
Provably Accurate and Scalable Linear Classifiers
in Hyperbolic Spaces

Chao Pan*, Eli Chien*, Puoya Tabaghi, Jianhao Peng, Olgica Milenkovic
ECE, University of Illinois Urbana-Champaign, 306 N Wright St, Urbana, Illinois 61801, USA

{chaopan2, ichien3, tabaghi2, jianhao2, milenkov}@illinois.edu

Abstract—Many high-dimensional practical data sets have hi-
erarchical structures induced by graphs or time series. Such data
sets are hard to process in Euclidean spaces and one often seeks
low-dimensional embeddings in other space forms to perform
the required learning tasks. For hierarchical data, the space of
choice is a hyperbolic space because it guarantees low-distortion
embeddings for tree-like structures. The geometry of hyperbolic
spaces has properties not encountered in Euclidean spaces that
pose challenges when trying to rigorously analyze algorithmic so-
lutions. We propose a unified framework for learning scalable and
simple hyperbolic linear classifiers with provable performance
guarantees. The gist of our approach is to focus on Poincaré
ball models and formulate the classification problems using
tangent space formalisms. Our results include a new hyperbolic
perceptron algorithm as well as an efficient and highly accurate
convex optimization setup for hyperbolic support vector machine
classifiers. Furthermore, we adapt our approach to accommodate
second-order perceptrons, where data is preprocessed based on
second-order information (correlation) to accelerate convergence,
and strategic perceptrons, where potentially manipulated data
arrives in an online manner and decisions are made sequen-
tially. The excellent performance of the Poincaré second-order
and strategic perceptrons shows that the proposed framework
can be extended to general machine learning problems in
hyperbolic spaces. Our experimental results, pertaining to syn-
thetic, single-cell RNA-seq expression measurements, CIFAR10,
Fashion-MNIST and mini-ImageNet, establish that all algorithms
provably converge and have complexity comparable to those of
their Euclidean counterparts. Accompanying codes can be found
at: https://github.com/thupchnsky/PoincareLinearClassification1.

Index Terms—Hyperbolic, Support Vector Machine, Percep-
tron, Online Learning

I. INTRODUCTION

Representation learning in hyperbolic spaces has received
significant interest due to its effectiveness in capturing latent
hierarchical structures [2]–[7]. It is known that arbitrarily low-
distortion embeddings of tree-structures in Euclidean spaces
is impossible even when using an unbounded number of
dimensions [8]. In contrast, precise and simple embeddings
are possible in the Poincaré disk, a hyperbolic space model
with only two dimensions [3].

Despite their representational power, hyperbolic spaces are
still lacking foundational analytical results and algorithmic
solutions for a wide variety of downstream machine learn-
ing tasks. In particular, the question of designing highly-

*equal contribution
1A shorter version of this work [1] was presented as a regular paper at the

International Conference on Data Mining (ICDM), 2021.

scalable classification algorithms with provable performance
guarantees that exploit the structure of hyperbolic spaces
remains open. While a few prior works have proposed specific
algorithms for learning classifiers in hyperbolic space, they
are primarily empirical in nature and do not come with
theoretical convergence guarantees [9], [10]. The work [11]
described the first attempt to establish performance guarantees
for the hyperboloid perceptron, but the proposed algorithm
is not transparent and fails to converge in practice. Further-
more, the methodology used does not naturally generalize to
other important classification methods such as support vector
machines (SVMs) [12]. Hence, a natural question arises:
Is there a unified framework that allows one to generalize
classification algorithms for Euclidean spaces to hyperbolic
spaces, make them highly scalable and rigorously establish
their performance guarantees?

We give an affirmative answer to this question for a wide
variety of classification algorithms. By redefining the notion of
separation hyperplanes in hyperbolic spaces, we describe the
first known Poincaré ball perceptron and SVM methods with
provable performance guarantees. Our perceptron algorithm
resolves convergence problems associated with the perceptron
method in [11]. It is of importance as they represent a form of
online learning in hyperbolic spaces and are basic components
of hyperbolic neural networks. On the other hand, our Poincaré
SVM method successfully addresses issues associated with
solving and analyzing a nontrivial nonconvex optimization
problem used to formulate hyperboloid SVMs in [9]. In the
latter case, a global optimum may not be attainable using
projected gradient descent methods and consequently this
SVM method does not provide tangible guarantees. Our pro-
posed algorithms may be viewed as “shallow” one-layer neural
networks for hyperbolic spaces that are not only scalable but
also (unlike deep networks [13], [14]) exhibit an extremely
small storage-footprint. They are also of significant relevance
for few-shot meta-learning [15] and for applications such as
single-cell subtyping and image data processing as described
in our experimental analysis (see Figure 1 for the Poincaré
embedding of these data sets).

For our algorithmic solutions we choose to work with the
Poincaré ball model for several practical and mathematical
reasons. First, this model lends itself to ease of data vi-
sualization and it is known to be conformal. Furthermore,
many recent deep learning models are designed to operate
on the Poincaré ball model, and our detailed analysis and

ar
X

iv
:2

20
3.

03
73

0v
2

 [
cs

.L
G

]
 1

1
M

ar
 2

02
2

https://github.com/thupchnsky/PoincareLinearClassification

Fig. 1. Visualization of four embedded data sets: Olsson’s single-cell
RNA expression data (top left, K = 8, d = 2), CIFAR10 (top right,
K = 10, d = 2), Fashion-MNIST (bottom left, K = 10, d = 2) and
mini-ImageNet (bottom right, K = 20, d = 512). Here K stands for the
number of classes and d stands for the dimension of embedded Poincaré ball.
Data points from mini-ImageNet are mapped into 2 dimensions using tSNE
for viewing purposes only and thus may not lie in the unit Poincaré disk.
Different colors represent different classes.

experimental evaluation of the perceptron, SVM and related
algorithms can improve our understanding of these learning
methods. The key insight is that tangent spaces of points
in the Poincaré ball model are Euclidean. This, along with
the fact that logarithmic and exponential maps are readily
available to switch between different relevant spaces simplifies
otherwise complicated derivations and allows for addressing
classification tasks in a unified manner using convex programs.
To estimate the reference points for tangent spaces we make
use of convex hull algorithms over the Poincaré ball model
and explain how to select the free parameters of the classifiers.
Further contributions include generalizations of the work [16]
on second-order perceptrons and the work [17] on strategic
perceptrons in Euclidean spaces.

The proposed perceptron and SVM methods easily operate
on massive synthetic data sets comprising millions of points
and up to one thousand dimensions. All perceptron algorithms
converge to an error-free result provided that the data satisfies
an ε-margin assumption. The second-order Poincaré percep-
tron converges using significantly fewer iterations than the
perceptron method, which matches the advantages offered by
its Euclidean counterpart [16]. This is of particular interest
in online learning settings and it also results in lower excess
risk [18]. Our Poincaré SVM formulation, which unlike [9]
comes with provable performance guarantees, also operates
significantly faster than its nonconvex counterpart (1 minute
versus 9 hours on a set of 106 points, which is 540× faster) and
also offers improved classification accuracy as high as 50%.

Real-world data experiments involve single-cell RNA expres-
sion measurements [19], CIFAR10 [20], Fashion-MNIST [21]
and mini-ImageNet [22]. These data sets have challenging
overlapping-class structures that are hard to process in Eu-
clidean spaces, while Poincaré SVMs still offer outstanding
classification accuracy with gains as high as 47.91% compared
to their Euclidean counterparts.

This paper is organized as follows. Section II describes an
initial set of experimental results illustrating the scalability
and high-quality performance of our Poincaré SVM method
compared to the corresponding Euclidean and other hyperbolic
classifiers. This section also contains a discussion of prior
works on hyperbolic perceptrons and SVMs that do not use
the tangent space formalism and hence fail to converge and/or
provide provable convergence guarantees, as well as a review
of variants of perceptron algorithms. Section III describes rel-
evant concepts from differential geometry needed for the anal-
ysis at hand. Section IV contains our main results, analytical
convergence guarantees for the proposed Poincaré perceptron
and SVM learners. Section V includes examples pertaining
to generalizations of two variants of perceptron algorithms
in Euclidean spaces. A more detailed set of experimental
results, pertaining to real-world single-cell RNA expression
measurements for cell-typing and three collections of image
data sets is presented in Section VI. These results illustrate
the expression power of hyperbolic spaces for hierarchical
data and highlight the unique feature and performance of our
techniques.

