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Abstract

In this paper we present a new non-parametric calibration method called ensemble of near isotonic 
regression (ENIR). The method can be considered as an extension of BBQ (Pakdaman Naeini, 

Cooper and Hauskrecht, 2015b), a recently proposed calibration method, as well as the commonly 

used calibration method based on isotonic regression (IsoRegC) (Zadrozny and Elkan, 2002). 

ENIR is designed to address the key limitation of IsoRegC which is the monotonicity assumption 

of the predictions. Similar to BBQ, the method post-processes the output of a binary classifier to 

obtain calibrated probabilities. Thus it can be used with many existing classification models to 

generate accurate probabilistic predictions.

We demonstrate the performance of ENIR on synthetic and real datasets for commonly applied 

binary classification models. Experimental results show that the method outperforms several 

common binary classifier calibration methods. In particular, on the real data we evaluated, ENIR 

commonly performs statistically significantly better than the other methods, and never worse. It is 

able to improve the calibration power of classifiers, while retaining their discrimination power. 

The method is also computationally tractable for large scale datasets, as it is O(N logN) time, 

where N is the number of samples.
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1. Introduction

In many real world data mining applications, intelligent agents often must make decisions 

under considerable uncertainty due to noisy observations, physical randomness, incomplete 

data, and incomplete knowledge. Decision theory provides a normative basis for intelligent 

agents to make rational decisions under such uncertainty. To do so, decision theory 

combines utilities and probabilities to determine the optimal actions that maximize expected 
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utility (Russell and Norvig, 2010). The output in many of the machine learning models that 

are used in data mining applications is designed to discriminate the patterns in data. 

However, such output should also provide accurate (calibrated) probabilities in order to be 

practically useful for rational decision making in many real world applications (Bahnsen, 

Stojanovic, Aouada and Ottersten, 2014; Dong, Gabrilovich, Heitz, Horn, Lao, Murphy, 

Strohmann, Sun and Zhang, 2014; Gronat, Obozinski, Sivic and Pajdla, 2013; Wallace and 

Dahabreh, 2014; Zadrozny and Elkan, 2001a).

This paper focuses on developing a new non-parametric calibration method for post-

processing the output of commonly used binary classification models to generate accurate 

probabilities. Informally, we say that a classification model is well-calibrated if events 

predicted to occur with probability p do occur about p fraction of the time, for all p. This 

concept applies to binary as well as multiclass classification problems(Takahashi, Takamura 

and Okumura, 2009). Figure 1 illustrates the binary calibration problem using a reliability 

curve (DeGroot and Fienberg, 1983; Niculescu-Mizil and Caruana, 2005). The curve shows 

the probability predicted by the classification model versus the actual fraction of positive 

outcomes for a hypothetical binary classification problem, where Z is the binary event being 

predicted. The curve shows that when the model predicts Z = 1 to have probability 0.2, the 

outcome Z = 1 occurs in about 0.3 fraction of the time. The curve shows that the model is 

fairly well calibrated, but it tends to underestimate the actual probabilities. In general, the 

straight dashed line connecting (0, 0) to (1, 1) represents a perfectly calibrated model. The 

closer a calibration curve is to this line, the better calibrated the associated prediction model. 

Deviations from perfect calibration are very common in practice and may vary widely 

depending on the binary classification model that is used (Pakdaman Naeini et al., 2015b).

Producing well-calibrated probabilistic predictions is critical in many areas of science (e.g., 

determining which experiments to perform), medicine (e.g., deciding which therapy to give 

a patient), business (e.g., making investment decisions), and many others. In data mining 

problems, obtaining well-calibrated classification model is crucial not only for decision-

making, but also for combining output of different classification models (Bella, Ferri, 

Hernández-Orallo and Ramírez-Quintana, 2013; Robnik-Šikonja and Kononenko, 2008; 

Whalen and Pandey, 2013). It is also useful when we aim to use the output of a classifier not 

only to discriminate the instances but also to rank them (Hashemi, Yazdani, Shakery and 

Naeini, 2010; Jiang, Zhang and Su, 2005; Zhang and Su, 2004). Research on learning well 

calibrated models has not been explored in the data mining literature as extensively as, for 

example, learning models that have high discrimination (e.g., high accuracy).

There are two main approaches to obtaining well-calibrated classification models. The first 

approach is to build a classification model that is intrinsically well-calibrated ab initio. This 

approach will restrict the designer of the data mining model by requiring major changes in 

the objective function (e.g, using a different type of loss function) and could potentially 

increase the complexity and computational cost of the associated optimization program to 

learn the model. The other approach is to rely on the existing discriminative data mining 

models and then calibrate their output using post-processing methods. This approach has the 

advantage that it is general, flexible, and it frees the designer of a data mining algorithm 

from modifying the learning procedure and the associated optimization method (Pakdaman 
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Naeini and Cooper, 2016b). However, this approach has the potential to decrease 

discrimination while increasing calibration, if care is not taken. The method we describe in 

this paper is shown empirically to improve calibration of different types of classifiers (e.g., 

LR, SVM, and NB) while maintaining their discrimination performance.

Existing post-processing binary classifier calibration methods include Platt scaling (Platt, 

1999), histogram binning (Zadrozny and Elkan, 2001b), isotonic regression (Zadrozny and 

Elkan, 2002), and a recently proposed method BBQ which is a Bayesian extension of 

histogram binning (Pakdaman Naeini et al., 2015b). In all these methods, the post-

processing step can be seen as a function that maps the outputs of a prediction model to 

probabilities that are intended to be well-calibrated. Figure 1 shows an example of such a 

mapping.

In general, there are two main applications of post-processing calibration methods. First, 

they can be used to convert the outputs of discriminative classification methods with no 

apparent probabilistic interpretation to posterior class probabilities (Platt, 1999; Robnik-

Šikonja and Kononenko, 2008; Wallace and Dahabreh, 2014). An example is an SVM model 

that learns a discriminative model that does not have a direct probabilistic interpretation. In 

this paper, we show this use of calibration to map SVM outputs to well-calibrated 

probabilities. Second, calibration methods can be applied to improve the calibration of 

predictions of a probabilistic model that is miscalibrated. For example, a naïve Bayes (NB) 

model is a probabilistic model, but its class posteriors are often miscalibrated due to 

unrealistic independence assumptions (Niculescu-Mizil and Caruana, 2005). The method we 

describe is shown empirically to improve the calibration of NB models without reducing 

their discrimination. The method can also work well on calibrating models that are less 

egregiously miscalibrated than are NB models.

