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Abstract As recent years have seen the rise of a new discipline commonly ad-
dressed as process mining, focused on the management of business processes,
two tasks have gained increasing attention in research: process discovery and
compliance monitoring. In both these fields, the demand for event log bench-
marks with predefined characteristics has determined the design of various
methodologies and tools for synthetic log generation. However, artificially cre-
ated as well as real-life logs often contain positive examples only (i.e., process
instances deemed as compliant w.r.t. the model), while the presence of nega-
tive process instances (i.e., non-compliant traces) can be crucial to correctly
evaluate the performance and robustness of a novel process discovery or con-
formance checking technique.

In this work, we investigate positive and negative trace generation in case
of both declarative and procedural model specifications and we present our
abduction-based approach to log synthesis. The theoretical study is concretely
applied in a software prototype for log generation, which takes as input a
declarative or structured workflow model, and emits logs containing positive
and negative traces. The approach provides both a highly expressive notation
for the description of the business model, and the ability to generate logs with
various customizable features. The final comparative study of other existing
log generators reveals several advantages of the proposed approach and draws
the direction of future improvements.
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1 Introduction

Over the last years, we have assisted to the rising of a novel research field called
process mining [1], dealing with the analysis of business processes starting from
a log. The increasing interest in process mining drops into the wide-ranging
framework of Business Process Management (BPM), a discipline dealing with
the study and control of process execution. Especially, the tasks of learning
a model from a log (commonly addressed as process discovery) and verifying
the conformance of a log w.r.t. a model (i.e., compliance monitoring or con-
formance checking) have brought significant advantages to business processes,
thus gaining increasing attention in industrial and academic research.

For both process discovery and compliance monitoring, the availability of
the input log is a fundamental requirement. Unfortunately, in a number of
real contexts such log might not be present: for example, a newly designed
process might have a model, but it might lack the execution logs (due to its
novelty). Even when the log is available, its quality might be a major concern,
as incompleteness or noise can heavily affect both mining and conformance
checking results. Furthermore, in order to accurately compare novel process
discovery and conformance checking approaches with existing techniques, it
is extremely important to relay on a solid benchmark suite composed of logs
with specific, known characteristics. For these reasons, a common approach
to evaluate process mining techniques is based on the use of synthetic logs
created via process simulation. Log generators are software tools that take
as input a model and a set of desired features and emit artificial logs. The
generators differ in the supported model language and in the log features
that can be requested. A small number of these software [33,16,17] can also
produce negative examples, i.e., sequences of activities representing process
instances that diverge from the expected behavior. For example, executions
that are not compliant with specific time or resource constraints or lack some
events in a sequence. Indeed, the availability of negative examples in the log is
very important when evaluating the performance of different process mining
techniques and their robustness to noise. Real life logs might contain also
negative examples, but the information about which among all the instances
are positive/negative is often unavailable. Obviously, manually annotating logs
is viable only for small data sets.

The cited approaches [33,16,17] to log generation with the ability to pro-
duce negative examples are intrinsically procedural, and therefore not suitable
for the evaluation of process discovery techniques based on declarative process
models. As pointed out in [5,47], differently from procedural models (which
work in a closed world assumption where all the allowed behaviors need to
be explicitly specified), declarative models are open, thus enjoying a flexibil-
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ity that makes them more suitable to describe highly variable behaviors in a
compact way.

In previous works [22,24], we adopted an Artificial Intelligence technique,
namely abduction, to complete partial logs, and introduced a (novel) notion
of weak compliance of incomplete process instances w.r.t. a procedural model.
The focus was on determining if incomplete logs (i.e., reporting process in-
stances with missing or partially specified events) might be considered com-
pliant with a model, and under which conditions/hypotheses. To that end, we
exploited Social Constrained IFF (SCIFF) [12], an Abductive Logic Program-
ming (ALP) framework, and in particular the hypotheses-making reasoning
capabilities typical of abduction.

In this work, we investigate the link between abduction and process mining
by exploiting the SCIFF framework for a different purpose: the generation of
synthetic logs according to predefined custom-selectable properties. Thanks to
its highly expressive notation, SCIFF is able to operate with both procedural
and declarative formalisms to express the behavioral model. The resulting
tool provides logs with several interesting features. In particular, synthetic
negative examples can be generated, which are not compliant with the original
input model according to user-defined properties, such as the absence of some
events, the presence of events in non-compliant sequences, with wrong timing,
duration or resource values, etc. While the previous paper [21] contains some
preliminary ideas about the design of a synthetic log generator for positive
examples only, the contributions of this work are manifold:

– a study of the theoretical aspects of positive and negative log generation
in both open declarative and closed procedural environments;

– a detailed description of our log generation methodology as well as under-
lying foundations of the proposed technique;

– a standalone log generation prototype available for download together with
an evaluation of its performance on an average hardware architecture;

– a study of the existing approaches to log generation and a discussion on the
advantages and shortcoming of each one when compared with the proposed
methodology.

2 Preliminaries

A key concept in the field of BPM is that of event log : a collection of observed
(i.e., logged) executions of a business process, in terms of all the occurred
events. Each event in the log refers to an activity i.e., a well-defined step in
the business process, and is related to a specific process instance. The logged
description of a process instance in terms of all its constituent activities is
addressed as trace or case. In this regard, a storing standard has also been
developed to clearly define a common way to exchange and analyse event logs:
eXtensible Event Stream (XES) [55]. In order to reason upon the business
execution, a model of the process is often employed. It is intended as the set of
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relevant activities that may occur in the observed environment and the con-
straints on them. This model must be specified through some shared language
in order to be understood by different experts from the business domain. The
languages to express the business model are often classified according to their
procedural or declarative nature. Petri nets [36] for instance, are a widely used
example of a procedural modelling language. As such, they tend to represent
the model as a flow of activities that can be executed sequentially, alterna-
tively or in parallel from a beginning to an end. Declarative languages on the
other hand, specify the constraints that should be satisfied by all the traces,
without focusing on the exact paths to be followed. One of the most famous
examples of declarative languages is Declare [50,4]. In the following we use
the terms positive trace to address a logged process instance that fulfil the
requirements of the business model, whereas negative traces diverge from the
expected behaviour, thus being non-compliant w.r.t. the model.

Our approach to log generation involves the concept of abduction [40]: a
general, logic-based technique for making hypotheses, originally thought as
a mechanism for providing explanations given some observations and some
rules/constraints (which capture the domain knowledge). The set of hypothe-
ses that explain the observations is usually called abductive explanation. This
form of reasoning is the basis of the SCIFF framework [12] employed here.
SCIFF provides a language based on ALP for expressing the domain knowl-
edge, together with a proof procedure supporting the abductive reasoning
process. It was initially developed with the goal of run-time checking the com-
pliance of the observed system behaviour w.r.t. a given model. To this end,
SCIFF extends the abductive reasoning with a few fundamental compliance-
related concepts, such as observed events, expected behaviour (in terms of
expected events) and prohibitions, and the formal notions of compliance and
violation of traces against expectations.