II. RELEVANCE AND RELATED WORK

To motivate the need for new classification methods in
hyperbolic spaces we start by presenting illustrative numerical
results for synthetic data sets. We compare the performance of
our Poincaré SVM with the previously proposed hyperboloid
SVM [9] and Euclidean SVM. The hyperbolic perceptron
outlined in [11] does not converge and is hence not used in our
comparative study. Rigorous descriptions of all mathematical
concepts and pertinent proofs are postponed to the next
sections of this paper.

One can clearly observe from Figure 2 that the accuracy
of Euclidean SVMs may be significantly below 100%, as the
data points are not linearly separable in Euclidean but rather
only in the hyperbolic space. Furthermore, the nonconvex
SVM method of [9] does not scale well as the number of
points increases: It takes roughly 9 hours to complete the
classification process on 106 points while our Poincaré SVM
takes only 1 minute. Furthermore, the algorithm breaks down
when the data dimension increases to 1, 000 due to its intrinsic
non-stability. Only our Poincaré SVM can achieve nearly
optimal (100%) classification accuracy with extremely low
time complexity for all data sets considered. More extensive
experimental results on synthetic and real-world data can be
found in Section VI.

The exposition in our subsequent sections explains what
makes our classifiers as fast and accurate as demonstrated,
especially when compared to the handful of other existing

101 102 103

Dimension d

40

60

80

100
A

cc
ur

ac
y

(%
)

Poincaré SVM
Hyperboloid SVM
Euclidean SVM

(a) Accuracy vs d

101 102 103

Dimension d

0

1000

2000

3000

T
im

e
co

m
pl

ex
ity

 (
se

c)

(b) Time vs d

103 104 105 106

N

94

96

98

100

A
cc

ur
ac

y
(%

)

(c) Accuracy vs N

103 104 105 106

N

0

10000

20000

30000

T
im

e
co

m
pl

ex
ity

 (
se

c)

(d) Time vs N

Fig. 2. Classification of N points in d dimensions selected uniformly at random in the Poincaré ball. The upper and lower boundaries of the shaded region
represent the first and third quantile, respectively. The line shows the medium (second quantile) and the marker × indicates the mean. Detailed explanations
pertaining to the test results can be found in Section VI.

hyperbolic space methods. In the first line of work to ad-
dress SVMs in hyperbolic spaces [9] the authors chose to
work with the hyperboloid model of hyperbolic spaces which
resulted in a nonconvex optimization problem formulation.
The nonconvex problem was solved via projected gradient
descent which is known to be able to provably find only a
local optimum. In contrast, as we will show, our Poincaré
SVM provably converges to a global optimum. The second
related line of work [11] studied hyperbolic perceptrons and
a hyperbolic version of robust large-margin classifiers for
which a performance analysis was included. This work also
solely focused on the hyperboloid model and the hyperbolic
perceptron method outlined therein does not converge. The
main difference between this work and previous works is that
we resort to a straightforward, universal and simple proof
techniques that “transfers” the classification problem from a
Poincaré ball back to a Euclidean space through the use of
tangent space formalisms. Our analytical convergence results
are extensively validated experimentally, as described above
and in Section VI.

There exists many variants of perceptron-type algorithms in
the literature. One variant uses second-order information (cor-
relation) in samples to accelerate the convergence of standard
perceptron algorithms [16]. The method, termed the second-
order perceptron, makes use of the data correlation matrix to
ensure fast convergence to the optimal perceptron classifier.
Another line of work is related to strategic classification [17].
Strategic classification deals with the problem of learning a
classier when the learner relies on data that is provided by
strategic agents in an online manner [23], [24]. This problem
is of great importance in decision theory and fair learning.
It was shown in [17] that standard perceptrons can oscillate
and fail to converge when the data is manipulated, and the
strategic perceptron is proposed to mitigate this problem. We
successfully extend our framework to these two settings and
describe Poincaré second-order and strategic perceptrons based
on their Euclidean counterparts.

In addition to perceptrons and SVM described above, a
number of hyperbolic neural networks solutions have been
put forward as well [13], [14]. These networks were built
upon the idea of Poincaré hyperplanes and motivated our

approach for designing Poincaré-type perceptrons and SVMs.
One should also point out that there are several other deep
learning methods specifically designed for the Poincaré ball
model, including hyperbolic graph neural networks [25] and
Variational Autoencoders [26]–[28]. Despite the excellent em-
pirical performance of these methods theoretical guarantees
are still unavailable due to the complex formalism of deep
learners. Our algorithms and proof techniques illustrate for
the first time why elementary components of such networks,
such as perceptrons, perform exceptionally well when properly
formulated for a Poincaré ball.

III. REVIEW OF HYPERBOLIC SPACES

We start with a review of basic notions pertinent to hy-
perbolic spaces. We then proceed to introduce the notion of
separation hyperplanes in the Poincaré ball model of hyper-
bolic space which is crucial for all our subsequent derivations.
The relevant notation used is summarized in Table I.

TABLE I
NOTATION AND DEFINITIONS.

Notation Definition

n Dimension of Poincaré ball

c Absolute value of the negative curvature, c > 0

‖x‖
√∑n

i=1 x
2
i

〈x, y〉
∑n
i=1 xiyi

Bnc Poincaré ball model, Bnc = {x ∈ Rn :
√
c ‖x‖ < 1}

gBcp (x, y) 2
1−c‖p‖2

〈x, y〉

The Poincaré ball model. Despite the existence of a
multitude of equivalent models for hyperbolic spaces, Poincaré
ball models have received the broadest attention in the machine
learning and data mining communities. This is due to the fact
that the Poincaré ball model provides conformal representa-
tions of shapes and point sets, i.e., in other words, it preserves
Euclidean angles of shapes. The model has also been success-
fully used for designing hyperbolic neural networks [13], [14]
with excellent heuristic performance. Nevertheless, the field
of learning in hyperbolic spaces – under the Poincaré or other
models – still remains largely unexplored.

The Poincaré ball model (Bnc , gB) is a Riemannian manifold.
For the absolute value of the curvature c > 0, its domain is
the open ball of radius 1/

√
c:

Bnc = {x ∈ Rn :
√
c ‖x‖ < 1},

here and elsewhere ‖ · ‖ stands for the `2 norm and 〈·, ·〉
stands for the standard inner product. The Riemannian metric
of Poincaré model is defined as

gBcx (·, ·) = (σcx)2 〈·, ·〉 , σcx = 2/(1− c‖x‖2).

For c = 0, we recover the Euclidean space, i.e., Bn0 = Rn.
For simplicity, we focus on the case c = 1 in this paper
albeit our results can be generalized to hold for arbitrary
c > 0. Furthermore, for a reference point p ∈ Bn, we denote
its tangent space, the first order linear approximation of Bn
around p, by TpBn.

In the following, we introduce Möbius addition and scalar
multiplication — two basic operators in the Poincaré ball [29].
These operators represent analogues of vector addition and
scalar-vector multiplication in Euclidean spaces. The Möbius
addition of x, y ∈ Bn is defined as

x⊕ y =
(1 + 2 〈x, y〉+ ‖y‖2)x+ (1− ‖x‖2)y

1 + 2 〈x, y〉+ ‖x‖2‖y‖2
. (1)

Unlike its vector-space counterpart, this addition is noncom-
mutative and nonassociative. The Möbius version of multipli-
cation of x ∈ Bn \ {0} by a scalar r ∈ R is defined according
to

r ⊗ x = tanh(r tanh−1(‖x‖)) x

‖x‖
and r ⊗ 0 = 0. (2)

For detailed properties of these operations, see [13], [30]. The
distance function in the Poincaré model is

d(x, y) = 2 tanh−1(‖(−x)⊕ y‖). (3)

Using Möbius operations one can also describe geodesics
(analogues of straight lines in Euclidean spaces) in Bn. The
geodesics connecting two points x, y ∈ Bn is given by

γx→y(t) = x⊕ (t⊗ ((−x)⊕ y)). (4)

Note that t ∈ [0, 1] and γx→y(0) = x and γx→y(1) = y.
The following result explains how to construct a geodesic

with a given starting point and a tangent vector.
Lemma 3.1 (Lemma 1 in [13]): For any p ∈ Bn and v ∈

TpBn s.t. gp(v, v) = 1, the geodesic starting at p with tangent
vector v equals:

γp,v(t) = p⊕
(

tanh

(
t

2

)
v

‖v‖

)
, (5)

where γp,v(0) = p and γ̇p,v(0) = v.