2. Related work

Existing post-processing binary classifier calibration models can be divided into parametric 

and non-parametric methods. Platt’s method is an example of the former; it uses a sigmoid 

transformation to map the output of a classifier into a calibrated probability (Platt, 1999). 

The two parameters of the sigmoid function are learned in a maximum-likelihood 

framework using a model-trust minimization algorithm (Gill, Murray and Wright, 1981). 

The method was originally developed to transform the output of an SVM model into 

calibrated probabilities. It has also been used to calibrate other type of classifiers (Niculescu-

Mizil and Caruana, 2005). The method runs in O(1) at test time, and thus, it is fast. Its key 

disadvantage is the restrictive shape of sigmoid function that rarely fits the true distribution 

of the predictions (Jiang, Osl, Kim and Ohno-Machado, 2012).

A popular non-parametric calibration method is the equal frequency histogram binning 

model which is also known as quantile binning (Zadrozny and Elkan, 2001b). In quantile 

binning, predictions are partitioned into B equal frequency bins. For each new prediction y 
that falls into a specific bin, the associated frequency of observed positive instances will be 

used as the calibrated estimate for P(z = 1|y), where z is the true label of an instance that is 

either 0 or 1. Histogram binning can be implemented in a way that allows it to be applied to 
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large scale data mining problems. Its limitations include (1) bins inherently pigeonhole 

calibrated probabilities into only B possibilities, (2) bin boundaries remain fixed over all 

predictions, and (3) there is uncertainty in the optimal number of the bins to use (Zadrozny 

and Elkan, 2002).

The most commonly used non-parametric classifier calibration method in machine learning 

and data mining applications is the isotonic regression based calibration (IsoRegC) model 

(Zadrozny and Elkan, 2002). To build a mapping from the uncalibrated output of a classifier 

to the calibrated probability, IsoRegC assumes the mapping is an isotonic (monotonic) 

mapping following the ranking imposed by the base classifier. The commonly used 

algorithm for isotonic regression is the Pool Adjacent Violators Algorithm (PAVA), which is 

linear in the number of training data (Barlow, Bartholomew, Bremner and Brunk, 1972). An 

IsoRegC model based on PAVA can be viewed as a histogram binning model (Zadrozny and 

Elkan, 2002) where the position of the boundaries are selected by fitting the best monotone 

approximation to the train data according to the ordering imposed by the classifier. There is 

also a variation of the isotonic-regression-based calibration method for predicting accurate 

probabilities with a ranking loss (Menon, Jiang, Vembu, Elkan and Ohno-Machado, 2012). 

In addition, an extension to IsoRegC combines the outputs generated by multiple binary 

classifiers to obtain calibrated probabilities (Zhong and Kwok, 2013). While IsoRegC can 

perform well on some real datasets, the monotonicity assumption it makes can fail in real 

data mining applications. This can specifically occur when we encounter large scale data 

mining problems in which we have to make simplifying assumptions to build the 

classification models. Thus, there is a need to relax the assumption, which is the focus of the 

current paper.

Adaptive calibration of predictions (ACP) is another extension to histogram binning (Jiang 

et al., 2012). ACP requires the derivation of a 95% statistical confidence interval around 

each individual prediction to build the bins. It then sets the calibrated estimate to the 

observed frequency of the instances with positive class among all the predictions that fall 

within the bin. To date, ACP has been developed and evaluated using only logistic regression 

as the base classifier (Jiang et al., 2012).

Recently, a new non-parametric calibration model called BBQ was proposed which is a 

refinement of the histogram-binning calibration method (Pakdaman Naeini et al., 2015b). 

BBQ addresses the main drawbacks of the histogram binning model by considering multiple 

different equal frequency histogram binning models and their combination using a Bayesian 

scoring function (Heckerman, Geiger and Chickering, 1995). However, BBQ has two 

disadvantages. First, as a post-processing calibration method, it does not take advantage of 

the fact that in real world applications a classifier with poor discrimination performance 

(e.g., low area under the ROC curve) will seldom be used. Thus, BBQ will usually be 

applied to calibrate classifiers with at least fair discrimination performance. Second, BBQ 

still selects the position and boundary of the bins by considering only equal frequency 

histogram binning models. A Bayesian non-parametric method called ABB addresses the 

latter problem by considering Bayesian averaging over all possible binning models induced 

by the training instances (Pakdaman Naeini, Cooper and Hauskrecht, 2015a). The main 

drawback of ABB is that it is computationally intractable for most real world applications, 
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as it requires O(N2) computations for learning the model as well as O(N2) computations for 

computing the calibrated estimate for each of the test instances1.

This paper presents a new binary classifier calibration method called ensemble of near 
isotonic regression (ENIR) that can post process the output generated by a wide variety of 

classification models. The essential idea in ENIR is to use prior knowledge that the scores to 

be calibrated are in fact generated by a well-performing classifier in terms of discrimination. 

IsoRegC also uses such prior knowledge; however, it is biased by constraining the calibrated 

scores to obey the ranking imposed by the classifier. In the limit, this is equivalent to 

presuming the classifier has AUC equal to 1, which rarely happens in real world 

applications. In contrast, BBQ does not make any assumptions about the correctness of 

classifier rankings. ENIR provides a balanced approach that spans between IsoRegC and 

BBQ. In particular, ENIR assumes that the mapping from uncalibrated scores to calibrated 

probabilities is a near isotonic (monotonic) mapping; it allows violations of the ordering 

imposed by the classifier and then penalizes them through the use of a regularization term. 

Figure 2 shows the calibration curve of three commonly used binary classifiers trained on 

the liver-disorder UCI dataset. The dataset consist of 345 total instances and the final auc is 

equal to 0.73. The figure shows that the isotonicity assumption made by IsoRegC is violated 

comparing the frequency of observations in the first and the second bins.

