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Abstract

A pre-trained language model, BERT, has brought significant performance im-
provements across a range of natural language processing tasks. Since the model is
trained on a large corpus of diverse topics, it shows robust performance for domain
shift problems in which data distributions at training (source data) and testing (tar-
get data) differ while sharing similarities. Despite its great improvements compared
to previous models, it still suffers from performance degradation due to domain
shifts. To mitigate such problems, we propose a simple but effective unsupervised
domain adaptation method, adversarial adaptation with distillation (AAD), which
combines the adversarial discriminative domain adaptation (ADDA) framework
with knowledge distillation. We evaluate our approach in the task of cross-domain
sentiment classification on 30 domain pairs, advancing the state-of-the-art perfor-
mance for unsupervised domain adaptation in text sentiment classification.

1 Introduction

The cost of creating labeled data for a new machine learning task is often a major obstacle to the
application of machine learning algorithms. In particular, the obstacle is more restrictive for deep
learning architectures that require huge datasets to learn a good representation. Even if enough
data are available for a particular problem, performance may degrade due to distribution changes in
training, testing, and actual service.

Domain adaptation is a way for machine learning models trained on source domain data to maintain
good performance on target domain data. In domain adaptation methods, semi-supervised methods
require a small amount of labeling in a target domain while unsupervised methods do not. Although
semi-supervised methods may provide better performance, unsupervised domain adaptation methods
are more often noticeable and attractive because of the high cost of data annotation depending on the
new domain.

With the development of deep neural networks, unsupervised domain adaptation methods have
focused on learning to map source and target data into a common feature space. This is usually
accomplished by optimizing the representation to minimize some measure of domain shifts such
as maximum mean discrepancy (Tzeng et al., 2014) or correlation distances (Sun et al., 2016;
Sun & Saenko, 2016). Particularly, adversarial domain adaptation methods have become more
popular in recent years, seeking to minimize domain discrepancy distance through an adversarial
objective (Ganin et al., 2016; Tzeng et al., 2017).

However, these methods appear to be unfavorable when applied to large-scale and pre-trained
language models such as BERT (Devlin et al., 2018). Pre-trained language models (Peters et al.,

*This work was done while the author was a graduate student in the Department of Industrial Engineering,
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1

ar
X

iv
:2

01
0.

11
47

8v
2 

 [
cs

.C
L

] 
 2

3 
O

ct
 2

02
0



Figure 1: An overview of Adversarial Adaptation with Distillation. In Step 1, we first fine-tune a
source BERT and a classifier on source labeled data. Next, in Step 2, after initializing the target
BERT with weights of the fine-tuned source BERT, we perform adversarial learning and knowledge
distillation simultaneously on the target BERT. Dashed line indicates fixed model parameters. Finally,
in Step 3, the knowledge-distilled target BERT and the classifier predict class labels

2018; Radford, 2018; Devlin et al., 2018; Yang et al., 2019) have brought tremendous performance
improvements in numerous natural language processing (NLP) tasks. With respect to domain shift
issues, showing robust performance and outperforming existing models without domain adaptation,
they still suffer from performance degradation due to domain shifts.

In this paper, we propose a novel adversarial domain adaptation method for pre-trained language
models, called adversarial adaptation with distillation (AAD). This work is done on top of the
framework, called adversarial discriminative domain adaptation (ADDA), proposed by Tzeng et
al. (Tzeng et al., 2017). We observe that a catastrophic forgetting (Kirkpatrick et al., 2016) occurs
when the ADDA framework is applied to the BERT model as opposed to when applied to deep
convolutional neural networks. In ADDA, the fine-tuned source model is used as an initialization
to prevent the target model from learning degenerate solutions because the target model is trained
without label information. Unfortunately, this method alone does not prevent a catastrophic forgetting
in BERT, resulting in random classification performance. To overcome this problem, we adopt the
knowledge distillation method (Hinton et al., 2015), which is mainly used to improve the performance
of a smaller model by transferring knowledge from a large model. We found that this method can
serve as a regularization to maintain the information learned by the source data while enabling the
resulting model to be domain adaptive and to avoid overfitting.

2 Related Work

2.1 Unsupervised Domain Adaptation

Recently a large number of unsupervised domain adaptation methods have been studied. We present
details of the studies that are most relevant to our paper. Recent studies have focused on transferring
deep neural network representations learned from labeled source data to unlabeled target data.