We complete the overview by introducing logarithmic and
exponential maps.

(a) Poincaré disk

𝐻 ,

𝛾 →

𝑝
𝑥

𝑤

𝛾 ,

log (𝑥)

(b) Tangent space

Fig. 3. Figure (a): A linear classifier in Poincaré disk B2. Figure (b):
Corresponding tangent space TpB2.

Lemma 3.2 (Lemma 2 in [13]): For any point p ∈ Bn the
exponential map expp : TpBn 7→ Bn and the logarithmic map
logp : Bn 7→ TpBn are given for v 6= 0 and x 6= p by:

expp(v) = p⊕
(

tanh

(
σp‖v‖

2

)
v

‖v‖

)
, (6)

logp(x) =
2

σp
tanh−1(‖(−p)⊕ x‖) (−p)⊕ x

‖(−p)⊕ x‖
. (7)

The geometric interpretation of logp(x) is that it gives the
tangent vector v of x for starting point p. On the other hand,
expp(v) returns the destination point x if one starts at the point
p with tangent vector v. Hence, a geodesic from p to x may
be written as

γp→x(t) = expp(t logp(x)), t ∈ [0, 1]. (8)

See Figure 3 for the visual illustration.

IV. CLASSIFICATION IN HYPERBOLIC SPACES

A. Classification Algorithms for Poincaré Balls

Classification with Poincaré hyperplanes. The recent
work [13] introduced the notion of a Poincaré hyperplane
which generalizes the concept of a hyperplane in Euclidean
space. The Poincaré hyperplane with reference point p ∈ Bn
and normal vector w ∈ TpBn in the above context is defined
as

Hw,p = {x ∈ Bn :
〈
logp(x), w

〉
p

= 0}
= {x ∈ Bn : 〈(−p)⊕ x,w〉 = 0}, (9)

where 〈x, y〉p = (σp)
2 〈x, y〉. The minimum distance of a

point x ∈ Bn to Hw,p has the following close form

d(x,Hw,p) = sinh−1
(

2|〈(−p)⊕ x,w〉|
(1− ‖(−p)⊕ x‖2)‖w‖

)
. (10)

We find it useful to restate (10) so that it only depends on
vectors in the tangent space TpBn as follows.

Lemma 4.1: Let v = logp(x) (and thus x = expp(v)), then
we have

d(x,Hw,p) = sinh−1

(
2 tanh(

σp‖v‖
2)|〈v, w〉|

(1− tanh(
σp‖v‖

2)2)‖w‖‖v‖

)
(11)

Equipped with the above definitions, we now focus on
binary classification in Poincaré models. To this end, let
{(xi, yi)}Ni=1 be a set of N data points, where xi ∈ Bn
and yi ∈ {±1} represent the true labels. Note that based
on Lemma 4.1, the decision function based on Hw,p is
hw,p(x) = sgn

(〈
logp(xi), w

〉)
. This is due to the fact that

sinh−1 does not change the sign of its input and that all other
terms in (11) are positive if vi = logp(xi) and w 6= 0. For the
case that either logp(xi) or w is 0, 〈v, w〉 = 0 and thus the
sign remains unchanged. For linear classification, the goal is
to learn w that correctly classifies all points. For large margin
classification, we further required that the learnt w achieves
the largest possible margin,

max
w∈TpBn

min
i∈[N]

yihw,p(xi)d(xi, Hw,p). (12)

In what follows we outline the key idea behind our approach
to classification and analysis of the underlying algorithms. We
start with the perceptron classifier, which is the simplest ap-
proach yet of relevance for online settings. We then proceed to
describe our SVM method which offers excellent performance
with provable guarantees.

Our approach builds upon the result of Lemma 4.1. For each
xi ∈ Bn, let vi = logp(xi). We assign a corresponding weight
as

ηi =
2 tanh

(
σp‖vi‖

2

)
(

1− tanh
(
σp‖vi‖

2

)2)
‖vi‖

. (13)

Without loss of generality, we also assume that the optimal
normal vector has unit norm ‖w?‖ = 1. Then (11) can be
rewritten as

d(xi, Hw?,p) = sinh−1 (ηi| 〈vi, w?〉 |) . (14)

Note that ηi ≥ 0 and ηi = 0 if and only if vi = 0, which cor-
responds to the case xi = p. Nevertheless, this “border” case
can be easily eliminated under a margin assumption. Hence,
the problem of finding an optimal classifier becomes similar
to the Euclidean case if one focuses on the tangent space of
the Poincaré ball model (see Figure 3 for an illustration).

B. The Poincaré Perceptron

We first restate the standard assumptions needed for the
analysis of the perceptron algorithm in Euclidean space for
the Poincaré model.

Assumption 4.1:

∃w? ∈ TpBn, yi
〈
logp(xi), w

?
〉
> 0 ∀i ∈ [N], (15)

∃ε > 0 s.t. d(xi, Hw?,p) ≥ ε ∀i ∈ [N], (16)
‖xi‖ ≤ R < 1 ∀i ∈ [N]. (17)

The first assumption (15) postulates the existence of a classifier
that correctly classifies every points. The margin assumption
is listed in (16), while (17) ensures that points lie in a bounded
region.

Using (14) we can easily design the Poincaré perceptron
update rule. If the kth mistake happens at instance (xik , yik)
(i.e., yik

〈
logp(xik), wk

〉
≤ 0), then

wk+1 = wk + ηikyik logp(xik), w1 = 0. (18)

The complete Poincaré perceptron is then shown in Algo-
rithm 1.

Algorithm 1: Poincaré Perceptron

Input: Data points {xi}Ni=1, labels {yi}Ni=1, reference
point p.

1 Initialization: w1 = 0, k = 1.
2 for t = 1, 2, . . . do
3 Get (xt, yt), compute vt = logp(xt) and

ηt =
2 tanh

(
σp‖vt‖

2

)
(
1−tanh

(
σp‖vt‖

2

)2
)
‖vt‖

.

4 Predict ŷt = sgn(〈wk, vt〉).
5 if ŷt 6= yt then
6 wk+1 = wk + ηtytvt, k = k + 1.
7 end
8 end

Algorithm 1 comes with the following convergence guaran-
tees.

Theorem 4.1: Under Assumption 4.1, the Poincaré percep-
tron Algorithm 1 will correctly classify all points with at most(

2Rp
(1−R2

p) sinh(ε)

)2
updates, where Rp = ‖p‖+R

1+‖p‖R .
Proof. To prove Theorem 4.1, we need the technical lemma

below.
Lemma 4.2: Let a ∈ Bn. Then

argmax
b∈Bn:‖b‖≤R

‖a⊕ b‖ = R
a

‖a‖
, (19)

argmax
b∈Bn:‖b‖≤R

‖b⊕ a‖ = R
a

‖a‖
. (20)

If we replace ⊕ with ordinary vector addition, we can basically
interpret the result as follows: The norm of ‖a + b‖ is
maximized when a has the same direction as b. This can be
easily proved by invoking the Cauchy-Schwartz inequality.
However, it is nontrivial to show the result under Möbius
addition. The proof of Lemma 4.2 is shown in Appendix A.

As already mentioned in Section IV-A, the key idea is to
work in the tangent space TpBn, in which case the Poincaré
perceptron becomes similar to the Euclidean perceptron. First,
we establish the boundedness of the tangent vectors vi =
logp(xi) in TpBn by invoking the definition of σp from
Section III:

‖vi‖ = ‖ logp(xi)‖ =
2

σp
tanh−1(‖(−p)⊕ xi‖)

(a)

≤ 2

σp
tanh−1 (Rp)⇔ tanh(

σp‖vi‖
2

) ≤ Rp, (21)

where (a) can be shown to hold true by involving Lemma 4.2
and performing some algebraic manipulations. Details are as
follows.

