

Aalborg Universitet

Effective and efficient location influence mining in location-based social networks

Saleem, Muhammad Aamir; Kumar, Rohit; Calders, Toon; Pedersen, Torben Bach

Published in:
Knowledge and Information Systems

DOI (link to publication from Publisher):
10.1007/s10115-018-1240-8

Creative Commons License
Unspecified

Publication date:
2019

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Saleem, M. A., Kumar, R., Calders, T., & Pedersen, T. B. (2019). Effective and efficient location influence mining
in location-based social networks. Knowledge and Information Systems, 61(1), 327-362.
https://doi.org/10.1007/s10115-018-1240-8

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 01, 2024

https://doi.org/10.1007/s10115-018-1240-8
https://vbn.aau.dk/en/publications/3af159ff-48ae-41b2-b2a8-369e8a7d4534
https://doi.org/10.1007/s10115-018-1240-8

Noname manuscript No.
(will be inserted by the editor)

Towards Location Influence in Location-Based Social
Networks ?

Muhammad Aamir Saleem · Rohit
Kumar · Toon Calders · Torben Bach
Pedersen

Received: date / Accepted: date

Abstract Location-based social networks (LBSN) are social networks com-
plemented with location data such as geo-tagged activity data of its users.
In this paper, we study how users of an LBSN are navigating between loca-
tions and based on this information we select the most influential locations.
In contrast to existing works on influence maximization, we are not per se
interested in selecting the users with the largest set of friends or the set of
locations visited by the most users; instead, we introduce a notion of location
influence that captures the ability of a set of locations to reach out geograph-
ically by utilizing their visitors as message carriers. We further capture the
influence of these visitors on their friends in LBSNs and utilize them to pre-
dict the potential future location influence more accurately. We provide exact
on-line algorithms and more memory-efficient but approximate variants based
on the HyperLogLog and the modified-HyperLogLog sketch to maintain a
data structure called Influence Oracle that allows to efficiently find a top-k
set of influential locations. Experiments show that our new location influence

? This paper is a significant extension of the conference paper [25].

M. A. Saleem
Aalborg University, Denmark
Universite Libre de Bruxelles, Belgium
E-mail: maas@cs.aau.dk

R. Kumar
Universite Libre de Bruxelles, Belgium
Universitat Politecnica de Catalunya
E-mail: rohit.kumar@ulb.ac.be

T. Calders
Universite Libre de Bruxelles, Belgium
University of Antwerp, Belgium
E-mail: toon.calders@ulb.ac.be

T. B. Pedersen
Aalborg University, Denmark
E-mail: tbp@cs.aau.dk

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 5

notion favors diverse sets of locations with a large geographical spread and
that our algorithms are efficient, scalable and allow to capture future location
influence.

Keywords [
location-based social networks; location influence; influence maximization;

geographical spread]

1 Introduction

One of the domains in social network analysis [1,10,23,26] that received am-
ple attention over the past years is influence maximization [18], which aims at
finding influential users based on their social activity. Applications like viral
marketing utilize these influential users to maximize the information spread
for advertising purposes [4]. With the pervasiveness of location-aware devices,
nowadays, social network data is often complemented with geographical infor-
mation. For instance, users of a social network share geo-tagged content such
as locations they are currently visiting with their friends. These social networks
with location information are called location-based social networks (LBSNs).
In LBSNs, the location information offers a new perspective to view users’
social activities. In this paper, we study navigation patterns of users based on
LBSN data to determine influential locations. Where other works concentrate
on finding influential users [30], popular events [31], or popular locations [33],
we are interested in identifying sets of locations that have a large geographical
impact. Although often overlooked, the geographical aspect is of great impor-
tance in many applications. This geographical information can be utilized to
provide more targeted marketing strategies. For example, unlike viral market-
ing which focuses on finding influential users and spreading the message via
word of mouth marketing (WOMM), influential locations can be found and
information can be spread using out-of-home/ outdoor marketing (OOH) e.g.,
by putting advertisements on billboards and distributing promotional items
on such locations. For instance, consider the following example.

Example 1 A marketer is interested in creating visibility for her products to
the maximum regions in a city by offering free promotional items such as
T-shirts with a printed promotional message. To do that she has to choose
locations to distribute the promotional items to visitors.

In order to choose the most suitable locations for offering these items, not
only the popularity of the places is important, but also the geographical reach.
By visiting other locations, people that were exposed to the advertisement,
especially the receivers of the promotional items, may indirectly promote the
products. For example, by wearing the shirt they expose the T-shirt’s message
to the people at the places they go to and they talk about it with their friends
and relatives. Thus, when the goal is to create awareness of the product name,
it may be preferable to have a moderate presence in many locations throughout

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Muhammad Aamir Saleem et al.

Check-ins

H2 M1

T1 T2

H1

d, i

d, i
i

g

a, f

b, c, e

d

a, f ,h
Friendships

loc
Users User Friends

t=1 t=2 t=3 a c,h, i
T1 b, c, e, f a,h f b d, f , i
T2 a,h f , g a c a, f
M1 g i d d b, e
H1 − b, c, d, e i e d, g
H2 d, i − − f c, b

g e
h a
i a, b

Fig. 1: [25] Running example of an LBSN: Check-ins(L) shows the visits of
users (represented by lower-case letters; a, b, etc.) at locations (represented
by upper-case letters; T1, H1, etc.) at time stamps t=1, 2 and 3. Graph (C)
depicts the movement of users between consecutive locations. Friendships (R)
show the friends of each user in the social network.

the whole city rather than a high impact in only a few locations. An illustration
of this example is given in Figure 1. Nodes represent popular locations of
different categories, such as tourist attractions (T1, T2), a metro station (M1),
and hotels (H1 and H2). Lowercase letters represent users. For each user,
her friends in the social network and check-ins have been given. The top-2
locations with the maximal number of unique visitors are T1 and M1. The
geographical impact of these locations, however, is not optimal; visitors of
these locations reach only T2 and H1. On the other hand, the visitors of T1
and H2 visit all locations, i.e., users a, f and b, c, e visit T2 and H1 after visiting
T1, respectively, and users d, i visit H1 and M1 after H2.

To capture geographical spread and influence, in Section 3, we introduce
the notion of a bridging visitor between two locations as a user that visits both
locations within a limited time span. If there is a significant number of bridging
visitors from one location to another, we say that there is an influence. We
introduce different models that capture when the number of bridging visitors
is considered to be sufficient to claim influence between locations. One model
is based on the absolute number of visitors, and one on the relative number.
For each of these two models, we further present a direct bridging visitor based
location influence model and two friendship-based location influence models
that take the social graph of the LBSN into account. The friendship-based
location influence models are based on the following observations obtained by
detailed analysis of three real-life LBSNs. The first observation is that users
tend to follow their friends and perform the same activities; e.g., in Figure 1,
users i and f visited the same locations T1 and H1 after their friend b did.
The second observation is that sometimes the number of visits/activities to
some locations can be rather low because of data sparsity, especially when the
time window used in the algorithms is small. The data sparsity may affect the
location influence models and capture less influential seeds. Considering these
observations, the friendship-graph-based models allow to compute potential

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 7

future bridging visitors. By incorporating such visitors, the models overcome
the data sparsity problem and capture location influence more accurately.
The first friendship-based influence model considers all friends of bridging
visitors, while the second model computes the influence of bridging visitors on
their friends in LBSNs and only incorporates the strongly influenced friends as
potential future bridging visitors. Based on these models, we define influence
for sets of locations and the location influence maximization problem: Given
an LBSN and a parameter k, find a set of k locations such that their combined
location influence on other locations is maximal.

To solve this problem, in Section 4 a data structure, called Influence Or-
acle, is presented that maintains a summary of the LSBN data that allows
to determine the influence of any set of locations at any time. Based on this
data structure, we can easily solve the location influence maximization prob-
lem using a greedy algorithm. As for large LBSNs with lots of activities the
memory requirements of our algorithm can become prohibitively large, we also
develop a more memory-friendly version based upon the well-known Hyper-
LogLog sketch [11]. This algorithm gets further refined in Section 4.3 where we
introduce a single-carrier-based influence maximization mechanism for captur-
ing influence in information propagation scenarios where even a single carrier
can carry the influence such as propagation of infections, and confidential in-
formation in specialized information networks. We provide off-line and on-line
memory- and time-efficient algorithms for the single-carrier-based-influence
maximization. Next, in Section 5 we provide a greedy algorithm for finding
top-k influential locations.

In Section 6 we analyze several LBSNs to select reasonable threshold values
for our models and to verify our claims. In Section 7 we evaluate the proposed
notions and algorithms using the real-world datasets in term of effectiveness
and efficiency.

In summary, the main contributions of this paper are (i) the introduction
and motivation of a new location influence notion based on LBSN data, (ii)
the development of an efficient Influence Oracle, and (iii) the demonstration
of the usefulness of the location influence maximization problem in real-life
LBSNs.

This paper is an extended version of the conference paper [25]. As an ex-
tension, we present a novel mechanism for spreading location influence that
incorporates the influential users based on their geographical activities and
social friends. The mechanism is given in Section 3.1.3. On the basis of the
mechanism, we further propose two variants of absolute and relative influence
models (given in Section 3.2). The new algorithms for finding such location
influence are provided in Section 4.1. Furthermore, the single-carrier-based
influence maximization mechanisms (given in Section 4.3) and the two al-
gorithms for capturing such influence also constitute previously unpublished
work. The methods for finding suitable values of the thresholds for new mod-
els are given in Section 6. We further present a set of new experiments for
validating the proposed approaches in terms of effectiveness (Section 7.2) and

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Muhammad Aamir Saleem et al.

efficiency (Section 7.5) as well to evaluate their significance in comparison with
existing methods.

2 Related Work

Influence maximization in the context of traditional social networks and LB-
SNs has been studied in much detail. We divide the existing studies in the
domain into three groups. The first group consists of approaches for finding
influential users in traditional social networks. The second group covers studies
that use check-ins as an additional source of data to identify influential users
in LBSNs, whereas the third group utilizes the check-ins for finding influential
locations in LBSNs.

Influential Users in Social Networks. The influence maximization ap-
proaches in social networks are generally divided into two main groups. The
first group of studies [8,24,18,6] operates on static graphs and assumes that
the influence relationships among nodes are already known. They compute the
influence probability of a node using probabilistic simulations and use them
for determining influence among nodes. These approaches do not capture the
temporal and dynamic nature of real networks such as social media. On the
other hand, the second group of studies in this category [13,9,16,14] is data-
driven and requires interactions of users and their activities. They compute
influence probabilities based on relationships and historic activities of nodes
such as common actions among two friends within a specified time. Thus,
these studies are more suitable for dynamic networks such as LBSNs. Goyal
et al. [14], propose the first data-based approach for finding influential users
in social networks by considering the temporal aspect in the cascade of com-
mon activities of users. In [16], they further introduce a time window based
approach to determine the true leaders in social networks. In [15], they present
several models to compute influence probabilities. They provide static models
based on likelihood estimation, as well as continuous and discrete time models
for capturing the dynamic behavior of users in social networks. However, the
limitations of these approaches are their assumptions that information propa-
gation is non-cyclic and thus users can perform an action only once. In order
to find the influence of users, we provide an extension of [15] as part of our
influential friends-based location influence model. Our algorithm identifies in-
fluential nodes without any constraints on the number of times a user performs
an action. It further allows cyclic propagation of information.