Deep Domain Confusion (DDC) (Tzeng et al., 2014) introduces an adaptation layer to minimize
Maximum Mean Discrepancy (MMD) in addition to classification loss on source data while the
Deep Adaptation Network (DAN) (Long et al., 2015) applies multiple kernels to multiple layers.
The deep Correlation Alignment (deep CORAL) (Sun & Saenko, 2016) minimizes the difference in
second-order statistics between the source and target representations.

More recently, adversarial methods to minimize domain shifts have received much attention. The
Domain Adversarial Neural Network (DANN) (Ganin et al., 2016) introduces a domain binary
classification with a gradient reversal layer to train in the presence of domain confusion. Other studies
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have explored generative methods using Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014). A coupled generative adversarial network (CoGAN) (Liu & Tuzel, 2016) learns
a joint distribution from the source and the target data with weight sharing constraints. Cycle-
Consistent Adversarial Domain Adaptation (CyCADA) (Hoffman et al., 2018) uses cycle and semantic
consistency for multi-level adaptation.

ADDA (Tzeng et al., 2017) was proposed as an adversarial framework that includes discriminative
modeling, untied weight sharing, and a GAN-based loss. The source encoder is first trained with
labeled source data and the weights are copied to the target encoder. Then, the target encoder and
discriminator are alternately optimized in a two-player game like the original GAN setting. The
discriminator learns to distinguish the target representations from the source representations while the
encoder learns to trick the discriminator. Chadha et al. (Chadha & Andreopoulos, 2018) improved the
ADDA framework by modifying the discriminator to jointly predict the source labels and distinguish
inputs from the target domain as semi-supervised GANs (Kumar et al., 2017). Our study is similar to
the work by Chadha et al. (2018) in that it also uses source information in the adversarial adaptation
step. However, the difference is that the use of knowledge distillation, rather than the direct use of the
source label, is the means to employ the source information in the network.

Besides, several unsupervised domain adaptation methods designed for NLP have also been proposed.
Structural Corresponding Learning (SCL) (Blitzer et al., 2006) identifies correspondences among
features from different domains by modeling their correlations with pivot features. Neural SCL (Ziser
& Reichart, 2017) incorporates ideas of SCL and autoencoder neural networks. The Pivot Based
Language Model (PBLM) (Ziser & Reichart, 2018) also combines the pivot-based idea of SCL with
neural network based language modeling.

2.2 Knowledge Distillation

Knowledge Distillation (Hinton et al., 2015) (KD) is originally a model compression technique that
aims to train a compact model (student) so that the knowledge of a well-trained larger model (teacher)
is transferred to the student model. KD can be formulated by minimizing the following objective
function

LKD = t2 ×
∑
k

−softmax(zT
k /t)× log(softmax(zS

k /t)) (1)

where zS and zT are the logits predicted by the student and the teacher, respectively, and temperature
value t controls the degree of knowledge transfer. Equation 1 can be derived from the Kullback-
Leibler (KL) divergence1 of the predicted distribution by the teacher from the predicted distribution
by the student since the teacher model is fixed during training.

In supervised learning, the standard training objective is to minimize the cross-entropy between the
distribution of the model’s predicted probability and that of one-hot-encoded labels’ true probability.
However, this objective is prone to result in overfitting with repeated training epochs. Since a larger
value for t produces a softer probability distribution, knowledge distillation can mitigate this problem
when incorporated with domain adaptation methods.

2.3 Bidirectional Encoder Representations from Transformers

BERT is a self-supervised approach for pre-training a deep transformer encoder (Vaswani et al., 2017).
The BERT model is trained on a large corpus using masked language modeling and next sentence
prediction. It has shown strong performance gains in many NLP tasks, and several variants have been
proposed such as spanBERT (Joshi et al., 2019), distilBERT (Sanh et al., 2019), and RoBERTa (Liu
et al., 2019). In this experiments, we use BERT, distilBERT and RoBERTa to evaluate our approach.

1Given probability distributions p and q, KL divergence of q from p is defined to be KL(p ‖ q) =
−
∑

j pj log(qj/pj)
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3 Adversarial Adaptation with Distillation

In this section, we introduce our unsupervised domain adaptation method, adversarial adaptation with
distillation, which combines the ADDA framework (Tzeng et al., 2017) with knowledge distillation.
We illustrate the proposed method in Figure 1.

