
Stable and Semi-stable Sampling Approaches for Continuously 

Used Samples 

Nikita Astrakhantsev†
 

Microsoft 

 Bellevue, USA 

niastrak@microsoft.com 

Deepak Chittajallu 
 Microsoft 

 Bellevue, USA 

dechitta@microsoft.com  

Nabeel Kaushal 
Microsoft 

 Bellevue, USA 

nabeelk@microsoft.com 

Vladislav Mokeev 
Microsoft 

Bellevue, USA 

vlamok@microsoft.com 

ABSTRACT 

Information retrieval systems are usually measured by labeling the 

relevance of results corresponding to a sample of user queries. In 

practical search engines, such measurement needs to be performed 

continuously, such as daily or weekly. This creates a trade-off 

between (a) representativeness of query sample to current query 

traffic of the product; (b) labeling cost – if we keep the same query 

sample, results would be similar allowing us to reuse their labels; 

and (c) overfitting caused by continuous usage of same query 

sample. In this paper we explicitly formulate this tradeoff, propose 

two new variants – Stable and Semi-stable – to simple and weighted 

random sampling and show that they outperform existing 

approaches for the continuous usage settings, including 

monitoring/debugging search engine or comparing ranker 

candidates. 

CCS CONCEPTS 

• Information systems → Information retrieval → Evaluation of 

retrieval results • Computing methodologies → Modeling and 

simulation → Model development and analysis → Model 

verification and validation 

KEYWORDS 

Query sampling, Simple random sampling, Weighted random 

sampling, Evaluation 

1 Introduction 

Sampling – the process of selecting a small subset from a larger set 

(population) in order to infer some knowledge about this population 

– is usually considered to be a one-time action: once a dataset is 

sampled, it is assumed fixed. However, depending on the task 

nature, the sampled dataset may be used continuously: for example, 

if we want to measure quality of the search engine daily (or weekly, 

or with any other period – hereinafter we assume daily 

measurement), then we usually keep the same queries and only 

update results such as web documents that our system returns at 

each particular day. Since most of the returned results will be the 

same for a few days (and usually even for weeks and months), we 

can reuse their labels and reduce labeling cost. For example, if we 

reuse labels for a one thousand query sample in Bing image search 

for a month, we could save ~95% judgments over the month 

compared to rejudging each day. At the same time this creates other 

problems: (1) staleness – after some time, like 2-3 months, query 

set would not be representative for the queries issued in these last 

2-3 months – in other words, the underlying population of all user 

issued queries changes, but sample remains the same; (2) 

overfitting - if this query set is used to decide if a candidate for 

system improvement should be shipped or not, which is usually the 

case, then after a few iterations the system would overfit to the 

query set, so that the measurement results would be an 

overestimation. Alternative solution – to change query set 

completely each day or each month – would solve these problems, 

but would require too many new labels, which are usually costly to 

obtain.  

If the sampling needs to be not uniform, i.e. Simple Random 

Sampling (SRS), but weighted (Weighted Random Sampling, 

WRS), then the task becomes even more complicated. In this paper 

we propose a method to adjust query set each day (or each 

week/month/etc.), so that the sample (SRS or WRS) would be 

representative to the most recent query distribution and at the same 

time would share as much queries as possible with previous 

samples to reduce labeling cost; also, this method would allow 

gradually updating the query set, i.e., provide full control on the 

trade-off between labeling efforts and refreshing timeline, or 

proneness to overfitting. To the best of our knowledge, there is no 

other sampling algorithm for continuously used datasets that would 

have such properties. 

This paper is organized as follows: Section 2 briefly reviews 

existing works on sampling, with focus on Efraimidis’ and 

Spirakis’ method for weighted random sampling [1]. In Section 3 

we describe our Stable and Semi-stable approaches for simple and 

weighted random sampling. Section 4 provides experimental 

results. In Section 5 we compare existing approaches to sampling 

with Stable and Semi-stable ones. 

2 Related work 

Given the ubiquitous role of sampling in statistical analysis, it is 

not surprising that there is a plethora of literature on sampling, from 

Cohran’s “Sampling techniques” [2], originally published in 1953, 

to a more recent works by Lohr [3], Tile [4], Fuller [5], etc.  

