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Abstract
Real-world network data consisting of social interactions can be incomplete due to deliber-
ately erased or unsuccessful data collection, which cause the misleading of social interaction
analysis for many various time-aware applications. Naturally, the link prediction task has
drawn much research interest to predict the missing edges in the incomplete social net-
work. However, existing studies of link prediction cannot effectively capture the entangling
topological and temporal dynamics already residing in the social network, thus cannot effec-
tively reasoning the missing interactions in dynamic networks. In this paper, we propose the
NEAWalk, a novelmodel to infer themissing social interaction based on topological-temporal
features of patterns in the social group. NEAWalk samples the query-relevant walks contain-
ing both the historical and evolving information by focusing on the temporal constraint and
designs a dual-view anonymization procedure for extracting both topological and temporal
features from the collected walks to conduct the inference. Two-track experiments on sev-
eral well-known network datasets demonstrate that the NEAWalk stably achieves superior
performance against several state-of-the-art baseline methods.
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1 Introduction

Social interaction analysis through networks iswidely used in various applications. For exam-
ple, contact tracing by simultaneously modeling COVID-19 transmission is proved effective
through the network of social interactions in physical approximation among infections and
other individuals [1]. Most existing studies of social interaction analysis assume that the
networks are complete, i.e., all interactions are available from data sources. However, the
obtained interaction data are usually incomplete due to the reasons that part of data deliber-
ately erased [2, 3] or unsuccessfully gathered by collectors [4, 5], which cause the misleading
of social interaction analysis. The dynamic network completion task aims to predict the exis-
tence of queries in the form of (u, v, t) as missing interactions and can be applied for various
time-aware applications. For instance, inferring the missing interactions with infections for
teasing out the potential transmission chain of the virus can contribute to the control of out-
breaks of COVID-19. Another practical application in fraud investigation [6, 7] is inferring
the hidden trading behaviors of fraudsters to restore money transferring chains in financial
transaction networks.

Link prediction methods have been researched for decades, and are widely used for pre-
dicting the existence of the edges in the social network. From the temporal perspective, link
prediction methods fall into two categories [8–10]: the methods on static graphs [2, 4, 11,
12] and on dynamic graphs [13–15]. The former methods could not be directly applied to
the dynamic network completion task because they only consider the graph structure and
ignore the interlaced topological and temporal information contained in social networks. In
this scenario, the links in static networks denote the “happened interactions”, which could
not reflect the frequency and the precise happening time of interactions.

To alleviate this problem, the latter methods take the temporal dynamics of interactions
into account and capture the evolving laws from past to future in social networks. CTDNE
[13] migrates the random walk method to dynamic graphs for learning the implicit temporal
rules lying in the collected paths. TGN [14] designs a dynamic graph neural network to
aggregate and encode the recent interactions to make the future prediction. Despite their
success in accurately predicting future links, they only consider the history interactions and
omit the evolving interactions which occur after the query. Moreover, they fail to capture the
pattern information, which resides in the local neighborhoods called the social group in the
individual sociology theories [16–18]. The patterns of the social group describe the form of
interactions and give better interpretability over the model’s inference process. An intuitive
example is shown in Fig. 1. The upper triad forms after a introduces two friends u and v

who do not know each other, followed by two interactions that (u, b, t6) and (b, v, t7) in the
lower triad. Contrarily, once interaction (u, v, t5) is missing, the unstable quadrangle pattern
is formed rather than two stable triad forms. Making full use of the entangling topological
and temporal patterns with a delicate model design becomes the key challenge of the dynamic
network completion task.

To this end, we propose a novel model named neural network for encoding anonymous
walks in behavioral context (abbreviated as NEAWalk), which can capture both topological
and temporal features of patterns for the dynamic network completion task.

First, we introduce a new type of behavioral context walk (BCW), which comprehensively
reflects the query-relevant information of the social group. In the BCW sampling procedure,
we focus on collecting the sequencing order of the input query and each interaction from both
historical and evolving timelines. Evidently, the patterns should describe general prediction
laws, which can be applied to arbitrary queries and non-relevant to specific nodes. Then, we
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(a) (b)

Fig. 1 Patterns of social group in social network. a shows stable pattern consisting of two triads, while b
demonstrates the quadrangle unstable pattern of missing interaction

design the dual-view anonymization procedure for converting BCWs to anonymous walks
of behavioral context (AWBC), which are not related to node features, and aim to extract
the generalized features of patterns in the social group. Next, the topo-temp learning module
encodes both topological and temporal pattern embeddings of AWBCs and aggregates them
for predicting the probability of missing interaction. Specifically, to effectively capture the
temporal displacement in walks, our proposed temporal-GRU unit encodes the sequence
and the magnitude of the displacement. Finally, to validate the effectiveness of NEAWalk,
we conducted both static and dynamic track experiments on five real-world social network
datasets to prove that NEAWalk can be effectively generalized to different social networks.
The experimental results in Table 2 demonstrate that the performance on AP/AUC metrics
of NEAWalk is 720% superior to best baselines on the dynamic graph track and meanwhile
achieve best results in three datasets on the static graph track.

It is worthwhile to highlight our contributions as follows:

(1) This paper provides a dynamic graph representation learning model NEAWalk, which
could comprehensively leverage the abundant topological and temporal information in
social groups to infer missing interactions. Specially, the behavioral context walk is
introduced to describe the query-related information of social groups from both historical
and evolving timelines.

(2) The dual-view anonymization procedure is designed to extract the high-quality topolog-
ical and temporal features of patterns, which are independent of specific nodes in the
query for universality.