ENIR utilizes the path algorithm modified pool adjacent violators algorithm (mPAVA) that 

can find the solution path to a near isotonic regression problem in O(N logN), where N is the 

number of training instances (Tibshirani, Hoefling and Tibshirani, 2011). Finally, it uses the 

BIC scoring measure to combine the predictions made by these models to yield more robust 

calibrated predictions.

We perform an extensive set of experiments on a large suite of real datasets, to show that 

ENIR outperforms both IsoRegC and BBQ. Our experiments show that the near-isotonic 

assumption made by ENIR is a realistic assumption about the output of classifiers, and 

unlike the isotonicity assumption that is made by IsoReg, it is not biased. Moreover, our 

experiments show that by post processing the output of classifiers using ENIR, we can gain 

high calibration improvement, without losing any statistically meaningful discrimination 

performance. Finally, we also compare the performance of ENIR with our other newly 

introduced binary classifier calibration method, ELiTE (Pakdaman Naeini and Cooper, 

2016a).

The remainder of this paper is organized as follows. Section 3 introduces the ENIR method. 

Section 4 describes a set of experiments that we performed to evaluate ENIR and other 

calibration methods. Section 5 describes briefly our other newly introduced calibration 

model based on using an ensemble of Linear trend filtering models and compares its 

performance ENIR. Finally, Section 6 states conclusions and describes several areas for 

future work.

1Note that the running time for the test instance can be reduced to O(1) in any post-processing calibration model by using a simple 
caching technique that reduces calibration precision in order to decrease calibration time (Pakdaman Naeini et al., 2015a)
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3. Method

In this section we introduce the ensemble of near isotonic regression (ENIR) calibration 

method. ENIR utilizes the near isotonic regression method that seeks a nearly monotone 

approximation for a sequence of data y1, …, yn (Tibshirani et al., 2011). The proposed 

calibration method extends the commonly used isotonic regression-based calibration by an 

approximate selective Bayesian averaging of a set of nearly isotonic regression models. The 

set includes the isotonic regression model as an extreme member. From another viewpoint, 

ENIR can be considered as an extension to a recently introduced calibration model BBQ 

(Pakdaman Naeini et al., 2015b) by relaxing the assumption that probability estimates are 

independent inside the bins and finding the boundary of the bins automatically through an 

optimization algorithm.

Before getting into the details of the method, we define some notation. Let yi and zi define 

respectively an uncalibrated classifier prediction and the true class of the i’th instance. In 

this paper, we focus on calibrating a binary classifier’s output2, and thus, zi ∈ {0, 1} and yi 

∈ [0, 1]. Let  define the set of all training instances (yi, zi). Without loss of generality, we 

can assume that the instances are sorted based on the classifier scores yi, so we have y1 ≤ y2 

≤ … ≤ yN, where N is the total number of samples in the training data.

The standard isotonic regression-based calibration model finds the calibrated probability 

estimates by solving the following optimization problem:

piso = argmin
p ∈ RN

1
2 ∑

i = 1

N
(pi − zi)

2

s.t. p1 ≤ … ≤ pN

0 ≤ pi ≤ 1∀i ∈ {1, …, N},

(1)

where p̂iso is the vector of calibrated probability estimates. The rationale behind this model 

is to assume that the base classifier ranks the instances correctly. To find the calibrated 

probability estimates, it seeks the best fit of the data that is consistent with the classifier’s 

ranking. A unique solution to the above convex optimization program exists and can be 

obtained by an iterative algorithm called pool adjacent violators algorithm (PAVA) that runs 

in O(N). Note, however, that isotonic regression calibration still needs O(N logN) 

computations due to the fact that instances are required to be sorted based on the classifier 

scores yi. PAVA iteratively groups the consecutive instances that violate the ranking 

constraint and uses their average over z (frequency of positive instances) as the calibrated 

estimate for all the instances within the group. We define the set of these consecutive 

instances that are located in the same group and attain the same predicted calibrated estimate 

as a bin. Therefore, an isotonic regression-based calibration can be viewed as a histogram 

binning method (Zadrozny and Elkan, 2002) where the position of boundaries are selected 

2For classifiers that output scores that are not in the unit interval (e.g. SVM), we use a simple sigmoid transformation 

f (x) = 1
1 + exp ( − x)  to transform the scores into the unit interval.
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by fitting the best monotone approximation to the training data according to the ranking 

imposed by the classifier.

One can show that the second constraint in the optimization given by Equation 1 is 

redundant, and it is possible to rewrite the equation in the following equivalent form:

piso = argmin
p ∈ RN

1
2 ∑

i = 1

N
(pi − zi)

2 + λ ∑
i = 1

N − 1
(pi − pi + 1)νi

s.t. λ = + ∞ ,
(2)

where νi = 𝟙(pi > pi+1) is the indicator function of ranking violation. Relaxing the equality 

constraint in the above optimization program leads to a new convex optimization program as 

follows:

pλ = argmin
p ∈ RN

1
2 ∑

i = 1

N
(pi − zi)

2 + λ ∑
i = 1

N − 1
(pi − pi + 1)νi, (3)

where λ is a positive real number that regulates the trade-off between the monotonicity of 

the calibrated estimates with the goodness of fit by penalizing adjacent pairs that violate the 

ordering imposed by the base classifier. The above optimization problem is known as the 

near-isotonic regression problem (Tibshirani et al., 2011). It yields a unique solution pλ, 

where the use of the subscript λ emphasizes the dependency of the final solution to the value 

of λ.