Influential users and events in LBSNs. Zhang et al. [31] use the social
and the geographical correlation of users to find influential users and popu-
lar events. Users with many social connections are considered influential and
events visited by them are considered important. Similarly, Wu et al. [30]
identify influential users in LBSNs on the basis of the number of followers of
their activities (check-ins). Li et al. [20] and Bouros et al. [2] on the other
hand, identify regionally influential users on the basis of their activities. The
focus of the work by Wen et al. [28] and Zhou et al. [32] is to find and utilize

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 9

the influential users for product marketing strategies such as word-of-mouth.
Our focus, however, is to find influential locations that could be used, e.g., for
outdoor marketing, hence, none of the previous works applies directly to our
problem.

Location Promotion in LBSNs. Zhu et al. [33], Hai [17], and Wang et
al. [27] study location promotion. Given a target location, their aim is to find
the users that should be advertised to attract more visitors to this location.
Doan et al. [7] compute the popularity ranks of locations based on the number
of visitors. Zhou et al. [32] study the product promotion in O2O (on-line to
off-line) model using LBSNs. Their model combines the on-line features, i.e.,
network topology (social network) and off-line user properties such as daily
activity area and location preferences of users. Based on these features they
find top-k users that can maximize the number of influenced users for a given
location (product). These studies have different objectives as compared to our
problem statement as they focus on finding top-k users that can attract the
maximum visitor for a given location.

Novelty. Our work is different from all of the above as we focus on finding
a set of influential locations where influence is defined using visitors as a mean
to spread influence to other locations. Applications include outdoor marketing
by selecting locations with the maximal geographical spread.

3 Location-Based Influence

In this section, we first provide preliminary definitions, then present location
influence and different models to capture it, and finally we formally define the
Location Influence Maximization and Oracle problems.

Let a set of users U and a set of locations L be given.

Definition 1 An activity [25] is a visit of a user to a location. It is a triplet
(u, l, t), where u ∈ U is a user, l ∈ L a location and t is the time of visit of u
to l. The set of all activities over U and L is denoted A(U ,L).

Definition 2 A Location-based Social Network (LBSN)[25] over U and L con-
sists of a graph GS(U ,F), called the social graph, where F ⊆ {{u, v}|u, v ∈ U}
represents friendships between users, and a set of activities A ⊆ A(U ,L). It is
denoted LBSN(GS ,A).

3.1 Bridging Visitors for Location Influence

We define the influence of a location by its capacity to spread its visitors to
other locations. The intuition behind this is that the visitors exposed to a
message at a location will spread the message to other locations they visit.
Thus, the location influence (indirectly) captures the capability of a location
to spread a message to other geographical regions by using common visitors
as message carriers. The effect of an activity in a location, however, usually

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Muhammad Aamir Saleem et al.

remains effective only for a limited time. We capture this time with the influ-
ence window threshold ω. Such visitors that spread messages among locations
based on their activities in LBSNs are called Bridging Visitors (B). Next,
we provide three types of bridging visitors for spreading location influence in
LBSNs.

3.1.1 Direct Bridging Visitors

The first type of bridging visitors is called Direct Bridging Visitors:

Definition 3 Direct Bridging Visitor [25]: Given an LBSN(GS ,A) and time
window ω, a user u is said to be a direct bridging visitor from location s to
location d if there exist activities (u, s, ts), (u, d, td) ∈ A such that 0 < td−ts ≤
ω. We denote the set of all direct bridging visitors from s to d by BD(s, d).

Example 2 Consider the running example of Figure 1. Let ω = 2. Then,
BD(T1,H1) = {b, c, e},BD(H2,H1) = {d, i} and BD(M1,H1) = {i}.

3.1.2 Friends-Based Bridging Visitors

Activity data in LBSNs is often sparse in the sense that the number of check-
ins per location is low. In Section 7, we see that the real-world datasets have
only up to 6 check-ins per location on average. This sparsity of data affects
the computation of location influence as usually there are very few bridging
visitors among locations. In order to deal with this issue, we use the observation
that users tend to perform similar activities as their friends (this claim is
verified and confirmed in Section 6). Thus, the friends of bridging visitors
have potential to carry the same message as the bridging visitors do. Based,
on this observation we define Friends-Based Bridging Visitors:

Definition 4 Friends-Based Bridging Visitors: Given an LBSN(GS ,A), time
window ω, locations s and d, and direct bridging visitors from s to d BD(s, d),
the set of Friends-Based bridging visitors between s and d is denoted by
BF (s, d):

BF (s, d) = BD(s, d)
⋃

u∈BD(s,d)

Fu (1)

where Fu is the set of friends of u, i.e., Fu = {v|(u, v) ∈ F}

Example 3 Consider again the running example of Figure 1. Let ω = 2.
Then, BF (T1,H1) = {a, b, c, d, e, f , g, i},BF (H2,H1) = {a, b, d, e, i} and
BF (M1,H1) = {a, b, i}.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 11

3.1.3 Influenced Friends-Based Bridging Visitors

Next, we further improve the notion of bridging visitors based on the following
observation. Not all friends of bridging visitors may follow them, thus consid-
ering all of them as potential future visitors may bring high inaccuracy in
predicting the number of bridging visitors and so in capturing the location
influence. To improve the accuracy, we evaluate the ability of each bridging
visitor to persuade their friends to follow them. The friends that are signifi-
cantly influenced by the bridging visitors are called Influenced Friends-Based
Bridging visitors.

A user v is considered to be influenced by a user u, if u visits a location l
and v visits the same location after u within a particular time. In order to find
such influence, we present an extended version of an existing algorithm given
in [15] that computes the influence probabilities using a Bernoulli distribu-
tion based on partial credit distribution and discrete time constraint models
[15]. According to the model, the influence probability is measured by the ra-
tio of the number of successful attempts to persuade the influenced user to
follow the influential user’s activities over the total number of trials. Consid-
ering that a user can be influenced by multiple sources for an activity, the
influential credit for each following activity is distributed among all such in-
fluential parents using the Partial Credit Distribution model. Furthermore, as
influence probability is dependent on time, a discrete time constraint model is
incorporated, which ensures that a user can influence other users only within
the given time window. It is worth noting that such a time window can be
different than the ω given in Definition 3. However, for our experiments, we
consider the same ω for such a time window because we consider ω as a maxi-
mal time between two activities to still consider them connected. Goyal et al.
in [15] do not capture repeating activities of users considering that traditional
social network users are unlikely to repeat their actions such as re-posting the
same contents. However, in LBSNs, users may visit the same locations again.
This implies that, if an influential user visits a location after her influenced
user, she is considered to be influenced by her influenced user. Our proposed
algorithm (given in Algorithm 2) captures multiple activities of users at the
same locations and thus, such aforementioned relationships. We ensure how-
ever that a user is influenced maximally once for an activity, i.e., a visit to a
location, regardless of the number of times she visits the same location within
ω. However, if the influential user visits the same location at another time,
she may influence the same influenced user again. We denoted the influence
probability of a user u on v as pu,v. Next, we utilize such influence probabilities
to define the influenced friends-based bridging visitors.

Definition 5 Influenced Friends-Based Bridging Visitors: Given
LBSN(GS ,A), time window ω, locations s and d, direct bridging visi-
tors from s to d BD(s, d), and a threshold of the influence probability between
users θ, a set of Influenced Friends-Based bridging visitors between s and d

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Muhammad Aamir Saleem et al.

is denoted by BI(s, d):

BI(s, d) = BD(s, d) ∪ {u ∈ U |
∑

v∈BD(s,d)

pv,u ≥ θ} (2)

Example 4 Let τIA = 2, ω = 2 and θ = 0.2. In the running example, a is
the influenced user of h. a followed one out of two activities of h, i.e., for
visiting T2 and there is no other friends influencing a for this activity, thus,
ph,a = 1/2 = 0.5 ≥ θ. Similarly, the influenced users of b and c are {i, f},
and {a, f}, respectively. The other users do not have any influenced visitors
as their influence probability is less than θ.

3.2 Methods for determining Location Influence

Next to the selection of message carriers, a second dimension is when we
consider influence to be present and to what extent. For this purpose, we
introduce two influence models (M).

3.2.1 Absolute Influence Model (MA)

In practice, if a significant number of people perform an activity, then it is
considered compelling. Thus, in order to avoid insignificant influences among
locations, we use a threshold τA. The influence of a location s on a location
d is considered only if the number of bridging visitors from s to d is greater
than τA. This model is referred as the Absolute Influence Model (MA). The
influence of a location s on d under MA is represented by IA(s, d):

IA(s, d) :=

{
1, if |B(s, d)| ≥ τA
0, otherwise

(3)

We instantiate B in Equation 3, with BD, BF or BI , and τA with τDA, τFA

or τIA to compute direct absolute influence (IDA), friends absolute influence
(IFA) or influenced-friends absolute influence (IIA), respectively.

Example 5 Consider the running example of Figure 1. Let the information
carriers be the direct bridging visitors BD, τA = 2, and ω = 2. Then,
IDA(T1,H1) = 1 because |BD(T1,H1)| = 3. Similarly, IDA(H2,H1) = 1. How-
ever, IA(M1,H1) = 0 because |BD(M1,H1)| = 1.

The influence between two locations may change with the value of τA and
ω. For example, if we update the value of τA to 3 and ω to 2, IDA(T1,H1) = 1,
but, IDA(H2,H1) becomes 0.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 13

3.2.2 Relative Influence Model (MR)

In MA, the influences of two pairs of locations are considered equal as long as
the number of their bridging visitors is greater than τA. Sometimes, however,
the relative number of contributed bridging visitors is important. Consider, for
example, a popular location s that attracts many visitors and a non-popular
location d with few visitors. In such a setting, to capture the influence of s on
d, we may have to set the absolute threshold τA very low. This low value of
τA, however, may result in many other popular locations being influenced by
s, even if only a very small fraction of their visitors comes from s. Therefore,
in such situations, it may be beneficial to use different thresholds for different
destinations, relative to the number of visitors in these destination locations.
This notion is captured by the Relative Influence Model (MR). The influence
of s on d under MR is represented by IR(s, d) and is parameterized by the
relative threshold τR:

IR(s, d) :=

1, if
|B(s, d)|
|V (d)|

≥ τR

0, otherwise
(4)

where V (d) is the set of users who visited location d. We instantiate B in
Equation 4, with BD, BF or BI , τR with τDR, τFR or τIR, and V with VD,
VF : a set of VD and their friends, or VI : a set of VD and influenced friends
of visitors in VD, to compute direct relative influence (IDR), friends relative
influence (IFR) or influenced-friends relative influence (IIR).