‖(−p)⊕ xi‖ ≤ ‖(−p)⊕
R

‖p‖
(−p))‖ By Lemma 4.2

=

∥∥∥∥∥∥ (1 + 2R‖p‖+R2)(−p) + (1− ‖p‖2)R(−p)
‖p‖

(R+ ‖p‖2)2

∥∥∥∥∥∥ By (1)

=
‖p‖+R2‖p‖+R‖p‖2 +R

(R+ ‖p‖2)2
=

(R+ ‖p‖)(1 +R‖p‖)
(R+ ‖p‖2)2

=
1 +R‖p‖
R+ ‖p‖2

= Rp.

Combining this with the fact that tanh−1(·) is non-decreasing
in [0, 1), we arrive at the inequality (a).

The remainder of the analysis is similar to that of the
standard Euclidean perceptron. We first lower bound ‖wk+1‖
as

‖wk+1‖
(b)

≥ 〈wk+1, w
?〉 = 〈wk, w?〉+ ηikyik 〈vik , w?〉

(c)

≥ 〈wk, w?〉+ sinh(ε) ≥ · · · ≥ k sinh(ε), (22)

where (b) follows from the Cauchy-Schwartz inequality and
(c) is a consequence of the margin assumption (16). Next, we
upper bound ‖wk+1‖ as

‖wk+1‖2 ≤ ‖wk‖2 +

(
2 tanh(

σp‖vik‖
2)

1− tanh(
σp‖vik‖

2)2

)2

(d)

≤ ‖wk‖2 +

(
2Rp

1−R2
p

)2

≤ · · · ≤ k
(

2Rp
1−R2

p

)2

, (23)

where (d) is a consequence of (21) and the fact that the
function f(x) = x

1−x2 is nondecreasing for x ∈ (0, 1). Note
that Rp < 1 since ‖p‖ < 1, R < 1 and

(1− ‖p‖)(1−R) = 1 + ‖p‖R− (‖p‖+R) > 0.

Combining (22) and (23) we have

k2 sinh2(ε) ≤ k
(

2Rp
1−R2

p

)2

⇔ k ≤
(

2Rp
(1−R2

p) sinh(ε)

)2

,

which completes the proof.

C. Discussion

It is worth pointing out that the authors of [11] also designed
and analyzed a different version of a hyperbolic perceptron in
the hyperboloid model Ld = {x ∈ Rd+1 : [x, x] = −1},
where [x, y] = xTHy,H = diag(−1, 1, 1, . . . , 1) denotes the
Minkowski inner product (A detailed description of the hyper-
boloid model can be found in Appendix 5). Their proposed
update rule is

uk = wk + ynxn if − yn[wk, xn] < 0, (24)

wk+1 = uk/min{1,
√

[uk, uk]}, (25)

where (25) is a “normalization” step. Although a convergence
result was claimed in [11], we demonstrate by simple coun-
terexamples that their hyperbolic perceptron do not converge,
mainly due to the choice of the update direction. This can be
easily seen by using the proposed update rule with w0 = e2
and x1 = e1 ∈ L2 with label y1 = 1, where ej are
standard basis vectors (the particular choice leads to an ill-
defined normalization). Other counterexamples w0 = 0 involve
normalization with complex numbers for arbitrary x1 ∈ L2

which is not acceptable.
It appears that the algorithm [11] does not converge for

most of the data sets tested. The results on synthetic data sets
are shown in Figure 4. For this test, data points satisfying a
ε−margin assumption are generated in a hyperboloid model
L2 and then further converted into a Poincaré ball model
for use with Algorithm 1. The two accuracy plots shown in
Figure 4 (red and green) represent the best achievable results
for their corresponding algorithms within the theoretical upper
bound on the number of updates of the weight vector. The
experiment was performed for 100 different values of ε.
From the generated results, one can easily conclude that our
algorithm always converge within the theoretical upper bound
provided in Theorem 4.1, while the other algorithm is unstable.

Fig. 4. A comparison between the classification accuracy of our Poincaré
perceptron Algorithm 1 and the algorithm in [11], for different values of
the margin ε. The classification accuracy is the average value over five
independent random trials. The stopping criterion is to either achieve a 100%
classification accuracy or reach the corresponding theoretical upper bound of
updates on the weight vector.

D. Learning Reference Points

So far we have tacitly assumes that the reference point p
is known in advance. While the reference point and normal
vector can be learned in a simple manner in Euclidean spaces,
this is not the case for the Poincaré ball model due to the
non-linearity of its logarithmic map and Möbius addition, as
illustrated in Figure 5.

Importantly, we have the following observation: A hyper-
plane correctly classifies all points if and only if it separates
their convex hulls (the definition of “convexity” in hyperbolic
spaces follows from replacing lines with geodesics [31]).
Hence we can easily generalize known convex hull algorithms

𝑤 ∈ 𝑇 𝔹

𝐻 ,

𝛾 ,

𝐻 ,

𝛾 ,

𝑤 ∈ 𝑇 𝔹

𝑃 →

Fig. 5. The effect of changing the reference point via parallel transport in
corresponding tangent spaces T0B2 and Tp′B2, for p′ ∈ B2. Note that the
images of data points, logp(xi), change in the tangent spaces with the choice
of the reference point.

𝑙𝑎𝑏𝑒𝑙: +1
𝑙𝑎𝑏𝑒𝑙: −1

𝑥

𝑥
p

Fig. 6. Learning a reference point p. Step 1 (left): Construct convex hull for
each cluster. Black lines are geodesics defining the surface of convex hull.
Step 2 (right): Find a minimum distance pair and choose p as their midpoint.

to the Poincaré ball model, including the Graham scan [32]
(Algorithm 2) and Quickhull [33] (see the Appendix A). Note
that in a two-dimensional space (i.e., B2) the described convex
hull algorithm has complexity O(N logN) and is hence very
efficient. Next, denote the set of points on the convex hull of
the class labeled by +1 (−1) as CH+ (CH−). A minimum
distance pair x+, x− can be found as

d(x+, x−) = min
x∈CH+,y∈CH−

d(x, y). (26)

Then, the hyperbolic midpoint of x+, x− corresponds to the
reference point p = γx+→x−(0.5) (see Figure 6). Our strategy
of learning p works well on real world data set, see Section VI.

It is important to point out that the computational cost of
learning a reference point scales with the dimension of the
ambient space, which is not desirable. To resolve this issue we
propose a different type of hyperbolic perceptron that operates
in the hyperboloid model [34] and discuss it in Appendix 5
for completeness.

E. The Poincaré SVM

We conclude our theoretical analysis by describing how
to formulate and solve SVMs in the Poincaré ball model
with performance guarantees. For simplicity, we only consider
binary classification. Techniques for dealing with multiple
classes are given in Section VI.

When data points from two different classes are linearly sep-
arable the goal of SVM is to find a “max-margin hyperplane”
that correctly classifies all data points and has the maximum
distance from the nearest point. This is equivalent to selecting

Algorithm 2: Poincaré Graham scan

Input: Data points X = {xi}Ni=1 ∈ B2.
1 Initialization: Set S = ∅.
2 Find p0 with minimum y coordinate. If multiple

options exist, choose the smallest x-coordinate one.
3 In the Tp0B2, sort X by the angle between logp0(xi)

and the x-axis (counterclockwise, ascending).
4 Append an additional p0 to the end of X .
5 for x ∈ X do
6 while |S| > 1 and

outer-product
(

logS[−2](S[−1]), logS[−2](x)
)
< 0

7 Pop S;
8 end
9 Push x to S;

10 end
Output: S.

two parallel hyperplanes with maximum distance that can
separate two classes. Following this approach and assuming
that the data points are normalized, we can choose these two
hyperplanes as 〈logp(xi), w〉 = 1 and 〈logp(xi), w〉 = −1
with w ∈ TpBn. Points lying on these two hyperplanes are
referred to as support vectors following the convention for
Euclidean SVM. They are critical for the process of selecting
w.