Let us assume labeled source texts are given, XS = {(xi
s)}

Ns
i=0, yS = {(yis)}

Ns
i=0 with (xs, ys) ∼

(XS ,YS), and unlabeled target texts are also given, XT = {(xi
t)}

Nt
i=0 with xt ∼ XT . We also

assume that the target data share the identical label space as the source data. The source encoder is
represented by a function Es(x) where x is the input to the network, and likewise, Et(x) represents
the target encoder. In addition, let us represent C as a classifier function that maps the source encoder
output to class probabilities and D as a discriminator function that maps the encoder output (of either
source or target) to domain probabilities. In unsupervised domain adaptation, the goal is to have
better performance on target data by learning to minimize the distance between the representation of
source data and that of target data without access to the target labels. Our proposed method consists
of the following three steps: training the source encoder and the classifier on the source data, adapting
the target encoder to align its representation with the source representation through both adversarial
training and distillation, and finally inferring on the target data with the adapted target encoder and
the trained classifier.

3.1 Step 1: Fine-tune the source encoder and the classifier

With access to the labeled source data, we first fine-tune the source encoder Es and the classifier C
on XS and yS using standard cross-entropy loss:

min
Es,C
LS(XS ,yS) = E(xs,ys)∼(XS ,YS) −

K∑
k=1

1[k=ys] logC(Es(xs)) (2)

where K is the number of classes. Then, after initializing the target-encoder parameters with the
fine-tuned source-encoder parameters, we freeze the source-encoder parameters and the classifier.

3.2 Step 2: Adapt the target encoder via adversarial adaptation with distillation

In this step, we train the target encoder and the discriminator alternately in the original GAN setting
as in the ADDA framework. This can be formulated by the following unconstrained optimization as
in Step 2-(a) of Figure 1:

min
D
Ldis(XS ,XT ) = Exs∼XS

− logD(Es(xs)) + Ext∼XT
− log (1−D(Et(xt))),

min
Et

Lgen(XT ) = Ext∼XT
− logD(Et(xt)).

(3)

Since it has the untied weights from the source encoder, the target encoder is allowed to have more
flexibility to learn specific domain features. However, the formulation easily leads to catastrophic
forgetting, resulting in random classification performance due to the inaccessibility to class labels
and the dissimilarity to the original task.

In order to enhance the stability of the adversarial training, one can think of using source labels
directly as a supervised learning approach. However, this can cause the model to overfit the source
domain data while possibly preventing a mode collapse in the adversarial adaptation. Knowledge
distillation (Hinton et al., 2015), on the other hand, can provide the model with both flexibility for
adversarial adaptation and the ability to retain class information with a large temperature value t.
Therefore, we introduce knowledge distillation loss as in Step 2-(b) of Figure 1:

LKD(XS) = t2 × Exs∼XS

K∑
k=1

−softmax(zS
k /t)× log(softmax(zT

k /t)) (4)
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Source→ Target Baseline DDC DANN deep CORAL AAD (Ours)
B→ D 86.6 84.7±1.9 85.5±0.8 85.0±2.3 86.5±0.2
B→ E 85.7 84.9±2.5 84.3±1.6 86.6±0.7 86.7∗±0.2
B→ K 88.4 87.0±0.7 86.3±2.0 87.6±0.6 88.3±0.3
B→ A 84.8 82.8±2.6 83.6±1.2 84.3±1.3 85.9∗±0.3
B→ I 83.4 80.8±3.5 82.3±0.9 81.9±0.9 82.4±0.5
D→ B 85.0 84.8±1.0 83.7±3.1 84.8±1.6 87.0∗±0.2
D→ E 83.8 83.2±1.6 81.5±1.9 84.5±1.1 85.6∗±0.3
D→ K 85.3 85.6±0.6 85.7±0.6 86.4∗±0.7 86.7∗±0.5
D→ A 81.0 81.9±1.6 82.0±1.4 83.2∗±1.7 84.2∗±0.2
D→ I 82.3 82.8±1.6 81.6±2.4 82.5±1.7 82.9∗±0.1
E→ B 85.0 84.0±0.8 82.9±1.0 84.4±0.5 85.1±0.3
E→ D 84.4 83.7±0.8 81.7±2.5 83.5±0.7 84.6±0.3
E→ K 90.6 90.1±0.7 88.9±0.6 88.9±1.0 90.9∗±0.2
E→ A 84.3 85.9∗±1.1 85.0±1.2 85.9∗±1.0 86.4∗±0.3
E→ I 79.1 80.0±0.9 79.4±1.2 80.2±0.9 81.2∗±0.5
K→ B 84.9 80.5±4.4 82.6±0.9 83.0±1.7 84.4±1.8
K→ D 83.1 81.7±1.5 82.5±1.2 82.5±2.0 83.7∗±0.3
K→ E 88.1 86.8±0.9 86.8±1.3 87.7±0.3 88.1±0.7
K→ A 80.4 81.0±2.4 83.1∗±1.8 82.8±2.0 85.9∗±0.5
K→ I 80.2 78.3±1.6 77.7±1.4 79.4±1.7 80.6±1.0
A→ B 77.2 78.3±1.7 77.1±3.8 79.5±2.8 80.9∗±0.7
A→ D 77.7 77.8±1.2 77.9±1.3 78.7±2.6 78.9±1.1
A→ E 84.3 84.3±1.0 83.9±1.4 83.5±1.8 85.5∗±0.4
A→ K 85.0 84.6±1.2 82.5±2.1 85.2±1.6 87.5∗±0.4
A→ I 71.2 73.8±2.9 75.2∗±1.9 76.5∗±3.2 75.3∗±1.6
I→ B 84.5 83.0±2.3 82.4±2.4 84.8±1.4 86.6∗±0.2
I→ D 84.8 84.5±1.3 84.0±2.5 84.7±1.8 85.9∗±0.2
I→ E 82.0 83.3±1.5 83.9∗±0.8 84.9∗±0.7 86.3∗±0.3
I→ K 85.2 84.6±0.7 84.6±1.1 86.2±1.2 87.4∗±0.1
I→ A 82.0 83.4∗±1.0 82.1±1.7 83.8±1.5 84.9∗±0.4