Example 6 Consider the running example given in Figure 1. Let the informa-
tion carriers be the direct bridging visitors BD, τIR = 0.4, and ω = 2. In

this example, IDR(T1,H1) = 1 because |BD(T1,H1)|
|VD(H1)| = |{b,c,e}|

|{b,c,d,e,i}| = 3
5 ≥ τIR,

Similarly, IR(H2,H1) = 1 and IDR(M1,H1) = 0.

In subsection 3.2, we presented two ways to determine the location influ-
ence. Each of the ways can utilize any of the three types of bridging visitors
(given in subsection 3.1) to spread the location influence. Thus, in total, we
have six models for spreading influence in LBSNs as given in Table 1.

3.3 Combined Location Influence

Based on the influence models, a location can influence multiple other loca-
tions. In order to capture such influenced locations, we define the location
influence set :

Definition 6 Given a location s, and an influence model M , the location
Influence Set φIM (s) is the set of all locations for which the influence of s on
that location under M is 1, i.e., φIM (s) = {d ∈ L | IM (s, d) = 1}.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Muhammad Aamir Saleem et al.

Location-Based Influence Models
Absolute Influence Relative Influence

Direct
Bridging
Visitors

Friends-Based
Bridging
Visitors

Influenced
Friends-based

Bridging
Visitors

Direct
Bridging
Visitors

Friends-Based
Bridging
Visitors

Influenced
Friends-based

Bridging
Visitors

Label
Direct Absolute
Model (MDA)

Friends Absolute
Model (MFA)

Influenced Friends
Absolute Model
(MIA)

Direct Relative
Model (MDR)

Friends Relative
Model (MFR)

Influenced
Friends Relative
Model (MIR)

Parameters τDA, ω τFA, ω τIA, ω, θ τDR, ω τFR, ω τIR, ω, θ
Location
Influence

IDA IFA IIA IDR IFR IIR

Table 1: Types of location-based influence models with labels and the param-
eters. Further, notations of the location influences captured by these models
are also depicted.

Next, we define combined location influence for a set of locations S. To
do this, we use the following principled approach: any activity at one of the
locations of S is considered an activity from S. In that way we can capture
the cumulative effect of the locations in S; even though all locations in S, in
isolation may not influence a location d, together they may influence it. The
bridging visitors from a set of locations S to d is represented by B(S, d):

B(S, d) =
⋃
s∈S

B(s, d) (5)

The influence of a set of locations S on location d under MA and MR is
defined similarly as for single locations. For instance, the influence of S under
MA is given by

IA(S, d) :=

{
1, if |B(S, d)| ≥ τA
0, otherwise

(6)

Example 7 In Figure 1, let ω = 2, τA = 3 and S = {T1,M1}. Under MA, T2 6∈
φ(T1) and T2 6∈ φ(M1). However, T2 ∈ φ(S) as |B(S,T2)| = |{a, f , g}| ≥ τA.

3.4 Problem Formulation

Based on these influence models, we now formally define the problem state-
ments. We first present a problem statement for finding the most influential
locations in LBSNs:

Problem 1 (Location Influence Maximization Problem) Given a parameter
k, an LBSN(GS ,A), and an influence model M , the location influence maxi-
mization problem is to find a subset S ⊆ L of locations, such that |S| ≤ k and
the number of influenced locations |φIM (S)| is maximum.

In order to solve the location influence maximization problem efficiently,
we first introduce an efficient solution to the following subproblem.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 15

Problem 2 (Oracle Problem) Given an LBSN(GS ,A) and an influence
model M , construct a data structure that allows to answer: Given a set of
locations S ⊆ L and a threshold τ , what is the combined location influence
φIM (S).

4 Influence Oracle

In this section, we provide solutions for the Oracle problem. First, in Sec-
tion 4.1, we provide a generic algorithm for constructing an influence oracle
for any influence model. Then, in Section 4.2, we present an approximate but
a more memory- and time-efficient algorithm for constructing the Influence
Oracles for the MD(MDA and MDR) and the MF (MFA and MFR) models.
After that, in Section 4.3 we present an even more efficient algorithm for the
special case of the MDA model with τ = 1.

4.1 Exact Influence Oracle

In this section, we provide a data structure for maintaining exact location
summaries for each location which works for the MD model. Extension of this
algorithm for incorporating the MF and the MI model are discussed later in
this section.

Definition 7 The Complete location summary for a location s ∈ L is the set
of locations that have at least one bridging visitor from s, together with these
bridging visitors; i.e., ϕ(s) := {(d,B(s, d)) | d ∈ L ∧ |B(s, d)| > 0}.

We assume activities arrive continuously and deal with them one by one.
For the Oracle, we maintain a summary that consists of the collection of
individual summaries ϕ(s) for each location S. We present an on-line algorithm
(Algorithm 1) to incrementally update these summaries.

If a user u visits a location s at time t, then u acts as a bridging visitor
between all the locations u visited within the last ω time stamps and s. There-
fore, for each user u ∈ U , we maintain a set of locations the user has visited
and the corresponding latest visiting time. This is called the visit history H(u)
and is defined as H(u) := {(s, tmax)|u ∈ V (s), tmax = max{t | (u, l, t) ∈ A}}.
Suppose that we have the complete location summary for the check-ins so far
and the visit history of all users, and a new activity (u, d, t) arrives. We up-
date the complete location summary as follows: the location-time pair (d, t) is
added in H(u) if d does not already appear in the visit history, otherwise the
latest visit time of d is updated to t in H(u) (line 13). Furthermore, for every
other location-latest visit time pair (s, t′) in the history of u, ϕ(s) is updated
by adding user u to the set of bridging visitors from s to d provided that the
difference between the time stamps t− t′ does not exceed the threshold ω (line
5 − 10). This procedure is illustrated in Algorithm 1. The visit history H(u)
is pruned at line 11 to remove those locations which were visited by u more

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Muhammad Aamir Saleem et al.

Algorithm 1: Exact Oracle: Updating complete location summaries [25]

1 Input: New activity (u, d, t); threshold ω; ∀l ∈ L, ϕ(l) is given; H(u)
2 Output: Updated ϕ(.) and H(.)
3 begin

4 foreach (s, t
′
) ∈ H(u) do

5 if t− t′ ≤ ω then
6 if ∃(d,B(s, d)) ∈ ϕ(s) then
7 replace (d,B(s, d)) ∈ ϕ(s) with (d,B(s, d) ∪ {u})
8 else
9 add (d, {u}) to ϕ(s)

10 else

11 H(u)←H(u) \ {(s, t′)} ; // Too old to be a bridging visitor

12 if ∃(d, t′) ∈ H(u) then
13 replace (d, t′) with (d, t)
14 else
15 add (d, t) to H(u)

than ω time ago. Pruning of old locations from the visit history can be done
at regular interval for all locations.

t = 1 t = 2 t = 3 t=5

Activity:
(i,H2, 1)
(d,H2, 1)

(i,M1, 2)
(d,H1, 2)

(i,H1, 3)
(d,M1, 3)

(d,H2, 5)

H(i) : {(H2, 1)} {(H2, 1),
(M1, 2)}

{(H2, 1),
(M1, 2),
(H1, 3)}

{(H1, 3)}

H(d) : {(H2, 1)} {(H2, 1),
(H1, 2)}

{(H2, 1),
(H1, 2),
(M1, 3)}

{(M1, 3),
(H2, 5)}

ϕ(H1) : {} {} {(M1, {d})} {(M1, {d})}

ϕ(H2) : {} {(H1, {d}),
(M1, {i})}

{(H1, {d}),
(M1, {i, d})}

{(H1, {d}),
(M1, {i, d})}

ϕ(M1) : {} {} {(H1, {i})} {(H1, {i}),
(H2, {i})}

Fig. 2: [25] An example of updating locations summaries for location H1,H2

and M1 and visit histories of users i and d under MA model for ω = 2 at every
time stamp.

Example 8 We illustrate the algorithm using the running example shown in
Figure 1. For simplicity, we only consider the activities of two users: d and i.
We also add a new activity of d at H2 at time stamp 5. In this example, we
consider ω = 2. The activities are processed one by one in increasing order
of time. We show how the visit history H(i), H(d) and the complete location
summaries ϕ(H1), ϕ(H2), ϕ(M1) evolve with different activities at different
timestamps in Figure 2. Note, at time stamp 5 only ϕ(M1) is updated even

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 17

though M1 and H1 are both in the visit histories of d because ω = 2. The visit
history of d is pruned by removing H1 from the H(d) as no future activities
by d affect ϕ(H1). The visit time of H2 is updated to the latest visit time.
Similarly, H(i) is also pruned.

It can be observed from the example that a new activity of a user u only
updates the complete location summary of the locations in the recent visit his-
tory of u. Notice that, since the activities of a user arrive in strictly increasing
order of time, the size of H(u) is upper bounded by ω, as only locations that
are visited within a time window ω are processed and a user can only visit one
location at a time.

Proposition 1 For the MDA model, the time required to process an activity
by Algorithm 1, is O(ω log(|U |)). The complete location summary {ϕ(l)|l ∈ L}
can be stored in O(|L|2|U |) memory and the visit history{H(u)|u ∈ U} in
O(|U |ω) memory.

Proof The visit history H(u) for a user u can at maximum have ω locations
hence the for loop in line 4 of the algorithm will run for maximum ω iteration.
The maximum set size of the bridging visitors is |U |, so adding an element to
the set will take maximum log(|U |) time using an appropriate data structure,
such as a balanced tree for storing a set. Thus, the total time for processing an
activity in the worst case is O(ω log(|U |)). The memory complexity is straight-
forward as there could be maximally |L| influenced locations and the bridging
visitor set size is at most |U |, hence, the memory complexity is O(|L||U |) in
the worst case for a location hence for all locations it is O(|L|2|U |). �

Proposition 2 For the MDA model, the time required to produce φ(S) from
{ϕ(l)|l ∈ S} for given threshold τ and set of locations S is O(|S||L||U |).

Proof Every location can have influence on maximally |L| locations with the
bridging visitor set size at most |U |. Hence, to produce φ(S), the union of sets
of size |U | has to be taken at most |S||L| times, thus, the time complexity is
O(|S||L||U |). �

Extending for Relative models. For the relative models, we addition-
ally have to maintain the total number of unique visitors per location, which
can be done in the worst case time O(log(|U |)) and space O(|U |) per location
and hence does not affect the overall complexity.

Extending for Friends based bridging visitors. For this scenario,
we assume the friendship graph is given as an adjacency list < u,ufriends >
indexed by u. Hence, whenever we add u in the bridging visitor set (line 7 and
9 in Algorithm 1), we just have to add all the friends of the user u in the set
of bridging visitors. As the number of friends is bounded by |U |, we get:

Proposition 3 For Algorithm 1, the time required to process an activity for
Friends based bridging visitors is O(ω|U |). The memory required to maintain
the summary is the same as for the MD, O(|L|2|U |).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Muhammad Aamir Saleem et al.