A relevant point for this work, is the SCIFF’s ability to deal with both
ground traces and templates (or non-ground traces). A trace is indeed a con-
tainer for various information. For example, consider an activity addressing
the measurement of the temperature D in a room. The trace containing such
event is likely to report the observed value for D and the timestamp T of the
measurement. These data can be seen as variables assuming different values.
A trace is said to be ground if all the data in it are bounded to a value. A
template is instead a trace containing some variables e.g., generic indications
of D and T instead of their effective values. Templates can possibly contain
constraints restricting the variable domains. As such, they are a powerful ab-
straction to represent sets of traces in a compact way.

3 Motivations for positive and negative log generation

The availability of an event log and the presence of positive and negative ex-
amples in it is very important for the validation of conformance checking and
process discovery techniques. Indeed, as conformance checking algorithms aim
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to identify the traces that are not compliant with a predefined model, the
availability of a log containing both positive and negative examples allows the
developer to evaluate the performance of a certain technique, for example, in
terms of the number of false positive and false negative results obtained or
required time for computation. Since in real-life logs the information about
which traces diverge from the expected behaviour is usually unavailable, the
main process discovery techniques are limited to the harder setting of un-
supervised learning with positive examples only. The generation of artificial
logs with both compliant and non-compliant traces could foster the adoption
of more effective supervised techniques. For example, some machine learning
schemes based on Inductive Logic Programming (ILP) [49] relay on a set of
negative as well as positive examples in order to extract a formal description
of the business process model from an event log.

Furthermore, in the field of process discovery, the presence of negative
events allows the developer to verify the robustness of its approach. For exam-
ple, suppose to have a log generator able to take a process model as input and
produce a log with a mixed composition, reporting both positive and negative
traces in predefined percentages, according to configurable parameters. The
emitted event log can be used as input to the process discovery algorithm to
test its performance by comparing the extracted process model with the orig-
inal one. Varying the percentage of negative examples in the log can give an
evaluation of the robustness of the process discovery algorithm to noise and
incompleteness.

In the field of business process, a strong concern is related to the accuracy
of the model i.e., its ability to capture allowed behaviours and to highlight un-
wanted actions. For this purpose, a domain expert is often involved but, when
the model is composed of several actions, constraints, and possibly concurrent
paths, the analysis of accuracy is far from straightforward. For this reason,
when the process model is given, the generation of synthetic traces can be
useful to provide domain experts with a collection of examples to clearly ex-
plain which process instances are allowed or not allowed by the input model.
Thus, to obtain a quicker feedback about accuracy.

Synthetic logs can be employed also for the conversion of models from a
declarative to a procedural formalization (and vice-versa). For example, if the
business model of a process is provided by means of declarative constraints –
e.g., through a Declare formalization –, the synthetic traces produced through
log generation can be used as input to a process miner, like for example the
α-algorithm [6], to extract a procedural version of the original model (in the
mentioned miner, a Petri-net model).

Another interesting application is related to the planning problem. Indeed,
when the model is understood, the generated positive traces are examples of
process executions compliant with a certain set of constraints and can therefore
be used for production purposes. For example, consider a line of production
that must complete its job in 10 minutes. If the execution model is known,
positive trace generation can suggest which are the execution path of the
production line that can fulfil the requirement on the total production time.
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Furthermore, being able to emit both ground and non-ground traces, abduc-
tion is a perfect candidate to suggest which are the sets of cases that fulfil the
constraints, thus to tackle the planning problem. It is interesting to note that
abduction has been investigated in the past for supporting the planning task
[52], and that in turn planning itself has been recently proposed for generation
of trace templates and instances [46].

Finally, when the business model is complex, involving several different
actions, and including constraints on time and resources, even the evaluation
of model consistency (i.e., determine if at least one trace can satisfy all the
constraints), which may appear a simple operation in general, can be very dif-
ficult for a human being. Log generation allows to suddenly identify situations
in which no trace can be compliant with the model. In that cases indeed, as
the intersection of the sets of traces satisfying each constraint is empty, the
generation would not produce any output.

4 On different modelling approaches and how they affect log
generation

Within the BPM research field, a number of different formalisms and languages
have been proposed for the definition of business processes. Different aspects of
the business process itself have been researched, thus leading to the emergence
of several proposals, each one with merits and limits. Providing a complete and
detailed view of all these approaches is out of the scope of this work. However,
in the following we introduce the few aspects that we deem fundamental to
comprehend the issues related to positive and negative trace generation.

4.1 Procedural vs. declarative and open vs. closed modelling approaches

A first important aspect of log generation is how to define the flow-related
aspects of a business process. On one end of the spectrum, there are the
procedural approaches, where the process flow is defined as a number of steps
from a beginning to an end. Usually, two artificial activities, the start and
the stop are employed. They are not meant to address real events, but just
to support the concepts of beginning and conclusion of a process instance.
Typical constructs of procedural languages provide notions such as sequence
of activities, or–split/join (alternative, non-exclusive choices of different flow
paths), xor–split/join, and and–split/join (parallel execution of different flow
paths). Fig. 1 shows a simple example of a procedural workflow defined using
the YAWL graphical language [3], where after the start, activity a should be
executed, then b or {c, d} should be executed (exclusive choice between the
two paths), and finally activity e should be executed.

On the other end of the spectrum, there are declarative approaches, which
focus more on the constraints that should be satisfied by all the process execu-
tions, rather than fixing exact flows/paths. In Fig. 2a a Declare [50] constraint
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Fig. 1: A simple business process defined through the procedural language YAWL.

(a) (b)

Fig. 2: Two simple examples of Declare constraints.

is placed over the two activities of having a coffee and paying a coffee: the
intended meaning is that it does not matter the order (notice the absence of
arrows) of execution, but if you have a coffee then you must pay for it, and
vice-versa, if you pay for a coffee you must have it. In Fig. 2b another con-
straint is shown: after the check-out of a shopping cart, the user is not allowed
to add more items. The two small vertical lines in the connection between the
two activities stand for a prohibition, while the presence of an arrow sets also
a temporal ordering.