(3) We conduct extensive experiments on real-world and publicly available social network
datasets, for verifying the effectiveness of NEAWalk on the dynamic network completion
task. Experimental results show that ourNEAWalk can learn informative and high-quality
representations for the query and achieves better performance over state-of-the-art base-
lines on the static and dynamic graph tracks.
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2 Related work

2.1 Link prediction in social networks

The social network is one of the favorite means to perform social interactions and exchange
information. Link prediction is a crucial task in social network analysis to infer the potential
links between nodes, and can be applied in scenarios like IoT network analysis [19, 20],
criminal network analysis [21], fraud detection [6, 7]. The objective of link prediction in the
social network can be divided into two categories: find missing interactions in static graphs
and predict future interactions in dynamic graphs [22].

Existing link prediction methods on the static graph [9, 10, 22, 23] aim to predict the
probability of missing links. These methods model dynamic social interactions as temporal
edges, and can be divided into similarity-basedmethods [24, 25], probabilistic-basedmethods
[26], matrix factorization-based methods [12, 27] and GNN-based methods [28, 29]. Yet
straightforward as it is to use atemporal links to model social interactions, however, static
graphs fail to take temporal information of dynamic social networks into account. Due to lack
of temporal information, the inferred interaction is remained to be unknown as that happened
but missed, or is about to occur in the future.

Dynamic graphs can naturally model social networks and other dynamically evolving sys-
tems with temporal features. The link prediction task on dynamic graphs [35] aims to predict
the likelihood of future interaction based on the historical interaction data. The dynamic graph
representation learning methods [13–15, 21] learn evolving laws from history interactions
and generate node embeddings for predicting future interactions. STGSN [21] transforms
the whole dynamic graph into a sequence of static graphs by predefined time interval, and
applies graph convolution layers and attention mechanism for learning the evolving laws of
snapshots. CTDNE [13] generalizes the Skip-Gram architecture for learning time-preserving
embeddings. TGN [14] integratesGNN-type aggregation rulewith time-dependent node state
vectors and time encoding information. CAW [15] utilizes causal anonymous walks to pro-
duce relative identity embeddings that have a tailor-made inductive bias. Although these
models can infer dynamic social interactions, two problems have not been addressed: (1)
Only the history data are considered in these methods, and the evolving information which
occurs after the query is omitted. (2) These methods fail to capture pattern features in the
local neighborhoods.

2.2 Mesoscopic-level information of social network

Mesoscopic-level information of social network is an intermediate level of the social world
between individuals and entire social structures, denoting the group, cluster, or community in
the social network. In the social sciences, a social group can be defined as two or more people
who interact, describing the mesoscopic level information of social networks. The individual
sociology theories [16–18] have proven that the behaviors are affected by the social group in
which the individual belongs, i.e., its local neighborhoods. [30] explores mesoscopic features
of social interactions from six real-world dynamic social networks and discovers mesoscopic
level patterns such as “Star” and “Ordered-chain,” which involves entangled topological and
temporal features.

Temporal motif [15, 31–33] concerns the coupling topological–temporal features of a
small group of nodes and interactionswithin the hop range or time range, accurately reflecting
the information of dynamic social networks at the mesoscopic level. A k-node, l-edge, δ-

123



NEAWalk: Inferring missing social interactions... 2775

Fig. 2 A four-node, five-edge,
δ-temporal motif, and t5 − t1 ≤ δ

temporal motif [34] comprises a sequence of l edges, which involves k nodes. The edges
M = [(u1, v1, t1), (u2, v2, t2)..., (ul, vl, tl)] are time-ordered and temporal displacements
are within a δ duration, i.e., t1 < t2 < ... < tl and tl − t1 ≤ δ. A example of temporal
motif is shown in Fig. 2. User-specified temporal motifs can be helpful to better understand
individuals’ behavior. For example, triadmotifs distinguish the formation of circles of friends
in social networks, and loop motifs are associated with money laundering in transaction
networks. However, when lacking precise ad hoc knowledge of the datasets, it is impractical
to design appropriate temporal motifs [36], and it is hard to guarantee that the designedmotifs
are effective in specific scenarios. In addition, the temporal motif matching problem is proved
to be NP-complete [33] with high time and space consumption. In the light of these issues,
it is unrealistic to directly utilize temporal motifs as features to infer the missing interaction.

The random walk-based graph representation learning methods [37–39, 42] provide a
flexible and unsupervised way to collect mesoscopic view information, which includes topo-
logical and temporal information. The random walk can be seen as a receptive path, and
the length of the walk implies the radius of reception on mesoscopic level information. The
anonymous walk [38, 39] on static graphs refines topological features from random walks
and can reconstruct local neighborhoods [38]. The anonymous walk is defined as follows:

Definition 2.1 (Anonymous Walk, AW) Given a random walk w = (n1, n2, ..., nl), the
anonymous walk for w is defined as:

aw(w) = (DIS(w, n1),DIS(w, n2), ...,DIS(w, nl)),
where DIS(w, ni ) denotes the the number of distinct nodes in w when ni first appears in

w: DIS(w, ni ) = |{n1, n2, ..., n p}|, p = min j {n j = ni }.
In dynamic graphs, temporal walk [13] describes an interaction chain in temporal sequence. A
l-length temporal walk starting from node n1 to nl+1 is represented as a series of interactions
W = [(n1, n2, t1), (n2, n3, t2), ...(nl, nl+1, tl)]. Different from the random walk, the two
adjacent interactions in temporal walk comply with the temporal restriction ti ≤ ti+1, under
the constraining of the unidirectionality of time. Our NEAWalk applies anonymous walk
to extract both topological and temporal from collected temporal walks to replace temporal
motifs to represent the mesoscopic features of social networks.