Algorithm 2: Influence Probabilities among users

1 Input: List of activities A, time threshold ω, Friendships F
2 Output: influenceEdges
3 begin
4 influenceEdges = Map() , userActs = Map() , influenceActs = Map()
5 Ag(l)= Group activities by location and sort by time
6 foreach A(l) ∈ Ag(l) do
7 currentSet = φ
8 followersSet = φ
9 foreach (u, l, tu) ∈ A(l) do

10 increment userActs(u)
11 parents = φ
12 foreach v : (v, l, tv) ∈ currentSet & (u, v) ∈ F do
13 if (v,u, tv) /∈ followerMap then
14 if tu − tv ≥ ω then
15 increment influenceActs(v → u)
16 add (v,u, tv) to followersSet
17 add v to parents

18 foreach v ∈ parents do
19 update influenceEdges < (v,u), pv,u >
20 add (u, l, tu) in currentSet

Proof Every user can have maximally |U | friends and hence adding them in
the bridging visitor set would take |U | time. There are maximum ω location
in the visit history of a user, thus, bridging visitors of ω locations would be
updated giving a total time complexity of O(ω|U |). �

Extending for Influenced Friends based bridging visitors. In this
case, we first compute the influence probabilities of users among each other.
The influence probabilities are computed using the algorithm 2. In this algo-
rithm, first, we initialize influenceEdges that stores the influence probabili-
ties for each pair of influential and influenced users, userActs that maintains
the count of activities for users, and influenceActs that tracks the number
of influential activities of users among each other. We then group the activi-
ties based on locations (Line 5). We iteratively process all the activities that
are performed at a location (line 9). In line 13, we ensure that a user is not
influenced multiple times by the same activity. We consider the activities in-
fluential if they the time difference in following the activities is less than the
window threshold (line 14). In lines 18-19, we compute/update the influence
probability by which a user is influenced using the Bernoulli equation based
on the number of influential activities, all activities and the influential users.
The influence probabilities are stored in a hash-map.

Next, we use the influence probabilities for adding the influenced friends of
bridging visitors for every pair of locations (influential-influenced locations).
The pseudo code for the algorithm is given in Algorithm 3. It is worth noting
that this is an off-line algorithm as we need to process all the activities first
using Algorithm 1. After that, we process a complete bridging visitor set of a
location pair at a time(line 6-16 in Algorithm 3). To do that, for each user in
a bridging visitor set, we first fetch her influenced users with corresponding

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 19

Algorithm 3: Exact Oracle for Influenced Friends: Updating complete
location summaries
1 Input: A all activities, ω time window, θ minimum influence threshold, F

friendships
2 Output: Complete location summary ϕ(l) for all l ∈ L
3 begin
4 InfluenceEdges= Influence Probabilities among users(A,ω,F) ;

// Algorithm 2

5 Run Algorithm 1 ∀(u, d, t) ∈ A ; // This will generate ϕ(l) for all l ∈ L
6 foreach l ∈ L do
7 foreach s ∈ ϕ(l) do
8 InfluencedFriends← φ
9 InfluentialBV s← φ

10 foreach (u, v,Pu,v) ∈ InfluenceEdges do
11 if x ∈ B(l, s) then
12 add (u, v, pu,v) to InfluentialBV s

13 foreach v : (u, v,Pu,v) ∈ InfluentialBV s do
14 if (Sum(Pu,v), ∀u : (u, v, pu,v) ∈ InfluentialBV) ≥ θ then
15 add v to InfluencedFriends

16 B(l, s) = B(l, s)∪ influenced friends

influence probabilities (lines: 10-12). Then, we compute the cumulative influ-
ence probability for each influenced user by adding the influence probabilities
of the influenced user with her every influential user in the bridging visitor set.
The influenced users with cumulative influenced probability greater than the
minimum influence threshold (θ) (given in Equation 2) are added in the set
of bridging visitors (lines: 13-16). The same procedure is followed for adding
influenced friends for VD in the case of MR.

Proposition 4 For Algorithm 1, the space complexity for MI is the same as
for MF i.e, O(|L|2|U |+ω+ |U |2), and the time required to compute influence
oracle for the influenced friends-based model is O(ω|U | log(|U |)|A|+ |L|2|U |2+
|A|(|A|+ |U |)).

Proof A user can at most influence all of her friends which is equivalent to
adding all friends of users in a bridging visitor set, as we do in MF . Thus, the
space complexity for MI is same as for MF , i.e., O(|L|2|U |+ ω + |U |2).

For computing influence oracle for MI , we further need to find the influ-
enced friends of bridging visitors. Thus, we first need to compute the influence
probabilities among users. To do that we group the activities on the basis of
location and then sort the activities performed at a location in a chronolog-
ical order. Then, for each location, we iteratively consider all the activities
to evaluate the influence relationship of users who performed them among
each other and update their corresponding influence scores. As each activity
is evaluated with every other activity thus in total we have |A| ∗ |A|/2 iter-
ations. We further traverse all influential users to assign them their credit,
which can at most be |U |. The influence probabilities are computed once and
stored in a hashmap. To add influenced friends in a bridging visitor set, we
need to fetch the influenced friends and influence probabilities for every user

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Muhammad Aamir Saleem et al.

Exact Approx
Memory Oracle Time Query Time Memory Oracle Time Query Time

MDA O(|U |(|L|2 + ω)) O(ω log(|U |)|A|)

O(|S||L||U ||U |)

O(|L|2b+ |U |ω)
O(ω|A|)

O(|S||L|b)MDR
O(|L|2b
+|U |ω + |L||U |)

MFA

O(|U |(|L|2 + ω
+|U |))

O(ω|U | log(|U |)|A|)
O(|L|2b
+|U |ω + |U |2) O(ω|U ||A|)

MFR

O(|L|2b
+|U |ω + |U |2
+|L||U |)

MIA O(ω|U | log(|U |)|A|
+|L|2|U |2
+|A|(|A|+ |U |))

N/A
MIR

Table 2: Summary of time and space complexities for the influence models.

in the bridging visitor. The time to fetch the influenced visitors is constant.
Thus, the time to add the influence visitors for a set of bridging visitors
which at most can be |U | is |U | ∗ |U | and thus, for each location pair, it is
|L|2|U |2. This makes the overall time complexity for computing oracle for MI

as O(ω|U | log(|U |)|A|+ |L|2|U |2 + |A|(|A|+ |U |)). �

4.2 Approximate Influence Oracle for MD and MF

In the worst case the memory requirements of the exact algorithm presented
in the last section are quite stringent: for every pair of locations (s, d), in
ϕ(s) the complete list of bridging visitors from s to d is kept. Therefore, here
we present an approximate algorithm for maintaining the complete location
summaries in a more compact form. This compact representation leads to a
significant saving especially in those cases where the window size ω is large
since in that case the number of bridging visitors increases.

We observe that when computing the number of bridging visitors between
s and d we do not need the exact set of bridging visitors between s and d, but
only the cardinality of that set. For the relative number of bridging visitors,
we additionally need only the numbers of visitors |V (s)|. Furthermore, as per
Equation 5, in order to find the accumulated complete location summary, we
need to combine two complete location summaries; for instance: the complete
location summary ϕ({s1, s2}) is obtained by taking the following pairwise
union of ϕ(s1) and ϕ(s2): if ϕ(s1) and ϕ(s2) respectively contain the pairs
(d,B(s1, d)) and (d,B(s1, d)), then ϕ({s1, s2}) contains (d,B(s1, d)∪B(s2, d)).
But then again, for further computations, we only need the cardinality of
the bridging visitor sets. Hence, if we accept approximate results, we could
replace the exact set B(s, d) with a succinct sketch of the set that allows to
take unions and get an estimate of the cardinality of the set. Please note that
we can approximate the bridging visitor set B(s, d) only for the direct and
friends-based bridging visitor sets. For the Influenced Friends based bridging
visitor set, we need the exact set as we need to know all the users in B(s, d)
to find the set of Influenced friends. Therefore, the approx algorithm is only
for the direct and friends-based influence models.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 21

In our approx algorithm, we use the HyperLogLog sketch (HLL) [11] to
replace the exact sets B(s, d) and V (s). The HLL sketch is a memory-efficient
data structure of size 2k that can be used to approximate the cardinality of
a set by using an array. The constant k is a parameter which determines the
accuracy of the approximation and is in our experiments in the order of 6 to 10.
Furthermore, the HLL sketch allows unions in the sense that the HLL sketch
of the union of two sets can be computed directly from the HLL sketches of
the individual sets. For our algorithm, we consider the HLL algorithm as a
black box. By using HLL, we not only reduce memory consumption but also
improve computation time, because adding an element in an HLL sketch can
be done in constant time and taking the union of two HLL sketches takes time
O(2k); that is: the time to take the union of two sets is independent of the
size of the sets.

Proposition 5 Let b = 2k be the size of the HLL sketch. For the MD and
MF models, the time needed to process an activity using the HLL sketch to
maintain B(s, d) is O(ω). The memory required to maintain the complete lo-
cation summary {ϕ(l)|l ∈ L} is O(|L|2b). The memory requirement for the
visit history {H(u)|u ∈ U} will remains O(|U |ω) as in the exact algorithm
mentioned in Proposition 1.

Proof Adding an element in a HLL set takes constant time, hence, to process
the activity HLL set of ω locations will be updated in O(ω). The size of the
HLL set is b irrespective of the number of elements in the set and thus, the
memory required to store ϕ(l) is O(|L|b). Hence, for all locations the memory
required is O(|L|2b). �

4.3 Single-Influencer based Influence Oracle

In this subsection, we go one more step further and develop an even more
efficient algorithm for a very special case. In real life, there may be situations
in which even one information carrier can spread information among locations.
Examples may include infections or information items in highly specialized
information networks with confidential information. Moreover, LBSN data is
often sparse, thus, usually, has a very low number of influence carriers. These
situations may also have been created artificially by lumping together multiple
traces for reasons of privacy; in such a situation a single visit trace may actually
correspond to multiple visitors. Thus, in such situations, we may have to rely
on single carriers as a proxy for larger unobserved streams of people.

In this section, for this special case, we provide two approximate but more
efficient algorithms; an on-line algorithm called On-Sin and an off-line but far
more efficient algorithm called Off-Sin for solving the influence oracle problem.

4.3.1 On-Sin approach

The On-line Single influencer based influence oracle (On-Sin) approach is
based upon the simple observation that for τ = 1, we do not need to maintain

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 Muhammad Aamir Saleem et al.

t = 5 t = 3 t = 2 t=1

Activity: (d,H2, 5)
(i,H1, 3)
(d,M1, 3)

(i,M1, 2)
(d,H1, 2)

(i,H2, 1)
(d,H2, 1)

Hf (d) : {(H2, 5)} (H2, 5),
(M1, 3)

{(M1, 3),
(H1, 2)}

{(M1, 3),
(H1, 2),
(H2, 1)}

Hf (i) : {} {(H1, 3)} {(H1, 3),
(M1, 2)}

{(H1, 3),
(M1, 2),
(H2, 1)}

φ(H1) : {} {} {M1} {M1}
φ(H2) : {} {} {} {H1,M1}
φ(M1) : {} {H2} {H2,M1} {H2,M1}

Fig. 3: An example of updating location influence set for locations H1,H2 and
M1 for τ = 1 and ω = 2 by processing data in reverse order of time using
Off-Sin algorithm.

the bridging visitor set VB(s, d) for locations s and d, because even one visitor
implies influence and hence the location influence set φ(s) can be directly
maintained by adding d whenever a user u visits d within ω time after visiting
s. Hence, in the special case we do not need to maintain the complete location
summary ϕ(s) and directly maintain φ(s).