Another important aspect regards the degree of openness allowed by the
modelling approach. Closed models are characterized by the fact that only the
specified activities, at the specified time instant can be executed. For example,
let us consider again the model depicted in Fig. 1: a closed modelling approach
would implies that only the envisaged activities (namely, {a,b,c,d,e}) are al-
lowed to be executed, and any other activity is prohibited. Such approaches
are typical of a number of applicative domains, like for example, security com-
munication protocols or bank protocols for financial transactions, where even
the smallest bit of information that is not envisaged should trigger alarms and
invalidate the interaction.

At the opposite side, open approaches are characterized by the fact that
they specify both activities that should be executed, and activities that should
not be executed (i.e., prohibitions). When nothing is specified about an activ-
ity, the usual intended meaning is that the appearance of such activity in a case
does not influence the trace compliance (or non-compliance) w.r.t. the model.
As an example, let us consider the process depicted in Fig. 2a: within having
a coffee and paying a coffee, any other activity such as chat with the barman
is allowed as well. Theoretically, open approaches allow for the execution of
any activity for which no prohibition has been expressed. However, for prac-
tical reasons, many approaches allow for the execution of any (non-forbidden)
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activity within a specified set : in other words, the set of allowed activities is
defined a-priori and finite. This paper adopts the same view: we will generate
only traces whose activities belong to a user-defined finite set A.

4.1.1 Relation between two orthogonal dimensions

A noteworthy consideration regards the relation between these orthogonal di-
mensions: procedural vs. declarative models and open vs. closed approaches. A
number of works have identified procedural models as closed, and declarative
models as open. This association is by no means mandatory. Indeed, a declar-
ative approach can be used to model a closed process if we provide a set of
additional constraints to ensure that only the specified activities are allowed,
and any other is prohibited. As well as a procedural formalism can be used to
express an open model by relaxing some constraints.

Although our approach remains general and can be applied to all the cases,
for convenience’s sake, in this paper we focus on the most popular combination
of the orthogonal dimensions i.e., procedural closed models and declarative
open ones. The interested reader can refer to [47] for an in-depth discussion
on closed vs. open models.

4.2 Positive and negative traces w.r.t. declarative open process models

The open/closed nature of the model affects the reasoning on positive and
negative traces. In an open model, if nothing is said about a certain activity X,
this means, for example, that any positive trace, containing or not containing
X is compliant anyway with the process model. This observation leads to two
further considerations:

1. one might be tempted to ignore traces containing activities like X. However,
if X is not in the model (i.e., it does not appear in any constraint), but a
process designer addresses it as an activity that could happen, he might
be interested in observing both traces containing and not containing X;

2. the number of traces that are compliant with an open declarative process
model is potentially infinite w.r.t. activities like X.

To address the issues above, we restrict the generation to traces containing
only events belonging to a specified finite set A of activities. For example, let
us consider the process model shown in Fig. 2a. For the sake of the example,
we could say:

A = {have a coffee, pay a coffee, chat with the barman}
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where the activity chat with the barman is not subject to any constraint. In
this case, a subset of all the positive traces would be the following one1:

τ1 = ∅
τ2 = [have a coffee, pay a coffee]

τ3 = [chat with the barman, have a coffee, pay a coffee]

τ4 = [have a coffee, chat with the barman, pay a coffee]

τ5 = [have a coffee, pay a coffee, chat with the barman]

τ6 = [pay a coffee, have a coffee]

. . .

Negative traces are those ones that violate one or more constraints of the
process model. If we consider again the example shown in Fig. 2a, negative
traces are those that violate the only constraint present: they should contain
pay a coffee without have a coffee or should contain have a coffee without pay
a coffee. A subset of all the negative traces would be the following one:

τ7 = [have a coffee]

τ8 = [pay a coffee]

τ9 = [chat with the barman, have a coffee]

τ10 = [have a coffee, chat with the barman]

τ11 = [chat with the barman, pay a coffee]

τ12 = [pay a coffee, chat with the barman]

. . .

where the overline on the trace symbol τi indicates that the trace violates the
process model.

4.3 Positive and negative traces w.r.t. procedural closed process models

Positive traces w.r.t. procedural models are only those that are allowed and
explicitly considered by the model. Intuitively, it suffices to walk the struc-
ture (the graph) of the process model, to get instances of positive traces. For
example, if we consider the process model shown in Fig. 1, only two positive
traces are allowed:

τ13 = [a, b, e]

τ14 = [a, c, d, e]

Similarly to the case of open declarative models, negative traces w.r.t.
closed procedural models are those traces that violates one or more constraints.

1 For the sake of readability, we omit in the following traces the timestamps: the order in
which the events are written determines which event comes first.
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More in detail, procedural constraints are the flow constructs explicitly defined
in the process model, plus the constraint (implicit in the closeness flavour) that
anything not considered by the model is strictly prohibited. Thus, negative
traces can be grouped into two sets: (i) traces that contain only (possibly, a
subset of) events explicitly mentioned in the model, and that violate one or
more flow structures; and (ii) traces that contain unknown events. Referring
to Fig. 1, two examples of negative traces that belongs to group (i) would be:

τ15 = [a, e]

τ16 = [a, d, c, e]

. . .

In τ15 the activity b is missing, in τ16 instead activities c and d are executed
in the wrong order. The set of negative traces belonging to group (ii) instead
is possibly infinite, as possibly infinite is the set of activities not explicitly
envisaged by the procedural model. To cope with this aspect, we restrict our
approach by considering again a finite set A of activities that will be used for
generating the traces. Referring again to Fig. 1, such a set could be:

A = {a, b, c, d, e, f, g}

The process model does not envisages activities {f, g}: any trace containing
one or more of these activities is a negative trace. For example:

τ17 = [a, f, b, e]

τ18 = [a, c, d, e, g]

. . .

5 The SCIFF abductive capabilities

In order to clearly explain our generation approach, we first briefly recall the
main concepts behind the SCIFF abductive capability. The interested reader
can refer to the work [12] for a complete dissertation on this topic. Formally,
a SCIFF specification is a triple 〈KB, A, IC〉, where:

– KB is a knowledge base (i.e., a Logic Program as for [44]);
– A is a set of abducible predicates with functor ABD, E, or EN;
– IC is a set of Integrity Constraints (ICs).

Among the elements of A, predicates with functor ABD correspond to usual
abducibles as in ALP [40] i.e., predicates that can be hypothesized. E and
EN are particular abducibles respectively used for modelling positive expecta-
tions – i.e. expectations about the happening of certain events – and negative
expectations – i.e. prohibitions about the happening of certain events.