The entire path of solutions for any value of λ of the near isotonic regression problem can be 

found using a similar algorithm to PAVA which is called modified pool adjacent violators 
algorithm (mPAVA) (Tibshirani et al., 2011). mPAVA finds the whole solution path in O(N 
logN), and needs O(N) memory space. Briefly, the algorithm works as follows: It starts by 

constructing N bins, each bin containing a single instance of the train data. Next, it finds the 

solution path by starting from the saturated fit pi = zi, that corresponds to setting λ = 0, and 

then increasing λ iteratively. As the λ increases the calibrated probability estimates p̂λ,i, for 

each bin, will change linearly with respect to λ until the calibrated probability estimates of 

two consecutive bins attain equal value. At this stage, mPAVA merges the two bins that have 

the same calibrated estimate to build a larger bin, and it updates their corresponding estimate 

to a common value. The process continues until there is no change in the solution for a large 

enough value of λ that corresponds to finding the standard isotonic regression solution. The 

essential idea of mPAVA is based on a theorem stating that if two adjacent bins are merged 

on some value of λ to construct a larger bin, then the new bin will never split for all larger 

values of λ (Tibshirani et al., 2011).

mPAVA yields a collection of nearly isotonic calibration models, with the over fitted 

calibration model at one end (pλ̂=0 = z) and the isotonic regression solution at the other 

(p̂λ=λ∞ = p̂iso), where λ∞ is a large positive real number. Each of these models can be 
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considered as a histogram binning model where the position of boundaries and the size of 

bins are selected according to how well the model trades off the goodness of fit with the 

preservation of the ranking generated by the classifier, which is governed by the value of λ, 

(as λ increases the model is more concerned to preserving the original ranking of the 

classifier, while for the small λ it prioritizes the goodness of fit.)

ENIR employs the approach just described to generate a collection of models (one for each 

value of λ). It then uses the Bayesian Information Criterion (BIC) to score each of the 

models3. Assume mPAVA yields the binning models M1, M2, …, MT, where T is the total 

number of models generated by mPAVA. For any new classifier output y, the calibrated 

prediction in the ENIR model is defined using selective Bayesian model averaging (Hoeting, 

Madigan, Raftery and Volinsky, 1999):

P(z = 1 ∣ y) = ∑
i = 1

T Score(Mi)

∑ j = 1
T Score(M j)

P(z = 1 ∣ y, Mi),

where P(z = 1|y, Mi) is the probability estimate obtained using the binning model Mi for the 

uncalibrated classifier output y. Also, Score(Mi) is defined using the BIC scoring function4 

(Schwarz et al., 1978).

Next, for the sake of completeness, we briefly describe the mPAVA algorithm; more detailed 

information about the algorithm and the derivations can be found in (Tibshirani et al., 2011).

3.1. The modified PAV algorithm

Suppose at a value of λ we have Nλ bins, B1, B2, …, BNλ. We can represent the 

unconstrained optimization program given by Equation 3 as the following loss function that 

we seek to minimize :

ℒB, λ(z, p) = 1
2 ∑

i = 1

Nλ
∑

j ∈ Bi

(pBi
− z j)

2 + λ ∑
i = 1

Nλ − 1

(pBi
− pBi + 1

)νi, (4)

where pBi defines the common estimated value for all the instances located at the bin Bi. The 

loss function ℒB,λ is always differentiable with respect to pBi unless two calibrated 

probabilities are just being joined (which only happens if pBi = pBi+1 for some i). Assuming 

that p̂Bi (λ) is optimal, the partial derivative of ℒB,λ has to be 0 at p̂Bi (λ), which implies:

∣ Bi ∣ pBi
(λ) − ∑

j ∈ Bi

z j + λ(νi − νi − 1) = 0 for i = 1, …, Nλ (5)

3Note that we exclude the highly overfitted model that corresponds to λ = 0 from the set of models in ENIR
4Note that, as it is recommended in (Tibshirani et al., 2011), we use the expected degree of freedom of the nearly isotonic regression 
models, which is equivalent to the number of bins, as the number of parameters in the BIC scoring function.
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Rewriting the above equation, the optimum predicted value for each bin can be calculated 

as:

pBi
(λ) =

∑ j ∈ Bi
z j − λνi + λνi − 1

∣ Bi ∣ for i = 1, …, Nλ (6)

While PAVA uses the frequency of instances in each bin as the calibrated estimate, Equation 

6 shows that mPAVA uses a shrunken version of the frequencies by considering the estimates 

that are not following the ranking imposed by the base classifier. In Equation 5, taking 

derivatives with respect to λ yields:

∂ pBi
∂λ =

νi − 1 − νi
∣ Bi ∣ , for i = 1, …, Nλ, (7)

where we set ν0 = νN = 0 for notational convenience. As we noted above, it has been proven 

that the optimal values of the instances located in the same bin are tied together and the only 

way that they can change is to merge two bins as they can never split apart as λ increases 

(Tibshirani et al., 2011). Therefore, as we make changes in λ, the bins Bi, and hence the 

values νi remain constant. This implies the term 
∂ pBi

∂λ  is a constant in Equation 7. 

Consequently, the solution path remains piecewise linear as λ increases, and the breakpoints 

happen when two bins merge together. Now, using the piecewise linearity of the solution 

path and assuming that the two bins Bi and Bi+1 are the first two bins to merge by increasing 

λ, the value of λi,i+1 at which the two bins Bi and Bi+1 will merge is calculated as:

λi, i + 1 =
pBi

(λ) − pBi + 1
(λ)

ai + 1 − ai
+ λ for i = 1, …Nλ − 1, (8)

where ai =
∂ pBi

∂λ  is the slope of the changes of p̂Bi with respect to λ according to Equation 7. 

Using the above identity, the λ at which the next breakpoint occurs is obtained using the 

following equation:

λ∗ = min
i

λi, i + 1
𝕀∗ = {i ∣ λi, i + 1 = λ∗},

(9)

where * indicates the set of the indexes of the bins that will be merged by their consecutive 

bins changing the λ5. If λ* ≤ λ then the algorithm will terminate since it has obtained the 

standard isotonic regression solution, and by increasing λ none of the existing bins will ever 

merge. Having the solutions of the near isotonic regression problem in Equation 3 at the 
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breakpoints, and using the piecewise linearity property of the solution path, it is possible to 

recover the solution for any value of λ through interpolation. However, the current 

implementation of ENIR only uses the near isotonic regression based calibration models that 

corresponds to the value of λ at the breakpoints. The sketch of the algorithm is shown as 

Algorithm 1.