Average 83.3 82.9 (2†) 82.7 (3†) 83.8 (5†) 84.9 (21†)

Table 1: Sentiment classification accuracy with BERTBASE and other tested models including the
proposed model ADD, on 30 cross-domain sentiment classification tasks is shown. The asterisk, ∗,
denotes a value greater than the baseline with a significance level of 0.05, and † represents the number
of values significantly greater than the baseline.

where zS = C(Es(xs)), z
T = C(Et(xs)). Thus, the final objective function for training target

encoder becomes:

min
Et

LT (XS ,XT ) = Lgen(XT ) + LKD(XS). (5)

Finally, the second objective function in equation (3) is replaced with equation (5). Then, the
discriminator and the target encoder are trained by alternately minimizing objective functions.

3.3 Step 3: Test the target encoder on the target data

We can now test the target encoder on the target data. As illustrated in Step 3 of Figure 1, we use the
fine-tuned classifier for inference, obtaining the prediction as follows:

ŷt = argmax C(Et(xt)). (6)

4 Experiments

4.1 Experimental protocol

In our experiments, we evaluate our approach for the task of cross-domain sentiment classification.
We compare algorithms on the Airline review dataset (A) (Nguyen, 2015), IMDB dataset (I) (Maas
et al., 2011), and Amazon reviews datasets (Blitzer et al., 2007) which contain four domains: books
(B), dvds (D), electronics (E) and Kitchen appliances (K). In total, we perform 30 domain adaptation
tasks. For each domain, we sample 2,000 labeled reviews, consisting of 1,000 positive and 1,000
negative reviews. Among all the source and target examples, we use 1,600 labeled source examples
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Source→ Target Baseline Supervised t = 1 t = 2 t = 5 t = 10 t = 20 t = 50
B→ D 86.6 84.3±2.6 86.2±0.7 86.0±1.2 86.1±1.2 85.9±1.1 86.5±0.2 86.0±1.1
B→ E 85.7 85.1±1.2 85.3±0.7 85.9±0.4 86.7∗±0.5 86.3±0.4 86.7∗±0.2 86.4±0.5
B→ K 88.4 88.0±0.5 87.9±0.6 88.1±0.6 88.1±0.5 88.2±0.3 88.3±0.3 88.2±0.3
B→ A 84.8 85.5∗±0.5 86.0∗±0.3 85.7∗±0.2 85.9∗±0.4 86.0∗±0.2 85.9∗±0.3 85.9∗±0.2
B→ I 83.4 80.1±3.2 82.2±0.7 82.1±1.0 81.6±1.0 82.2±0.8 82.4±0.5 82.4±0.6
D→ B 85.0 86.0±1.4 86.8∗±0.4 87.0∗±0.2 87.0∗±0.3 87.0∗±0.1 87.0∗±0.2 87.0∗±0.2
D→ E 83.8 84.2±1.1 84.9∗±0.6 85.4∗±0.3 85.4∗±0.2 85.4∗±0.3 85.6∗±0.3 85.5∗±0.3