3 Problem statement

Given an incomplete dynamic social network G and a set of possible missing interactions Ê ,
the dynamic network completion task aims to predict the existence of interactions in Ê .

Specifically, the incomplete dynamic social network can be represented asG ⊆ (V , E, T ).
Technically, G is a multi-graph where may exist multiple interactions between the same pair
of nodes. V is the node set, and E ⊆ V × V × R+ is the edge set containing the observed
social interaction data. The social interaction (u, v, t) ∈ E consists of two nodes u and
v and timestamp t , denoting that u and v have an interaction at timestamp t ∈ T . The
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Fig. 3 Acomprehensiveflowchart ofNEAWalk. Starting from the query (u, v, t5), first, the sampling procedure
captures the mesoscopic level information of the query in social network through exploring with behavioral
context walks. Next, the dual-view anonymization procedure extracts topological and temporal features as
forms of aw

p· and aw
g· from collected BCWs in {Wu,Wv}. Last, the topo-temp learning module encodes the

topological and temporal pattern embeddings for assembling the query embedding for predicting

missing interactions Ê and the observed interactions E have no intersection. T = [tmin, tmax]
is the observed temporal field of G, where tmin and tmax are the minimum and maximum
timestamp of interactions in E , respectively. In our work, we consider that all interactions
are bidirectional. The types of social interaction include not only interactions among users
in online social networks, but also real-world social behaviors such as physical contact.

4 The NEAWalkmodel

The proposed NEAWalk model consists of three parts, namely the sampling procedure, the
anonymization procedure, and the topo-temp learning module. Figure 3 shows the compre-
hensive view of NEAWalk.

4.1 Behavioral context and sampling procedure

4.1.1 Behavioral context

The interactions of u and v near time t , called behavioral context, should be considered with
the query (u, v, t). This section introduces two related concepts of behavioral context: behav-
ioral context network and behavioral context walk. Furthermore, the sampling procedure of
behavioral context walk is also described. We firstly introduce the concept of behavioral
context network as follows:

Definition 4.1 (Behavioral Context Network, BCN) A behavioral context network of node
pair (u, v)within h hops is defined as BCN (< u, v >, h). The node setVBCN ⊆ V consists of
the u, v and the h-hop neighborhoods of u and v. The edge set EBCN contains the interactions
between nodes in VBCN.

BCN (< u, v >, h) describes the social group information of node pairs (u, v) within
range h. However, BCN (< u, v >, h) is not related with t , and the entangled topological and
temporal features in BCN are not easy to be directly extracted and encoded. The reception
theory of random walks [42] indicates that random walks can capture local features in a
static graph since a walk can be seen as a receptive path of the structure near the starting
node. Based on this, we propose the behavioral context walk (BCW), which reflects the
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Fig. 4 BCW is sampled from
bidirection, which includes
historical and evolving directions

context information of t in BCN. A clear example of behavioral context walks sampled from
BCN (< u, v >, 2) is shown in the left part of Fig. 3. Theoretically, the information of a
BCW with 2h length must be contained in a BCN with the size h. Therefore, we sample
BCWs with 2h distance from the nodes u and v as BCW groups {Wu,Wv} to describe the
social group information of the query instead of BCN. Here, we give the formal definition
of the behavioral context walk:

Definition 4.2 (Behavioral Context Walk, BCW) Behavioral Context Walk BCW (u, t) is a
sequence of interactions [I0, ..., I2h−1], which starts sampling from node u at time t . h is the
one-side sampling length of walk, and Ii ∈ E denotes an interaction. Ii and Ii+1 are two
adjoining interactions in BCW (u, t).

4.1.2 The BCW sampling procedure

The time-constraint sampling method [13] can effectively represent a feasible route for
the temporal dependency information of interactions. Inspired by this, we further pro-
pose a BCW sampling method, which focuses on collecting the sequencing order of the
input query and each interaction, and comprehensively reflects query-relevant information
of the BCN from bidirectional timelines of t . Taking the timestamp t as the bound-
ary, we distinguish historical interactions (happened before t) and evolving interactions
(happening after t) in the sampling procedure. Therefore, the BCW (u, t) consists of the
historical behavior walk HisBW (u, t) = [I0, ..., Ih−1] and the evolving behavior walk
EvoBW (u, t) = [Ih, ...I2h−1]. As shown in Fig. 4, the timestamps of two adjoining interac-
tions in HisBW (u, t) are monotonically decreasing while increasing in EvoBW (u, t). We
propose a BCW sampling procedure in Algorithm 4.1 to collect the BCW group. The time
complexity of the BCW sampling procedure is O(Nh|E |), where the sampling of a single
HisBW (u, t) or EvoBW (u, t) mainly depends on the number of observed interactions |E |.

In Algorithm 4.1, T(I ) denotes the timestamp of interaction I . The softmax function
SM(·) assigns higher sampled probability to closer interaction:

SM (I , T N S, Prev_t) = exp[(Prev_t − T(I ))]
∑

I ′∈T N S exp [abs(Prev_t − T(I ′))]
, (1)

where abs(·) denotes the absolute value. The Former_Node(·) denotes the first node in the
interaction, and the Latter_Node(·) is the last node in the interaction.

4.2 The dual-view anonymization procedure

This section will introduce the concept of the anonymous walk of behavioral context, and
how the dual-view anonymization procedure refines topological and temporal features from
BCW groups. Figure 5 demonstrates the dual-view anonymization procedure.
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Algorithm 4.1: The BCW Sampling Procedure.

