03 0.03 0.03 0.08 0.00 0.01 0.00

10 0.06 0.05 0.06 0.05 0.01 0.00 0.01 0.00

Table 4: Percentage of the nodes of the R-trees that were accessed, in the cases where the points were
generated by using the Gaussian distribution.

The results indicate that when points are generated by a uniform distribution, the number of R-
tree nodes accessed increases as the percentage of intersection between Rr and Rb is increased (see
Figure 14a and Figure 14b). For example, for 1 million of points generated and a 50% of area of
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Size of point sets
(in millions)

Type of intersection
Corner Side

% of intersection % of intersection
1% 5% 10% 50% 1% 5% 10% 50%

1 24 24 25 26 26 27 27 29

2 42 41 46 46 44 43 43 43

5 9 11 9 11 14 12 14 12

10 17 16 17 21 18 19 18 17

Table 5: Memory usage (in Kb) in sets with uniform distribution.

intersection, and a side intersection, it is needed to access to a 2.11% of the nodes of the R-trees,
whereas under the same conditions but a 1% of intersection, it is needed to access a 0.34% of the
nodes. For point sets generated with the Gaussian distribution (Figure 14c and Figure 14d), the
percentage of nodes accessed seems to not depend on the percentage of intersection. For example,
for 1 million of points generated, if the % of area of intersection between the MBRs is 1.0% or
10.0%, it is needed to access a 0.45% or 0.41% of the nodes, respectively. In Figures 14a, 14b, 14c,
and 14d, we can note that when the number of points generated is increased, the percentage of
nodes accessed decreases, being in all cases less that 0.1%.

In Table 5 and Table 6, we note the amount of memory used by the algorithm for the point sets
with uniform and Gaussian distributions. This includes the amount of memory used for the node
lists and convex hulls (optimistic and pessimistic). We can also note that the required ranges
between 15Kb and 47Kb. Furthermore, the memory is not affected when we increase the side of
the point sets generated. In Figure 15, it is shown that the amount of memory required has a similar
behavior, independently of the type of intersection of the MBRs and the type of distribution.

Size of point sets
(in millions)

Type of intersection
Corner Side

% of intersection % of intersection
1% 5% 10% 50% 1% 5% 10% 50%

1 26 23 25 23 33 26 28 25

2 44 44 44 43 47 45 43 43

5 8 8 9 8 15 7 9 7

10 19 17 17 17 19 20 17 14

Table 6: Memory usage in sets with Gaussian distribution.

6 Conclusions

In this paper, we have proposed an algorithm to decide the linear separability of two point sets
of cardinalities n and m, respectively, both sets stored in a different R-tree. The algorithm takes
advantage of the properties of the R-trees in order to access as less nodes as possible. The running
time complexity in the worst case is within O(m logm + n log n). With the goal of evaluating
the performance of the algorithm in practice, we designed several experiments with both real and
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(a) Corner, 1% of intersection. (b) Corner, 5% of intersection.

Figure 13: Synthetic data with a Gaussian distribution.

synthetic point sets, and an implementation of the algorithm was run in each experiment. The
results of the experiments showed that the algorithm performs few accesses to disk (i.e. accesses to
nodes of the R-trees), uses a small amount of RAM memory and a low computation time.

Our algorithm expands the use of the R-trees, a multidimensional data structure well used in several
spatial database systems such as Postgres and Oracle. According to the bibliography review, and
to the best of our knowledge, this is the first algorithm that tackles the geometric separability of
massive spatial object sets stored in secondary storage data structures.

For future work, we propose the study of other types of geometric separability problems when the
input is given in R-trees or other secondary-storage spatial data structures, for example separating
red and blue points by axis parallel rectangles, wedges, or constrained polylines. We also propose
to design an extension of this algorithm to work in dimensions higher that two.
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