Let vi = logp(xi) ∈ TpBn be such that |〈vi, w〉| = 1.
Therefore, by Cauchy-Schwartz inequality the support vectors
satisfy

‖vi‖‖w‖ ≥ |〈vi, w〉| = 1⇒ ‖vi‖ ≥ 1/‖w‖. (27)

Combing the above result with (14) leads to a lower bound
on the distance of a data point xi to the hyperplane Hw,p

d(xi, Hw,p) ≥ sinh−1
(

2 tanh(σp/2‖w‖)
1− tanh2(σp/2‖w‖)

)
, (28)

where equality is achieved for vi = kw (k ∈ R). Thus we
can obtain a max-margin classifier in the Poincaré ball that
can correctly classify all data points by maximizing the lower
bound in (28). Through a sequence of simple reformulations,
the optimization problem of maximizing the lower bound (28)
can be cast as an easily-solvable convex problem described in
Theorem 4.2.

Theorem 4.2: Maximizing the margin (28) is equivalent to
solving the convex problem of either primal (P) or dual (D)
form:

(P) min
w

1

2
‖w‖2 s.t. yi〈vi, w〉 ≥ 1 ∀i ∈ [N]; (29)

(D) max
α≥0

N∑
i=1

αi −
1

2

∥∥∥∥∥
N∑
i=1

αiyivi

∥∥∥∥∥
2

s.t.
N∑
i=1

αiyi = 0, (30)

which is guaranteed to achieve a global optimum with linear
convergence rate by stochastic gradient descent.

The Poincaré SVM formulation from Theorem 4.2 is in-
herently different from the only other known hyperbolic SVM

approach [9]. There, the problem is nonconvex and thus does
not offer convergence guarantees to a global optimum when
using projected gradient descent. In contrast, since both (P)
and (D) are smooth and strongly convex, variants of stochastic
gradient descent is guaranteed to reach a global optimum
with a linear convergence rate. This makes the Poincaré SVM
numerically more stable and scalable to millions of data points.
Another advantage of our formulation is that a solution to (D)
directly produces the support vectors, i.e., the data points with
corresponding αi 6= 0 that are critical for the classification
problem.

When two data classes are not linearly separable (i.e., the
problem is soft- rather than hard-margin), the goal of the
SVM method is to maximize the margin while controlling
the number of misclassified data points. Below we define
a soft-margin Poincaré SVM that trades-off the margin and
classification accuracy.

Theorem 4.3: Solving soft-margin Poincaré SVM is equiv-
alent to solving the convex problem of either primal (P) or
dual (D) form:

(P) min
w

1

2
‖w‖2 + C

N∑
i=1

max (0, 1− yi〈vi, w〉) ; (31)

(D) max
0≤α≤C

N∑
i=1

αi −
1

2

∥∥∥∥∥
N∑
i=1

αiyivi

∥∥∥∥∥
2

s.t.
n∑
i=1

αiyi = 0,

(32)

which is guaranteed to achieve a global optimum with sublin-
ear convergence rate by stochastic gradient descent.

The algorithmic procedure behind the soft-margin Poincaré
SVM is depicted in Algorithm 3.

Algorithm 3: Soft-margin Poincaré SVM

Input: Data points {xi}Ni=1, labels {yi}Ni=1, reference
point p, tolerance ε, maximum iteration number
T .

1 Initialization: w0 ← 0, f(w0) = NC.
2 for t = 1, 2, . . . do
3 f(wt) = 1

2‖wt‖
2 +C

∑N
i=1 max (0, 1− yi〈vi, wt〉).

4 if f(wt) - f(wt−1) ≤ ε or t > T then
5 break;
6 end
7 Sample (xt, yt) from data set randomly and

compute vt = logp(xt).
8 if 1− yt〈vt, wt−1〉 < 0 then
9 ∇w = wt−1.

10 else
11 ∇w = wt−1 −NCytvt.
12 end
13 wt = wt−1 − 1

t+1000∇w.
14 end

V. PERCEPTRON VARIANTS IN HYPERBOLIC SPACES

A. The Poincaré Second-Order Perceptron

The reason behind our interest in the second-order percep-
tron is that it leads to fewer mistakes during training compared
to the classical perceptron. It has been shown in [18] that
the error bounds have corresponding statistical risk bounds
in online learning settings, which strongly motivates the use
of second-order perceptrons for online classification. The
performance improvement of the modified perceptron comes
from accounting for second-order data information, as the
standard perceptron is essentially a gradient descent (first-
order) method.

Equipped with the key idea of our unified analysis, we
compute the scaled tangent vectors zi = ηivi = ηi logp(xi).
Following the same idea, we can extend the second order
perceptron to Poincaré ball model. Our Poincaré second-order
perceptron is described in Algorithm 4 which has the following
theoretical guarantee.

Algorithm 4: Poincaré second order perceptron

Input: Data points {xi}Ni=1, labels {yi}Ni=1, reference
point p, parameter a > 0.

1 Initialization: ξ0 ← 0, X0 = ∅, k = 1.
2 for t = 1, 2, . . . do
3 Get (xt, yt), compute zt, set St ← [Xk−1 zt].
4 Predict ŷt = sign(〈wt, zt〉), where

wt = (aI + StS
T
t)−1ξk−1.

5 if ŷi 6= yi then
6 ξk = ξk−1 + ytzt, Xk ← St, k ← k + 1.
7 end
8 end

Theorem 5.1: For all sequences ((x1, y1), (x2, y2), . . .) with
assumption 4.1, the total number of mistakes k for Poincaré
second order perceptron satisfies

k ≤ 1

sinh(ε)

√√√√√(a+ λw?)

∑
j∈[n]

log(1 +
λj
a

)

, (33)

where λw = wTXkX
T
k w and λj are the eigenvalues of

XkX
T
k .

The bound in Theorem 5.1 has a form that is almost
identical to that of its Euclidean counterpart [16]. However,
it is important to observe that the geometry of the Poincaré
ball model plays a important role when evaluating the eigen-
values λj and λw. Another important observation is that our
tangent-space analysis is not restricted to first-order analysis
of perceptrons.

B. The Poincaré Strategic Perceptron

Strategic classification deals with the problem of learning a
classifier when the learner relies on data that is provided by
strategic agents in an online manner, meaning that the observed
data can be manipulated in a controlled manner, based on

the utilities of agents. This is a challenging yet important
problem in practice because the learner can only observe
potentially modified data; however, it has been shown in [17]
that standard perceptron algorithms in this setting can fail to
converge and may make an unbounded number of mistakes in
Euclidean spaces, even when a perfect classifier exists. The
authors of [17] thus proposes a modified version of Euclidean
space perceptrons to deal with this problem. Following the
same idea, we can extend this strategic perceptron to Poincaré
ball model and establish performance guarantees.

Before introducing our algorithm, we introduce some ad-
ditional notation and discuss relevant modeling assumptions.
We again consider a binary classification problem, but this
time in a strategic setting. In this case, true (unmanipulated)
features {xt} from different agents arrive in order, with the
corresponding binary labels {yt} in {+1,−1}. The assump-
tion is that all agents want to be classified as positive regardless
of their true labels; to achieve this goal, they can choose to
manipulate their data to change the classifier, and the decision
if to manipulate or not is made based on the gain and the
cost of manipulation. The classifier can only receive observed
data points {zt}, which are either manipulated or not. The first
assumption in this problem is that all agents are assumed to be
utility maximizers, where utility is defined as the gain minus
cost. More precisely, we assume for simplicity that all agents
have a gain equal to 1 when being classified as positive, and
0 otherwise. To be more specific, an agent with true data xt
will modify their data to zt = arg maxz(val(z)− cost(xt, z)),
where val(zt) = 1 if zt is classified as “positive” by the current
classifier and val(zt) = 0 otherwise; here, cost(xt, zt) refers to
the cost of changing (manipulating) xt to zt. Second, the cost
we consider is proportional to the magnitude of movement
between ut = logp(xt) and vt = logp(zt) in the Poincaré
ball model; i.e., cost(xt, zt) = s

√
gp(ut − vt, ut − vt) =

sσp‖ut − vt‖, where s is the cost per unit of movement and
α = 1/s is the largest amount of movement that a rational
agent would take. For simplicity, we also assume that p is
known in advance, otherwise we can estimate p from the data.

One simple example illustrating why Algorithm 1 can fail
to converge in a strategic classification setting is as follows.