D→ K 85.3 87.0∗±0.2 86.5∗±0.6 86.7∗±0.2 86.7∗±0.5 86.8∗±0.6 86.7∗±0.5 86.7∗±0.7
D→ A 81.0 84.6∗±0.6 84.8∗±0.6 84.6∗±0.8 84.1∗±0.6 84.3∗±0.6 84.2∗±0.2 84.2∗±0.7
D→ I 82.3 83.0±0.6 82.9∗±0.5 82.9∗±0.4 82.8±0.5 82.8±0.5 82.9∗±0.1 82.8±0.5
E→ B 85.0 84.3±0.9 84.6±0.6 84.7±0.3 84.9±0.4 85.1±0.5 85.1±0.3 85.0±0.5
E→ D 84.4 84.3±0.6 83.7±1.6 84.7±0.5 84.8±0.4 84.7±0.2 84.6±0.3 84.8±0.3
E→ K 90.6 90.3±0.3 90.6±0.4 90.6±0.1 90.7±0.3 90.6±0.4 90.9∗±0.2 90.7±0.4
E→ A 84.3 85.8∗±0.9 86.6∗±0.4 86.3∗±0.2 86.0∗±0.7 86.1∗±0.6 86.4∗±0.3 86.1∗±0.6
E→ I 79.1 79.8±2.1 80.5±1.2 80.7∗±0.3 80.9∗±0.5 80.8∗±0.3 81.2∗±0.5 80.9∗±0.4
K→ B 84.9 82.4±3.2 82.2±4.6 84.4±1.5 85.0±0.2 85.1±0.2 84.4±1.8 85.1±0.3
K→ D 83.1 83.1±0.7 81.9±2.4 82.5±1.1 83.0±1.2 82.9±2.1 83.7∗±0.3 82.6±2.2
K→ E 88.1 88.3±0.4 88.0±0.5 88.0±0.4 88.1±0.4 88.0±0.4 88.1±0.7 88.4±0.3
K→ A 80.4 85.7∗±1.0 85.7∗±0.7 85.8∗±0.2 84.5∗±1.7 85.5∗±0.8 85.9∗±0.5 85.3∗±0.6
K→ I 80.2 77.8±3.1 78.0±4.8 79.4±1.6 79.3±1.5 80.3±1.1 80.6±1.0 80.1±1.8
A→ B 77.2 78.3±1.7 79.8±2.2 79.8±1.9 80.9∗±0.6 80.8∗±0.7 80.9∗±0.7 80.8∗±0.6
A→ D 77.7 79.8±2.2 77.5±2.3 79.3∗±1.3 79.0∗±0.9 78.8∗±0.7 78.9±1.1 78.7±0.7
A→ E 84.3 84.2±2.9 84.5±1.3 85.1∗±0.5 85.0∗±0.4 84.9±0.5 85.5∗±0.4 85.0±0.5
A→ K 85.0 87.1∗±0.5 86.1∗±0.5 87.0∗±0.4 87.0∗±0.3 87.0∗±0.2 87.5∗±0.4 87.0∗±0.3
A→ I 71.2 77.0∗±0.5 69.8±10.8 65.7±12.8 70.2±10.7 68.5±9.7 75.3∗±1.6 68.6±9.6
I→ B 84.5 86.4∗±0.9 87.0∗±0.4 86.7∗±0.2 86.7∗±0.1 86.6∗±0.3 86.6∗±0.2 86.7∗±0.3
I→ D 84.8 85.5∗±0.4 86.2∗±0.1 86.2∗±0.3 85.9∗±0.3 85.9∗±0.3 85.9∗±0.2 85.9∗±0.4
I→ E 82.0 86.5∗±0.2 86.2∗±0.2 86.1∗±0.4 86.1∗±0.3 86.1∗±0.3 86.3∗±0.3 86.1∗±0.2
I→ K 85.2 87.3∗±0.4 86.7∗±0.6 87.0∗±0.2 87.0∗±0.3 87.0∗±0.3 87.4∗±0.1 87.0∗±0.3
I→ A 82.0 84.9∗±0.6 84.9∗±0.1 83.9∗±0.6 83.8∗±0.7 83.7∗±0.6 84.9∗±0.4 83.9∗±0.7

Average 83.3 84.2 (12†) 84.1 (14†) 84.3 (17†) 84.4 (18†) 84.4 (16†) 84.9 (21†) 84.5 (15†)

Table 2: Experimental results with varying temperature values are shown. The asterisk, ∗, denotes a
value greater than the baseline with a significance level of 0.05, and † represents the number of values
significantly greater than the baseline.

and 1,600 unlabeled target examples for training, and the remaining 400 labeled source examples are
used for development. Then, we finally utilize all the labeled target examples for evaluation.