With the increase of data (i.e., population) size, more works started 

to focus on effective methods to do sampling. For example, Meng 

[6] suggested a scalable SRS, which can be applied in a distributed 

setting with reduced storage and support of load balancing. Sanders 

et al. [7] optimize sampling methods for cache efficiency and 
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number of communications between processors; their method 

supports modifications for online sampling, load balancing and 

vectorization needed for running on GPUs. 

One important type of sampling is weighted random sampling 

(WRS). Here, each sampling unit comes with an associated weight 

and a weighted random sample should accurately represent the 

weight distribution of a population – so, if unit X has a weight of 2 

and Y has a weight of 1, then X is twice as likely to be selected in 

a weighted random sample as Y.   

Efraimidis and Spirakis [1] suggested an elegant algorithm to do 

weighted random sampling without replacement; given that our 

method is based on this work (and most useful for WRS), we will 

discuss this in more details and provide illustration in Table 3. 

Efraimidis’ and Spirakis’ method generates a uniform random 

number for each sampling unit (such as user query in search 

engine), then raises it to the power of inverse of weight (number of 

Impressions, in our case) and uses this final number as an order key, 

i.e., the user of sampling takes needed number of sampling units 

with biggest values of order keys. 

This method is simple and parallelizable; it also supports arbitrary 

sample size: we can just take a prefix of bigger or smaller size. 

Worth noting that simply combining 2 valid weighted samples into 

1 doesn’t create a valid weighted sample; at the same time, 

preparing a bigger sample than needed and (uniform) subsampling 

from this would also create sample biased towards uniform 

sampling, cf. “Comparison results are obtained for the inclusion 

probabilities in some unequal probability sampling plans without 

replacement. For either successive sampling or Hajek’s rejective 

sampling, the larger the sample size, the more uniform the inclusion 

probabilities in the sense of majorization.” [8] 

Chao [9] suggested an algorithm for Weighted random sampling 

with replacement, which is also belong to reservoir sampling 

family, as the method of Efraimidis and Spirakis.  

As with SRS, there are multiple works focused on modifying WRS 

for different computational settings, e.g. Hübschle-Schneider and 

Sanders [10] optimized WRS (with and without replacement) for 

parallel settings. At the same time, to the best of our knowledge, 

sampling algorithms were not previously modified for settings with 

continuously changing populations. 

Other related directions of research include choosing subset of 

query-document pairs to send for judgments [11, 12, 13]; 

combining samples from different distributions [14, 15]; and 

counterfactual evaluation, i.e., evaluating policies on offline logged 

data as opposed to (or before) online A/B tests, in particular the 

work from [16] that proposes estimators that can combine logs from 

multiple previous A/B tests. Compared to these approaches, the one 

proposed in this paper is agnostic to the documents, i.e., considers 

only queries and their weights, is simpler and can be applied to the 

datasets of any size. 

3 Stable and Semi-stable approaches 

As outlined in the introduction, we consider here the following two 

requirements to the sampling approach: 

Ability to update set regularly (hereinafter let’s assume monthly 

update) based on the most recent query logs, so that the overlap 

between previous set and new set is maximal. Let’s call a 

sampling approach with this ability Stable. 

Ability to update set monthly with overlap of controllable size, so 

that we can explicitly control the trade-off between labels reusage 

and proneness to overfitting. Let’s call a sampling approach with 

this ability Semi-stable. 

Below we describe Stable and Semi-stable sampling approaches for 

Simple random sampling (mostly, for illustration purposes) and 

Weighted random sampling. 

3.1  Simple Random Sampling 

If we want uniform or simple random sampling (SRS), i.e. treat 

each query with the same weight, then the method to sample N 

queries can be straightforward: assign uniform random numbers to 

each query, then rank by this number and take top N queries, see 

Table 1 (note that all queries there are synthetic and provided just 

for illustration purposes). 

3.1.1 Stable SRS. Assume that we have 2 distributions here: with 

queries from May and from June. Then some queries would occur 

in both months; some queries – only in May; some – only in June, 

see Table 2. Stable SRS then would generate random number for 

each query in June as follows: 

1) If a query occurred only in May – remove from the 

sample; 

2) If a query occurred both in May and in June – take 

random number from May;  

3) If a query occurred only in June – generate new random 

number. 

Then just take top N queries based on these new random numbers 

(a lot of them would be still from May, though, assuming no drastic 

change in query distribution from May to June).  

The final sample is a valid simple random sample, because each 

query has a random number generated independently from a 

uniform distribution. 