Furthermore, in order to find the most influential locations, we just need
the cardinality of the location influence summary. Hence, we can replace φ(s)
by a HyperLogLog(HLL) sketch. The memory required to store {φ(l)|l ∈ L}
is O(|L|b) as for every location we just keep a HLL sketch. Please note that
the time required to process an activity still remains the same at O(ω) as
in the worst case we still need to iterate over ω locations in the user visit
history. Next, we provide an approach in which we could actually store an
approximation of the user visit history to provide tremendous speedups.

4.3.2 Off-Sin approach

The Off line Single influencer based influence oracle (Off-Sin) algorithm is
based on the observation that while processing an activity (u, s, t), if we know
all the future locations u will visit during time t to t+ω, then we can directly
add those locations in the location influence set φ(s). In order to achieve this,
we process all the activities in reverse order of time. As we are going reverse
in time we cannot run this algorithm incrementally for new activities hence it
is an off-line algorithm. A simple case is shown in the following example.

Example 9 Consider the activities of users i and j given in Figure 1. We process
the activities of these users in reverse order of time. Figure 3 shows the update
of φ(l) and Hf (u) for each activity. For sake of understanding, we represent
the exact sets in the example but for the efficient algorithm the sets φ(s) and
Hf (u) are approximated with HLL and vHLL sets respectively. At time t = 3,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 23

Algorithm 4: Off-Sin: Location Influence summary by using modified
HLL for τ = 1
1 Input: Activity list A.
2 Output: φ(s) ∀s ∈ L
3 begin
4 Sort A in decreasing order of time.
5 φ(s)← HLL ∀s ∈ L
6 uf ← vHLL ∀u ∈ U
7 foreach (u, s, t) ∈ A do
8 φ(s)← φ(s) ∪ subset(Hf (u), t,ω)

9 Hf (u).add(s, t)

location H2 is added into influence set φ(M1) as (H2, 5) was in Hf (d) and
hence is within time window 2. Hf (d) and Hf (i) is updated as well. Note at
time t = 2, Hf (d) is pruned and (H2, 5) is removed as it is out of window from
current time.

Now, instead of the visit history H(u), we maintain the future visit history
represented by Hf (u). At time t, Hf (u) = {(s, t′)|t′ ≥ t, t′ − t ≤ ω, (u, s, t′) ∈
A, @t′′ : t ≤ t′′ < t′∧(u, s, t′′) ∈ A}. That is, the future visit history Hf (u) of a
user u, maintains every location a user u visits in future and the earliest time
in future the user visits that location. We can see that adding all locations
Hf (u) that will be visited by u in φ(s) is much more efficient than adding s to
φ(d) for all locations d in H(u). This is because now for every activity (u, s, t),
instead of updating summaries of all locations in H(u) we need to just update
the summary of s by merging it with Hf (u). Furthermore, we do not need the
individual locations anymore in history, but only their cardinality. Thus, we
can approximate the set Hf (u).

Now, while processing an activity (u, s, t), we update φ(s) and add all the
locations, d in Hf (u) for which Hf (u) − t ≤ ω. We do not need to iterate
over the elements of the set Hf (u) but just need a subset of Hf (u) to get
elements added during current time and a time window ω. Using a versioned
HyperLogLog sketch (vHLL) [19], we can achieve such a time window based
approximate set with much less memory and time requirements. vHLL is an
extension of the HLL data structure which approximates a set and allows to
get the cardinality of the set based on a specified time window. While adding
an element, vHLL also maintains the time of addition of the element. vHLL
provides a subset function which takes time t and window ω as an input and
produces an HLL representation of a set. This set consists of elements that
were added in vHLL during time t and t+ ω.

Algorithm 4 represents the off-Sin batch algorithm. We go through ac-
tivities list A in reverse order. We treat the activities with later time
stamps working our way from the end to the start of the log. The functions
subset(Hf (u), t,ω) at line 8 and Hf (u).add(d, t) at line 9 are functions pro-
vided by vHLL.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

24 Muhammad Aamir Saleem et al.

Off-Sin On-Sin

Memory
Time

Oracle
Time
Query

Memory
Time

Oracle
Time
Query

MA O(b(|L|+ |U | logω))
O(b log(ω)|A|) O(|S|b) O(b|L|+ |U |ω)

O(ω|U ||A|) O(|S|b)
MR O(b(|L|+ |U | logω) + |L||U |) O(b(|L|+ |U | logω) + |L||U |)

Table 3: Time and Space complexities for Single influencer-based Influence.

Proposition 6 The time required to process an activity by Off-Sin in Algo-
rithm 4 is O(b log(ω)). The memory requirements to maintain Hf (u) improves
from O(ω) to O(b log(ω)).

Proof The time required to process an activity will be equal to the time re-
quired to find subset in line 8 and then updating Hf (u) at line 9. According
the time complexity of vHLL given by Kumar et al. in [19], the add function
takes O(logω) time and the subset function takes O(b log(ω)) time. The sub-
set function returns a HLL sketch and φ(s) is also a HLL sketch, the union
of two HLL sketches takes O(b) time. Hence, the total time complexity of
Algorithm 4 is O(b log(ω) + log(ω) + b) = O(b log(ω)). Hf (u) is a vHLL set
and as given by Kumar et al. in [19] the memory required by a vHLL set is
O(b log(ω)). �

5 Location Influence Maximization

In this section, we show that the influence oracle can be used for finding
the most influential locations. We utilize the influence oracle and apply the
standard greedy algorithm to compute top-k as obtaining an exact solution is
intractable as the next proposition states.

Proposition 7 The following problem is NP-hard for all influence models:
given an LBSN and bounds k and β, does there exist a set of locations S of
size k such that |φ(S)| ≥ β.

Proof NP-hardness follows from a reduction from set cover. Consider an in-
stance S = {S1, . . . ,Sm} with all Si ⊆ {1, . . . ,n} and bound k of the set
cover problem: does there exist a subset S ′ of S of size at most k such
that

⋃
S ′ = {1, . . . ,n}. We reduce this instance to a LBSN as follows:

L = {l1, . . . , ln}∪{s1, . . . , sm}, U = {u1, . . . ,um}, F = ∅, A = {(ui, si, 0) | i =
1 . . .m} ∪ {(ui, lj , j) | i = 1 . . .m, j ∈ Si}. That is, every element j of the
domain {1, . . . ,n} is associated to a location lj , and for every set Si we intro-
duce a location si visited by user ui at time 0. Furthermore, user ui visits all
locations lj such that j ∈ Si at time stamp j. If we use the absolute model
with τ = 1 and ω ≥ n + 1, for i = 1 . . .m, φ({si}) = {lj | j ∈ Si}. As such
there exists a set cover of size k if and only if there exists a set of locations S
of size k such that |φ(S)| = n. �

Recall that the influence of a set of locations S is computed by accumu-
lating the effect of all locations in S. It is hence possible that two locations s

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 25

and s′ separately do not influence a target location d because individually they
have too few bridging visitors to d, but together they reach the threshold. This
situation occurs for instance in Figure 1, for the locations H2 and M1. These
locations individually do not reach the threshold to influence H1 for τA = 2
and ω = 1. However, together they do. One inconvenient consequence of this
observation is that the influence function that we want to optimize is not sub-
modular [22]. Indeed, in the example above, adding H2 to the set {M1} gives
a higher additional benefit (1 more influenced location) than adding H2 to {}.
Therefore, we do not have the usual guarantee on the quality of the greedy
algorithm for selecting the top-k.

The main reason that we do not have the guarantee is that the benefit is not
gradual; before the threshold is reached it is 0, after the threshold is reached it
is 1. This means that a location that has τ − 1 bridging visitors to 1000 other
locations each, gives the same benefit as a location that does not have any
bridging visitors. Clearly, nevertheless, the first location is more likely to lead
to a good solution if later on additional locations are selected. Therefore, we
would like to incorporate potential future benefits into our objective function.
Thus, in order to compute the influence of a location, we consider locations
that are influenced as well as those locations that are not yet influenced but
have potential to be so in future. To characterize the potential of future benefit
in combination with the number of influenced locations, we use the following
formula:

LI(S) = (1− α)× |φ(S)|+ (α)×
∑

d∈L−S

(min{|B(S, d)|, τ}) (7)

In this formula, α = [0, 1] represents a trade-off between the number of influ-
enced locations and a reward for potentially influenced locations. For relative
models, we replace the |B(S, d)| with |B(S, d)|/|V (d)|.

Next, we apply a greedy method on the basis of location influence to find
top-k locations. We start with an empty set S of locations and iteratively add
locations to it until we reach the required number of top elements: k. We start
with an empty set S of locations and iteratively add locations to it until we
reach the required number of top elements: k. In each step, for each location
s ∈ L, we evaluate the effect of adding s to S, and keep the one that gives the
highest benefit LI(S). Then, we update S ← S ∪ {l}.

Example 10 Consider the case in Figure 2 for ω = 1, ϕ(H2) =
{(H1, {d}), (M1, {i})}, ϕ(M1) = {(H1, {i})} and ϕ(H1) = {(M1, {d})}. We
aim to find top-2 locations in this example with α = 0.1 and τ = 2. Dur-
ing the first iteration, LI(H2) = 0.9 × 0 + 0.1 × (1 + 1) = 0.2, because
H2 does not completely influence any other location, however H1 and M1

are potentially influenced locations for the bridging visitors d and i, re-
spectively. Similarly, LI(M1) = 0.1 and LI(H1) = 0.1. Thus, we choose
H2 as first seed as it has maximum value. In the next iteration, we first
combine the seed H2 with M1 and compute the combined influence. Here,
LI({H2,M1}) = 0.9 × 1 + 0.1 × (2) = 1.1. Similarly, LI({H2,H1}) = 1.1 .

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

26 Muhammad Aamir Saleem et al.

Fig. 4: [25]An example of ambiguous location ids: GPS coordinates of
13 location-ids in FourSquare corresponds to a single, unique location on
GoogleMaps

Users Locations Check-ins POIs

FourSquare 16K 803K 1.928M 582K
BrightKite 50K 771K 4.686M 631K
Gowalla 99.5K 1.257M 6.271M 1.162M

Table 4: Statistics of datasets: number of users, location, visits and clustered
locations/POIs

Since M1 and H1 provide equal benefit of 0.9 when combined with H2, we can
randomly choose either M1 or H1 as second seed.