Input: (1) Target node u, (2) Time spot t , (3) One-side sampling length h,
(4) BCW group size N , (5) Observed interaction set E .
Output: (1) The BCW group Wu .
1: Initialize Wu = [ ];
2: For i ter = 1 : N do
3: Initialize HisBW = [ ], EvoBW = [ ];
4: Prev_th = t , Prev_nh = u, Prev_te = t , Prev_ne = u;
5: For hop = 1 : h do
6: Construct historical temporal neighborhood set T N Sh from E .

The I ′ ∈ T N Sh conforms T(I ′) ≤ Prev_th and Former_Node(I ′) = Prev_nh ;
7: Sample I ∈ T N Sh with Pr(I ) = SM(I , T N Sh , Prev_th);
8: HisBW = Concat([I ], HisBW );
9: Prev_th = T(I ), Prev_nh = Latter_Node(I );
10: Construct evolving temporal neighborhood set T N Se from E .

The I ′ ∈ T N Se conforms T(I ′) ≥ Prev_te and Former_Node(I ′) = Prev_ne;
11: Sample I ∈ T N Se with Pr(I ) = SM(I , T N Se, Prev_te);
12: EvoBW = Concat(EvoBW , [I ]);
13: Prev_te = T(I ), Prev_ne = Latter_Node(I );
14: End For
15: BCW = Concat(HisBW , EvoBW );
16: Wu = Wu ∪ BCW ;
17: End For
18: return Wu ;

Fig. 5 Dual-view anonymization procedure of anonymous walk of behavioral context

The BCW groups {Wu,Wv} reflect the social group information of the query (u, v, t).
However, the pattern features should describe the generalized laws and not be associated
with specific social groups. The node features are replaced with anonymous identifiers,
which concern capturing local pattern features in a highly general manner. Considering this,
we propose the concept of anonymous walk of behavioral context (AWBC), and design a
dual-view anonymization procedure to extract topological and temporal features of patterns
from BCWs, respectively. After the dual-view anonymization procedures, we obtain the
AWBC groups {AWu, AWv} from {Wu,Wv}. Here, we define AWBC as follows:

Definition 4.3 (Anonymous Walk of Behavioral Context, AWBC) The AWBC aw consists
the path-view anonymous form and the group-view anonymous form: aw = [aw p, awg].
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4.2.1 Path-view anonymization procedure

The path-view anonymization form provides the topological information of social groups.We
adapt the anonymous walk concept in Definition 1 to generate the path-view anonymization
form of BCW. In this procedure, nodes are replaced by their path-view position identifiers,
which are the minimum indexes of the nodes appearing in the BCW. For the example shown
in Fig. 4, given a BCW w = [v, a, u, b, v], the path-view identifier of node a is 2. Hence,
the path-view anonymous form of w is [1, 2, 3, 4, 1].

4.2.2 Group-view anonymization procedure

The social role is the relative distance of the individual from the others in the social group and
reflects the individual’s unique features. Therefore, we propose a group-view anonymization
procedure to assign unique group-view identifiers for nodes. The group-view identifier is
defined as an empirical distribution of normalized positional frequency in the BCW groups.
We define the social group node set VSG , which contains the nodes appearing in {Wu,Wv}.
Given the node n ∈ VSG, the group-view node identifier IGn with respect to {Wu,Wv} is
composed of two sub-identifiers IGu

n and IGv
n : IGn = [IGu

n, IG
v
n], where IGu

n and IGv
n are

the group-view identifiers of Wu and Wv, respectively. For example, given the BCW groups
{Wu,Wv}:

Wu = {[v, a, u, b, v], [ f , a, u, b, g], [d, c, u, b, v], [v, a, u, b, g]},
Wv = {[u, a, v, g, b], [a, f , v, b, u], [u, a, v, b, u], [a, f , v, g, b]}.

The group-view identifier IGu
a of node a is [0, 1, 0, 0, 0], for a appears 3 times in Wu, all

appearing at the second positions. Similarly, IGv
a is [0.5, 0.5, 0, 0, 0], for a appears 4 times

in Wv at the first, second positions both 2 times, etc. The group-view identifier IGa is the
concatenation of IGu

a and IGv
a : [0, 1, 0, 0, 0, 0.5, 0.5, 0, 0, 0].

Finally, the awg is the sequence of the group-view identifier of nodes in the BCW.
For example, the awg of [v, a, u, b, v] is [IGv, IGa, IGu, IGb, IGv]. The group-view
anonymization is an inductive procedure because this procedure generates group-view iden-
tifiers for nodes through heuristic statistical methods, rather than relying on original node
features.

4.3 Topo-temp learningmodule

For learning the topological and temporal features from the AWBC groups to infer missing
interaction, we introduce the topo-temp learning module, which encodes the topological and
temporal pattern embedding of the dual-view anonymous walks in {AWu, AWv}, and learns
for inference.

4.3.1 Topological pattern embedding

The path-view anonymous form represents unique topological information of the social
group. For example, the path-view anonymous walk [1, 2, 3, 1, 2] denotes an underlying
triad dissimilar to the two unclosed triads in [1, 2, 3, 4, 1]. If the frequency of the latter walk
is higher than the former walk, it denotes that the pattern is unstable, and more likely to be
missing interactions.
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(a) (b)
(c)

(d)

Fig. 6 Two group-view anonymous walks with different temporal displacements

To this end, we adapt the feature-based anonymous embeddingmethod [39] to generate the
topological pattern embedding via the empirical distribution ofaw p in {AWu, AWv}. First,we
define path-view anonymous walk forms aw f1, aw f2, ... according to their lexicographical
order. For example, when h = 2, aw f1 = (1, 2, 1, 2, 1), aw f2 = (1, 2, 1, 2, 3), aw f3 =
(1, 2, 3, 1, 2), etc. We calculate the empirical distribution of aw fk as follows:

p̂(aw fk) =
∑

aw
p
i ∈{AWu,AWv} I(aw(aw

p
i ) = aw fk)

2N
, (2)

where 2N is the total number of aw p in {AWu, AWv}. aw ·) is the function to project the path-
view anonymous walk to corresponding form. I(·) is the indicator function. The topological
pattern embedding of {AWu, AWv} is a η-dimentional vector:

TopoEmb(u,v,t) = [ p̂(aw f1), p̂(aw f2), ..., p̂(aw fη)], (3)

where η is the total number of the possible path-view anonymous walk forms, which can be
calculated by the length of awp.

