
Stable and Semi-stable Sampling Approaches for Continuously

Used Samples

Nikita Astrakhantsev†

Microsoft

 Bellevue, USA

niastrak@microsoft.com

Deepak Chittajallu
 Microsoft

 Bellevue, USA

dechitta@microsoft.com

Nabeel Kaushal
Microsoft

 Bellevue, USA

nabeelk@microsoft.com

Vladislav Mokeev
Microsoft

Bellevue, USA

vlamok@microsoft.com

ABSTRACT

Information retrieval systems are usually measured by labeling the

relevance of results corresponding to a sample of user queries. In

practical search engines, such measurement needs to be performed

continuously, such as daily or weekly. This creates a trade-off

between (a) representativeness of query sample to current query

traffic of the product; (b) labeling cost – if we keep the same query

sample, results would be similar allowing us to reuse their labels;

and (c) overfitting caused by continuous usage of same query

sample. In this paper we explicitly formulate this tradeoff, propose

two new variants – Stable and Semi-stable – to simple and weighted

random sampling and show that they outperform existing

approaches for the continuous usage settings, including

monitoring/debugging search engine or comparing ranker

candidates.

CCS CONCEPTS

• Information systems → Information retrieval → Evaluation of

retrieval results • Computing methodologies → Modeling and

simulation → Model development and analysis → Model

verification and validation

KEYWORDS

Query sampling, Simple random sampling, Weighted random

sampling, Evaluation

1 Introduction

Sampling – the process of selecting a small subset from a larger set

(population) in order to infer some knowledge about this population

– is usually considered to be a one-time action: once a dataset is

sampled, it is assumed fixed. However, depending on the task

nature, the sampled dataset may be used continuously: for example,

if we want to measure quality of the search engine daily (or weekly,

or with any other period – hereinafter we assume daily

measurement), then we usually keep the same queries and only

update results such as web documents that our system returns at

each particular day. Since most of the returned results will be the

same for a few days (and usually even for weeks and months), we

can reuse their labels and reduce labeling cost. For example, if we

reuse labels for a one thousand query sample in Bing image search

for a month, we could save ~95% judgments over the month

compared to rejudging each day. At the same time this creates other

problems: (1) staleness – after some time, like 2-3 months, query

set would not be representative for the queries issued in these last

2-3 months – in other words, the underlying population of all user

issued queries changes, but sample remains the same; (2)

overfitting - if this query set is used to decide if a candidate for

system improvement should be shipped or not, which is usually the

case, then after a few iterations the system would overfit to the

query set, so that the measurement results would be an

overestimation. Alternative solution – to change query set

completely each day or each month – would solve these problems,

but would require too many new labels, which are usually costly to

obtain.

If the sampling needs to be not uniform, i.e. Simple Random

Sampling (SRS), but weighted (Weighted Random Sampling,

WRS), then the task becomes even more complicated. In this paper

we propose a method to adjust query set each day (or each

week/month/etc.), so that the sample (SRS or WRS) would be

representative to the most recent query distribution and at the same

time would share as much queries as possible with previous

samples to reduce labeling cost; also, this method would allow

gradually updating the query set, i.e., provide full control on the

trade-off between labeling efforts and refreshing timeline, or

proneness to overfitting. To the best of our knowledge, there is no

other sampling algorithm for continuously used datasets that would

have such properties.

This paper is organized as follows: Section 2 briefly reviews

existing works on sampling, with focus on Efraimidis’ and

Spirakis’ method for weighted random sampling [1]. In Section 3

we describe our Stable and Semi-stable approaches for simple and

weighted random sampling. Section 4 provides experimental

results. In Section 5 we compare existing approaches to sampling

with Stable and Semi-stable ones.

2 Related work

Given the ubiquitous role of sampling in statistical analysis, it is

not surprising that there is a plethora of literature on sampling, from

Cohran’s “Sampling techniques” [2], originally published in 1953,

to a more recent works by Lohr [3], Tile [4], Fuller [5], etc.