Algorithm 1

The modified pool adjacent violators algorithm (mPAVA) that yields a set of near-isotonic-

regression-based calibration models M1, …, MT

5Note that there could be more than one bin achieving the minimum in Equation 9, so they should be all merged with the bins that are 
located next to them.
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4. Empirical Results

This section describes the set of experiments that we performed to evaluate the performance 

of ENIR in comparison to Isotonic Regression based Calibration (IsoRegC) (Zadrozny and 

Elkan, 2002), and a recently introduced binary classifier calibration method called BBQ 

(Pakdaman Naeini et al., 2015b). We use IsoRegC because it is one of the most commonly 

used calibration models showing promising performance on real world applications 

(Niculescu-Mizil and Caruana, 2005; Zadrozny and Elkan, 2002). Moreover ENIR is an 

extension of IsoRegC, and we are interested in evaluating whether it performs better than 

IsoRegC. We also include BBQ as a state-of-the-art binary classifier calibration model, 

which is a Bayesian extension of the simple histogram binning model (Pakdaman Naeini et 

al., 2015b). We did not include Platt’s method since it is a simple and restricted parametric 

model and there are prior works showing that IsoRegC and BBQ perform superior to Platt’s 

method (Niculescu-Mizil and Caruana, 2005; Zadrozny and Elkan, 2002; Pakdaman Naeini 

et al., 2015b). We also did not include the ACP method since it requires not only 

probabilistic predictions, but also a statistical confidence interval (CI) around each of those 

predictions, which makes it tailored to specific classifiers, such as LR (Jiang et al., 2012); 

this is counter to our goal of developing post-processing methods that can be used with any 

existing classification models. Finally, we did not include ABB in our experiments mainly 

because it is not computationally tractable for real datasets that have more than a couple of 

thousand instances. Moreover, even for small size datasets, we have observed that ABB 

performs similar to BBQ.

4.1. Evaluation Measures

In order to evaluate the performance of the calibration models, we use 5 different evaluation 

measures. We use Accuracy (ACC) and area under ROC curve (AUC) to evaluate how well 

the methods discriminate the positive and negative instances in the feature space. We also 

utilize three measures of calibration, namely, root mean square error (RMSE)6, maximum 
calibration error (MCE), and expected calibration error (ECE) (Pakdaman Naeini et al., 

2015b; Pakdaman Naeini et al., 2015a). MCE and ECE are two simple statistics of the 

reliability curve (Figure 1 shows a hypothetical example of such curve) computed by 

partitioning the output space of the binary classifier, which is the interval [0, 1], into K fixed 

number of bins (K = 10 in our experiments). The estimated probability for each instance will 

be located in one of the bins. For each bin we can define the associated calibration error as 

the absolute difference between the expected value of predictions and the actual observed 

frequency of positive instances. The MCE calculates the maximum calibration error among 

the bins, and ECE calculates expected calibration error over the bins, using empirical 

estimates as follows:

6Note that, to be more precise, RMSE evaluates both calibration and refinement of the predicted probabilities. Refinement accounts 
for the usefulness of the probabilities by favoring those that are either close to 0 or 1 (DeGroot and Fienberg, 1983; Cohen and 
Goldszmidt, 2004)
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MCE = max
k = 1

K ( ∣ ok − ek ∣ )

ECE = ∑
k = 1

K
P(k) · ∣ ok − ek ∣,

where P(k) is the empirical probability or the fraction of all instances that fall into bin k, ek 

is the mean of the estimated probabilities for the instances in bin k, and ok is the observed 

fraction of positive instances in bin k. The lower the values of MCE and ECE, the better is 

the calibration of a model.

4.2. Simulated Data

For the simulated data experiments, we used a binary classification dataset in which the 

outcomes were not linearly separable. The scatter plot of the simulated dataset is shown in 

Figure 3. We developed this classification problem to illustrate how IsoRegC can suffer from 

a violation of the isotonicity assumption, and to compare the performance of IsoRegC with 

our new calibration method that assumes approximate isotonicity. In our experiments, the 

data are divided into 1000 instances for training and calibrating the prediction model, and 

1000 instances for testing the models. We report the average results of 10 random runs for 

the simulated dataset. To conduct the experiments with the simulated data, we used two 

extreme classifiers: support vector machines (SVM) with linear and quadratic kernels. The 

choice of SVM with a linear kernel allows us to see how ENIR perform when the 

classification model makes an over simplifying (linear) assumption. Also, to achieve good 

discrimination on the circular configuration data in Figure 3, SVM with a quadratic kernel is 

a reasonable choice (as is also evidenced qualitatively in Figure 3 and quantitatively in Table 

1b). So, the experiment using quadratic kernel SVM allows us to see how well ENIR 

performs when we use models that should discriminate well.

As seen in Table 1, ENIR generally outperforms IsoRegC on the simulation dataset, 

especially when the linear SVM method is used as the base learner. This is due to the 

monotonicity assumption of IsoRegC which presumes the best calibrated estimates will 

match the ordering imposed by the base classifier. When we use SVM with a linear kernel, 

this assumption is violated due to the non-linearity of the data. Consequently, IsoRegC only 

provides limited improvement of the calibration and discrimination performance of the base 

classifier. ENIR performs very well in this case since it is using the ranking information of 

the base classifier, but it is not anchored to it. The violation of the monotonicity assumption 

can happen in real data as well, especially in large scale data mining problems in which we 

use simple classification models due to the computational constraints. As shown in Table 1b, 

even when we apply a highly appropriate SVM classifier to classify the instances for which 

IsoRegC is expected to perform well (and indeed does so), ENIR performs as well or better 

than IsoRegC.

4.3. Real Data

We ran two sets of experiments on 40 randomly selected baseline datasets from the UCI and 

LibSVM repositories7 (Lichman, 2013; Chang and Lin, 2011). Five summary statistics of 
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the size of the datasets and the percentage of the minority class are shown in Table 2. We 

used three common classifiers, logistic regression (LR), support vector machines (SVM), 

and naïve Bayes (NB) to evaluate the performance of the proposed calibration method. In 

both sets of experiments on real data, we used 10 random runs of 10-fold cross validation, 

and we always used the train data for calibrating the models.