Happened events are represented through predicates with functor H. Hence,
in SCIFF a trace is a set of predicates H(EvDesc, T ), where each predicate
stands for the observation of the happening of an event described by EvDesc
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at timestamp T . For example, trace τ2 introduced in Section 4.2 would be
represented in SCIFF as:

τ2 = [H(have a coffee, 5),H(pay a coffee, 8)]

meaning that at time instant 5 the event have a coffee has been observed, and
then, at time instant 8, the event pay a coffee has been observed too.
IC is a set of forward rules of the form body → head. They are used to

dynamically link the observation of the happening of events with positive and
negative expectations. Roughly speaking, when body becomes true, also head
must be true. The body contains conjunctions of special terms with functors
H, E/EN or ABD, while the head is made of disjunctions of conjunctions of
terms with functors E or ABD. For example, the following IC

H(have a coffee, Ta)→ E(pay a coffee, Tb). (1)

states that every time the event have a coffee is observed at a timestamp Ta,
then an event pay a coffee is expected to happen (to be observed) at a times-
tamp Tb.

The IC shown in (1) already provides a powerful hint of how the SCIFF
proof procedure determines if a trace is compliant w.r.t. to a model. Let us
suppose a process model is described in terms of (1). Also, let us suppose
to observe the event H(have a coffee, 12). The event triggers the IC (1): as
a consequence, the positive expectation E(pay a coffee, Tb) is abduced. The
SCIFF Proof Procedure then waits for further events. If an event happens, such
that it matches with the positive expectation, we say that such expectation
is fulfilled. If no event matching the expectation happens, the expectation is
violated. We do not report here the definitions of compliance and violation of a
trace w.r.t. a model: the interested reader can refer to [12]. Rather, we highlight
the following: given a process model described with a SCIFF specification, a
trace is compliant with (or violates) that specification, if it is compliant with
(violates) the positive and negative expectations generated by the ICs.

In this paper, the goal is to generate traces that are compliant to (or
violate) a given model. To this end, we recur to a technique similar to that
of previous works: we start from a process model represented in terms of ICs.
However, instead of using positive and negative expectations, ICs are defined
in terms of abducibles only, each abducible representing the hypothesis that
an event happens. For example, let us model the procedural process shown in
Fig. 1. First of all, the sequence between the start and the execution of activity
a would be modelled as:

ic1 : ABD(start, Ts)→ ABD(a, Ta) ∧ Ta > Ts.

Then, the xor disjunction between b and c would be2:

ic2 : ABD(a, Ta)→ ABD(b, Tb) ∧ Tb > Ta ∨ABD(c, Tc) ∧ Tc > Ta.

2 Although represented with ∨, SCIFF actually performs an exploration of two alterna-
tives only (after a, either b or c is abduced), thus realizing the semantics of a xor gate[12].
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Finally, further sequence constraints are needed:

ic3 : ABD(b, Tb)→ABD(e, Te) ∧ Te > Tb.

ic4 : ABD(c, Tc)→ABD(d, Td) ∧ Td > Tc.

ic5 : ABD(d, Td)→ABD(e, Te) ∧ Te > Td.

ic6 : ABD(e, Te)→ABD(stop, Ts) ∧ Ts > Te.

Summing up, the process model in Fig. 1 would be represented by the set
{ic1, ic2, ic3, ic4, ic5, ic6}. Given the start symbol as input, the SCIFF Proof
Procedure would produce the following two trace templates:

τα = [ABD(a, Ta),ABD(b, Tb),ABD(e, Te), Ta < Tb < Te]

τβ = [ABD(a, Ta),ABD(c, Tc),ABD(d, Td),ABD(e, Te), Ta < Tc < Td < Te]

where τα matches τ13 and τβ matches τ14, both introduced in Section 4.3.
Finally, notice that τα and τβ are what we call trace templates, since the

timestamps are not grounded to specific values, but are rather variables that
can be assigned to any set of values respecting the inequalities.

6 Generation of a synthetic log through SCIFF

In order to simplify the comprehension of our approach, we first introduce the
reader to the generation of positive traces from a high-level perspective. The
process consists of tree steps:

1. the process model is properly translated into a SCIFF specification;
2. the SCIFF proof procedure takes as input the process model expressed as

a SCIFF specification, and generates the trace templates;
3. trace templates are grounded with values respecting the constraints im-

posed by the model.

Translation into SCIFF. The translation of the process model into a SCIFF
specification depends on the language adopted for the model definition. In pre-
vious works we investigated how closed procedural approaches can be easily
translated into SCIFF [23,22], even with the support to activity data and tem-
poral constraints [24,26]. In these previous works, the focus was on establishing
if a partial trace could be possibly considered as compliant. If not compliant
because of missing events, we showed how hypothetical reasoning and abduc-
tion could be exploited to determine a possible set of further activities that,
once merged with the initial trace, would make it compliant w.r.t. the model.
However, what if the partial trace is empty? The approach presented here is
an extension of the previous ones, where the starting point is an empty trace,
and the SCIFF is queried about the existence of a trace. Differently from [23,
22], here there is no need to verify the compliance, since the initial trace is
empty.

Generation of trace templates. Starting from a SCIFF model specification,
the proof procedure is queried about the existence of a compliant trace. As
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also highlighted in [26], thanks to its abductive nature, the same generation
process can also be carried out starting from partially specified traces. The
SCIFF generates each trace through hypothetical reasoning, i.e. by abducing
the events as of the rules given in the specification. At this stage, timestamps
and activity data (if present) are indicated as variables thus realizing trace
templates. Once a solution (i.e., a first template) is found, the SCIFF is asked
to look for another one: iteratively, all the templates are emitted. To ensure
the termination of this iterative process, we ask the user to provide in input
a meta-information about the process: we require that a maximum number
of events for each trace is specified. This allows to avoid problems due, for
example, to the presence of (indeterministic) loops in the process model.

Grounding the trace templates. Finally, SCIFF substitutes the variables in
the templates with all their possible values. Of course, it can happen that a
variable have an infinite set of possible values. For example, consider a times-
tamp of an event whose only constraint is to be greater than zero: there are
infinite values that can satisfy such constraint. For this reason, we ask the user
to provide in input a meta-information about the process: the user must spec-
ify the maximum allowed timestamp (the minimum is automatically assumed
to be zero). Together with the assumption that timestamps are represented
with integer numbers, the maximum timestamp limit ensures the termination
of the grounding process.

As regards the generation of negative examples, since in our approach
models are represented by means of SCIFF’s ICs, a negative trace can be seen
as a trace that violates one or more ICs. Hence, to generate a negative trace,
it suffices to take the initial SCIFF specification, obtain a new specification
by negating one or more ICs, and use it to generate traces. The output will
be compliant with the model containing negated ICs, thus it will violate the
initial model.