With the increase of data (i.e., population) size, more works started

to focus on effective methods to do sampling. For example, Meng

[6] suggested a scalable SRS, which can be applied in a distributed

setting with reduced storage and support of load balancing. Sanders

et al. [7] optimize sampling methods for cache efficiency and

 N. Astrakhantsev et al.

number of communications between processors; their method

supports modifications for online sampling, load balancing and

vectorization needed for running on GPUs.

One important type of sampling is weighted random sampling

(WRS). Here, each sampling unit comes with an associated weight

and a weighted random sample should accurately represent the

weight distribution of a population – so, if unit X has a weight of 2

and Y has a weight of 1, then X is twice as likely to be selected in

a weighted random sample as Y.

Efraimidis and Spirakis [1] suggested an elegant algorithm to do

weighted random sampling without replacement; given that our

method is based on this work (and most useful for WRS), we will

discuss this in more details and provide illustration in Table 3.

Efraimidis’ and Spirakis’ method generates a uniform random

number for each sampling unit (such as user query in search

engine), then raises it to the power of inverse of weight (number of

Impressions, in our case) and uses this final number as an order key,

i.e., the user of sampling takes needed number of sampling units

with biggest values of order keys.

This method is simple and parallelizable; it also supports arbitrary

sample size: we can just take a prefix of bigger or smaller size.

Worth noting that simply combining 2 valid weighted samples into

1 doesn’t create a valid weighted sample; at the same time,

preparing a bigger sample than needed and (uniform) subsampling

from this would also create sample biased towards uniform

sampling, cf. “Comparison results are obtained for the inclusion

probabilities in some unequal probability sampling plans without

replacement. For either successive sampling or Hajek’s rejective

sampling, the larger the sample size, the more uniform the inclusion

probabilities in the sense of majorization.” [8]

Chao [9] suggested an algorithm for Weighted random sampling

with replacement, which is also belong to reservoir sampling

family, as the method of Efraimidis and Spirakis.

As with SRS, there are multiple works focused on modifying WRS

for different computational settings, e.g. Hübschle-Schneider and

Sanders [10] optimized WRS (with and without replacement) for

parallel settings. At the same time, to the best of our knowledge,

sampling algorithms were not previously modified for settings with

continuously changing populations.

Other related directions of research include choosing subset of

query-document pairs to send for judgments [11, 12, 13];

combining samples from different distributions [14, 15]; and

counterfactual evaluation, i.e., evaluating policies on offline logged

data as opposed to (or before) online A/B tests, in particular the

work from [16] that proposes estimators that can combine logs from

multiple previous A/B tests. Compared to these approaches, the one

proposed in this paper is agnostic to the documents, i.e., considers

only queries and their weights, is simpler and can be applied to the

datasets of any size.

3 Stable and Semi-stable approaches

As outlined in the introduction, we consider here the following two

requirements to the sampling approach:

Ability to update set regularly (hereinafter let’s assume monthly

update) based on the most recent query logs, so that the overlap

between previous set and new set is maximal. Let’s call a

sampling approach with this ability Stable.

Ability to update set monthly with overlap of controllable size, so

that we can explicitly control the trade-off between labels reusage

and proneness to overfitting. Let’s call a sampling approach with

this ability Semi-stable.

Below we describe Stable and Semi-stable sampling approaches for

Simple random sampling (mostly, for illustration purposes) and

Weighted random sampling.

3.1 Simple Random Sampling

If we want uniform or simple random sampling (SRS), i.e. treat

each query with the same weight, then the method to sample N

queries can be straightforward: assign uniform random numbers to

each query, then rank by this number and take top N queries, see

Table 1 (note that all queries there are synthetic and provided just

for illustration purposes).

3.1.1 Stable SRS. Assume that we have 2 distributions here: with

queries from May and from June. Then some queries would occur

in both months; some queries – only in May; some – only in June,

see Table 2. Stable SRS then would generate random number for

each query in June as follows:

1) If a query occurred only in May – remove from the

sample;

2) If a query occurred both in May and in June – take

random number from May;

3) If a query occurred only in June – generate new random

number.