In the first set of experiments on real data, we were interested in evaluating whether there 

is experimental support for using ENIR as a post-processing calibration method. Table 3 

shows the 95% confidence interval for the mean of the random variable X, which is defined 

as the percentage of the gain (or loss) of ENIR with respect to the base classifier:

X =
measureENIR − measuremethod

measuremethod
, (10)

where measure is one of the evaluation measures AUC, ACC, ECE, MCE, or RMSE. Also, 

method denotes one of the choices of the base classifiers, namely, LR, SVM, or NB. For 

instance, Table 3 shows that by post-processing the output of SVM using ENIR, we are 95% 

confident to gain anywhere from 17.6% to 31% average improvement in terms of RMSE. 

This could be a significant improvement, depending on the application, considering the 95% 

CI for the AUC which shows that by using ENIR we are 95% confident not to lose more 

than 1% of the SVM discrimination power in terms of AUC (Note, however, that the CI 

includes zero, which indicates that there is not a statistically significant difference between 

the performance of SVM and ENIR in terms of AUC).

Overall, the results in Table 3 show that there is not a statistically meaningful difference 

between the performance of ENIR and the base classifiers in terms of AUC. The results 

support at a 95% confidence level that ENIR improves the performance of LR and NB in 

terms of ACC. Furthermore, the results in Table 3 show that by post-processing the output of 

LR, SVM, and NB using ENIR, we can obtain dramatic improvements in terms of 

calibration measured by RMSE, ECE, and MCE. For instance, the results indicate that at a 

95% confidence level, ENIR improved the average performance of NB in terms of MCE 

anywhere from 30.5% to 55.2%, which could be practically significant in many decision-

making and data mining applications.

In the second set of experiments on real data, we were interested to evaluate the 

performance of ENIR compared with other calibration methods. To evaluate the 

performance of models, we used the recommended statistical test procedure by Janez 

Demsar (Demšar, 2006). More specifically, we used the non-parametric testing method 

based on the FF test statistic (Iman and Davenport, 1980), which is an improved version of 

Freidman non-parametric hypothesis testing method (Friedman, 1937), followed by Holm’s 

7The datasets used were as follows: spect, adult, breast, pageblocks, pendigits, ad, mamography, satimage, australian, code rna, colon 
cancer, covtype, letter unbalanced, letter balanced, diabetes, duke, fourclass, german numer, gisette scale, heart, ijcnn1, ionosphere 
scale, liver disorders, mushrooms, sonar scale, splice, svmguide1, svmguide3, coil2000, balance, breast cancer, leu, w1a, thyroid sick, 
scene, uscrime, solar, car34, car4, protein homology.

Naeini and Cooper Page 13

Knowl Inf Syst. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



step-down procedure (Holm, 1979) to evaluate the performance of ENIR in comparison with 

other methods, across the 40 baseline datasets.

Tables [4,5,6] show the results of the performance of ENIR in comparison with IsoRegC and 

BBQ. In these tables, we show the average rank of each method across the baseline datasets, 

where boldface indicates the best performing method. In these tables, the marker */⊛ 
indicates whether ENIR is statistically superior/inferior to the compared method using the 

improved Friedman test followed by Holm’s step-down procedure at a 0.05 significance 

level. For instance, Table 5 shows the performance of the calibration models when we use 

SVM as the base classifier; the results show that ENIR achieves the best performance in 

terms of RMSE by having an average rank of 1.675 across the 40 baseline datasets. The 

result indicates that in terms of RMSE, ENIR is statistically superior to BBQ; however, it is 

not performing statistically differently than IsoRegC.

Table 4 shows the results of comparison when we use LR as the base classifier. As shown, 

the performance of ENIR is always superior to BBQ and IsoRegC except for MCE in which 

BBQ is superior to ENIR; however, this difference is not statistically significant. The results 

show that in terms of discrimination based on AUC, there is not a statistically significant 

difference between the performance of ENIR compared with BBQ and IsoRegC. However, 

ENIR performs statistically better than BBQ in terms of ACC. In terms of calibration 

measures, ENIR is statistically superior to both IsoRegC and BBQ in terms of RMSE. In 

terms of MCE, ENIR is statistically superior to IsoRegC.

Table 5 shows the results when we use SVM as the base classifier. As shown, the 

performance of ENIR is always superior to BBQ and IsoRegC except for MCE in which 

BBQ performs better than ENIR; however, the difference is not statistically significant for 

MCE. The results show that although ENIR is superior to IsoRegC and BBQ in terms of 

discrimination measures, AUC and ACC, the difference is not statistically significant. In 

terms of calibration measures, ENIR performs statistically superior to BBQ in terms of 

RMSE and it is statistically superior to IsoRegC in terms of MCE.

Table 6 shows the results of comparison when we use NB as the base classifier. As shown, 

the performance of ENIR is always superior to BBQ and IsoRegC. In terms of 

discrimination, for AUC there is not a statistically significant difference between the 

performance of ENIR compared with BBQ and IsoRegC; however, in terms of ACC, ENIR 

is statistically superior to BBQ. In terms of calibration measures, ENIR is always 

statistically superior to IsoRegC. ENIR is also statistically superior to BBQ in terms of ECE 

and RMSE.

Overall, in terms of discrimination measured by AUC and ACC, the results show that the 

proposed calibration method either outperforms IsoRegC and BBQ, or has a performance 

that is not statistically significantly different. In terms of calibration measured by ECE, 

MCE, and RMSE, ENIR either outperforms other calibration methods, or it has a 

statistically equivalent performance to IsoRegC and BBQ.
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Finally, Table 7 shows a summary of the time complexity of different binary classifier 

calibration methods in learning for N training instances and the test time for only one 

instance.

5. An Extension to ENIR

This section briefly describes an extension to ENIR model which is called an Ensemble of 

Linear Trend Estimation (ELiTE) (Pakdaman Naeini and Cooper, 2016a). Figure 4 shows 

the main idea in developing ELiTE. As shown, in all of the histogram binning-based 

calibration models —including quantile binning (i.e., the equal frequency histogram 

binning), IsoRegC, Bayesian extensions to the histogram binning such as BBQ and ABB, 

and also ENIR— the generated mapping function is a piecewise constant function. The main 

idea of ELiTE is to extend ENIR and other binning-based calibration methods by using an 

ensemble of piecewise linear functions 8 as it is shown in Figure 4b.