First of all, it is important to understand what it means to negate an IC.
In SCIFF, ICs are (forward) implications: they are violated when the premises
are true, and the consequences are false. In SCIFF, the consequences (named
head) are disjunction of conjunction of literals and abducibles. Let us focus to
a simple example of one IC made of two different conjuncts:

ABD(a, Ta)→ ABD(b, Tb) ∧ Tb > Ta. (2)

The intended meaning is that the execution of activity a should be followed
by the execution of activity b. In other words, every time we observe a, we
should observe also b after. The head of the ICs contains two conjuncts: the
first states that whenever a happens, also b should happen; and the second
requires that b should happen after. So, (2) can be violated in two ways:

i) by having a trace containing activity a, and not containing activity b;
ii) by having a trace containing a, and containing b happened before a;3

3 Actually, there is another way to violate IC(2): by negating both the conjuncts i.e.,
having a trace containing a, and not containing b, and b happening before a. Clearly, this
third option is inconsistent, since it asks for both the happening and the non-happening of
b. Hence, in this case no trace can be generated.
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The two cases lead to two different trace templates, each one violating the
original IC (2) in its own way.

Given this explanation of what IC negation implies, the generation process
takes place as follows. The approach starts from a SCIFF specification S =
〈KB,A, IC〉 of a process model, where IC is the set of one or more ICs ici:

IC ≡ {ic1, ic2, . . . , icn} (3)

New sets ICj are obtained by negating one or more ici, 1 ≤ i ≤ n. Notice
however that – as explained for (2) – negating a single ici can lead to different
ICs. Hence for each ici we could obtain ici,1, . . . , ici,mi . For example, let us
suppose to negate ic1, and that this leads to three different ICs. We would get:

IC1 ≡{ic1,1, ic2, . . . , icn}
IC2 ≡{ic1,2, ic2, . . . , icn}
IC3 ≡{ic1,3, ic2, . . . , icn}

Then, we could negate ic2 (suppose this is possible in two different ways):

IC4 ≡{ic1, ic2,1, . . . , icn}
IC5 ≡{ic1, ic2,2, . . . , icn}

. . .

The number of models ICj that can be obtained is given by the cardinal-
ity of the power set of IC, multiplied for the cardinality of the power set
of all the possible ways of negating one or more ICs. SCIFF specifications
Sj = 〈KB, ICj ,A〉 are obtained consequently, and each one is used to generate
traces. The number of Sj provided in this way is definitely huge. However, not
all those specifications will allow for the existence of traces: indeed, it might
happen that by negating two different ICs, an inconsistent model is obtained,
thus not allowing the existence of any trace compliant with that model. It
might also happen that a trace generated from a ICj is again compliant with
the initial IC. For example, if the initial model admits two alternative paths
(i.e., IC includes a xor constraint) and the specification derived from a ICj
negates the constraints of only one path, the traces generated following the
other, unmodified path are again compliant with the initial model. To remove
these actually positive traces, after the generation, each trace is again checked
for its non-compliance with the original specification S. Algorithm 1 summa-
rizes the steps of negative trace generation.

6.1 Positive and negative trace generation for open declarative processes

Among the several languages proposed for modelling open declarative ap-
proaches, we focus on Declare [50]. In previous works [48,47], we showed how
Declare constructs can be mapped in SCIFF while preserving the notion of
compliance. Here, the shift of perspective towards log generation motivates
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Algorithm 1 Generation of all the traces that are non-compliant with a given
process model expressed through a SCIFF specification S.

Input: S = 〈KB, IC,A〉, a SCIFF specification.
Output: T a set of traces non-compliant with S.

1: procedure negativeTraceGeneration(S = 〈KB, IC,A〉)
2: P(IC) = generate the power set of IC
3: for each p ∈ P(IC) do
4: neg(p) = generate the set of all possible negations of p
5: for each pj ∈ neg(p) do

6: ICj = pj ∪ {IC\p}
7: Sj = 〈KB, ICj ,A〉
8: T j = generate traces compliant with Sj
9: for each tj ∈ T j do

10: if ! compliant(tj ,S) then
11: T = T ∪ tj
12: end if
13: end for
14: end for
15: end for
16: return T
17: end procedure

some changes in the way we represent the Declare constructs. Moreover, a
further issue is given by the fact that, as explained in Section 4.1, in open
declarative models there can be activities that are part of the process but are
not part of any constraint. When generating traces, also these activities are
interesting and should appear in the log.

6.1.1 Generating positive traces

As regards the first step of log generation i.e., the translation of the Declare
model into a SCIFF specification, it stems from the one proposed in [48],
which was oriented to compliance monitoring. Differently from [48], here the
focus is restricted to the problem of generating traces, thus two variations are
present: (i) there is no more need for happened events and positive/negative
expectations, but every SCIFF IC is expressed in terms of abducibles only;
(ii) prohibitions can be expressed in terms of a particular type of IC, named
denials, like for instance in the neg response(A,B) constraint, where the fail
constant is used with the special purpose of addressing an inconsistency or a
failure. Table 1 reports a few examples of how the Declare constructs can be
easily mapped.

The translation of the Declare constraints alone is not enough: activities
that are not subjected to any existence constraint, or activities that are not
mentioned at all by any constraint (but are allowed due to the openness of the
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Name Integrity Constraint Graphical

existence(A) true → ABD(A, T )

existence N (A) true →
N∧

i=1

(
ABD(A, Ti) ∧ Ti > Ti−1

)

absence(A) ABD(A, T ) →fail

absence N+1(A)
N+1∧
i=1

(
ABD(A, Ti) ∧ Ti > Ti−1

)
→fail

exactly N (A) existence N(A) ∧ absence N+1(A)

response(A,B) ABD(A, TA) →ABD(B, TB) ∧ TB > TA

precedence(A,B) ABD(A, TA) →ABD(B, TB) ∧ TA > TB

succession(A,B) response(A,B) ∧ precedence(A,B)

neg response(A,B) ABD(A, TA) ∧ ABD(B, TB) ∧ TA < TB → fail

chain response(A,B)

response(A,B)

∧ABD(A, TA) ∧ ABD(B, TB) ∧ TA > TB

∧ABD(X, TX) ∧ TX > TA ∧ TX < TB → fail

Table 1: Mapping of some relevant Declare formulas onto SCIFF.

approach) will not appear in any trace. To address this issue, in the SCIFF
specification of a Declare model we add a further set of ICs. In particular,
we assume a finite set A of all activities that have to be considered. For each
activity x ∈ A, we add the following:

true→ true ∨ABD(x, Tx) (4)

ABD(x, T1)→ true ∨ABD(x, T2) ∧ T2 > T1 (5)