Then just take top N queries based on these new random numbers

(a lot of them would be still from May, though, assuming no drastic

change in query distribution from May to June).

The final sample is a valid simple random sample, because each

query has a random number generated independently from a

uniform distribution.

As we can see, this new sample would contain some of the queries

that occurred only in June and won’t contain queries that occurred

only in May; the queries that occurred both in May and June that

were selected in May are likely to be selected in June as well, since

the largest random numbers in May population are likely to be

among the largest random numbers in June population.

3.1.2 Semi-stable SRS. If we want to be able to change some

part of the sample – say, 10% each month – to avoid overfitting,

then we can randomly split the whole population into 10 parts,

choose one part and regenerate random numbers for it; at the next

month, for the 3rd sample, we can regenerate random numbers for

another part, see Table 3.

In this illustration, query “catastro” that had big random number

previously (0.988), got small regenerated number (0.45) and thus

was excluded from the set of top 7 queries; query “Another query”

is also from the part where we regenerated random numbers and it

got a high number, which led to its inclusion into the sample. Other

Stable and Semi-stable Sampling Approaches for Continuously

Used Samples

queries in the sample are from the parts where we didn’t regenerate

numbers.

Note that if we have a set of random numbers, then randomly

choose a subset and regenerate random numbers for this subset –

after this process, the whole set would still have uniformly

distributed random numbers. Therefore, Semi-stable SRS is again

a valid simple random sample.

Table 1. Illustration of SRS

Query aasdfd Ok asd what is bing Why use bing not gogle catastro Who killed jdsdf need 1 more query

random number, u 0.995 0.992 0.99 0.989 0.988 0.987 0.985

Sampling order 1 2 3 4 5 6 7

Table 2. Illustration of Stable SRS

Query aasdfd Ok asd what is bing Why use bing not gogle catastro new query in June Who killed jdsdf

random number, u
(generated in May)

0.995 0.992 0.99 0.989 0.988 - 0.987

Sampling order - May 1 2 3 4 5 6

random number, u
(generated in June)

- - 0.99 0.989 0.988 0.9875 0.987

Sampling order - June 1 2 3 4 5

Table 3. Illustration of Semi-stable SRS

Query aasdfd Ok asd what is bing Another query Why use bing not gogle catastro new query in June

random number, u
(generated in May)

0.995 0.992 0.99 0.34 0.989 0.988 -

Sampling order - May 1 2 3 75913 4 5

random number, u
(generated in June)