Recall zi and yi are the true class of the i’th training instance and its corresponding 

classification score, respectively. Without loss of generality, we assume the training 

instances to be sorted in increasing order by their associate classification scores yi. 

Borrowing the term “bin” from the histogram binning literature, we define each bin as the 

largest interval over the training data with a uniform slope of change (e.g., Figure 4b 

indicates that there are 6 bins in the calibration mapping). ELiTE uses the ℓ1 (linear) trend 

filtering signal approximation method (Kim, Koh, Boyd and Gorinevsky, 2009) and poses 

the problem of finding a piecewise calibration mapping as the following optimization 

program:

p = argmin
p ∈ RN

1
2 ∑

i = 1

N
(pi − zi)

2 + λ v 1 (11)

where p̂ = (p̂1, …, p̂n) is the vector of calibrated probability estimates and the vector v ∈ RN

−2 is defined as the second order finite difference vector associated with the training data 9 

vi =
pi + 2 − pi + 1
yi + 2 − yi + 1

−
pi + 1 − pi
yi + 1 − yi

. Also, λ is a penalization parameter that regulates the trade-off 

between the goodness of fit and the complexity of the model by penalizing the total variance 

over the slope of the resulting calibration mapping. Kim et al. used the shrinkage property of 

the ℓ1 norm and showed that the final solution to the above optimization program p̂ will be a 

continuous piecewise linear function with the kink points occurring on the training data 

(Kim et al., 2009).

ELiTE uses a specialized ADMM algorithm proposed by A. Ramdas et al. (Ramdas and 

Tibshirani, 2016) and a warm start procedure that iterates over the values of lambda by 

ranging equally in the log space from λmax to λmax * 10−4, where λmax is the corresponding 

8It is possible to generalize ELiTE to obtain piecewise polynomial calibration functions; however, we have noticed an inferior results 
when using piecewise polynomial degrees higher than 1, and we hypothesize it is because of the overfitting to the training data.
9Note that an element of v is zero if and only if there is no change in the slope between two successively predicted points.
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value of λ that gives the best affine approximation of the calibration mapping that can be 

computed in O(N), where N is the number of training instances (Kim et al., 2009). ELiTE 

uses the Akaike information criterion with a correction for finite sample sizes (AICc) 

(Cavanaugh, 1997) to score each of the piecewise linear calibration models associated with 

various values of the λ. Finally, for a new test instance, ELiTE uses the AICc scores to run a 

selective Bayesian averaging and estimate the final calibrated estimate (Pakdaman Naeini 

and Cooper, 2016a).

Similar to ENIR, ELiTE is shown to perform superior to the commonly used binary 

classifier calibration methods including Platt’s method, isotonic regression, and BBQ 

(Pakdaman Naeini and Cooper, 2016a). In this section, we are interested to compare the 

performance of these two new calibration methods in terms of the discrimination and 

calibration capability. Table 8 shows the results of a comparison between the performance of 

ENIR and ELiTE over the 40 real datasets used in our previous experiments. A Wilcoxon 

signed rank test is used to statistically measure the significance of performance difference 

between ELiTE and ENIR. Median difference performance of ELiTE and ENIR over the 

baseline datasets is reported along with the corresponding p-value of the test which is 

indicated in parentheses. The results show that there are some cases that ELiTE is 

statistically superior to ENIR. However, in terms of running time, ELiTE runs more than 

eight times slower, on a MacBook Pro with a 2.5 GHz Intel Core i7 CPU and a 16 GB RAM 

memory, in comparison to the ENIR even though its running time complexity is O(NlogN) 

(Ramdas and Tibshirani, 2016; Pakdaman Naeini and Cooper, 2016a). Also, note that the 

median of the difference between the performance of ELiTE and ENIR is always very small 

(i.e., less than 0.01 in all cases).

6. Conclusion

In this paper, we presented a new non-parametric binary classifier calibration method called 

ensemble of near isotonic regression (ENIR) to build accurate probabilistic prediction 

models. The method generalizes the isotonic regression-based calibration method (IsoRegC) 

(Zadrozny and Elkan, 2002) in two ways. First, ENIR makes a more realistic assumption 

compared to IsoRegC by assuming that the transformation from the uncalibrated output of a 

classifier to calibrated probability estimates is approximately (but not necessarily exactly) a 

monotonic function. Second, ENIR is an ensemble model that utilizes the BIC scoring 

function to perform selective model averaging over a set of near isotonic regression models 

that indeed includes IsoRegC as an extreme member. The method is computationally 

tractable, as it runs in O(N logN) for N training instances. It can be used to calibrate many 

different types of binary classifiers, including logistic regression, support vector machines, 

naïve Bayes, and others. Our experiments show that by post processing the output of 

classifiers using ENIR, we can gain high calibration improvement in terms of RMSE, ECE, 

and MCE, without losing any statistically meaningful discrimination performance. 

Moreover, our experimental evaluation on a broad range of real datasets showed that ENIR 

outperforms IsoRegC and BBQ (i.e. a state-of-the-art binary classifier calibration method 

(Pakdaman Naeini et al., 2015b)).
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We also evaluated the performance of ENIR in comparison to a newly introduced binary 

classifier calibration method called ELiTE 10. Our experiments show that even though ENIR 

is slightly inferior to ELiTE in terms of AUC and MCE measures, it runs overall (training + 

testing time) at least eight times faster than ELiTE over all of our experimental datasets. 

Note that, it is possible to combine the near-isotonicity constraints and the piecewise-linear 

constraints of calibration mapping to build a calibration mapping that is both near-isotonic 

and piecewise linear. This can be easily done by simply adding the near-isotonic constraint 

to the ADMM constraint optimization program of ELiTE (Ramdas and Tibshirani, 2016; 

Pakdaman Naeini and Cooper, 2016a). We leave this extension as future work.