4.3.2 Temporal pattern embedding

The aw
g
i represents the sequence of interactions acted by different social roles on the tem-

poral dependency. Recurrent neural networks (RNN) suit for capturing the dependency of
sequence data and can be applied to model aw

g
i . However, one major problem of RNN is

that it records the orders of the interactions without considering the temporal displacement,
which limits capturing the influences of different displacements on representing temporal
patterns. Given two group-view anonymous walks in Fig. 6, the interaction (a, b, 100) con-
veys more influential information from b to c than to node d , for the reason that the temporal
displacement between c and b is smaller than d and b. In the former case, the dependency
between the two interactions is stronger than the two interactions in the latter case. To this
end, we propose the temporal-aware gated recurrent unit (GRU) architecture to encode the
temporal pattern representation of the aw

g
i . Specifically, we modify the original recurrent

unit in the GRU to capture the effects concerning the different temporal displacements and
pass to the next recurrent unit.

First, for introducing the recurrent unit with the temporal displacement, we adapt the
time2vec [41] method to project the real-value temporal displacement�t to a d-dimensional
embedding t2v(�t) by Fourier Transform:

t2v(�t) = [cos(w1�t + φ1), ..., cos(wd�t + φd)], (4)

where series of ws and φs are all weight parameters of the Fourier transform function.
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At each time step, except for receiving the previous hidden state and the current input
vectors, we also consider the temporal displacement from the last time step. In the temporal-
aware GRU unit, we use a temporal displacement vector t2v(�t) to encode the reset gate rk .
In this regard, the temporal displacement plays a role in determining whether the previous
state should be stored or not. For awg with L length as the form [IG1, IG2, ..., IGL], the
temporal pattern embedding of awg is calculated as follows:

zk = σ(WzNN1(IGk) + Uzhk−1) (5)

rk = σ(Wr t2v(�tk) + Urhk−1) (6)

h̃k = tanh(Wh IGk + Uh � hk−1) (7)

hk = (1 − zk) � hk−1 + zk � h̃k, (8)

where IGk denotes the k-th group-view node identifier in aw
g
i , and Wz , Uz , Wr , Ur , Wh ,

Uh are all weights and bias parameters of the temporal GRU. The NN1 is a one-layer neural
network, which projects the group-view node identifier to a vector. σ is the sigmoid function
and � denotes the element-wise product. The t2v(�tk) is the temporal displacement of the
k-th interaction and the (k − 1)-th interaction. In the beginning, �t0 is 0. The temporal
pattern embedding TempEmb(awg) is the final state of the temporal-aware GRU hL−1. The
temporal pattern embedding of the query can be calculated in the mean-pooling method as
follows:

TempEmb(u,v,t) = 1

2N

2N∑

i=1

TempEmb(aw
g
i ), (9)

where aw
g
i ∈ {AWu, AWv}.

4.3.3 The inference module

The inference module concatenates the temporal pattern embedding and the topological pat-
tern embedding to predict the existence of query. We obtain the query embedding Emb(u,v,t)

as follows: the topological and temporal pattern embeddings are concatenated and afterward
projected by a one-layer neural network NN2:

Emb(u,v,t) = NN2
(
Concat

[
TopoEmb(u,v,t),TempEmb(u,v,t)

])
. (10)

After that, we use a two-layer neural network NN3 and a sigmoid function σ to predict
the existence of the query (u, v, t):

ŷ(u,v,t) = σ
(
NN3(Emb(u,v,t))

)
, (11)

where ŷ(u,v,t) is the predicted label of (u, v, t).
In the training procedure, given the interactions E chosen for the training set, we first

generate negative samples E− in the uniformway [37], in which each non-existent interaction
in the form of (u, v′, t), and both u and v′ are drawn from the nodes involved in E . The training
set is composed of E and E−, which are of equal size. We use the cross-entropy loss to train
NEAWalk as follows:

L = 1

|E ∪ E−|
∑

(u,v,t)∈E∪E−
−[y(u,v,t) · ln(ŷ(u,v,t)) + (1 − y(u,v,t)) · ln(ŷ(u,v,t))], (12)
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Table 1 Statistics of five social network datasets

Dataset #Node #Int. Avg. NBHD. Max DEG. DIAM. CENT.

Enron 184 125,235 23.0 21,512 4 0.48

Social evolution 66 66,898 36.9 4758 3 0.32

CollegeMsg 1899 20,296 14.6 1546 8 0.13

Bitcoin OTC 5881 35,592 7.3 1298 9 0.13

Math overflow 24,818 506,550 15.2 11,309 9 0.09

where y(u,v,t) is the label for the interaction (u, v, t), with 0 for the non-existent interaction
and 1 for the existent interaction.

5 Experiments

In this section, for evaluating the performance of NEAWalk, we first design the two-track
experiments for the dynamic network completion task, including the datasets, baseline meth-
ods, experiment settings, and following with experimental results and discussions. We then
conduct ablation studies of the NEAWalk to evaluate the effectiveness of each component in
the NEAWalk. Next, we compare the model performance in terms of BCW length, the ratio
of observed data, and query embedding dimension. Finally, we analyze the complexity of
the sampling and training procedure in NEAWalk.