- - 0.99 0.9893 0.989 0.45 0.9875

Sampling order - June 1 2 3 6924913 4

Table 4. Illustration of Efraimidis and Spirakis' algorithm for WRS

Query cat pics what is bing dogs images aasdfd mars general need 1 more query

Impressions, w 123124 12 233242 456423 2 34 3425 1

random number, u 0.7 0.99 0.6 0.4 0.995 0.91 0.8 0.99

Order key, k = u1/w 0.992 0.989 0.976 0.974 0.969 0.966 0.961 0.960

Sampling order 1 2 3 4 5 6 7 8

 N. Astrakhantsev et al.

Table 5. Illustration of Stable WRS

Query cat
pics

what is
bing

dogs images aasdfd mars generalization need 1
more query

1 more
query from

June

random number, u 0.7 0.99 0.6 0.4 0.995 0.91 0.8 0.99 0.99

Impressions in May, w 123124 12 233242 456423 2 34 3425 1 0

Order key for May, k = u1/w 0.992 0.989 0.976 0.974 0.969 0.966 0.961 0.960 -

Impressions in June, w 124565 10 334242 455210 1 47 3400 0 1

Order key for June, k = u1/w 0.992 0.979 0.986 0.975 0.869 0.986 0.958 - 0.960

Sampling order for June 1 4 2 5 8 3 6 - 7

Table 6. Illustration of Semi-stable WRS

Query cat pics what is
bing

dogs images aasdfd mars generaliz
ation

need 1
more query

1 more query
from June

random number, r1 (May) 0.7 0.99 0.6 0.4 0.995 0.91 0.8 0.99 -

random number, r2 (June) 0.8 0.99 0.6 0.12 0.995 0.68 0.3 0.45 0.99

Impressions in May, w 123124 12 233242 456423 2 34 3425 1 0

Order key for May, k = r1
1/w 0.992 0.989 0.976 0.974 0.969 0.966 0.961 0.960 -

Sampling order for May 1 2 3 4 5 6 7 8 -

Impressions in June, w 124565 10 334242 455210 1 47 3400 0 1

Stable Order key for June, k = r1
1/w 0.992 0.979 0.986 0.975 0.869 0.986 0.958 - 0.960

Semi-stable Order key for June, k =
r2

1/w
0.997 0.979 0.986 0.972 0.869 0.654 0.958 - 0.960

Semi-stable Sampling order for June 1 3 2 4 47235 864345 6 - 5

3.2 Weighted Random Sampling

Let’s start from illustration of ordinary Weighted Random

sampling: in Table 4, for each query there (1st row), we have

number of impressions w (2nd row) and randomly generated number

u (3rd row). The last row contains a final order key computed from

Impressions and random number by simple formula. If we need to

take sample of size 5, we’ll take queries “cat pics”, “what is bing”,

“dogs”, “images” and “aasdfd”, because they have biggest values

of order key.

3.2.1 Stable WRS. The underlying idea of Stable WRS is a nice

property of Efraimidis and Spirakis’ algorithm: If we change

weights but keep the same original random numbers (2nd row in

Table 4), then we can get a valid sampling order for these new

weights. The reason is that the original set of random numbers is

not worse than any other set of random numbers, e.g. specifically

generated for the 2nd sample. Thus, we can apply the same strategy

to random numbers as we do for Stable SRS and use order key

computed by Efraimidis and Spirakis’ formula instead of ordering

by random numbers, see Table 5. In this example, we'll have

slightly different order of queries for June impressions compared to

May impressions - e.g. "dogs" will be second, while "what is bing"

will be third, because of difference in impressions; some low-

popular queries will disappear and be replaced by new low-popular

queries; some queries that occurred only in May will also

disappear; and so on.

Note that this works not only for the query sets from different points

in time – like, from May and June, or from last year and current

year – but also for query sets accumulated from different sources,

e.g. from different regions or different parts of search engine (web

search results page, or SERP, vs image search results page, or IRP)

or even different search engines (Bing vs Google vs Yandex). As

long as queries overlap between 2 sources and have similar weights

Stable and Semi-stable Sampling Approaches for Continuously

Used Samples

ordering numbers (e.g. in SERP queries “google” and “cats” may

have 10M and 1M impressions, while in IRP the same queries may

have 1M and 100k impressions, which is different, but the ordering

number may be quite similar – around 1st and 100th) for a

significant number of queries, we can have 2 valid samples with

big overlap, thus reducing number of new judgements. Note that

judgments required for web search vs image search are likely to be

different in general case, but some type of labels like query intent

can be shared between web and image searches.

In a sense, this "reweighting" operation provides us with a

possibility to make "views" on sample, so that each view is a valid

sample for the corresponding population (set of weights), but at the

same time overlaps with something else – as noted above, this

makes sense to do as long as 2 populations, i.e. orderings of queries

by weights, are similar. Of course, if orderings by weights are not

similar, then samples would have small overlap, but would still be

valid.

3.2.2 Semi-Stable WRS. As with SRS, we can change random

numbers for a subset of original random numbers, see Table 6.

According to Stable WRS, we add random number for "1 more

query from June" and we would use Order key from the penultimate

row. According to Semi-stable WRS, we randomly change random

numbers for queries "cat pics", "images", "mars" (see Order key in

the last row). New random number doesn't change position of "cat

pics" and "images", because they have too big impression counts,

but query "mars" disappears from the June sample.