4.2 Baselines

Because of the powerfulness of a pre-training language model, fine-tuned BERT on a source dataset
without any domain adaptation technique overwhelms the performance of existing unsupervised
domain adaptation algorithms. Accordingly, we decide to use the fine-tuned BERT, which is trained
on source data only, as a basic baseline, denoting it by BERTBASE. Since baseline performance is
obtained by the baseline model without any domain adaptation, the primary interest is to observe
whether or not the proposed model exceeds the baseline model, and comparisons with other domain
adaptation methods follow. Moreover, to see the baseline model effect, we also evaluate the model
performance with the baseline models by DistilBERT (Sanh et al., 2019) and RoBERT (Liu et al.,
2019) models respectively. In addition, we also consider DDC (Tzeng et al., 2014), DANN (Ganin
et al., 2016), and deepCORAL (Sun & Saenko, 2016) methods applied to BERT because these are
designed for deep neural network architectures. For the DDC method, we use a Gaussian kernel for
the MMD loss because it shows better performance than a linear kernel.

4.3 Experimental results

To evaluate our proposed method, we experiment with the pre-trained BERTBASE uncased model
implemented by HuggingFace2 (Wolf et al., 2019). Hyper-parameters and experimental details
are described in Appendix A and experimental results with DistilBERTBASE and RoBERTaBASE are
supplemented in Appendix B.

We perform five replications using different random seeds for each cross-domain pair and provide the
average value and the standard deviation. We provide the results of one-sample Wilcoxon signed

2https://github.com/huggingface/transformers
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rank test for each algorithm as described in following tables, with baseline value as the population
mean of the null hypothesis. We also perform one-sample t test, and the results are similar to those
of Wilcoxon test. From Table 1, we notice that our proposed method, Adversarial Adaptation with
Distillation (AAD), significantly outperforms the baseline on 21 among 30 dataset pairs and acheives
as much as 1.6% performance gain on average over baseline. While DDC and DANN methods show
worse performance than the baseline on average, the deep CORAL method shows better performance
but still worse as much as 1.1% than AAD. We notice that, though their performance improves
over baseline, the existing algorithms yield lower accuracy than AAD in most cases. In addition,
since our algorithm has relatively small standard deviation values, we assert that it shows more
stable performance improvements. On the contrary, other algorithms perform worse in many cases
compared to that of baseline. This is due to the ADDA framework, on which our algorithm is based,
which separates fine-tuning and domain adaptation procedures. Since the BERT model has a large
number of parameters, the model performance is sensitive to training-related parameters and the
training scheme.

4.4 Effect of the temperature value

In our algorithm, knowledge distillation (KD) is a major component, and the temperature t in KD
determines how much the model softens the distribution. To show the effect of the temperature value,
we conduct the same experiments over t from {1, 2, 5, 10, 20, 50}. We also compare them with the
supervised learning approach which can be optimized by the following objective:

min
Et

LT (XS ,XT ,yS) = Lgen(XT ) + E(xs,ys)∼(XS ,YS) −
K∑

k=1

1[k=ys] logC(Et(xs)). (7)

The results obtained by varying the value of temperature for KD and the supervised learning approach
are summarized in Table 2. Except t = 1, the knowledge distillation method consistently outperforms
the supervised learning approach both in terms of average accuracy and the number of values
significantly greater than the baseline. Furthermore, the results show that as the temperature value
increases up to 20, the proposed algorithm not only has better performance but also smaller standard
deviation values by and large. When t = 50, the performance decreases because it severely dilutes
correct label information. These results indicate that the knowledge distillation method with the
proper temperature value t enables the BERT model to maintain class information as well as the
flexibility for adversarial adaptation as explained in section 3.2.

5 Conclusions and Future Work

We presented a new method for BERT unsupervised domain adaptation which combines the ADDA
framework and knowledge distillation. The direct application of ADDA to BERT resulted in catas-
trophic forgetting in terms of the original task. To overcome this problem, we adopted knowledge
distillation and demonstrated that it can successfully integrate adversarial domain adaptation; thus the
proposed method reliably improves performance on cross-domain sentiment classification tasks. We
also analyzed how the algorithm works as the temperature value for knowledge distillation changes.
Through the analysis, we found that a proper selection of temperature value is important since too
large temperature values severely dilute correct label information, leading to performance degradation.
In future, we would like to verify that our algorithm can be applied for domain adaptation in other
natural language processing tasks. Our implementation is based on Pytorch (Paszke et al., 2017) and
publicly available3.