5.1 Datasets description

We select five open-source dynamic social network datasets with different interaction
types (including email/online message/physical proximity/online transaction/Q&A forum)
in experiments to show the potential to apply our model in various real-world scenarios.
The granularity of time information in all datasets is accurate to second. The five dynamic
social network datasets are processed in the format of (u, v, t) per line, which represents an
interaction in the dataset. The detailed statistics of five datasets (including the number of
nodes, number of interactions, the average number of neighborhoods, max degree, network
diameter, and network centralization) are shown in Table 1 from left to right.
Enron dataset1 is an email communication network of 184 core employees in a company
over several of years. One email record denotes an interaction between a person pair at a
specific time. We leave out the content of emails, and keep the sender, recipient and the post
time.

Social evolution dataset2 is collected from the daily trajectory data from 66 undergraduates
with wireless signals of mobile phones to record the physical proximity between people. We
select interaction data with a time of 2 weeks from the original data.

CollegeMsg dataset3 comprises user private message type interactions on an online social
network at the University of California, Irvine. Users could search the network for others

1 https://www.cs.cmu.edu/~./enron/.
2 http://realitycommons.media.mit.edu/socialevolution.html.
3 http://snap.stanford.edu/data/CollegeMsg.html.
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and then initiate a conversation based on profile information. We leave out the content of
conversations, and keep the sender, recipient and the start time of conversation.

Bitcoin OTC dataset 4 is a user rating network dataset collected from a bitcoin transaction
platform called OTC5. Users tend to trade with other users they trust or have a higher rating
score to prevent transactions with fraudulent and risky users. We leave out the rating of
transactions, and keep the source and target user of transaction and the time of transaction.

Math overflow dataset 6 records the interactions among users on the stack exchange website
Math Overflow. There are three different types of interactions represented by a directed edge
(u, v, t), including answer to question, comments to question and comments to answer. We
leave out the content of answer and comment, and keep the source and target user and the
time of interaction.

5.2 Baselinemethods

We choose two types of baseline methods, including link prediction methods on static and
dynamic graphs. The methods on static graphs include Deepwalk, GAE, VGAE, GCMC,
DeepNC, and NEAWalk(w/o dynamic). The methods on dynamic graphs include AIM,
CTDNE, TGN, TGAT, APAN and our method. DeepWalk [37] proposes a random walk
method on static graphs to collect local information of nodes and uses the Skip-gram model
to learn node embeddings.

GAE and VGAE [29] use the encoder–decoder architecture to predict links via a graph
generation way on the static graph. The main difference between the two models is that the
GAE uses the autoencoder, while the VGAE uses the variational autoencoder to represent
the hidden state of the graph.

GCMC(GraphConvolutionalMatrixCompletion) [27] uses the graph auto-encoder frame-
work based on differentiable message passing procedure to complete the missing edges on
the static social network.

DeepNC[12] uses the deepgenerativemodel to learn the feature of fully observednetworks
and infers the missing edges and nodes of the partial graph. In our experiments, we concern
with the performance of the missing edges.

NEAWalk (SG) randomly samples walks on the static graph. The walks cannot discrim-
inate the historical and the evolving interaction information due to the loss of temporal
information. The temporal displacement vectors are replaced by random vectors of the same
size in the temporal-aware GRU.

AIM (Agent Interaction Model) [3] applies the Hawkes process to infer the interaction
based on the observed part by maximizing the energy over the observed interactions of all
node pairs.

CTDNE [13] collects unidirectional temporal walks dynamic graphs and then feeds them
into the Skip-Gram model for learning node embeddings. For a fair comparison, we modify
the temporal walk sampling method in CTDNE to the BCW sampling method, i.e., both
collecting historical and evolving behavior walks.

TGN [14] proposes an encoder–decoder framework to predict future interactions on
dynamic social network. For a fair comparison, we add another memory module in TGN

4 https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html.
5 http://www.bitcoin-otc.com/.
6 http://snap.stanford.edu/data/sx-mathoverflow.html.
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to store the evolving interactions and use both the historical and evolving information to
infer the missing interactions.

TGAT [43] applies the self-attention mechanism as building block of temporal graph
neural network, and develop a functional time to learn the evolving features of nodes.

APAN [44] employs an asynchronous mail propagator in the temporal graph neural net-
work, for spreading the evolving information in the interaction to the neighborhoods of related
nodes.

5.3 Experimental settings and evaluationmetrics

5.3.1 Experimental settings

In experiments, we design two tracks for comparing the static/dynamic network completion
methods: static graph track and dynamic graph track.

Static graph track We ignore the temporal information of interactions, and treat interactions
as atemporal links. Multiple interactions between two nodes are merged as one link. Due to
the lack of temporal information, the prediction of links is equivalent to whether interactions
have occurred. We randomly divide links as positive links of the training/validation/test set
according to the ratio of 7:2:1, and sample the equal number of non-existent links as negative
links of the training/validation/test set.

Dynamic graph track AIM optimizes parameters of the Hawkes process function through
predicting the probability of interactions as events. To this end, we randomly choose 100
node pairs that have at least ten interactions for all datasets, and randomly split the 90%
interactions for optimizing parameters and 10% interactions for the test. For the other baseline
models on the dynamic graph track and NEAWalk, we first split all interactions into the
observed interaction set E and the unobserved interaction set Ê as the ratio of 4:1. Ê contains
the positive interactions that are represented as missing interactions. Then, we generate
the same number of non-existent interactions in Ê . These interactions are partitioned into
training/validation/test interaction set as the ratio of 7:2:1. We only sample interactions in E
in the BCW sampling procedure of training/validation/test phase.