An important advantage of of ENIR over Bayesian binning models (e.g., BBQ, and ABB) is 

that they can be extended to a multi-class and multi-label calibration models similar to what 

has done for the standard IsoRegC method (Zadrozny and Elkan, 2002). This is an area of 

our current research. We also plan to investigate theoretical properties of ENIR. In particular, 

we are interested to investigate theoretical guarantees regarding the discrimination and 

calibration performance of these calibration methods, similar to what has been proved for 

the AUC guarantees of IsoRegC (Fawcett and Niculescu-Mizil, 2007).
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Fig. 1. 
The solid line shows a calibration (reliability) curve for predicting Z = 1. The dotted line is 

the ideal calibration curve.
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Fig. 2. 
calibration curves based on using 5 equal frequency bins when we use logistic regression, 

SVM, and naïve Bayes classification models for the binary classification task in the liver-

disorder UCI dataset. Considering the frequency of observations in the first and the second 

bin, we notice the violation of the isotonicity assumption that is made by IsoReg in all the 

classification models.

Naeini and Cooper Page 22

Knowl Inf Syst. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Scatter plot of the simulated data. The two classes of the binary classification task are 

indicated by the red squares and blue stars. The black oval indicates the decision boundary 

found using SVM with a quadratic kernel.
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Fig. 4. 
The figure shows how ELiTE extends binning-based calibration methods( e.g., ENIR) by 

using a piecewise linear calibration mapping instead of a piecewise constant mapping.
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Table 1

Experimental Results on a simulated dataset

(a) SVM Linear Kernel

SVM IsoRegC BBQ ENIR

AUC 0.52 0.65 0.85 0.85

ACC 0.64 0.64 0.78 0.79

RMSE 0.52 0.46 0.39 0.38

ECE 0.28 0.35 0.05 0.05

MCE 0.78 0.60 0.13 0.12

(b) SVM Quadratic Kernel

SVM IsoRegC BBQ ENIR

AUC 1.00 1.00 1.00 1.00

ACC 0.99 0.99 0.99 0.99

RMSE 0.21 0.09 0.10 0.09

ECE 0.14 0.01 0.01 0.00

MCE 0.36 0.04 0.05 0.03
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Table 3

The 95% confidence interval for the average percentage of improvement over the base classifiers(LR, SVM, 

NB) by using the ENIR method for post-processing. Positive entries for AUC and ACC mean ENIR is on 

average providing better discrimination than the base classifiers. Negative entries for RMSE, ECE, and MCE 

mean that ENIR is on average performing better calibration than the base classifiers.

LR SVM NB

AUC [−0.008, 0.003] [−0.010, 0.003] [−0.010, 0.000]

ACC [0.002, 0.016] [−0.001, 0.010] [0.012, 0.068]

RMSE [−0.124, −0.016] [−0.310, −0.176] [−0.196, −0.100]

ECE [−0.389, −0.153] [−0.768, −0.591] [−0.514, −0.274]

MCE [−0.313, −0.064] [−0.591, −0.340] [−0.552, −0.305]
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Table 4

Average rank of the calibration methods on the benchmark datasets using LR as the base classifier. Marker */

⊛ indicates whether ENIR is statistically superior/inferior to the compared method (using an improved 

Friedman test followed by Holm’s step-down procedure at a 0.05 significance level).

IsoRegC BBQ ENIR

AUC 1.963 2.225 1.813

ACC 1.675 2.663* 1.663

RMSE 1.925* 2.625* 1.450

ECE 2.125 1.975 1.900

MCE 2.475* 1.750 1.775
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Table 5

Average rank of the calibration methods on the benchmark datasets using SVM as the base classifier. Marker 

*/⊛ indicates whether ENIR is statistically superior/inferior to the compared method (using an improved 

Friedman test followed by Holm’s step-down procedure at a 0.05 significance level).

IsoRegC BBQ ENIR

AUC 1.988 2.025 1.988

ACC 2.000 2.150 1.850

RMSE 1.850 2.475* 1.675

ECE 2.075 2.025 1.900

MCE 2.550* 1.625 1.825
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Table 6

Average rank of the calibration methods on the benchmark datasets using NB as the base classifier. Marker */

⊛ indicates whether ENIR is statistically superior/inferior to the compared method (using an improved 

Friedman test followed by Holm’s step-down procedure at a 0.05 significance level).

IsoRegC BBQ ENIR

AUC 2.150 1.925 1.925

ACC 1.963 2.375* 1.663

RMSE 2.200* 2.375* 1.425

ECE 2.475* 2.075* 1.450

MCE 2.563* 1.850 1.588
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Table 7

Note that N and B are the size of training sets and the number of bins found by the method, respectively. T is 

the number of iterations required for convergence of the Platt method and M is defined as the total number of 

models used in the associated ensemble model.

Training Time Testing Time

Platt O(NT) O(1)

Hist O(N logN) O(logB)

IsoRegC O(N logN) O(logB)

ACP O(N logN) O(N)

ABB O(N2) O(N2)

BBQ O(N logN) O(M logN)

ENIR O(N logN) O(M logB)
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Table 8

Median of the difference between the performance of ELiTE and ENIR on the 40 baseline datasets. Bold face 

indicates the differences that are statistically significant, based on using a Wilcoxon signed ranked test at a 

0.05 significance level. The numbers inside parentheses indicate the corresponding p-value of the test. The 

bottom row of the table shows the overall Running Time (RT) of ENIR versus ELiTE in minutes over the 10-

fold cross validation experiments of the real datasets, using a single core of a MacBook Pro with a 2.5 GHz 

Intel Core i7 CPU and a 16 GB RAM memory.

LR SVM NB

AUC 0.003(0.001) 0.002(0.009) 0.002 (0.001)

ACC 0.001(0.032) 0.001(0.348) 0.001(0.806)

RMSE −0.001(0.018) −0.001(0.105) −0.001(0.0619)

ECE −0.001(0.055) −0.001(0.077) −0.001(0.295)

MCE −0.009(0.001) −0.005(0.001) −0.006(0.001)

Run time 226/1808 225/2082 235/2056
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