3https://github.com/bzantium/bert-AAD
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A Hyperparameters and Training Details

Since we use BERT as the main component in all experiments, we follow a similar training scheme
for fine-tuned BERT suggested by the original BERT paper (Devlin et al., 2018). For all the
experiments with our proposed method, source BERT and classifier is trained for 3 epochs with an
Adam optimizer (Kingma & Ba, 2014) with a batch size of 64 and learning rate of 5e-5, β1=0.9 and
β2=0.999 in step 1. In step 2, while target BERT and the discriminator is trained for 3 epochs with a
batch size of 64 and learning rate of 1e-5, we also apply gradient clipping on the target encoder with
gradient norm of 1.0 and on the discriminator with a clip value of 0.01 to make adversarial training
more stable. For DDC, DANN, and deep CORAL methods, the models are trained with the same
settings as step 1 for our method. In addition, we use a maximum sequence length of 128 for all
tested methods.
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For discriminator architecture, we use the following topology: linear(768, 3072)→ leakyReLU(0.01)
→ linear(3072, 3072)→ leakyReLU(0.01)→ linear(3072, 1)→ sigmoid().4

B Further Experiments

In this section, we provide additional experimental results with baseline by DistilBERT and RoBERTa
models summarized in Table 3-4. We again use HuggingFace’s implementation for pre-trained
models.

Similar to the results by the baseline by the BERT uncased model, our proposed method with baseline
by either DistilBERT or RoBERTa shows consistently better performance than the baseline and other
algorithms.

Source→ Target Baseline DDC DANN deep CORAL AAD (Ours)
B→ D 84.3 84.9±0.7 83.2±1.3 84.9±0.7 84.6±0.3
B→ E 83.6 83.3±1.5 81.5±1.9 83.9±0.9 84.2∗±0.2
B→ K 84.5 86.4∗±0.6 84.8±0.9 86.7∗±0.4 86.1∗±0.3
B→ A 82.3 82.3±1.5 80.9±1.7 83.2±1.2 84.8∗±0.3
B→ I 80.9 80.9±1.4 80.2±1.1 81.4±0.9 80.4±0.3
D→ B 82.5 83.9∗±0.7 83.0±1.9 84.5∗±0.8 84.1∗±0.2
D→ E 80.2 80.1±1.8 79.9±1.8 81.9∗±1.1 83.0∗±0.4
D→ K 83.9 84.3±0.8 83.4±1.0 84.6±0.8 85.2∗±0.2
D→ A 80.5 79.2±1.8 79.5±2.2 80.6±1.3 83.4∗±0.2
D→ I 81.8 80.9±0.7 81.0±1.2 81.1±0.7 82.2∗±0.2
E→ B 83.3 81.8±2.3 82.9±0.8 82.5±1.8 84.5∗±0.1
E→ D 82.7 81.8±0.9 82.5±0.6 82.4±0.9 83.0∗±0.2
E→ K 88.2 87.3±1.6 88.2±0.6 87.6±1.4 88.8∗±0.2
E→ A 83.9 84.7∗±0.4 84.6±0.9 85.0∗±0.2 84.6∗±0.2
E→ I 78.3 78.4±0.4 78.7±1.1 79.1∗±0.4 79.4∗±0.2
K→ B 82.2 79.3±2.8 81.4±1.6 81.7±2.4 84.3∗±0.3
K→ D 82.6 81.5±1.1 81.4±0.8 81.8±1.2 83.0∗±0.3
K→ E 87.4 86.3±0.9 86.1±1.3 86.3±0.8 87.4±0.1
K→ A 83.4 81.4±2.3 81.3±1.8 83.3±1.5 85.3∗±0.1
K→ I 79.8 78.3±0.5 78.2±0.9 78.7±0.8 79.2±0.2
A→ B 76.9 77.9±1.4 74.8±5.4 79.4∗±1.0 80.1∗±0.2
A→ D 76.6 77.8±1.5 75.6±4.9 78.9∗±1.1 79.0∗±0.3
A→ E 82.8 82.8±0.7 81.2±2.1 83.4∗±0.7 82.8±0.1
A→ K 83.6 83.4±0.2 81.3±4.6 84.4∗±0.5 83.3±0.3
A→ I 71.2 73.6±2.1 71.8±5.3 75.4∗±1.0 71.0±2.5
I→ B 83.3 83.1±1.1 81.1±1.9 83.8±0.7 84.8∗±0.3
I→ D 84.9 84.5±0.1 82.9±1.0 84.6±0.2 86.1∗±0.1
I→ E 80.5 81.5∗±1.1 81.8±1.3 82.8∗±1.1 84.5∗±0.4
I→ K 83.9 84.5±0.9 83.8±1.5 84.8∗±0.8 85.0∗±0.3
I→ A 77.7 81.0∗±1.2 82.1∗±1.3 82.3∗±0.9 83.1∗±2.5

Average 81.9 81.9 (5†) 81.3 (1†) 82.7 (13†) 83.2 (23†)

Table 3: Sentiment classification accuracy with DistilBERTBASE and other tested models including
the proposed model ADD on 30 cross-domain sentiment classification tasks is shown. The asterisk, ∗,
denotes that a value greater than the baseline with a significance level of 0.05, and † represents the
number of values significantly greater than the baseline.