For implementation details, we use the Pytorch7 and the Deep Graph Library8 to imple-
ment all models, and we optimize all models through Adam optimizer. For NEAWalk, we
have tuned the hyperparameters manually, and setup the optimal hyperparameters in the
experiments as following: in the sampling procedure, we use the optimal hyperparameters
as follows: we set the walk length h of BCW to 2, the sampled walk number N of the BCW
group to 64; in the topo-temp learning procedure, we set the size of topological and temporal
pattern embeddings as 64, and the query embedding size is 128. In the training phase, the
learning rate is 0.0001, the batch size is set to 64 and the dropout rate is set to 0.1. We
discuss the experiment results of hyperparameter analysis in Subsect. 5.6. In the experiment,
we repeat all experiments 10 times and calculate the results with standard deviation. The
experiments are performed on a CentOS Machine with sixteen 2.1 GHz Intel cores and four
24 GB TITAN RTX GPUs.

7 https://pytorch.org/.
8 https://github.com/dmlc/dgl.
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5.3.2 Evaluation metrics

To evaluate the performance of the models, we adopt two widely used metrics in the link
prediction task: AUC (Area Under the ROC Curve) and the AP (Average Precision). Higher
AP and AUC values represent better quality of the social network completion task. In the
static graph track, the AUC and AP metrics are calculated on the prediction results in the test
set of atemporal links. In the dynamic graph track, the AUC and APmetrics are calculated on
the prediction results in the test set of interactions. The analysis of the experimental results
will be discussed in the following subsection.

5.4 Experimental results and discussion

We show the two-track experiment results (mean AP std) under the evaluation of AP and
AUC in Table 2. Although NEAWalk is not applied to static social network link prediction
tasks, we notice that NEAWalk (SG) still achieves the best performance on Enron, Bitcoin
OTC, andMathOverflow. This phenomenon shows that even in static graphs, the social group
features without temporal information can effectively help to infer the missing interactions
between nodes. The methods based on graph neural networks (GAE and GCMC) achieve
the best results in two other datasets that share conducive macroscopic features for inferring
the missing links, and both two methods focus on reconstructing the whole graph via the
auto-encoder mechanism.

In the dynamic graph track, NEAWalk outperforms all competitors both in AP and AUC
metricswith a significant advantage that the effectiveness ofNEAWalk can be hereby verified.
As for other competitors, the performance ofAIM is unsatisfactory. An apparent reason is that
AIM treats interactions within node pairs independently but ignores social group features,
which results in weak performance. CTDNE achieves the second-best performance on Enron
and Social Evolution, which both are two graph datasets with high average neighborhoods,
but cannot compete with NEAWalk in all datasets, and three neural network-based methods
(TGAT, TGN and APAN) in three other datasets. These experimental results attest to the
importance of the anonymization procedure on temporal walks. The results of TGN and
APAN are satisfactory and more stable than other baselines, while NEAWalk still performs
better than the two high-performing baselines. It reveals the importance of leveraging the
pattern features of social group information within multi-hop in NEAWalk, while TGN only
considers one-hop related interactions of nodes, and the mailbox mechanism of APAN only
covers the k-hop information of social group, but fails to extract the pattern information.

5.5 Ablation studies

In this section, we conduct experiments by ablating the proposed method to analyze the
effects of each component in NEAWalk. We choose two representative datasets: the Bitcoin
OTC and Social Evolution dataset. The commonality of Bitcoin OTC, CollegeMsg, andMath
Overflow is that the nodes are large in scale, and the interactions in these datasets are sparse.
Both Social Evolution and Enron record frequent interactions in small organizations, and
individuals are closely connected. In all ablated methods, we keep other hyperparameters the
same as the original NEAWalk. We repeat all experiments 10 times and calculate the mean
results with error bars (the best and the worst records). The experiment results are shown in
Fig. 7.
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(a) (b)

Fig. 7 Ablation experiments results

5.5.1 The time constraint in BCW sampling procedure

To verify the claim that the time constraint in the BCW sampling procedure can effectively
represent temporal dependency information, we replace time constraint with random walk
in the NEAWalk (random). The BCWs sampled in NEAWalk(random) collect temporally
disordered interaction sequences rather than unidirectional increasing interaction sequences.
We see that the impact of time constraint ablation is more prominent in Bitcoin OTC (average
dropping 10.3%, 10.4% in AP and AUC, and longer error bars), while slightly dropping in
Social Evolution (average dropping 1.2%, 0.9% in AP and AUC). These experimental results
prove that the disordered temporal information in BCW weakens the performance.

5.5.2 The effect of the group-view identifier

The motivation of this experiment is to explore the effect of the group-view identifiers, which
represent the social role features of nodes.We resort to theNEAWalk (w/o group-view),where
the nodes in the BCW groups are assigned the exact dimensional random embeddings rather
than the group-view identifiers. The performance of NEAWalk (w/o group-view) degrades
with varying degrees, and the decline in Bitcoin OTC is more slightly because the Bitcoin
OTC describes an online anonymized transaction network and the social role of nodes is not
prominent.