As we can see, this new sample would contain some of the queries 

that occurred only in June and won’t contain queries that occurred 

only in May; the queries that occurred both in May and June that 

were selected in May are likely to be selected in June as well, since 

the largest random numbers in May population are likely to be 

among the largest random numbers in June population. 

3.1.2 Semi-stable SRS. If we want to be able to change some 

part of the sample – say, 10% each month – to avoid overfitting, 

then we can randomly split the whole population into 10 parts, 

choose one part and regenerate random numbers for it; at the next 

month, for the 3rd sample, we can regenerate random numbers for 

another part, see Table 3. 

In this illustration, query “catastro” that had big random number 

previously (0.988), got small regenerated number (0.45) and thus 

was excluded from the set of top 7 queries; query “Another query” 

is also from the part where we regenerated random numbers and it 

got a high number, which led to its inclusion into the sample. Other 
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queries in the sample are from the parts where we didn’t regenerate 

numbers. 

Note that if we have a set of random numbers, then randomly 

choose a subset and regenerate random numbers for this subset – 

after this process, the whole set would still have uniformly 

distributed random numbers. Therefore, Semi-stable SRS is again 

a valid simple random sample. 

 

Table 1. Illustration of SRS 

Query aasdfd Ok asd what is bing Why use bing not gogle catastro Who killed jdsdf need 1 more query 

random number, u 0.995 0.992 0.99 0.989 0.988 0.987 0.985 

Sampling order 1 2 3 4 5 6 7 

 

Table 2. Illustration of Stable SRS 

Query aasdfd Ok asd what is bing Why use bing not gogle catastro new query in June Who killed jdsdf 

random number, u 
(generated in May) 

0.995 0.992 0.99 0.989 0.988 - 0.987 

Sampling order - May 1 2 3 4 5  6 

random number, u 
(generated in June) 

- - 0.99 0.989 0.988 0.9875 0.987 

Sampling order - June   1 2 3 4 5 

 

Table 3. Illustration of Semi-stable SRS 

Query aasdfd Ok asd what is bing Another query Why use bing not gogle catastro new query in June 

random number, u 
(generated in May) 

0.995 0.992 0.99 0.34 0.989 0.988 - 

Sampling order - May 1 2 3 75913 4 5  

random number, u 
(generated in June) 

- - 0.99 0.9893 0.989 0.45 0.9875 

Sampling order - June   1 2 3 6924913 4 

 

Table 4. Illustration of Efraimidis and Spirakis' algorithm for WRS 

Query cat pics what is bing dogs images aasdfd mars general need 1 more query 

Impressions, w 123124 12 233242 456423 2 34 3425 1 

random number, u 0.7 0.99 0.6 0.4 0.995 0.91 0.8 0.99 

Order key, k = u1/w 0.992 0.989 0.976 0.974 0.969 0.966 0.961 0.960 

Sampling order 1 2 3 4 5 6 7 8 

 

 

 

 

 

 



 N. Astrakhantsev et al. 

 

 

 

Table 5. Illustration of Stable WRS 

Query cat 
pics 

what is 
bing 

dogs images aasdfd mars generalization need 1 
more query 

1 more 
query from 

June 

random number, u 0.7 0.99 0.6 0.4 0.995 0.91 0.8 0.99 0.99 

Impressions in May, w 123124 12 233242 456423 2 34 3425 1 0 

Order key for May, k = u1/w 0.992 0.989 0.976 0.974 0.969 0.966 0.961 0.960 - 

Impressions in June, w 124565 10 334242 455210 1 47 3400 0 1 

Order key for June, k = u1/w 0.992 0.979 0.986 0.975 0.869 0.986 0.958 - 0.960 

Sampling order for June 1 4 2 5 8 3 6 - 7 

 

Table 6. Illustration of Semi-stable WRS 

Query cat pics what is 
bing 

dogs images aasdfd mars generaliz
ation 

need 1 
more query 

1 more query 
from June 

random number, r1 (May) 0.7 0.99 0.6 0.4 0.995 0.91 0.8 0.99 - 

random number, r2 (June) 0.8 0.99 0.6 0.12 0.995 0.68 0.3 0.45 0.99 

Impressions in May, w 123124 12 233242 456423 2 34 3425 1 0 

Order key for May, k = r1
1/w 0.992 0.989 0.976 0.974 0.969 0.966 0.961 0.960 - 

Sampling order for May 1 2 3 4 5 6 7 8 - 

Impressions in June, w 124565 10 334242 455210 1 47 3400 0 1 

Stable Order key for June, k = r1
1/w 0.992 0.979 0.986 0.975 0.869 0.986 0.958 - 0.960 