4linear(i, o) stands for a fully connected layer with a matrix of i × o, and leakyReLU(α) represents the
leakyReLU activation layer with negative slope α. sigmoid() represents a sigmoid activation layer.
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Source→ Target Baseline DDC DANN deep CORAL AAD (Ours)
B→ D 88.4 88.2±0.5 87.4±1.0 87.1±0.9 88.5±0.2
B→ E 90.0 89.5±0.8 88.1±1.3 88.9±1.8 90.1±0.3
B→ K 90.9 90.4±1.6 90.6±1.6 90.3±2.0 92.2∗±0.1
B→ A 85.4 85.0±1.3 83.3±2.1 85.1±2.3 87.0∗±0.4
B→ I 86.3 86.1±0.6 86.3±0.8 85.4±0.7 86.2±0.2
D→ B 87.4 89.6∗±0.9 88.1±1.6 88.9±1.5 89.6∗±0.1
D→ E 89.9 86.4±3.5 85.4±4.2 87.9±3.8 90.2∗±0.2
D→ K 88.9 89.6±1.8 88.0±1.5 90.0±0.9 91.5∗±0.3
D→ A 85.3 82.8±4.7 84.0±1.5 84.5±1.3 86.7∗±0.2
D→ I 87.2 85.8±0.8 86.1±0.7 85.9±2.1 87.4±0.3
E→ B 85.4 86.7±1.4 86.5±0.9 88.2±1.6 88.6∗±0.3
E→ D 83.8 85.3±1.8 84.1±1.6 86.0∗±0.6 87.4∗±0.6
E→ K 92.5 92.0±1.0 91.2±1.8 91.9±0.7 93.1∗±0.1
E→ A 83.9 86.7∗±0.7 86.5∗±0.9 86.8∗±1.5 87.2∗±0.6
E→ I 78.9 82.2±3.2 82.2∗±1.4 83.1∗±1.3 85.2∗±0.1
K→ B 87.7 88.7∗±0.8 86.3±1.3 88.0±0.9 88.9∗±0.3
K→ D 86.7 85.8±1.8 84.7±1.9 86.3±0.7 86.1±0.3
K→ E 90.2 89.0±1.8 90.0±1.4 90.3±1.2 90.9∗±0.2
K→ A 86.4 82.9±2.5 84.6±3.2 85.4±1.1 86.6±0.2
K→ I 85.1 83.1±2.1 84.0±2.0 84.7±1.0 85.0±0.2
A→ B 84.1 80.1±4.1 79.9±3.1 84.5±3.6 82.8±1.6
A→ D 83.2 79.9±3.0 81.4±2.0 83.2±0.6 84.2∗±0.6
A→ E 86.9 86.1±2.7 86.6±3.0 88.0±2.8 87.8±0.8
A→ K 87.2 85.4±3.6 88.4∗±1.2 86.3±4.5 89.7∗±0.5
A→ I 81.9 77.7±5.3 77.4±3.0 82.0±1.9 82.3±0.6
I→ B 90.0 86.6±2.1 86.2±4.0 89.6±0.9 89.9±0.3
I→ D 87.4 86.8±1.1 87.4±0.7 86.1±2.8 88.7∗±0.1
I→ E 88.6 85.0±4.0 85.9±2.2 88.2±1.8 89.5∗±0.3
I→ K 90.8 85.4±5.1 86.6±2.7 90.6±1.2 90.6±0.3
I→ A 85.7 84.6±2.2 84.5±1.9 86.1±0.8 86.1±0.8

Average 86.8 85.8 (3†) 85.7 (3†) 87.0 (3†) 88.0 (17†)

Table 4: Sentiment classification accuracy with RoBERTaBASE and other tested models including
the proposed model ADD on 30 cross-domain sentiment classification tasks is shown. The asterisk,
∗, denotes a value greater than the baseline with a significance level of 0.05, and † represents the
number of values significantly greater than the baseline.
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