5.5.3 Topological and temporal pattern embedding

To explore the effects of topological pattern embedding and temporal pattern embedding, we
design NEAWalk (w/o topo) and NEAWalk (w/o temp). The topological pattern embedding
in NEAWalk (w/o topo) and the temporal displacement vector in NEAWalk (w/o temp)
replaced the same dimension random embeddings. The performances of NEAWalk (w/o
topo) drop acutely in Social Evolution (6.2% and 6.6%). Besides, the error bar of NEAWalk
(w/o topo) on Social Evolution is longer than the original NEAWalk, reflecting the fact that
the performance of NEAWalk (w/o topo) is unstable. NEAWalk (w/o temp) only retains the
sequencing order information but ignores the temporal displacement between interactions.
Therefore. AP and AUC metrics of NEAWalk (w/o temp) also drop compared to original
NEAWalk, but still better than the NEAWalk (w/o topo). This phenomenon shows that the
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Hyperparameter analysis experiment results

topological pattern embedding has more significant effects than temporal pattern embedding,
and the joint combination of both two embeddings can contribute to better results.

5.5.4 The generalizing ability of NEAWalk

The anonymous characteristic of NEAWalk guarantees that it is naturally inductive and thus
can be generalized to social group patterns rather than specific nodes. We design NEAWalk
(unseen nodes) to analyze the generalizing ability of NEAWalk. Specifically, we randomly
choose 10% nodes as unseen nodes and mask their related interactions, which are removed
from E and the training/validation interaction set. We evaluate the performance of NEAWalk
on these interactions of unseen nodes. We can find that the experimental results of NEAWalk
(unseen nodes) are still considerable (both AP and AUC are above 90% on Bitcoin OTC,
above 95% on social evolution), demonstrating the effectiveness of NEAWalk in generalizing
the patterns of interactions containing nodes out of observed data.

5.6 The hyperparameter analysis

In this section,we adjust the hyperparameters inNEAWalk to explore the effects on prediction
results with different hyperparameter values and conduct experiments on the Bitcoin OTC
dataset and Social Evolution dataset. Figure 8 shows the hyperparameter analysis results.
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5.6.1 The sampling length of BCWs

BCWs with different sampling lengths represent different sizes of reception fields on social
groups. Concretely, BCWs with too short length leads to insufficient information of social
group, and excessively long BCWs may introduce noise information, thereby affecting the
performance. We set different BCW sampling lengths at [2,4,6] respectively, with the other
hyperparameters unchanged. The experimental results are shown in Fig. 8a, d. As for the
results of the Bitcoin OTC dataset, both AP and AUC metrics have been increasing and
reaching saturation at the length of 4 and slightly dropping at the length of 6. Although 6-hop
BCWs can slightly improve the model performance on the Social Evolution dataset, it needs
to be at the cost of a longer training time. The results demonstrate that the 4-hop BCW is
sufficient to express social group information.

5.6.2 The portion of observed interactions

Theoretically, the smaller proportion of observed data would result in inferior performance.
To show the robustness of NEAWalk on incomplete interaction data, we set different ratios
of observed interaction data in {10%, 20%, 40%, 60%} compare the performance with the
original ratio 80%. The experimental results are shown in Fig. 8b, e. We can observe that
AP and AUC metrics do not decrease markedly in two datasets until 40% observed data.
This phenomenon indicates that NEAWalk still has excellent performance with severely
incomplete interaction data (under the situation that 60% loss of interactions). The results in
Bitcoin OTC drop significantly from 40% to 20%, indicating that the NEAWalk on sparse
social networks can be more affected by the proportion of observed data.

5.6.3 The query embedding dimension

We conduct experiments for different query embedding dimension sizes to explore the model
performance with different embedding dimension sizes. The experimental results are shown
in Fig. 8c, f. The predictions do not achieve the desired results when the query embedding
dimension size is relatively small because the topological and temporal features are not
fully expressed. As the size increases, the prediction results improve and saturate at 128
dimensions.

5.7 The complexity analysis of runtime

In this section, we analyze how the sampling and training runtime of NEAWalk depends on
the length of BCW L , the number of BCWs in BCW group N , and the ratio of observed
interaction data. Concretely, we conduct the complexity analysis experiments on Social Evo-
lution and Bitcoin OTC dataset by recording the sampling and training runtime of NEAWalk
per batch. The NEAWalk models with different settings will be run 10 times, and the aver-
age runtime will be reported. The experimental results in Fig. 9a, b clearly show that the
sampling time and the training time both increase linearly with L and N . Compared with
different datasets, the sampling time is longer in the Social Evolution, which contains more
interactions. Furthermore, we conduct a complexity analysis experiment for studying the
sampling/training time with the observed interaction data number. Specifically, we change
the ratio of observed data with L and N fixed and record the sampling and training runtime.
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(a)

(c)

(b)

Fig. 9 Complexity analysis results on various BCW length/BCW number/ratio of observed data

The experimental results in Fig. 9c prove that the sampling time of NEAWalk increases lin-
early with the observed data number, which is consistent with the time complexity analysis
of the sampling method. Since the training time is related to a specific query, the training
runtime keep stable in this experiment.

6 Conclusion

In this paper, we propose neural network for encoding anonymouswalks in behavioral context
(NEAWalk), a novel inductive and effective method for inferring the missing interactions. By
incorporating the behavioral context walk sampling algorithm and a dual-view anonymiza-
tion procedure with a novel topo-temp embedding approach, NEAWalk comprehensively
explores the historical and evolving pattern features residing in the social group of queries
and achieves the best performances on the dynamic network completion task on the learned
query embeddings. Extensive experiments on five real-world social network datasets have
proved the superiority of NEAWalk over other methods for inferring missing interactions
both on the static graph track and dynamic graph track.

Real-world applications are often oriented to systems with multiple types of entities and
complex types of relationships. In the future work, we seek to extend the sampling and
anonymization procedures of NEAWalk to describe rich and heterogeneous information in
the dynamic social network, which contains multiple types of entities and interactions.
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