Semi-stable Order key for June, k = 
r2

1/w 
0.997 0.979 0.986 0.972 0.869 0.654 0.958 - 0.960 

Semi-stable Sampling order for June 1 3 2 4 47235 864345 6 - 5 

3.2 Weighted Random Sampling 

Let’s start from illustration of ordinary Weighted Random 

sampling: in Table 4, for each query there (1st row), we have 

number of impressions w (2nd row) and randomly generated number 

u (3rd row). The last row contains a final order key computed from 

Impressions and random number by simple formula. If we need to 

take sample of size 5, we’ll take queries “cat pics”, “what is bing”, 

“dogs”, “images” and “aasdfd”, because they have biggest values 

of order key.  

3.2.1 Stable WRS. The underlying idea of Stable WRS is a nice 

property of Efraimidis and Spirakis’ algorithm: If we change 

weights but keep the same original random numbers (2nd row in 

Table 4), then we can get a valid sampling order for these new 

weights. The reason is that the original set of random numbers is 

not worse than any other set of random numbers, e.g. specifically 

generated for the 2nd sample. Thus, we can apply the same strategy 

to random numbers as we do for Stable SRS and use order key 

computed by Efraimidis and Spirakis’ formula instead of ordering 

by random numbers, see Table 5. In this example, we'll have 

slightly different order of queries for June impressions compared to 

May impressions - e.g. "dogs" will be second, while "what is bing" 

will be third, because of difference in impressions; some low-

popular queries will disappear and be replaced by new low-popular 

queries; some queries that occurred only in May will also 

disappear; and so on. 

Note that this works not only for the query sets from different points 

in time – like, from May and June, or from last year and current 

year – but also for query sets accumulated from different sources, 

e.g. from different regions or different parts of search engine (web 

search results page, or SERP, vs image search results page, or IRP) 

or even different search engines (Bing vs Google vs Yandex). As 

long as queries overlap between 2 sources and have similar weights 
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ordering numbers (e.g. in SERP queries “google” and “cats” may 

have 10M and 1M impressions, while in IRP the same queries may 

have 1M and 100k impressions, which is different, but the ordering 

number may be quite similar – around 1st and 100th) for a 

significant number of queries, we can have 2 valid samples with 

big overlap, thus reducing number of new judgements. Note that 

judgments required for web search vs image search are likely to be 

different in general case, but some type of labels like query intent 

can be shared between web and image searches. 

In a sense, this "reweighting" operation provides us with a 

possibility to make "views" on sample, so that each view is a valid 

sample for the corresponding population (set of weights), but at the 

same time overlaps with something else – as noted above, this 

makes sense to do as long as 2 populations, i.e. orderings of queries 

by weights, are similar. Of course, if orderings by weights are not 

similar, then samples would have small overlap, but would still be 

valid. 

3.2.2 Semi-Stable WRS. As with SRS, we can change random 

numbers for a subset of original random numbers, see Table 6.  

According to Stable WRS, we add random number for "1 more 

query from June" and we would use Order key from the penultimate 

row. According to Semi-stable WRS, we randomly change random 

numbers for queries "cat pics", "images", "mars" (see Order key in 

the last row). New random number doesn't change position of "cat 

pics" and "images", because they have too big impression counts, 

but query "mars" disappears from the June sample. 

3.3 Hashing trick 

As shown above, both weighted random sampling and simple 

random sampling approaches can be Stable or Semi-stable 

depending on how we generate and update random numbers. We 

can store these random numbers for each query in the population, 

but this may require a significant storage volume, plus for semi-

stable approach we must store these random number sets for the 

whole population at each sampling date, which may quickly 

become unmanageable, especially if we want to share this between 

multiple teams. 

Instead, we can rely on the uniformity of a good hashing function, 

e.g. apply md5 to the query string itself – concatenated with some 

constant text string – let’s call it seed, as in pseudo-random number 

generators - to be able to generate different random numbers.   