The IC (4) ensures that either an activity x is not in a trace, or it is included
in at least a trace. The IC (5) instead ensures that, once an activity x has been
included in a trace, there is also the possibility of generating traces with two,
three, . . . , many instances of x. Notice that to avoid termination issues, we
exploit an implementation feature of the SCIFF proof procedure: it explores
the disjoints following the syntactical order in which they have been defined.
By placing as a first disjoint always the true option in both IC(4) and (5),
we ensure that the procedure terminates, and only if requested for further
solutions it explores the other disjoints.
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6.1.2 Generating negative traces

The generation of negative traces follows exactly the schema presented in
Algorithm 1. For each Declare constraint, one or more ICs are generated,
corresponding to the possible ways of negating the constraint. For example,
let us consider again the IC (2), that corresponds indeed to a response(A,B)
Declare constraint (i.e., the execution of an activity A must be followed by the
execution of an activity B). We already discussed that there are two significant
ways (out of three) for negating the IC. Formally, they are:

true→ ABD(a, Ta)

ABD(a, Ta) ∧ABD(b, Tb)→ fail .
(6)

and

true→ ABD(a, Ta)

ABD(a, Ta) ∧ABD(b, Tb) ∧ Tb > Ta → fail .

ABD(a, Ta)→ ABD(b, Tb) ∧ Tb < Ta.

(7)

IC (6) states the prohibition of the happening of b, if a has happened. The
reader might wonder why the denial is needed: if we simply resorted to not
generate any activity b, we would have already achieved the goal of a trace with
a and not b. However, other Declare constraints might call for the happening
of b. The denial guarantees that the traces will not contain b, thus ensuring
the violation of the IC (2).

A final consideration regards inconsistent models. When negating one or
more ICs, inconsistent models will be generated: for example, a model with
an IC asking for the presence of activity a, and also an IC prohibiting a. From
the perspective of the SCIFF proof procedure inconsistent models are not an
issue: simply, they will not produce any trace.

6.2 Positive and negative trace generation for closed procedural processes

A huge number of specification languages for closed procedural processes have
been proposed. The number of approaches is so vast that their listing would
be out of the scope of this work. We restrict ourselves to a well-known class of
processes, often referred as structured process models [41] with unique tasks
[6]. Although our approach could in theory deal with unstructured models, we
prefer to adopt such restriction since structured models have a clearer seman-
tics, in particular when dealing with loop patterns and termination conditions.
Such a choice comes at the price that not all real processes can be easily rep-
resented, and more complex models would be needed to capture them. The
choice of unique tasks instead is due to a simpler management of the pro-
cess model translation into our framework: indeed, any process model with
repeated activities can be always translated into another with unique tasks by
applying a simple renaming of the repeated activities.
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Fig. 3: A closed, procedural process defined in YAWL.

6.2.1 Generating positive traces

The generation of positive traces from procedural models follows the general
three-steps procedure. As regards the translation of structured process models
into SCIFF, we refer to the previous works [26,21,23]. As for template gener-
ation, it is worth noting that, differently from open approaches, in procedural
closed models only those activities that are explicitly mentioned by the model
are allowed in the trace. Hence, the specification of the procedural model in
terms if SCIFF’s constraints is sufficient to ensure the generation of the traces.
There is no need for additional constraints such as IC (4) and (5).

6.2.2 Generating negative traces

When negating flow constructs of a closed procedural model, it is important
to consider that the correct chaining of events might be broken, and certain
negative traces might be not generated. Let us explain the issue through the
workflow example shown in Fig. 3, where a very simple sequence of activities
a, b, c is proposed. Let us focus, for the sake of comprehension, on generating
those traces that violate the sequence constraint between activities a and b
because they do not contain b. These traces are generated through IC (6).
Intuitively, they would be:

τ19 = [a]

τ20 = [a, c]

Since the sequence construct between b and c is represented as:

ABD(b, Tb)→ ABD(c, Tc) ∧ Tc > Tb.

in our formalism the generation of activity c is triggered by the presence of b.
Its absence would clearly lead to not generating c. Practically, only trace τ19
would be generated, while we would miss trace τ20.

We overcome the issue through the same approach discussed in Section
6.1.1: for each activity x ∈ A (thus also for c), we add the two ICs (4) and (5).
Such a choice would lead to generate a number of non-compliant traces due
to the presence of events at the wrong position in the trace and, eventually in
the example, to the generation of τ20.

It is worth to underline that this is not the only way in which we could
have dealt with the issue. For example, a simple alternative could have been to
generate positive traces and then randomly insert further interesting activities
from A. Nonetheless, we believe that our approach comes with the advantage
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of using the same logic framework for dealing with both negative and positives
traces. Indeed, constraints (4) and (5) are used: (i) in case of open models -
to insert additional, allowed activities not mentioned by any constraints in
the trace, thus to generate other positive traces; (ii) in case of closed models
to generate negative traces by inserting additional activities not envisaged by
the model (or activities that do belong to the model but result placed in the
wrong position inside the trace). In this sense, our approach uniformly deals
with the generation of both negative and positives traces. Furthermore, the
random insertion of activities in the trace once it is generated could leave some
cases uncovered.

Another point is related to the strategy of identifying all possible ways
to negate each constraint. It is indeed crucial when we deal with alternative
flows in the model because it allows the generation of negative traces mixing
activities from both paths. When a xor gate is in the model, as for example
in Fig. 1 (see IC ic2 of Section 5 for its SCIFF specification), there are several
ways to negate such constraint. As previously discussed for IC (2), there are
two significant ways to negate each of the two alternative sequences [a, b]
and [a, c] entailed by the xor constraints. Furthermore, there are two ways
to negate the disjunction: (i) after a, neither b, nor c are executed; (ii) after
a, both b and c are executed. The latter negated form of the xor constraint
generates negative traces containing both b and c, which originally belonged
to alternative paths.

7 Evaluation of the prototype

Aiming to empirically verify our approach, we developed a first software pro-
totype which employs the SCIFF abduction capabilities to generate positive
and negative traces starting from a given business model.

The software, which is publicly available for download [51], allows to specify
the input model in terms of the ICs that must be fulfilled and a set A of possible
activities that can occur in the traces. As discussed in the previous sections, A
can include further activities that do not appear in any constraint. The user
can also specify various options, useful to control the generation process and
the characteristics of the emitted traces. It is indeed possible to specify:

– if the model is declarative open or procedural closed;
– if positives, negatives or both types of traces must be generated;
– the time limit for each generated trace i.e., its maximum time length in

seconds;
– the maximum length of the generated traces intended as the maximum

number of events in each trace – particularly relevant to guarantee the
termination of the generation procedure when loops are in the model;

– the number of instances for each path i.e., in case the model includes some
alternative choices of different flow paths (as it is in Fig. 1), the maximum
number of traces that must be generated for each alternative path.
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(a) (b)

Fig. 4: Evaluation of the times to generate positive traces for an arbitrarily long procedural
model.