6 LBSN Data Analysis

The influence models of Section 3.2 have several parameters to set: τ , ω,
and θ. Furthermore, while defining the friendship-based bridging visitors, and
influence-friends based bridging visitors, the assumption was made that friends
tend to follow friends. Before going to the experiments, in this section, we show
how to set the thresholds with reasonable values based on an analysis of the
LBSN datasets given in Table 4 and verify and confirm the friendship assump-
tion.

Datasets. We used 3 real-world datasets : FourSquare [12], BrightKite,
and Gowalla [5]. Each dataset consists of two parts: the friendship graph and
an ordered list of check-ins. A check-in record contains the user-id, check-in
time, GPS coordinates of location, and a location-id. The statistics of the
datasets are given in Table 4.

Data Prepossessing. The real-life datasets required preprocessing be-
cause many locations are associated with multiple location identifiers with
slightly different GPS coordinates. Consider, for instance, Figure 4. In this
figure, 13 GPS coordinates that appear in the FourSquare dataset are shown
which correspond to different locations Ids in the dataset, but which clearly
belong to one unique location. In order to resolve this issue, we clustered GPS
points to get POIs. We used the density-based spatial clustering algorithm [21]
with parameters eps=10 meters and minpts=1 to group the GPS points. New

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 27

location Ids were assigned to each cluster for all 3 datasets. The statistics of
the new Ids are reported in column POIs of Table 4.

6.1 Setting parameters for the influence models

In order to determine the value of influence window threshold ω, we measured
the time difference between consecutive visits of users to distinct locations. The
cumulative distribution functions (CDF) for three LBSNs are given in Figure
5. It can be seen that for all LBSNs in our study, 80% of the consecutive
activities are performed within 8 hours. After that, there is only a moderate
increase in the number of activities with respect to the time interval. Thus, in
order to capture only the most common activities, we keep ω = 8. However,
it can, of course, be changed if the data distribution is different, or there are
different user or application requirements.

Next, we find suitable values for the thresholds of the influence mod-
els. In order to do that, we considered all the influence models, i.e.,
MDA,MDR,MFA,MFR,MIA, and MIR, for each pair of locations with at
least one bridging visitor. The cumulative distribution functions for each of
these numbers are depicted in Figure 6. We can utilize the CDF values for
controlling the number of influences in the dataset, and thus also for finding
the suitable values for thresholds in our models. The values of the thresholds
are an application-dependent choice and can be considered accordingly. For
example, if an application requires finding many influential relationships and
indirectly many influential and influenced locations, then a lower threshold
should be considered and vice versa. In this paper, we consider the top 20%
influential relationships among locations for all the models. To do that for
each influence model, we consider the CDF value of 0.8 (100%-20%=80%)
as its threshold. Therefore, the values of τDA, τDR, τIA, τIR, τFA and τFR are
2, 0.6, 4, 0.6, 120 and 0.6, as shown in Figures 6a, 6b, 6c and 6d, 6e and 6f,
respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

time (in hrs)

FourSquare
BrightKite

Gowalla

Fig. 5: CDF of time difference between consecutive visits of users to distinct
locations

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28 Muhammad Aamir Saleem et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

C
D

F

|BD|

FourSquare
BrightKite

Gowalla

(a) MDA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

|BD| / |VD|

FourSquare
BrightKite

Gowalla

(b) MDR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

|BI|

FourSquare
BrightKite

Gowalla

(c) MIA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

|BI| / |VI|

FourSquare
BrightKite

Gowalla

(d) MIR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

|BF|

FourSquare
BrightKite

Gowalla

(e) MFA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

|BF| / |VF|

FourSquare
BrightKite

Gowalla

(f) MFR

Fig. 6: Cumulative distribution function (CDF) of thresholds for corresponding
influence models. All locations pairs having at least one bridging visitors are
considered and CDF values of the threshold based on the bridging visitors of
these locations and visitors of the destination locations are plotted.

6.2 Mobility analysis of friends

In real life, usually activities of friends are more similar than activities of
non-friends. In LBSNs, this implies that a visit of a user to a location in-
creases the chances of visits of her friends to the same location. We considered
this assumption when constructing our friendship-based bridging visitors and
influenced-friends based bridging visitors in Section 3.1.2 and Section 3.1.3, re-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 29

 0

 0.005

 0.01

 0.015

Brooklyn Manhattan PittsburghWashington

C
o

rr
e

la
ti
o

n

Regions

Non-Friends
Friends

(a) FourSquare

 0

 0.01

 0.02

 0.03

Brooklyn Manhattan PittsburghWashington

C
o

rr
e

la
ti
o

n

Regions

Non-Friends
Friends

(b) BrightKite

 0

 0.03

 0.06

 0.09

Brooklyn Manhattan PittsburghWashington

C
o

rr
e

la
ti
o

n

Regions

Non-Friends
Friends

(c) Gowalla

Fig. 7: Jaccard index based correlations of activities of friends and non-friends
users.

spectively. We now show the correctness of this assumption by computing the
correlations between activities of users, their friends and non-friends: Let Lu

and Lv be the locations visited by users u and v, respectively. The correlation
between activities of u and v is measured by the Jaccard Index [3] between
Lu and Lv given by |Lu ∩ Lv|/|Lu ∪ Lv|. The average correlation of activities
of users and those of their friends is denoted friendship correlation (pfcorr),
and the average correlation between activities of users and their non-friends is
denoted non-friendship Correlation (pnfcorr). In order to avoid an unreasonable
bias due to the fact that friends tend to live in the same city, we restricted
our computation of the average non-friendship correlation to users in the same
city. We picked four regions of the United States, i.e., Brooklyn, Manhattan,
Pittsburgh, and Washington and considered the activities of users in these
regions to study the correlations. The statistics of pfcorr and pnfcorr of all the
users are given in Figure 7. The figure presents boxplots without outliers. It
can be seen that the median of pfcorr, even though still small, is up to 5 times
larger than of pnfcorr. The same pattern is observed for all the datasets. This
validates our assumption that the activities of friends are more similar than
those of non-friends.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Influence Probability

FourSquare
BrightKite

Gowalla

Fig. 8: CDF of Influence Probabilities of all the pairs of influential and influ-
enced users

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30 Muhammad Aamir Saleem et al.

Although the activities of friends are more correlated than those of non-
friends, even between friends the correlation between the sets of locations they
visited is low. Thus, in order to tackle this, we considered only the potential
influenced friends rather than all friends. To do that we computed the influence
probabilities of users among each other using the method given in Section 3.1.3.
We plotted the CDF of these influence probabilities and found a suitable value
for the influence threshold, as shown in Figure 8. The value of the influence
threshold depends on the application. For example, a higher value would be
given to θ if a stronger relationship among influential and influenced users is
expected. In this paper, we assume that users having influential probabilities
in the top 20% will follow the influential users within ω. Thus, by default, we
consider θ = 0.2. However, the insights for location influence with respect to
different values of θ are also shown in Section 7.2.

7 Evaluation

In this section, we evaluate the notions defined in Section 3 and the algorithms
introduced in Section 4 and Section 5, respectively.

Experiment settings. We conducted our experiments on a Linux machine
with 4 AMD Opteron 6376 processors with 2.3GH and 512 GB RAM. The
algorithms 1 are implemented in Scala. The description and preprocessing of
the datasets used for the experiments are given in Section 6.

Base-line competitors: To evaluate the effectiveness, we consider the
most relevant state-of-the-art influence maximization method, called Influence
Reachability Set (IRS) [19]. For each node u, IRS fetches all the nodes which
are reachable from u based on the temporal path [29] within a given time
window. Once the influence reachability sets of all the nodes are obtained, the
top-k most influential nodes are found using the standard greedy algorithm
such that the combined influence reachability set size of these nodes is the
maximum. We consider this algorithm for comparison with our models due
to following common features: 1) the model of capturing interactions among
users based on their activities, 2) consideration of temporal sliding window for
influence estimation, 3) using a standard greedy algorithm for finding top-k
influential nodes. The IRS method is used for finding the influence of users
among each other based on their activities. However, in our approach, we
consider bridging visitors for constructing relationships among locations. In
order to evaluate IRS on LBSN data, we propose the two methods below for
constructing location interaction graphs. We then run the IRS algorithm for
finding top-k influential locations.

– Location interaction graph: In this approach, we use the check-in data
to generate a graph of interactions between locations. An interaction graph
is a graph where the edges between the vertices are timestamped and rep-
resents an interaction between the node at that time-stamp. In LBSN data,

1 Code of the algorithms are given at: https://github.com/rohit13k/LBSNAnalysis

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 31

(a) MIA for k=10,
spread=78 locations

(b) IRS for k=10, spread=
53 locations

(c) IRS−window for k=10,
spread=62 locations

(d) MIA for k=15,
spread=92 locations

(e) IRS for k=15,
spread=55 locations

(f) IRS−window for k=15,
spread=63 locations

(g) MIA for k=20,
spread=102 locations

(h) IRS for k=20,
spread=63 locations

(i) IRS−window for k=20,
spread=66 locations

Fig. 9: Influenced locations w.r.t. to different number of top-k influential loca-
tions fetched by MIA, IRS, and IRS − window in NYC for BrightKite.

we consider two locations l1, l2 are interacting at time stamp t when a user
does consecutive check-ins (l1, t′) and (l2, t). The method of finding top-k
influential locations using IRS on location interaction graph is denoted by
IRS.

– Time window based location interaction graph: Usually, influence
remains active within a particular time. Hence, we consider this observation
for constructing interactions of locations from the LBSN data. We consider
an interaction between two locations l1, l2 at time stamp t if a user u
performs consecutive check-ins (l1, t′) and (l2, t) such that t− t′ ≤ ω. The
method of finding top-k influential locations using IRS on time window
based location graph is denoted by IRS − window.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

32 Muhammad Aamir Saleem et al.

Location correlation graph with PageRank: In this approach, we
construct a location correlation graph [26] for a given LBSN. An edge between
two locations in a location correlation graph exists if the number of common
visitors between them is greater than a threshold. Since, we take the value of
τ = 2 for the absolute influence model so, we take the same value, i.e., 2 for the
threshold. We then use the Jaccard index to compute the edge weights based
on the common visitors and the visitors of the locations. Once the location
correlation graph is created, we run the PageRank algorithm to find the top-k
locations having the highest PageRank values. This approach is denoted by
PR−LCG. The idea behind using the location correlation graph is to evaluate
the significance of our proposed models for capturing the location influence.

7.1 Qualitative significance of the Location Influence

In order to demonstrate our notion of location influence, we compared the re-
sults of our method using the absolute influence friends based bridging visitor
model (MIA) with IRS and IRS − window. To do that, we considered the
activities performed in New York and fetched top-k influential locations for
k=10, 15, 20 using MIA, IRS and IRS−window. We then plotted the coordi-
nates of the influenced locations of the top-k influential locations using Google
Map, as shown in Figure 9. In the figure, it can be observed that MIA leads to a
set of locations with a larger spread as compared to the other two approaches,
both geographically and in terms of the number of influenced locations. It can
further be seen that the difference of influenced locations increases with an
increasing value of k. This shows the significance of our proposed method. All
the datasets show similar trends. Thus, due to space limits, the results are
only shown for the BrightKite because of its median data size and check-in
density among all three datasets.