3.3 Hashing trick

As shown above, both weighted random sampling and simple

random sampling approaches can be Stable or Semi-stable

depending on how we generate and update random numbers. We

can store these random numbers for each query in the population,

but this may require a significant storage volume, plus for semi-

stable approach we must store these random number sets for the

whole population at each sampling date, which may quickly

become unmanageable, especially if we want to share this between

multiple teams.

Instead, we can rely on the uniformity of a good hashing function,

e.g. apply md5 to the query string itself – concatenated with some

constant text string – let’s call it seed, as in pseudo-random number

generators - to be able to generate different random numbers.

For Stable sampling, Hashing trick is straightforward – we just

store hashing seed. For Semi-stable sampling, we propose the

following algorithm. It is based on the idea to have 2 different

hashing functions: one would be used to generate random numbers

as in Stable approach, while the other would decide for each query

if new hashing function should be used, i.e., if this query should

keep random number from previous sample or should have a new

one.

Pseudocode for Hashing trick.

Input:

Operations:

1) SampleHash(Seed, Query) // Hashing function that

generates random number based on some Seed and Query, e.g.

md5 from concatenation of Seed and Query

2) NewSeed() // Function that generates new Seed each

time it is called, e.g. text string Month+Year+Constant if we

generate new seeds not more often than each month; or just an

iterator on prepopulated list of Seeds.

3) RefreshHash(Seed, Query) // Hashing function that

generates random number based on some Seed and Query, but

independent from SampleHash, e.g. md5 from concatenation of

Seed, Query and some constant string

Constants:

1) S1, S2 // 2 start seeds, e.g. some unique identifier

of the current sample and the first call to NewSeed()

2) DesiredRefresh // float number specifying desired

change in random numbers, e.g. if we want to update the whole

sample completely after 12 times, then we should set it to

1/12=0.0833

Output: Random numbers R for each Query

Initialize:

1. Seed = (S1, S2)

2. Refresh = 0.0

Each Rolling Period:

1. Refresh = Refresh + DesiredRefresh

2. IF Refresh > 1

a. (S1, S2) = (S2, NewSeed()) // Rolling

Seed

b. Refresh = Refresh % 1

3. FOREACH Query:

R = (RefreshHash(S1, Query) > Refresh) ?

SampleHash(S1, Query) : SampleHash(S2, Query)

4 Experiments

We performed simulation experiments on Bing query logs collected

from 2019 to 2020 on main page (Search Engine Results Page,

SERP) and image search page (Image Results Page, IRP).

For all samples, we used the following parameters:

Parameter Value

Sample size 1000

Sampling time interval 12 months

Rolling frequency 1 month

Refresh (for semi-stable approach) 10%

4.1 Illustration of sample validity

Here we illustrate that Stable and Semi-stable approaches provide

valid samples by plotting Cumulative distribution function (CDF)

for population, where we consider impression volume (i.e. sum of

 N. Astrakhantsev et al.

impressions for all queries), and for samples produced by each

approach, where we consider count volume (i.e. count of queries,

ignoring their impressions) – intuition here is that if the original

population have ~55% of all impression volume accumulated by

queries with impression lesser than 10, then ~55% of our sample

should contain queries with impressions lesser than 10.

Table 7. CDF plots for Stable and Semi-stable WRS

As we can see, samples correspond to population in the 1st, 2nd, 6th

and last months.

4.2 Estimating overlap

Here we measure actual overlap between the first sample and each

consecutive sample for different sampling approaches (for original

WRS proposed by Efraimidis and Spirakis [1], overlap between

any two independent samples is less than 1% in all cases, therefore

it is not plotted here).

As we can see from Figures 1 and 2, overlap depends on desired

refresh coming from Semi-stable sampling and on natural churn

occurring due to changes in queries (old queries unique to dropped

months, new queries unique to current month) and weights – see

dependence in Table 8. Note that Natural retention/churn depends

on the weights distribution; for IRP it was empirically found to be

around 0.93, which is close to 11/12=0.9167 – proportion of the

overlapping months in 1-year sample. Intuitively, the proximity to

11/12 reflects the tail-heavy nature of IRP traffic - it nearly acts as

a population of seen-only-once queries (for which monthly churn

would be 1/12). The actual number being higher reflects the fact

that queries do in fact repeat. Less taillish distributions - such as

SERP - are expected to have even higher natural retention, see

Figure 3.