Consider A = (− tanh(1), 0), B = (0,− tanh(1)), C =(
− tanh(

√
5/2)√

5
,− 2 tanh(

√
5/2)√

5

)
from B2

1 and let p = 0, where
the points A,C are classified as negative, and B as positive and
α = 1. Suppose A is the first data point to arrive, following
B and C. Upon observing A, w2 is set to

(
2 tanh(1)

1−tanh2(1)
, 0
)

based on (18). Observing B will not change the classifier
since it is correctly classified as positive. The next input,
C, can be manipulated from

(
− tanh(

√
5/2)√

5
,− 2 tanh(

√
5/2)√

5

)
to

(0,− tanh(1)) to confuse the current classifier to misclassify
it as positive. In this case the manipulation cost is 1 which
is within the budget. After the learner receives the true label
of C, it performs the update w3 =

(
2 tanh(1)

1−tanh2(1)
, 2 tanh(1)
1−tanh2(1)

)
.

However, when B is reexamined next, it will be classified
as negative and no manipulation will be possible because the

minimum cost for B to be classified as positive is
√

2. Hence,
the learner will perform the update w4 =

(
2 tanh(1)

1−tanh2(1)
, 0
)

=

w2. This causes an infinite loop of updates and the upper
bound for the updates on the weight vector in Theorem 4.1
does not hold. Although in this case a perfect classifier with
w =

(
2 tanh(1)

1−tanh2(1)
, tanh(1)
1−tanh2(1)

)
exists, Algorithm 1 cannot

successfully identify it.
For this reason, we propose the following Poincaré strate-

gic perceptron described in Algorithm 5, based on the idea
described in [17].

Algorithm 5: Poincaré Strategic Perceptron

Input: Observed data points {zi}Ni=1, labels {yi}Ni=1,
reference point p, manipulation budget α.

1 Initialization: w1 = 0, k = 1.
2 for t = 1, 2, . . . do
3 Get (zt, yt); compute vt = logp(zt) and

ηt =
2 tanh

(
σp‖vt‖

2

)
(
1−tanh

(
σp‖vt‖

2

)2
)
‖vt‖

.

4 if wk = 0 then
5 Predict ŷt = +1.
6 if ŷt 6= yt then
7 wk+1 = wk − ηtvt, k ← k + 1.
8 end
9 end

10 else
11 Predict ŷt = sgn

(
〈wk,vt〉
‖wk‖ −

α
σp

)
.

12 if ŷt 6= yt then
13 ṽt ={

vt − αwk
σp‖wk‖ , if yt = −1, 〈wk,vt〉‖wk‖ = α

σp

vt, otherwise.
14 wk+1 = wk + ηtytṽt, k ← k + 1.
15 end
16 end
17 end

Theorem 5.2: If Assumption 4.1 holds for unmanipu-
lated data points {xi}, then Algorithm 5 makes at most(

2Rpσp+α(1−R2
p)

σp(1−R2
p) sinh(ε)

)2
mistakes in the strategic setting for a given

cost parameter α. Here, Rp = ‖p‖+R
1+‖p‖R .

The proof of Theorem 5.2 is delegated to Appendix 7, but
two observations are in place to explain the intuition behind
Algorithm 5:

• The updated decision hyperplane at each step will take
the form 〈wk,vt〉

‖wk‖ −
α
σp

= 0 and vt is a manipulated data

point only if 〈wk,vt〉‖wk‖ = α
σp

. This is due to the fact that
all agents are utility maximizers, so they will only move
in the direction of wk if needed. More specifically,

vt =

{
ut +

(
α
σp
− 〈wk,ut〉‖wk‖

)
wk
‖wk‖ , if 0 ≤ 〈wk,ut〉‖wk‖ ≤

α
σp

ut, otherwise.

𝑤

𝑝

𝑝𝑝

𝐻 ,
𝐻 ,𝐻 ,

||𝑝 || =
𝑖𝑅

5
𝑖 ∈ {1,2,3}

𝐻 ,

𝑝

𝑤

𝑅 = 0.95

𝜀 = 1

𝜀 = 0.1

Fig. 7. (left) Decision boundaries for different choices of p. (right) Geometry
of different choices of margin ε.

• No observed data point will fall in the region 0 <
〈wk,vt〉
‖wk‖ < α

σp
. This can be shown by contradiction. A

vt lying in this region must be either manipulated or not.
If vt is manipulated, this implies that the agent is not
rational as the point is still classified as negative after
manipulation; if vt is not manipulated, this also implies
that the agent is not rational as the cost of modifying
the data to be classified as positive is less than α, which
is within the budget. Since vt can either be manipulated
or not, this shows that no observed data point satisfies
0 < 〈wk,vt〉

‖wk‖ < α
σp

.
For the cases where the manipulation budget α is unknown,

one can follow the same estimation procedure presented
in [17] which is independent of the curvature of the hyperbolic
space.

VI. EXPERIMENTS

To put the performance of our proposed algorithms in the
context of existing works on hyperbolic classification, we per-
form extensive numerical experiments on both synthetic and
real-world data sets. In particular, we compare our Poincaré
perceptron, second-order perceptron and SVM method with
the hyperboloid SVM of [9] and the Euclidean SVM. Detailed
descriptions of the experimental settings are provided in the
Appendix.

A. Synthetic Data Sets

In the first set of experiments, we generate N points
uniformly at random on the Poincaré disk and perform binary
classification task. To satisfy our Assumption 4.1, we restrict
the points to have norm at most R = 0.95 (boundedness con-
dition). For a decision boundary Hw,p, we remove all points
within margin ε (margin assumption). Note that the decision
boundary looks more “curved” when ‖p‖ is larger, which
makes it more different from the Euclidean case (Figure 7).
When ‖p‖ = 0 then the optimal decision boundary is also
linear in Euclidean sense. On the other hand, if we choose ‖p‖
too large then it is likely that all points are assigned with the
same label. Hence, we consider the case ‖p‖ = R

5 ,
2R
5 and 3R

5
and let the direction of w to be generated uniformly at random.
Results for case ‖p‖ = 2R

5 are demonstrated in Figure 2 while
the others are in Figure 8. All results are averaged over 20
independent runs.

We first vary N from 103 to 106 and fix (d, ε) = (2, 0.01).
The accuracy and time complexity are shown in Figure 8 (e)-
(h). One can clearly observe that the Euclidean SVM fails
to achieve a 100% accuracy as data points are not linearly
separable in the Euclidean, but only in hyperbolic sense. This
phenomenon becomes even more obvious when ‖p‖ increases
due to the geometry of Poincaré disk (Figure 7). On the other
hand, the hyperboloid SVM is not scalable to accommodate
such a large number of points. As an example, it takes 6 hours
(9 hours for the case ‖p‖ = 2R

5 , Figure 2) to process N = 106

points; in comparison, our Poincaré SVM only takes 1 minute.
Hence, only the Poincaré SVM is highly scalable and offers
the highest accuracy achievable.

Next we vary the margin ε from 1 to 0.001 and fix (d,N) =
(2, 105). The accuracy and time complexity are shown in
Figure 8 (i)-(l). As the margin reduces, the accuracy of the
Euclidean SVM deteriorates. This is again due to the geometry
of Poincaré disk (Figure 7) and the fact that the classifier
needs to be tailor-made for hyperbolic spaces. Interestingly,
the hyperboloid SVM performs poorly for ‖p‖ = 3R/5 and
a margin value ε = 1, as its accuracy is significantly below
100%. This may be attributed to the fact that the cluster sizes
are highly unbalanced, which causes numerical issue with
the underlying optimization process. Once again, the Poincaré
SVM outperforms all other methods in terms of accuracy and
time complexity.

Finally, we examined the influence of the data point dimen-
sion on the performance of the classifiers. To this end, we
varied the dimension d from 2 to 1, 000 and fixed (N, ε) =
(105, 0.01). The accuracy and time complexity results are
shown in Figure 8 (a)-(d). Surprisingly, the hyperboloid SVM
fails to learn well when d is large and close to 1, 000. This
again reaffirms the importance of the convex formulation of
our Poincaré SVM, which is guaranteed to converge to a global
optimum independent of the choice d,N and ε. We also find
that Euclidean SVM improves its performance as d increases,
albeit at the price of high execution time.