7.2 Comparison of Influence Models

Influence spread prediction: Next, we evaluated the influence spread pre-
diction ability of all the models and compared the results with the baseline
approaches. To do that, we divided the activities based on time such that each
part is composed of the activities of one month. We computed the seeds on one
part of the dataset called training set and found their spread on the next part
in the sequence called test set. MA was used to compute the influence on the
test set. To compare the results, we computed and compared the number of
influenced nodes for the top-k influential locations where k=1, 3, 5, 10, 15, and
20. We iteratively repeated the experiment for all the parts of activities and
reported the total spread of all of these iterations for each value of k. The re-
sults are shown in Table 5. Here, it can be observed that our proposed models,
outperformed both IRS and IRS −window for all the values of k, for all the
three datasets. Further, our proposed models also outperformed PR−LCG for

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 33

Dataset K
Number of Influenced Nodes

Absolute Influence Model Relative Influence Model
IRS IRS-window PR-LCG

MDA MFA MIA MDR MFR MIR

FourSquare

1 89 37 98 66 66 66 79 71

N/A

3 190 116 195 159 160 159 82 105
5 230 117 255 216 196 216 121 116
10 322 159 361 273 260 273 124 167
15 380 200 421 307 288 307 130 174
20 432 255 495 330 326 330 132 191

BrightKite

1 662 657 671 648 655 648 512 537 657
3 943 882 959 896 882 896 613 743 924
5 1,153 9,67 1,112 1,041 994 1,041 666 835 1,100
10 1,458 1,140 1,465 1,269 1,259 1,269 749 1,027 1,437
15 1,717 1,257 1,686 1,449 1,444 1,449 821 1,171 1,693
20 1,921 1,381 1,951 1,589 1,570 1,589 867 1,275 1,928

Gowalla

1 676 111 982 446 405 446 453 613

N/A

3 1804 153 1787 1129 1212 1129 821 1072
5 2834 238 3087 1772 1716 1772 997 1134
10 4875 860 5197 3302 3218 3302 1116 1445
15 6236 1395 6767 4136 3645 4136 1244 1854
20 7460 1877 8165 4668 4119 4668 1452 2015

Table 5: Influence spread of top-k influential locations fetched by the proposed
influence models, IRS, IRS − window and PR − LCG. The check-ins are
divided on monthly basis. The influential keys are fetched on one part and
spread is computed on the next part in the sequence. The process is iteratively
repeated for all the months and the total influence spread for each value of k,
for each dataset is depicted.

BrightKite. We only computed PR− LCG for BrightKite due to intensive
computation time, i.e., more than 48 hours, required for constructing the loca-
tion correlation graph. For all the methods, the difference in spread increases
with an increasing value of k. Overall, the top-k influential locations fetched
by the absolute influence models influenced more locations as compared to the
relative influence models. More specifically, the spread of MIA is up to 45%
more than MDA, 700% more than MFA, and 400% more than IRS−window.
The reason is that unlike the MDA and MFA, MIA incorporate the friends
of bridging visitors that have potential to become bridging visitors in future.
The relative models filter out the excessive influence of popular locations thus
the influence spread of the models is almost same.

Computational resources. We compared the computation time and
memory requirements for the influence models. The results are shown in the
Table 6. Here, it can be observed that the computation time for MIA is more
than MDA. The reason is that for the influenced-friends based bridging vis-
itors, we further need to compute the influence probabilities of users among
each other which requires more computation time. Since we incorporate the

Dataset
Time Memory

MDA MFA MIA MDA MFA MIA

FourSquare 596 2,220 1,140 29,562 77,334 29,654
BrightKite 808 4,363 1,259 30,199 228,391 30,602
Gowalla 2,957 Out of Memory 6,973 186,363 Out of Memory 189,195

Table 6: Computation time and memory for all influence models.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

34 Muhammad Aamir Saleem et al.

FourSquare Gowalla

mean ±σ mean ±σ
b=64 b=128 b=256 b=64 b=128 b=256

R
el

.
er

ro
r MDA 0.03 ± 0.15 0.01 ± 0.01 0.01 ± 0.06 0.03 ± 0.17 0.01 ± 0.12 0.01 ± 0.01

MFA 0.26 ± 0.45 0.19 ± 0.34 0.15 ± 0.35 Out of Memory
MDR 0.05 ± 0.21 0.05 ± 0.21 0.05 ± 0.2 0.17 ± 0.41 0.17 ± 0.41 0.17 ± 0.4
MFR 0.05 ± 0.21 0.05 ± 0.21 0.05 ± 0.21 Out of Memory

Table 7: Accuracy (relative error) for approximate algorithms w.r.t bucket
size.

influence-friends of the bridging visitors as well for constructing influence ora-
cle thus more memory is consumed. The computation time and memory con-
sumption of MFA is more than both other models. The reason is that for
friends-based bridging visitors, we incorporate all the friends of bridging visi-
tors which largely increases the bridging visitor set. Thus, it requires more time
to process and more memory to maintain the set for constructing influence or-
acle. The base line competitors, IRS, IRS−time and PR−LCG require more
computational resources in comparison with all the influence models. The rea-
son is that an intensive computation is required for constructing the location
interaction graph, the time window based location interaction graph, and the
location correlation graph for IRS, IRS− time, and PR−LCG, respectively.

Conclusion: Our proposed models outperformed baseline competitors in
terms of influence spread as well as required computational resources. Over-
all, the absolute models performed better than the relative models. In case
of the relative models, MDR should be chosen as it needs minimum computa-
tional resources but yields the same influence as other models. For the absolute
models, although MIA requires more computational resources, but yields the
maximum influence. On the other hand, MDA requires fewer resources but
the influence spread is also lower. MFA is the worst in terms of computational
resources and influence spread. Thus, the choice of the model among MIA and
MDA can be made by considering the trade-off between computational re-
sources and influence spread, i.e., if a higher influence spread is more desirable
than computational resources then MIA should be chosen, and vice versa.

7.3 Approximations for MDA and MFA

Next, we analyzed the approximate algorithms for constructing influence oracle
for MDA and MFA. We analyzed the impact of approximation on accuracy,
computation time and memory. The results are similar for all the datasets and
hence we only present results for the smallest and the biggest datasets, i.e.,
FourSquare and Gowalla, respectively.

Approximation accuracy. For every location with a non-empty influence
set, we used the HLL-based approximate version of the Oracle to predict the
size of the influence set. Then the relative error as compared to the real size was
computed for every location. In Table 7 the mean and standard deviation of
this relative approximation error over all locations with a non-empty influence

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 35

are given. The experiments are performed for MDA,MFA, MDR, and MFR.
We ran the experiments for different numbers of buckets (b) for the HLL
sketch, being, 64, 128 and 256. It can be seen in the table that the errors are
unbiased (0 on average) and the standard deviation decreases as the number of
buckets increases. The error is a bit higher for MR as compared to MA because
in the relative model the influence is computed by taking the ratio of two
approximated set cardinalities. Values for b beyond 256 yielded only modest
further improvements and hence we used b = 256 in all further experiments.
The results for MFA and MFR for the Gowalla could not be computed due to
the huge memory requirement.

Time and space consumption. Next, we analyzed the computation
time and memory requirements for the approximate approach by computing
the influence oracles for MD and MF . The results are shown in Table 8. It
can be observed that time and memory increase with increasing number of
buckets b. Furthermore, it can also be observed that the approximate approach
outperformed the exact approaches in computation time and memory given in
Table 6. The improvement for MF in the computation time is two folds while
using only 18% of memory. Due to the sparsity of data, however, the gain for
MD is less, i.e., 63% of the time and 48% of the memory is required by the
approximate approach as compared to exact one. This is because the sizes of
the sets of bridging visitors are very modest. The results for Gowalla for MF

could not be computed by the exact algorithm due to insufficient memory.
However, for all the bucket sizes the approximate algorithm computes it by
taking less than half of the available memory.

7.4 Effects of parameters: ω and τ

Computation time. We studied the runtime of the algorithms on all the
datasets for different values of ω := 8, 20 and 50. Considering the significant
improvement of the approximate algorithms in computational resources with-
out compromising on accuracy, for all further experiments, we use approximate
variants for MDA and MFA. However, the exact algorithm for MIA is used as
we do not have its approximate variant. The average runtime for processing
all the activities (Tp) under the models varies only depending on the influence
models, i.e, whether or not we consider friends; it does not depend on τ . Also,
the oracle query time (Tq) is independent of τ and the influence model. The

FourSquare Gowalla

b=64 b=128 b=256 b=64 b=128 b=256

Time
MDA 378 428 544 2,031 2,605 2,499
MFA 928 955 993 9,479 9,685 9,912

Memory
MDA 14,275 18,636 27,372 89,418 116,847 171,908
MFA 14,569 18,943 27,726 90,793 118,173 172,985

Table 8: Time (sec) and memory (MB) required by the approximate algorithms
w.r.t, bucket size.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

36 Muhammad Aamir Saleem et al.

 0

 300

 600

 900

 1200

8 20 50

T
p

 (
s
e

c
)

ω (hours)

Tp (MDA)
Tp (MFA)
Tp (MIA)

(a) FourSquare

 0

 2000

 4000

 6000

8 20 50

T
p

 (
s
e

c
)

ω (hours)

(b) BrightKite

 0

 3000

 6000

 9000

8 20 50

T
p

 (
s
e

c
)

ω (hours)

(c) Gowalla

Fig. 10: Total Time (Tp) in seconds w.r.t. ω to process all activities for τ = 2
under MDA, MFA and MIA models.

run times for processing all the activities are shown in Figure 10 for the three
datasets FourSquare, BrightKite and Gowalla. The running time increases
with increasing influence window size ω as more locations from the visit his-
tory remain active. Running time is higher in the MF which is not surprising
either as the number of users to include in the bridging visitors sets increases
due to the addition of friends. For the MI , we needed to find influenced users
of bridging visitors thus computation time is higher as compared to MD. The
time taken to process Gowalla dataset is the highest as it has the largest
number of locations.

Memory consumption. We also studied the memory required by the ap-
proximation algorithm on all the datasets for different values of ω := 8, 20 and
50. Unlike for the processing time, the average memory required to process all
the activities under MD and MF does not vary based on whether we consider
friends or not. This is because the HLL sketch storing the bridging visitor
set size remains constant in size even if a larger number of users is added to
it. The memory requirement increases slightly with ω as more locations are
getting influenced due to a larger influence window. The results are shown
in Figure 11. The total memory requirements increased linearly with time as
new locations came in over time for which a complete influence summary was
needed to be maintained. We further pruned the outdated locations in the visit
histories thus, over time the size of user history remained constant as shown
in Figure 12.