For Stable sampling, Hashing trick is straightforward – we just 

store hashing seed. For Semi-stable sampling, we propose the 

following algorithm. It is based on the idea to have 2 different 

hashing functions: one would be used to generate random numbers 

as in Stable approach, while the other would decide for each query 

if new hashing function should be used, i.e., if this query should 

keep random number from previous sample or should have a new 

one.   

 

 

 

 

 

Pseudocode for Hashing trick. 

Input: 

Operations: 

1) SampleHash(Seed, Query) // Hashing function that 

generates random number based on some Seed and Query, e.g. 

md5 from concatenation of Seed and Query 

2) NewSeed() // Function that generates new Seed each 

time it is called, e.g. text string Month+Year+Constant if we 

generate new seeds not more often than each month; or just an 

iterator on prepopulated list of Seeds. 

3) RefreshHash(Seed, Query) // Hashing function that 

generates random number based on some Seed and Query, but 

independent from SampleHash, e.g. md5 from concatenation of 

Seed, Query and some constant string 

Constants: 

1) S1, S2 // 2 start seeds, e.g. some unique identifier 

of the current sample and the first call to NewSeed() 

2) DesiredRefresh // float number specifying desired 

change in random numbers, e.g. if we want to update the whole 

sample completely after 12 times, then we should set it to 

1/12=0.0833 

 

Output: Random numbers R for each Query 

 

Initialize: 

1. Seed = (S1, S2)  

2. Refresh = 0.0 

Each Rolling Period: 

1. Refresh = Refresh + DesiredRefresh 

2. IF Refresh > 1 

a. (S1, S2) = (S2, NewSeed())  // Rolling 

Seed 

b. Refresh = Refresh % 1 

3. FOREACH Query: 

R = (RefreshHash(S1, Query) > Refresh) ? 

SampleHash(S1, Query) : SampleHash(S2, Query) 

4 Experiments 

We performed simulation experiments on Bing query logs collected 

from 2019 to 2020 on main page (Search Engine Results Page, 

SERP) and image search page (Image Results Page, IRP).  

 

For all samples, we used the following parameters: 

Parameter Value 

Sample size 1000 

Sampling time interval 12 months 

Rolling frequency 1 month 

Refresh (for semi-stable approach) 10% 

4.1 Illustration of sample validity 

Here we illustrate that Stable and Semi-stable approaches provide 

valid samples by plotting Cumulative distribution function (CDF) 

for population, where we consider impression volume (i.e. sum of 
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impressions for all queries), and for samples produced by each 

approach, where we consider count volume (i.e. count of queries, 

ignoring their impressions) – intuition here is that if the original 

population have ~55% of all impression volume accumulated by 

queries with impression lesser than 10, then ~55% of our sample 

should contain queries with impressions lesser than 10. 

Table 7. CDF plots for Stable and Semi-stable WRS 

  

 
 

As we can see, samples correspond to population in the 1st, 2nd, 6th 

and last months. 

4.2 Estimating overlap 

Here we measure actual overlap between the first sample and each 

consecutive sample for different sampling approaches (for original 

WRS proposed by Efraimidis and Spirakis [1], overlap between 

any two independent samples is less than 1% in all cases, therefore 

it is not plotted here). 

As we can see from Figures 1 and 2, overlap depends on desired 

refresh coming from Semi-stable sampling and on natural churn 

occurring due to changes in queries (old queries unique to dropped 

months, new queries unique to current month) and weights – see 

dependence in Table 8. Note that Natural retention/churn depends 

on the weights distribution; for IRP it was empirically found to be 

around 0.93, which is close to 11/12=0.9167 – proportion of the 

overlapping months in 1-year sample. Intuitively, the proximity to 

11/12 reflects the tail-heavy nature of IRP traffic - it nearly acts as 

a population of seen-only-once queries (for which monthly churn 

would be 1/12).  The actual number being higher reflects the fact 

that queries do in fact repeat.  Less taillish distributions - such as 

SERP - are expected to have even higher natural retention, see 

Figure 3. 

 
Figure 1. Desired refresh 10% on Image Results Page 

 
Figure 2. Desired refresh 20% on Image Results Page 
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Figure 3. Desired refresh 20% on Search Engine Results Page 

 

From Table 8 we can also see that mean overlap for IRP is smaller 

than for SERP. 