The emitted traces are provided in XES format [55], each one reporting a
trace identifier and the list of the events with the corresponding timestamp.
The download package includes a codification of the two models in Fig. 1
and 2a – as examples of procedural and declarative processes, respectively –
that can be used to verify the generation abilities of the prototype as regards
both positive and negative traces. The prototype originates 10 positive and
20 negative traces from the declarative model in Fig. 2a when the options
of 5 seconds time limit, 5 activities as maximum length and 1 instance for
each path are provided. With the same options the procedural model in Fig. 1
originates 4 positive and 4450 negative traces (as a consequence of its closeness
flavour).

As discussed in [30], the complexity of the main abductive decision problem
(i.e., to determine whether an explanation exists) is located at the second level
of the polynomial hierarchy (ΣP

2 -complete). In order to empirically evaluate
the generation performance of the proposed tool, we employ an arbitrarily
big procedural model composed of a long sequence of activities. Thus, there
is only one path allowed by the model from the start to the stop activity. We
first estimate the time to generate an increasing number of only positive traces
on an average hardware architecture (a quad-core Intel i7 2,9 GHz CPU and
16 GB RAM), when the SCIFF is given three different models composed of
250, 500 and 750 activities (see the graph in Fig. 4a). In order to force the
generation of a certain number N of traces in each experiment, we set the
time limit and maximum length to high values (so that the generation process
is not influenced by them) and we ask to generate N instances for each path.
Since there is only one possible path in the given model, we obtain exactly N
traces in the output. As highlighted in Fig. 4a, the generation time increases
linearly with the number of emitted traces.

Fig. 4b reports the performance of the tool when we fix to 10, 20 and
30 the number of generated positive traces, but we progressively increase the
number of activities in the model. In this case, as a bigger model corresponds
to more ICs to be considered, the generation time shows a superlinear trend in
the number of activities. This is indeed expected, since a bigger model entails
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(a) (b)

Fig. 5: Evaluation of the times to generate positive and negative traces for an arbitrarily
long procedural model. The performance decreases rapidly (superlinearly) with the number
of activities in the process model (Fig. 5a), but linearly with the number of generated traces
(Fig. 5b). Fig. 5b reports the data in logarithmic scale on both the axis to better appreciate
the trend.

more activities for each instance of the process execution and requires more
time to generate the corresponding trace.

The same test is repeated while asking the tool to generate both positive
and negative traces. As the model is closed procedural, there are far more
forbidden process instances than the allowed ones. Therefore, as shown in Fig.
5a, a slight increase in the number of model activities corresponds to a huge
increase in the space of negative traces to be explored and, consequently, to a
higher generation time. This is further confirmed by the graph in Fig. 5b, where
we relate the number of traces generated in each experiment of Fig. 5a with
the required time (with logarithmic scale on both axes to better appreciate
the trend): the two dimensions are still linearly proportional.

8 Related work

Automated discovery of process models from event logs is one of the main
research areas of process mining. As it focuses on extracting knowledge from
business process logs, the evaluation of process discovery techniques inevitably
requires the availability of event logs [28]. For this purpose, some real-life logs
have been made publicly available [15] and are often used as benchmarks for
testing process discovery tools. Given the real-life origin of these datasets, they
may contain imperfections (i.e., non-compliant traces) or show incomplete-
ness (i.e., miss some examples of traces that should be considered compliant),
thus causing alterations in the discovered business model. Indeed, real-life logs
usually reports all the observed traces without any indication of which cases
are non-compliant or which execution paths are missing. For this reason, a
widespread approach in this field is based on process simulation to artificially
generate event logs with predefined characteristics. This allows the researchers
to perform a finer tuning of the developed algorithms and better control the
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experimental evaluation. Some model simulators and log generators have been
developed for this purpose [38,37].

In this section we propose a classification of some relevant works on log
generation according to the following main directives:

– the ability to generate process execution examples with the employment of
a procedural approach;

– the ability to support declarative constraints;
– the possibility to generate positive compliant traces;
– the possibility to generate negative non-compliant traces;
– the availability of generation mechanisms from partially specified traces;
– the ability to deal with time constraints;
– the ability to deal with data constraints;
– the possibility to generate traces with a user-defined probability distribution

of workflow execution paths and values;
– the online availability of the proposed generation tool4.

The approaches described in the following are classified according to these
directives in Table 2.

The work [35] introduces a framework for the automated generation of Petri
nets representing processes, according to user-defined rules. In particular, they
suggest to gradually refine Workflow nets [2] in a top-down approach, in order
to generate all possible process models belonging to the class of Jackson nets.
A similar approach has been proposed in [14], where the authors describe
a technique to generate Petri nets according to a different set of refinement
rules. In both cases, the generated process models are intended to be used as
benchmarks for process discovery algorithms, but the proposed approaches do
not address the problem of generating traces from the developed Petri nets,
hence we exclude the works [35] and [14] from the classification in Table 2.

In the works [18,19], the authors present a tool, the Processes Logs Gener-
ator (PLG), developed for the specific purpose of generating process discovery
benchmarks. The software allows the user to randomly develop business mod-
els according to some predefined parameters and then “execute” the generated
model while recording each activity in a log file. In [32], the authors present
an approach based on CPN Tools [39] to simulate business process models.
The key component of the simulator performs a template-oriented transfor-
mation from BPMN process models into CPNs. Another approach based on
CPN Tools is described in [13], where the authors generate XML event logs by
the simulation of a CPN. The work [57] uses simulation to evaluate the impact
in terms of performance of re-engineering business processes. This approach
creates simulation models from workflow processes and uses simulation results
as a feedback to calibrate the model.

4 We checked the availability on April 8th, 2019 starting from the URLs reported in the
original papers. Note that some tools have been updated and moved to different web sites.
In any case, the interested reader can contact the authors of the works to request the source
code when not available online.
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Table 2: Classification of log/model generators approaches according their most relevant
features. Since providing a survey of all available works on log generation is beyond the
scope of this paper, this list has not to be intend exhaustive.
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Burattin et al. [19,18] + - + - - - - + +

Garćıa-Bañuelos et al. [32] + - +* - - - -** + +a

Alves de Medeiros et al. [13] + - +* - - + + + -

Wynn et al. [57] + - +* - - + + + -
Westergaard et al. [56] + + + - - - - - +
Di Ciccio et al. [28] - + + - - - - - +
Ackermann et al. [10,9] - + + - - + + - +c

Accorsi et al. [8,53,54] + - + + - + - + +
Goedertier et al. [33] + - + + - + + + +
Broucke et al. [16,17] + - + + - + + + +b

SCIFF approach + + + + + + + - +
* Log generation is provided through Colored Petri Net (CPN) Tools.
** Currently not explored although CPN Tools allows it.
a Following an exchange of correspondence with the authors, we understand that the tool
has been replaced by BIMP [7], available at http://bimp.cs.ut.ee/ on April 8th, 2019.
b Available at http://processmining.be/neconformance/ on April 8th, 2019.
c Available at https://www.ai4.uni-bayreuth.de/en/research/ToolsAndResources/index.html

#tab 68762287 on April 8th, 2019.