Figure 1. Desired refresh 10% on Image Results Page

Figure 2. Desired refresh 20% on Image Results Page

Stable and Semi-stable Sampling Approaches for Continuously

Used Samples

Figure 3. Desired refresh 20% on Search Engine Results Page

From Table 8 we can also see that mean overlap for IRP is smaller

than for SERP.

Table 8. Averages of consecutive overlaps

Source

Method

Mean consecutive
sample overlap

IRP WRS 0.24%
IRP Stable WRS 94.1%
IRP Semi-stable WRS (refresh 10%) 85.0%
IRP Semi-stable WRS (refresh 20%) 75.0%
SERP WRS 3.1%
SERP Stable WRS 95.1%
SERP Semi-stable WRS (refresh 20%) 77.0%

See Table 9 for statistics on relations between Semi-stable Refresh,

Natural churn (proportion of queries to be changed from month to

month for an ordinary sampling).

Note that month-to-month delta in Final overlap is decreasing –

from 0.15 to 0.13 to 0.04 at the end – but judgment load remains

essentially constant after the first month; it equals

NaturalChurnRate + Refresh - (NaturalChurnRate * Refresh),

where the last component is almost zero.

In practice, it is also useful to know actual judgment load, i.e. the

number of queries to be judged each month, assuming reusage of

any previous judgment. Final Overlap just compares first query

sample to current query sample, but queries can rechurn - causing

judgment load but not affecting overlap.

Table 9. Relations between Semi-stable Refresh, Natural Retention (NatRet), Natural churn and Overlap

Month Delta Natural

Retention

Natural churn Refresh (in

Semi-stable)

Refresh churn Natural + Refresh

churn

Final Overlap

d (11/12)d 1 - NatRet d/12 Refresh * NatRet

0 1.00 0.00 0.00 0 0.00 1

1 0.93 0.07 0.08 0.0775 0.15 0.85

2 0.86 0.14 0.17 0.1442 0.28 0.72

3 0.80 0.20 0.25 0.2011 0.40 0.6

4 0.75 0.25 0.33 0.2494 0.50 0.5

5 0.70 0.30 0.42 0.2899 0.59 0.41

6 0.65 0.35 0.50 0.3235 0.68 0.32

7 0.60 0.40 0.58 0.3510 0.75 0.25

8 0.56 0.44 0.67 0.3731 0.81 0.19

9 0.52 0.48 0.75 0.3903 0.87 0.13

10 0.48 0.52 0.83 0.4033 0.92 0.08

11 0.45 0.55 0.92 0.4126 0.96 0.04

12 0.42 0.58 1.00 0.4186 1.00 0

See Figures 4 and 5 that estimate number of queries to be judged at

each month, assuming reusage of previous judgments.

 N. Astrakhantsev et al.

Figure 4. Judgment load for Image Results Page

As we can see from these figures, judgment load is almost constant

after the first month, which is a desirable property in practice.

Figure 5. Judgment load for Search Engine Results Page

5 Comparison of sampling approaches

As noted in the Introduction above, there may be multiple sampling

approaches for continuously changing populations. To the best of

our knowledge, they are the following (see also Table 10 below for

a summary).

Keep same set forever – the simplest solution is to just create one

sample (using original WRS) and use it for the whole project

lifetime. This obviously creates a valid (first and only) sample for

the population at the start of the project and labels can be reused as

much as possible, but with time this sample would go out of sync

with the population if it changes fast enough and overfitting on this

set is also inevitable with time, even for static populations.

Therefore, this extreme approach is good only for short projects,

when problems won’t have time to accumulate.

Change sample as soon as possible – another extreme approach is

to change the whole sample with each usage. This completely

solves freshness and overfitting problems, but it requires too many

judgments, which in practice would lead to too small sample sizes

due to budget constraints, which, in turn, would lead to statistically

wider noise level in search quality metrics like NDCG preventing

us from being able to detecting smaller improvements to the search

engine.