 0

 10

 20

8 20 50

M
e

m
o

ry
 (

G
B

)

ω (hours)

MDA
MFA

(a) FourSquare

 0

 10

 20

 30

8 20 50

M
e

m
o

ry
 (

G
B

)

ω (hours)

MDA
MFA

(b) BrightKite

 0

 50

 100

 150

8 20 50

M
e

m
o

ry
 (

G
B

)

ω (hours)

MDA
MFA

(c) Gowalla

Fig. 11: Total Memory in GB w.r.t. ω to process all activities for τ = 2 under
MDA and MFA.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 37

 0

 10000

 20000

 30000

 40000

 50000

 1000 2000 3000 4000

N
o

.
o

f
u

s
e

rs

Activities (in 10
3
)

Without cleanup
With cleanup

Fig. 12: User visit history set size growth w.r.t to number of activities processed
with and without cleanup process.

7.5 Single-Influencer based Location Influence

Next, we present the resource requirements of the algorithms for construct-
ing single-influencer based influence oracles. The memory consumption by the
On-Sin and the Off-Sin algorithms is shown in Figure 13. Since the mem-
ory requirement for the algorithms is log(ω), thus a very modest change in
the memory with respect to different values of ω was observed. The Off-Sin
requires less memory as compared to the On-Sin. The reason is that for the
Off-Sin, we consider the activities in reverse order of time, so we approximate
the user history using the probabilistic data structure. However, for On-Sin,
we maintain the exact user history which requires more memory. The differ-
ence of time and memory requirements among On-Sin and Off-Sin is modest
because of the data sparsity and small window size. However, these algorithms
for the special case outperformed the approximate algorithm for all influence
models (shown in Figure 11) up to 22x in memory consumption. The reason
is for the special case we do not maintain the bridging visitor set because the
influence is spread by a single carrier, and thus the memory is saved.

The computation time by the On-Sin and Off-Sin are shown in Figure 14.
Here, it can be observed that for the Off-Sin algorithm, like for memory con-
sumption, there was a modest improvement in computation time as compared
to the On-Sin. Similarly, both of these algorithms required up to 20x less

 0

 200

 400

8 20 50

M
e

m
o

ry
 (

M
B

)

ω (hours)

Off-Sin
On-Sin

(a) FourSquare

 0

 200

 400

8 20 50

M
e

m
o

ry
 (

M
B

)

ω (hours)

(b) BrightKite

 0

 200

 400

 600

8 20 50

M
e

m
o

ry
 (

M
B

)

ω (hours)

(c) Gowalla

Fig. 13: Comparison of memory consumption for Off-Sin and On-Sin

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

38 Muhammad Aamir Saleem et al.

 0

 50

 100

8 20 50

T
im

e
 (

S
e

c
)

ω (hours)

Off-Sin
On-Sin

(a) FourSquare

 0

 100

 200

8 20 50

T
im

e
 (

S
e

c
)

ω (hours)

(b) BrightKite

 0

 200

 400

8 20 50

T
im

e
 (

S
e

c
)

ω (hours)

(c) Gowalla

Fig. 14: Comparison of computation time for Off-Sin and On-Sin

computation time as compared to the approximate algorithm for all influence
models (shown in Figure 10).

7.6 Influence Maximization

Influence of α. Our next goal is to study how the influence maximization
algorithm performs for different values of α. In order to avoid data sparsity
issues, we filtered out those locations which have only one visitor from all the
datasets. We tested the spread of top 200 locations obtained by considering
values of α from 0.01 to 0.99. We observed that the number of bridging visitors
per location is highly skewed as can be learned from Figure 6a. Due to this,
the potential influenced locations having few bridging visitors are less likely
to affect the influenced set of the locations. The effect of varying alpha on the
influence spread is shown in Figure 15. As expected for these sparse datasets,
our algorithms performed best with a lower value of α. We use α = 0.03 for
our experiments.

Computation time. We study the computation time for finding top-k
influential locations under all influence models. The runtime is close in the
both MA and MR. The time increases with k. Nevertheless, the increase is
modest; for instance, finding the top-50 locations takes less than 2 minutes for
FourSquare. We report the results in Table 9.

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

S
p

rd
 /

 M
a

x
.

s
p

rd

α

FourSquare
BrightKite

Gowalla

Fig. 15: Plot of ratio of total influence spread w.r.t. alpha (200 seeds).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 39

τ
Time (sec)

FourSquare BrightKite Gowalla

k = 10 k = 20 k = 50 k = 10 k = 20 k = 50 k = 10 k = 20 k = 50
τDA = 2 37 40 120 24 50 218 132 213 723
τDR = 0.6 108 101 180 84 132 545 521 525 778
τIA = 5 10 18 60 15 32 208 70 173 706
τIR = 0.6 50 45 99 37 73 177 292 346 563
τFA = 120 19 61 525 35 553 7776 181 1168 19302
τFR = 0.6 68 96 591 201 151 591 450 557 1386

Table 9: Time taken to find top k locations.

8 Conclusion and Future Work

In this paper, we introduced a location influence maximization approach that
can be used to optimize outdoor marketing strategies such as finding optimal
locations for advertising products to maximize the geographical spread. In or-
der to do that, we captured the interactions of locations on the basis of their
visitors to compute the influence of locations among each other. We provided
two models namely the absolute influence model and the relative influence
model. We further provide three variants of these models that incorporate the
social graph and consider the friends of users that have potential to repeat
their activities in future, and improve the location influence up to 45%. We
proposed a data structure: influence oracle to efficiently compute the influence
of locations on the basis of these models for finding top-k influential locations.
In order to maintain this data structure, we first provided a set-based exact
algorithm. Then, we optimized the time and memory requirements of the al-
gorithms by utilizing a probabilistic data structure. We further introduced a
method in which single carriers can be used to spread the influence. For this
case, we provide two algorithms, an off-line and an on-line. With the help
of these algorithms, we further improved the computation time and memory
requirement by 20x and 22x, respectively. Finally, we provided a greedy al-
gorithm to compute the top-k influential locations. In order to evaluate the
methods, we utilized three real datasets. We first analyzed the LBSN datasets:
FourSquare, BrightKite and Gowalla to verify some claims and to provide
optimal values for thresholds of the influence models. Then, we evaluated our
approaches for the computation of the Oracle and finding top-k locations in
terms of accuracy, computation time, memory requirement and scalability. We
further show the effectiveness of our proposed models by comparing the in-
fluence spread of top-k locations fetched by our approach with that of two
variants of a state-of-the-art approach; IRS and IRS-window.

In the future, we plan to enrich location influence models by incorporating
the activities users perform with their friends in groups. Moreover, we aim to
provide distributed techniques for computing the Oracle data structures and
influences for the models.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

40 Muhammad Aamir Saleem et al.

Acknowledgments

This research has been funded in part by the European Commission through
the Erasmus Mundus Joint Doctorate “Information Technologies for Business
Intelligence - Doctoral College” (IT4BI-DC). Rohit Kumar is supported by
Fonds de la Recherche Scientifique-FNRS under Grant no T.0183.14 PDR.

References

1. A. AlDwyish, E. Tanin, and S. Karunasekera. Location-based social networking for
obtaining personalised driving advice. In SIGSPATIAL, 2015.

2. P. Bouros, D. Sacharidis, and N. Bikakis. Regionally influential users in location-aware
social networks. In SIGSPATIAL, 2014.

3. R. R. Braam, H. F. Moed, and A. F. Van Raan. Mapping of science: Critical elaboration
and new approaches, a case study in agricultural biochemistry. In Informetrics, 1988.

4. W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks.
In KDD, 2009.

5. E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: User movement in
location-based social networks. In KDD, 2011.

6. E. Cohen, D. Delling, T. Pajor, and R. F. Werneck. Sketch-based influence maximization
and computation: Scaling up with guarantees. In CIKM, 2014.

7. T.-N. Doan, F. C. T. Chua, and E.-P. Lim. Mining business competitiveness from user
visitation data. In SBP, 2015.

8. P. Domingos and M. Richardson. Mining the network value of customers. In KDD,
2001.

9. N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable influence estimation in
continuous-time diffusion networks. In NIPS, 2013.

10. L. Ferrari, A. Rosi, M. Mamei, and F. Zambonelli. Extracting urban patterns from
location-based social networks. In SIGSPATIAL, 2011.

11. P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the analysis of a
near-optimal cardinality estimation algorithm. In DMTCS, 2008.

12. H. Gao, J. Tang, and H. Liu. Exploring social-historical ties on location-based social
networks. In AAAI, 2012.

13. M. Gomez-Rodriguez and B. Schölkopf. Influence maximization in continuous time
diffusion networks. In ICML, 2012.

14. A. Goyal, F. Bonchi, and L. V. Lakshmanan. Discovering leaders from community
actions. In CIKM, 2008.

15. A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence probabilities in social
networks. In WSDM, 2010.

16. A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach to social
influence maximization. In PVLDB, 2011.

17. N. T. Hai. A novel approach for location promotion on location-based social networks.
In RIVF, 2015.

18. D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a
social network. In KDD, 2003.

19. R. Kumar and T. Calders. Information propagation in interaction networks. In EDBT,
2017.

20. G. Li, S. Chen, J. Feng, K.-l. Tan, and W.-s. Li. Efficient location-aware influence
maximization. In SIGMOD, 2014.

21. Q. Liu, M. Deng, Y. Shi, and J. Wang. A density-based spatial clustering algorithm con-
sidering both spatial proximity and attribute similarity. In Computers and Geosciences,
2012.

22. L. LováSz. Review of the book by alexander schrijver: Combinatorial optimization:
Polyhedra and efficiency. In Oper. Res. Lett., 2005.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Towards Location Influence in Location-Based Social Networks ? 41

23. F. J. Mata and A. Quesada. Web 2.0, social networks and e-commerce as marketing
tools. In J. Theor. Appl. Electron. Commer. Res., 2014.

24. M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing.
In KDD, 2002.

25. M. A. Saleem, R. Kumar, T. Calders, X. Xie, and T. B. Pedersen. Location influence
in location-based social networks. In WSDM, 2017.

26. M. A. Saleem, X. Xie, and T. B. Pedersen. Scalable processing of location-based social
networking queries. In MDM, 2016.

27. X. Wang, Y. Zhang, W. Zhang, and X. Lin. Distance-aware influence maximization in
geo-social network. In ICDE, 2016.

28. Y.-T. Wen, P.-R. Lei, W.-C. Peng, and X.-F. Zhou. Exploring social influence on
location-based social networks. In ICDM, 2014.

29. H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path problems in temporal
graphs. Proceedings of the VLDB Endowment, 7(9):721–732, 2014.

30. H.-H. Wu and M.-Y. Yeh. Influential nodes in a one-wave diffusion model for location-
based social networks. In PAKDD, 2013.

31. C. Zhang, L. Shou, K. Chen, G. Chen, and Y. Bei. Evaluating geo-social influence in
location-based social networks. In CIKM, 2012.

32. T. Zhou, J. Cao, B. Liu, S. Xu, Z. Zhu, and J. Luo. Location-based influence maxi-
mization in social networks. In CIKM, 2015.

33. W.-Y. Zhu, W.-C. Peng, L.-J. Chen, K. Zheng, and X. Zhou. Modeling user mobility
for location promotion in location-based social networks. In KDD, 2015.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