All the approaches described so far support only procedural business pro-
cess models plus additional information like, e.g., mean execution time of ac-
tivities, probability of choices, etc. Eventually, a number of approaches support
also the simulation of limited resources, their allocation, queues, etc. Never-
theless, these procedural approaches show some limitations when the process
is characterized by high variability and allows for many alternative execu-
tion paths. In these cases, declarative process models are proven to perform
better. For this reason, CPN Tools has presented an extension [56] of the tra-
ditional procedural-based modeller to graphically add Declare constraints [4].
The simulation of such hybrid models can be carried out by the user or exe-
cuted in a random way. The work [28] presents a synthetic log generator that
allows the user to define the process model by listing a number of declarative
constraints expressed in Declare. More recently, another log generator based
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on a declarative approach has been presented in [10,9,11]. Here, the authors
employ Declarative Process Intermediate Language (DPIL), a declarative pro-
cess modelling language, to create a simulation model, and then generate XES
event logs composed of only positive traces through a second component called
Multi-perspective Declarative Process Simulation (MuDePS). Each generated
log describes an exhaustive, distinct set of traces of the desired length.

The SCIFF approach can inherently give support to the definition of both
declarative as well as procedural models and naturally exploit abduction to
enable the generation. Furthermore, differently from SCIFF, all these solutions
to log generation ignore the necessity of negative examples in the benchmark
event log to determine how robust to noise a certain process discovery tech-
nique is [29]. Since information about state transitions that were prevented
from taking place is often unavailable in real-life logs, it cannot be exploited
in order to guide the learning task. For this reason, as also underlined in [33],
in most cases process discovery techniques are limited to the harder setting of
unsupervised learning. Our notion of negative traces may recall the concept
of syntactical noise introduced by Günther in [34]. However, this similarity
is only limited to the appearance of the trace (i.e., showing missing, out of
order or unexpected events), whereas the hypothesized use of these instances
remains different: Günther’s noisy traces are intended as a consequence of dis-
tortions in transmitting or recording the log (and as such, should be identified
and discarded during process discovery), whereas in this work, negative traces
are intended as meaningful aspects of the process. Their non-compliance can
be itself a source of knowledge, for example, to instruct an inductive mining
tool.

In [31], the authors assume to have a set of negative events collected from
domain experts who suggests whether a proposed execution plan is feasible or
not. Given this knowledge, the authors combine ILP and partial-order plan-
ning techniques to process discovery. Similarly, other approaches [42,43,12,25]
envisage the presence of “non-compliant” traces as a fundamental requirement
to enable process mining tasks through supervised learning techniques. In [8,
53,54], the authors present a tool that takes a series of business process spec-
ifications as input and generates an event log. Based upon other user-defined
security and compliance requirements, deviations from the defined control flow
are generated. In particular, specific trace properties can be either enforced or
violated on a random basis in the resulting event log. This approach shares
with SCIFF the possibility to generate negative examples but is limited to
support the definition of procedural business process models only. The work
[33,16,17] propose a process discovery learning technique, which starts by gen-
erating artificially induced negative events and later uses these examples to
enforce the learning process. Differently from our approach, in all these works
the negative traces are not generated by modifying the model’s constraints,
but rather replacing the positive events of each trace and then checking if a
state transition of interest (corresponding to a candidate negative event) could
occur. Specifically, the authors assume that a generated transition can be con-
sidered as a negative example if it is not present in any trace with a similar
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history in the log. Although this assumption has the great advantage of allow-
ing the user to deal with negative traces before having extracted the process
model, it can lead to incorrect results. Indeed, the initial hypothesis of having
all the positive examples in the log cannot be always guaranteed, causing the
allowed state transitions that are not reported in the log to be classified as
negative examples. On the contrary, if the log contains some not allowed trace,
the generator will erroneously consider them as positive examples. Differently
from these works, the SCIFF approach is able to ensure the validity of the
generated positive and negative traces w.r.t. a model. This feature could be
useful for example, in conjunction with an inductive miner (employing both
positive and negative instances) to iteratively refine a business process model
through subsequent steps of generation and mining.

9 Conclusions and Future Works

In the recent years, as the interest in BPM and process mining techniques has
increased, the need for event log benchmarks with predefined characteristics
has become more and more popular.

This work presents a novel approach for generating synthetic logs start-
ing from a declarative or procedural business process model. We analysed the
theoretical aspects of positive and negative trace generation and evaluate the
feasibility of our method by providing a standalone prototype able to generate
trace templates as well as completely grounded traces. Also, custom constraints
on data and time can be specified to meet the application-dependent require-
ments. The performance evaluation of the proposed tool is promising although
a superlinear trend in the generation time for increasing model dimension is
clearly highlighted. The proposed approach is then put through a deep quali-
tative comparison with the existing literature on business process simulation,
revealing the numerous advantages of the employment of the SCIFF framework
in this field. Namely, the possibility to deal with both open declarative and
closed procedural model specifications while producing positive and negative
traces, and the ability to deal with partially specified traces.

This analysis of the state of the art has also highlighted some shortcom-
ings of our approach, which will be addressed in the future. In particular, the
generation of traces and their grounding does not consider any probability in-
formation, while some paths in the process model might be more frequent than
others, as well as some data values and activity durations might be more prob-
able than others. Furthermore, as data constraints are currently supported by
directly modifying the SCIFF constraints, for the future, we plan to introduce
some higher-level mechanism aiming to meet the needs of a non-technical user.

Since positive/negative log generation explores all the possible allowed and
non-allowed traces given a business model, the process can require a significant
amount of time, depending on the length of the model, the number of pos-
sible paths and the quantity and quality of constraints to be checked. When
the SCIFF framework is used for compliance monitoring purposes, previous
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works [20,45] have proven the possibility to significantly speed up the check-
ing process through the employment of programming models for distributed
computation like MapReduce [27]. A similar approach could be useful to accel-
erate positive/negative log generation when a collection of computing nodes is
available. For the future, we plan to explore this possibility in order to parti-
tion the generation process into smaller tasks that can be easily concurrently
executed with the support of a large-scale data processing engine.
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