Keep sample for multiple periods, then change – this approach

is a combination, or generalization, of the previous two: instead of

changing each day or keeping forever, we keep the sample for some

number of usages (e.g. for a month or a year) and then resample.

This provides a valid sample with reasonable reusage of judgments,

thus it is probably the most popular solution, but it has a few

problems as well: (a) the sample becomes stale approaching the end

of each month/year (period of resample); (b) there is usually

enough time to overfit, so that results of the system on the

resampled set becomes worse than on the previous day – in the

worst case, results may be even the same as they were at the start

of the previous sample; (c) judgment systems usually prefer stable

flow of small tasks to the rare spikes of huge tasks, therefore

resampling causes lower efficiency of labeling and delays in getting

labeled data.

Stable sampling – as described above, this approach prioritizes

freshness and judgments reusage; at the same time, given that most

of the queries remain the same, the overfitting resistance of this

approach is low - just slightly better than that of the 1st and the 3rd

approach due to a side-effect of freshness: some queries would

change due to changes in underlying distribution.

Semi-stable sampling – as described above, this approach is

designed to be valid and fresh and to provide full control on the

trade-off between overfitting resistance and judgments reusage.

Note also that here we can sync desired refresh, i.e. the main

hyperparameter of the method controlling which part of the sample

would be refreshed each time, with the lifespan of the label – e.g.

if we decide that after a year the same pair of query and result needs

to be rejudged, we can set desired refresh so that the sample would

be fully refreshed in a year; we can also adapt to judgment budget

changes quickly: if for month or two we have smaller judgment

budget, we can temporarily reduce desired refresh until situation

normalizes and then temporarily increase refresh to gradually catch

up.

Replace random subset of sample – this approach tries to

gradually update the sample by randomly choosing a subset and

replacing it by a new sample of the same size as the subset. There

may be multiple variations depending on how to determine the

subset to replace at each time: e.g. it is possible to split the set into

halves each month independently and replace one half with a new

sample; alternatively, split can be made just once and then older

part can be replaced each month. For Simple Random Sampling,

Stable and Semi-stable Sampling Approaches for Continuously

Used Samples

this is a valid approach and similar to Semi-stable sampling,

without updates to a new population each month; however, for

Weighted Random Sampling, this does not produce a valid sample.

In particular, such methods require a strategy on what to do with

duplicates – given that the next sample is independent on the

previous ones, it is probable that some queries (usually, head ones,

i.e. occurring most often) would occur in both previous and next

samples; if we just ignore the problem, then our sample would be

biased toward tail queries, i.e. occurring less often; if we choose to

replace query by another query with similar weight, we would also

bias the sample (why this particular query, how to choose if there

are multiple queries with the same weight, etc.).

To sum up, this approach is more complicated, provides weighted

sample with worse freshness than Semi-stable approach and the

validity of such sample is not proven.

Table 10 compares approaches by the following properties:

1. Weighted sample validity: binary property showing if it

is proved that the sampling approach produces valid

WRS sample at each time; in particular, it shows if any

statistic like mean NDCG computed on the sample can

be generalized to the original population.

2. Freshness: for continuously changing populations like

user queries, how fresh the samples are – for example, if

we keep the same sample for a year, then after a few

months the sample isn’t fresh and thus may be not

representative for the latest population.

3. Resistance to overfitting: a measure of sample static, or,

from practical point of view, how prone to overfitting the

system based on such sampling would be.

4. Judgment bandwidth savings: a measure of number of

new labels required.

6 Conclusion

In this paper, we highlighted the key practical requirements of

sampling approaches for continuously used datasets like query sets

used to measure search engines daily. We show that current

sampling approaches have drawbacks and propose a new Semi-

stable approach for both Simple and Weighted Random Sampling

that is provably valid and provides full control on the trade-off

between judgments reuse and proneness to overfitting. We

experimentally evaluate this approach on real data (query logs of

Microsoft Bing) and show that it creates valid samples with

specified overlap between consecutive samples.