 

Table 8. Averages of consecutive overlaps 

 
Source 

 
Method 

Mean consecutive 
sample overlap 

IRP WRS 0.24% 
IRP Stable WRS 94.1% 
IRP Semi-stable WRS (refresh 10%) 85.0% 
IRP Semi-stable WRS (refresh 20%) 75.0% 
SERP WRS 3.1% 
SERP Stable WRS 95.1% 
SERP Semi-stable WRS (refresh 20%) 77.0% 

 

See Table 9 for statistics on relations between Semi-stable Refresh, 

Natural churn (proportion of queries to be changed from month to 

month for an ordinary sampling). 

Note that month-to-month delta in Final overlap is decreasing – 

from 0.15 to 0.13 to 0.04 at the end – but judgment load remains 

essentially constant after the first month; it equals 

NaturalChurnRate + Refresh - (NaturalChurnRate * Refresh), 

where the last component is almost zero.  

In practice, it is also useful to know actual judgment load, i.e. the 

number of queries to be judged each month, assuming reusage of 

any previous judgment. Final Overlap just compares first query 

sample to current query sample, but queries can rechurn - causing 

judgment load but not affecting overlap. 

 

 

Table 9. Relations between Semi-stable Refresh, Natural Retention (NatRet), Natural churn and Overlap 

Month Delta Natural 

Retention 

Natural churn Refresh (in 

Semi-stable) 

Refresh churn Natural + Refresh 

churn 

Final Overlap 

d (11/12)d 1 - NatRet d/12 Refresh * NatRet 
 

 

0 1.00 0.00 0.00 0 0.00 1 

1 0.93 0.07 0.08 0.0775 0.15 0.85 

2 0.86 0.14 0.17 0.1442 0.28 0.72 

3 0.80 0.20 0.25 0.2011 0.40 0.6 

4 0.75 0.25 0.33 0.2494 0.50 0.5 

5 0.70 0.30 0.42 0.2899 0.59 0.41 

6 0.65 0.35 0.50 0.3235 0.68 0.32 

7 0.60 0.40 0.58 0.3510 0.75 0.25 

8 0.56 0.44 0.67 0.3731 0.81 0.19 

9 0.52 0.48 0.75 0.3903 0.87 0.13 

10 0.48 0.52 0.83 0.4033 0.92 0.08 

11 0.45 0.55 0.92 0.4126 0.96 0.04 

12 0.42 0.58 1.00 0.4186 1.00 0 

 

See Figures 4 and 5 that estimate number of queries to be judged at 

each month, assuming reusage of previous judgments. 
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Figure 4. Judgment load for Image Results Page 

 

As we can see from these figures, judgment load is almost constant 

after the first month, which is a desirable property in practice. 

 
Figure 5. Judgment load for Search Engine Results Page 

5 Comparison of sampling approaches 

As noted in the Introduction above, there may be multiple sampling 

approaches for continuously changing populations. To the best of 

our knowledge, they are the following (see also Table 10 below for 

a summary). 

Keep same set forever – the simplest solution is to just create one 

sample (using original WRS) and use it for the whole project 

lifetime. This obviously creates a valid (first and only) sample for 

the population at the start of the project and labels can be reused as 

much as possible, but with time this sample would go out of sync 

with the population if it changes fast enough and overfitting on this 

set is also inevitable with time, even for static populations. 

Therefore, this extreme approach is good only for short projects, 

when problems won’t have time to accumulate. 

Change sample as soon as possible – another extreme approach is 

to change the whole sample with each usage. This completely 

solves freshness and overfitting problems, but it requires too many 

judgments, which in practice would lead to too small sample sizes 

due to budget constraints, which, in turn, would lead to statistically 

wider noise level in search quality metrics like NDCG preventing 

us from being able to detecting smaller improvements to the search 

engine. 

Keep sample for multiple periods, then change – this approach 

is a combination, or generalization, of the previous two: instead of 

changing each day or keeping forever, we keep the sample for some 

number of usages (e.g. for a month or a year) and then resample. 

This provides a valid sample with reasonable reusage of judgments, 

thus it is probably the most popular solution, but it has a few 

problems as well: (a) the sample becomes stale approaching the end 

of each month/year (period of resample); (b) there is usually 

enough time to overfit, so that results of the system on the 

resampled set becomes worse than on the previous day – in the 

worst case, results may be even the same as they were at the start 

of the previous sample; (c) judgment systems usually prefer stable 

flow of small tasks to the rare spikes of huge tasks, therefore 

resampling causes lower efficiency of labeling and delays in getting 

labeled data. 