We now we turn our attention to the evaluation of our
perceptron algorithms which are online algorithms in na-
ture. Results are summarized in Table II. There, one can
observe that the Poincaré second-order perceptron requires a
significantly smaller number of updates compared to Poincaré
perceptron, especially when the margin is small. This parallels
the results observed in Euclidean spaces [16]. Furthermore, we
validate our Theorem 4.1 which provide an upper bound on
the number of updates for the worst case.

B. Real-World Data Sets

For real-world data sets, we choose to work with more than
two collections of points. To enable K-class classification for
K ≥ 2, we use K binary classifiers that are independently
trained on the same training set to separate each single class
from the remaining classes. For each classifier, we transform
the resulting prediction scores into probabilities via the Platt
scaling technique [35]. The predicted labels are then decided

101 102 103

Dimension d

40

60

80

100
A

cc
ur

ac
y

(%
)

Poincaré SVM
Hyperboloid SVM
Euclidean SVM

(a) Accuracy vs d, ‖p‖ = R
5

101 102 103

Dimension d

40

60

80

100

A
cc

ur
ac

y
(%

)

(b) Accuracy vs d, ‖p‖ = 3R
5

101 102 103

Dimension d

0

1000

2000

3000

4000

T
im

e
co

m
pl

ex
ity

 (
se

c)

(c) Time vs d, ‖p‖ = R
5

101 102 103

Dimension d

0

1000

2000

3000

4000

T
im

e
co

m
pl

ex
ity

 (
se

c)

(d) Time vs d, ‖p‖ = 3R
5

103 104 105 106

N

97.5

98.0

98.5

99.0

99.5

100.0

A
cc

ur
ac

y
(%

)

(e) Accuracy vs N , ‖p‖ = R
5

103 104 105 106

N

90

92

94

96

98

100
A

cc
ur

ac
y

(%
)

(f) Accuracy vs N , ‖p‖ = 3R
5

103 104 105 106

N

0

5000

10000

15000

T
im

e
co

m
pl

ex
ity

 (
se

c)

(g) Time vs N , ‖p‖ = R
5

103 104 105 106

N

0

10000

20000

T
im

e
co

m
pl

ex
ity

 (
se

c)

(h) Time vs N , ‖p‖ = 3R
5

10 3 10 2 10 1 100

Margin

98

99

100

A
cc

ur
ac

y
(%

)

(i) Accuracy vs Margin ε, ‖p‖ = R
5

10 3 10 2 10 1 100

Margin

90

92

94

96

98

100

A
cc

ur
ac

y
(%

)

(j) Accuracy vs Margin ε, ‖p‖ = 3R
5

10 3 10 2 10 1 100

Margin

0

500

1000

1500
T

im
e

co
m

pl
ex

ity
 (

se
c)

(k) Time vs Margin ε, ‖p‖ = R
5

10 3 10 2 10 1 100

Margin

0

500

1000

1500

2000

T
im

e
co

m
pl

ex
ity

 (
se

c)

(l) Time vs Margin ε, ‖p‖ = 3R
5

Fig. 8. Experiments on synthetic data sets and ‖p‖ ∈ {R
5
, 3R

5
}. The upper and lower boundaries of the shaded region represent the first and third quantile,

respectively. The line itself corresponds to the medium (second quantile) and the marker × indicates the mean. The first two columns plot the accuracy of
the SVM methods while the last two columns plot the corresponding time complexity. For the first row we vary the dimension d from 2 to 1, 000. For the
second row we vary the number of points N from 103 to 106. In the third row we vary the margin ε from 1 to 0.001. The default setting for (d,N, ε) is
(2, 105, 0.01).

TABLE II
AVERAGED NUMBER OF UPDATES FOR THE POINCARÉ SECOND-ORDER

PERCEPTRON (S-PERCEPTRON) AND POINCARÉ PERCEPTRON FOR A
VARYING MARGIN ε AND FIXED (N, d) = (104, 10). BOLD NUMBERS

INDICATE THE BEST RESULTS, WITH THE MAXIMUM NUMBER OF UPDATES
OVER 20 RUNS SHOWN IN PARENTHESIS. ALSO SHOWN IS A THEORETICAL

UPPER BOUND ON THE NUMBER OF UPDATES FOR THE POINCARÉ
PERCEPTRON BASED ON THEOREM 4.1.

Margin ε 1 0.1 0.01 0.001

‖p‖ = R
5

S-perceptron 26 82 342 818
(34) (124) (548) (1,505)

perceptron 51 1,495 1.96× 104 1.34× 105

(65) (2,495) (3.38× 104) (3.56× 105)
Theorem 4.1 594 81,749 8.2× 106 8.2× 108

‖p‖ = 3R
5

S-perceptron 29 101 340 545
(41) (159) (748) (986)

perceptron 82 1,158 1.68× 104 1.46× 105

(138) (2,240) (6.65× 104) (7.68× 105)
Theorem 4.1 3,670 5.05× 105 5.07× 107 5.07× 109

by a maximum a posteriori criteria based on the probability
of each class.

The data sets of interest include Olsson’s single-cell expres-
sion profiles, containing single-cell (sc) RNA-seq expression
data from 8 classes (cell types) [19], CIFAR10, containing
images from common objects falling into 10 classes [20],
Fashion-MNIST, containing Zalando’s article images with 10
classes [21], and mini-ImageNet, containing subsamples of
images from original ImageNet data set and containing 20
classes [22]. Following the procedure described in [36], [37],
we embed single-cell, CIFAR10 and Fashion-MNIST data
sets into a 2-dimensional Poincaré disk, and mini-ImageNet
into a 512-dimensional Poincaré ball, all with curvature −1
(Note that our methods can be easily adapted to work with
other curvature values as well), see Figure 1. Other details
about the data sets including the number of samples and
splitting strategy of training and testing set is described in
the Appendix. Since the real-world embedded data sets are
not linearly separable we only report classification results for
the Poincaré SVM method.

We compare the performance of the Poincaré SVM, Hyper-
bolid SVM and Euclidean SVM for soft-margin classification

TABLE III
PERFORMANCE OF THE SVM ALGORITHMS GENERATED BASED ON 5

INDEPENDENT TRIALS.

Algorithm Accuracy (%) Time (sec)

Olsson’s scRNA-seq
Euclidean SVM 71.59± 0.00 0.06± 0.00

Hyperboloid SVM 71.97± 0.54 4.49± 0.05
Poincaré SVM 89.77± 0.00 0.16± 0.00

CIFAR10
Euclidean SVM 47.66± 0.00 26.03± 5.29

Hyperboloid SVM 89.87± 0.01 707.69± 15.33
Poincaré SVM 91.84± 0.00 45.55± 0.43

Fashion-MNIST
Euclidean SVM 39.91± 0.01 32.70± 11.11

Hyperboloid SVM 76.78± 0.06 898.82± 11.35
Poincaré SVM 87.82± 0.00 67.28± 8.63

mini-ImageNet
Euclidean SVM 63.33± 0.00 7.94± 0.09

Hyperboloid SVM 31.75± 1.91 618.23± 10.92
Poincaré SVM 63.59± 0.00 18.78± 0.42

of the above described data points. For the Poincaré SVM
the reference point p(i) for each binary classifier is estimated
via our technique introduced in Section IV-D. The resulting
classification accuracy and time complexity are shown in
Table III. From the results one can easily see that our Poincaré
SVM consistently achieves the best classification accuracy
over all data sets while being roughly 10x faster than the
hyperboloid SVM. It is also worth pointing out that for most
data sets embedded into the Poincaré ball model, the Euclidean
SVM method does not perform well as it does not exploit
the geometry of data; however, the good performance of the
Euclidean SVM algorithm on mini-ImageNet can be attributed
to the implicit Euclidean metric used in the embedding frame-
work of [37]. Note that since the Poincaré SVM and Euclidean
SVM are guaranteed to achieve a global optimum, the standard
deviation of classification accuracy is zero.