One of the limitations of the presented Stable and Semi-stable

approaches is inability to use labeled data for training, because any

query can be reused in future refreshes. How to account for

necessity of training data is one of the possible directions for future

work.

REFERENCES
[1] Efraimidis, Pavlos, and Paul Spirakis. "Weighted Random Sampling: 2005;

Efraimidis, Spirakis." Encyclopedia of Algorithms (2008): 1024-1027 (pdf)

[2] Cochran, William G. Sampling techniques. John Wiley & Sons, 2007.

[3] Lohr, Sharon L. Sampling: design and analysis. Nelson Education (2009).

[4] Tille, Yves. Sampling Algorithms - Springer. Springer Series in Statistics.

doi:10.1007/0-387-34240-0. ISBN 978-0-387-30814-2.

[5] Fuller, Wayne A. Sampling statistics. Vol. 560. John Wiley & Sons (2011).

[6] Meng, Xiangrui. "Scalable simple random sampling and stratified sampling." In

International Conference on Machine Learning, pp. 531-539 (2013).

[7] Sanders, Peter, Sebastian Lamm, Lorenz Hübschle-Schneider, Emanuel Schrade,

and Carsten Dachsbacher. "Efficient Parallel Random Sampling—Vectorized,

Cache-Efficient, and Online." ACM Transactions on Mathematical Software

(TOMS) 44, no. 3 (2018): 1-14.

[8] Yu, Yaming. "On the inclusion probabilities in some unequal probability

sampling plans without replacement." Bernoulli 18.1 (2012): 279-289.

https://arxiv.org/pdf/1005.4107.pdf

[9] Chao, Min-Te. "A general purpose unequal probability sampling plan."

Biometrika 69, no. 3 (1982): 653-656.

[10] Hübschle-Schneider, Lorenz, and Peter Sanders. "Parallel weighted random

sampling." arXiv preprint arXiv:1903.00227 (2019).

[11] Allan, James, Ben Carterette, Javed A. Aslam, Virgil Pavlu, Blagovest Dachev,

and Evangelos Kanoulas. "Overview of the TREC 2007 million query track." In

Proceedings of TREC (2007).

[12] Carterette, Ben, Virgil Pavlu, Evangelos Kanoulas, Javed A. Aslam, and James

Allan. "If I had a million queries." In European conference on information

retrieval, pp. 288-300. Springer, Berlin, Heidelberg (2009).

[13] Yilmaz, Emine, Evangelos Kanoulas, and Javed A. Aslam. "A simple and

efficient sampling method for estimating AP and NDCG." In Proceedings of the

31st annual international ACM SIGIR conference on Research and development

in information retrieval, pp. 603-610 (2008).

[14] Elvira, Victor, Luca Martino, David Luengo, Monica F. Bugallo. Efficient

multiple importance sampling estimators. IEEE Signal Processing Letters 22, 10,

pp.1757–1761 (2015).

[15] Elvira, Victor, Luca Martino, David Luengo, and Monica F. Bugallo. Generalized

multiple importance sampling. arXiv preprint arXiv:1511.03095 (2015).

[16] Agarwal, Aman, Soumya Basu, Tobias Schnabel, and Thorsten Joachims.

"Effective evaluation using logged bandit feedback from multiple loggers." In

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 687-696 (2017).

Table 10. Comparison of Sampling approaches

Sampling approach

Weighted

sample

validity

Freshness

Resistance to

overfitting

Judgment

bandwidth

savings

Notes

 1 Keep same sample forever + Lowest Lowest Highest Fine for short projects

 2 Change sample ASAP + Highest Highest Lowest

 3 Keep sample for a year, then

change completely

+ Low Low Med Huge labeling spike when change set:

not friendly for label collection

systems

 4 Stable sampling + High Low-Med High Best for monitoring/debugging

 5 Semi-stable sampling + High (Controllable) (Controllable) DesiredRefresh can consider

judgements lifespan

 6 Replace random subset of

sample

- Med (Controllable) (Controllable)