Stable sampling – as described above, this approach prioritizes 

freshness and judgments reusage; at the same time, given that most 

of the queries remain the same, the overfitting resistance of this 

approach is low - just slightly better than that of the 1st and  the 3rd 

approach due to a side-effect of freshness: some queries would 

change due to changes in underlying distribution. 

Semi-stable sampling – as described above, this approach is 

designed to be valid and fresh and to provide full control on the 

trade-off between overfitting resistance and judgments reusage. 

Note also that here we can sync desired refresh, i.e. the main 

hyperparameter of the method controlling which part of the sample 

would be refreshed each time, with the lifespan of the label – e.g. 

if we decide that after a year the same pair of query and  result needs 

to be rejudged, we can set desired refresh so that the sample would 

be fully refreshed in a year; we can also adapt to judgment budget 

changes quickly: if for month or two we have smaller judgment 

budget, we can temporarily reduce desired refresh until situation 

normalizes and then temporarily increase refresh to gradually catch 

up.  

Replace random subset of sample – this approach tries to 

gradually update the sample by randomly choosing a subset and 

replacing it by a new sample of the same size as the subset. There 

may be multiple variations depending on how to determine the 

subset to replace at each time: e.g. it is possible to split the set into 

halves each month independently and replace one half with a new 

sample; alternatively, split can be made just once and then older 

part can be replaced each month.  For Simple Random Sampling, 
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this is a valid approach and similar to Semi-stable sampling, 

without updates to a new population each month; however, for 

Weighted Random Sampling, this does not produce a valid sample. 

In particular, such methods require a strategy on what to do with 

duplicates – given that the next sample is independent on the 

previous ones, it is probable that some queries (usually, head ones, 

i.e. occurring most often) would occur in both previous and next 

samples; if we just ignore the problem, then our sample would be 

biased toward tail queries, i.e. occurring less often; if we choose to 

replace query by another query with similar weight, we would also 

bias the sample (why this particular query, how to choose if there 

are multiple queries with the same weight, etc.).  

To sum up, this approach is more complicated, provides  weighted 

sample with worse freshness than Semi-stable approach and the 

validity of such sample is not proven.  

Table 10 compares approaches by the following properties: 

1. Weighted sample validity: binary property showing if it 

is proved that the sampling approach produces valid 

WRS sample at each time; in particular, it shows if any 

statistic like mean NDCG computed on the sample can 

be generalized to the original population. 

2. Freshness: for continuously changing populations like 

user queries, how fresh the samples are – for example, if 

we keep the same sample for a year, then after a few 

months the sample isn’t fresh and thus may be not 

representative for the latest population. 

3. Resistance to overfitting: a measure of sample static, or, 

from practical point of view, how prone to overfitting the 

system based on such sampling would be. 

4. Judgment bandwidth savings: a measure of number of 

new labels required. 

6 Conclusion 

In this paper, we highlighted the key practical requirements of 

sampling approaches for continuously used datasets like query sets 

used to measure search engines daily. We show that current 

sampling approaches have drawbacks and propose a new Semi-

stable approach for both Simple and Weighted Random Sampling 

that is provably valid and provides full control on the trade-off 

between judgments reuse and proneness to overfitting. We 

experimentally evaluate this approach on real data (query logs of 

Microsoft Bing) and show that it creates valid samples with 

specified overlap between consecutive samples. 

One of the limitations of the presented Stable and Semi-stable 

approaches is inability to use labeled data for training, because any 

query can be reused in future refreshes. How to account for 

necessity of training data is one of the possible directions for future 

work. 
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Table 10. Comparison of Sampling approaches 

 

# 

 

Sampling approach 

Weighted 

sample 

validity 

 

Freshness 

Resistance to 

overfitting 

Judgment 

bandwidth 

savings 

 

Notes 

 1 Keep same sample forever + Lowest Lowest Highest Fine for short projects 

 2 Change sample ASAP + Highest Highest Lowest   

 3 Keep sample for a year, then 

change completely 

+ Low Low Med Huge labeling spike when change set: 

not friendly for label collection 

systems 

 4 Stable sampling + High Low-Med High Best for monitoring/debugging 

 5 Semi-stable sampling + High (Controllable) (Controllable) DesiredRefresh can consider 

judgements lifespan 

 6 Replace random subset of 

sample 

- Med (Controllable)  (Controllable)  

 