VII. CONCLUSION

We generalized classification algorithms such as the second-
order& strategic perceptron and the SVM method to Poincaré
balls. Our Poincaré classification algorithms comes with the-
oretical guarantees that ensure convergence to a global opti-
mum. Our Poincaré classification algorithms were validated
experimentally on both synthetic and real-world datasets.
The developed methodology appears to be well-suited for
extensions to other machine learning problems in hyperbolic
spaces, an example of which is classification in mixed constant
curvature spaces [34].

ACKNOWLEDGMENT

The work was supported by the NSF grant 1956384.

REFERENCES

[1] E. Chien, C. Pan, P. Tabaghi, and O. Milenkovic, “Highly scalable
and provably accurate classification in poincaré balls,” in 2021 IEEE
International Conference on Data Mining (ICDM). IEEE, 2021, pp.
61–70.

[2] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Bo-
guná, “Hyperbolic geometry of complex networks,” Physical Review
E, vol. 82, no. 3, 2010.

[3] R. Sarkar, “Low distortion delaunay embedding of trees in hyperbolic
plane,” in International Symposium on Graph Drawing. Springer, 2011,
pp. 355–366.

[4] F. Sala, C. De Sa, A. Gu, and C. Re, “Representation tradeoffs
for hyperbolic embeddings,” in International Conference on Machine
Learning, vol. 80. PMLR, 2018, pp. 4460–4469.

[5] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical
representations,” in Advances in Neural Information Processing Systems,
2017, pp. 6338–6347.

[6] F. Papadopoulos, R. Aldecoa, and D. Krioukov, “Network geometry
inference using common neighbors,” Physical Review E, vol. 92, no. 2,
2015.

[7] A. Tifrea, G. Becigneul, and O.-E. Ganea, “Poincaré glove:
hyperbolic word embeddings,” in International Conference on Learning
Representations, 2019. [Online]. Available: https://openreview.net/
forum?id=Ske5r3AqK7

[8] N. Linial, E. London, and Y. Rabinovich, “The geometry of graphs and
some of its algorithmic applications,” Combinatorica, vol. 15, no. 2, pp.
215–245, 1995.

[9] H. Cho, B. DeMeo, J. Peng, and B. Berger, “Large-margin classifi-
cation in hyperbolic space,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2019, pp. 1832–1840.

[10] N. Monath, M. Zaheer, D. Silva, A. McCallum, and A. Ahmed,
“Gradient-based hierarchical clustering using continuous representations
of trees in hyperbolic space,” in ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2019, pp. 714–722.

[11] M. Weber, M. Zaheer, A. S. Rawat, A. Menon, and S. Kumar, “Robust
large-margin learning in hyperbolic space,” in Advances in Neural
Information Processing Systems, 2020.

[12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[13] O. Ganea, G. Bécigneul, and T. Hofmann, “Hyperbolic neural networks,”
in Advances in Neural Information Processing Systems, 2018, pp. 5345–
5355.

[14] R. Shimizu, Y. Mukuta, and T. Harada, “Hyperbolic neural networks++,”
in International Conference on Learning Representations, 2021.
[Online]. Available: https://openreview.net/forum?id=Ec85b0tUwbA

[15] K. Lee, S. Maji, A. Ravichandran, and S. Soatto, “Meta-learning with
differentiable convex optimization,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
10 657–10 665.

[16] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “A second-order percep-
tron algorithm,” SIAM Journal on Computing, vol. 34, no. 3, pp. 640–
668, 2005.

[17] S. Ahmadi, H. Beyhaghi, A. Blum, and K. Naggita, “The strategic
perceptron,” in Proceedings of the 22nd ACM Conference on Economics
and Computation, 2021, pp. 6–25.

[18] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “On the generalization
ability of online learning algorithms,” IEEE Transactions on Information
Theory, vol. 50, no. 9, pp. 2050–2057, 2004.

[19] A. Olsson, M. Venkatasubramanian, V. K. Chaudhri, B. J. Aronow,
N. Salomonis, H. Singh, and H. L. Grimes, “Single-cell analysis of
mixed-lineage states leading to a binary cell fate choice,” Nature, vol.
537, no. 7622, pp. 698–702, 2016.

[20] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[21] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[22] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in International Conference on Learning Representations,
2017. [Online]. Available: https://openreview.net/forum?id=rJY0-Kcll

[23] M. Brückner and T. Scheffer, “Stackelberg games for adversarial predic-
tion problems,” in Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2011, pp. 547–
555.

[24] M. Hardt, N. Megiddo, C. Papadimitriou, and M. Wootters, “Strategic
classification,” in Proceedings of the 2016 ACM conference on innova-
tions in theoretical computer science, 2016, pp. 111–122.

[25] Q. Liu, M. Nickel, and D. Kiela, “Hyperbolic graph neural networks,”
in Advances in Neural Information Processing Systems, 2019, pp. 8230–
8241.

[26] Y. Nagano, S. Yamaguchi, Y. Fujita, and M. Koyama, “A wrapped
normal distribution on hyperbolic space for gradient-based learning,”
in International Conference on Machine Learning. PMLR, 2019, pp.
4693–4702.

https://openreview.net/forum?id=Ske5r3AqK7
https://openreview.net/forum?id=Ske5r3AqK7
https://openreview.net/forum?id=Ec85b0tUwbA
https://openreview.net/forum?id=rJY0-Kcll

[27] E. Mathieu, C. L. Lan, C. J. Maddison, R. Tomioka, and Y. W. Teh,
“Continuous hierarchical representations with poincaré variational auto-
encoders,” in Advances in Neural Information Processing Systems, 2019.

[28] O. Skopek, O.-E. Ganea, and G. Bécigneul, “Mixed-curvature
variational autoencoders,” in International Conference on Learning
Representations, 2020. [Online]. Available: https://openreview.net/
forum?id=S1g6xeSKDS

[29] A. A. Ungar, Analytic hyperbolic geometry and Albert Einstein’s special
theory of relativity. World Scientific, 2008.

[30] J. Vermeer, “A geometric interpretation of ungar’s addition and of
gyration in the hyperbolic plane,” Topology and its Applications, vol.
152, no. 3, pp. 226–242, 2005.

[31] J. G. Ratcliffe, S. Axler, and K. Ribet, Foundations of hyperbolic
manifolds. Springer, 2006, vol. 149.

[32] R. L. Graham, “An efficient algorithm for determining the convex hull
of a finite planar set,” Info. Pro. Lett., vol. 1, pp. 132–133, 1972.

[33] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algo-
rithm for convex hulls,” ACM Transactions on Mathematical Software
(TOMS), vol. 22, no. 4, pp. 469–483, 1996.

[34] P. Tabaghi, C. Pan, E. Chien, J. Peng, and O. Milenković, “Linear
classifiers in product space forms,” arXiv preprint arXiv:2102.10204,
2021.

[35] J. Platt et al., “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances in Large
Margin Classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[36] A. Klimovskaia, D. Lopez-Paz, L. Bottou, and M. Nickel, “Poincaré
maps for analyzing complex hierarchies in single-cell data,” Nature
communications, vol. 11, no. 1, pp. 1–9, 2020.

[37] V. Khrulkov, L. Mirvakhabova, E. Ustinova, I. Oseledets, and V. Lempit-
sky, “Hyperbolic image embeddings,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
6418–6428.

[38] J. W. Cannon, W. J. Floyd, R. Kenyon, W. R. Parry et al., “Hyperbolic
geometry,” Flavors of geometry, vol. 31, no. 59-115, p. 2, 1997.

[39] J. Sherman and W. J. Morrison, “Adjustment of an inverse matrix
corresponding to a change in one element of a given matrix,” The Annals
of Mathematical Statistics, vol. 21, no. 1, pp. 124–127, 1950.

https://openreview.net/forum?id=S1g6xeSKDS
https://openreview.net/forum?id=S1g6xeSKDS

APPENDIX

PROOF OF LEMMA 4.2
By the definition of Möbius addition, we have

a⊕ b =
1 + 2aT b+ ‖b‖2

1 + 2aT b+ ‖a‖2‖b‖2
a+

1− ‖a‖2

1 + 2aT b+ ‖a‖2‖b‖2
b.

Thus,

‖a⊕ b‖2 =
‖(1 + 2aT b+ ‖b‖2)a+ (1− ‖a‖2)b‖2(

1 + 2aT b+ ‖a‖2‖b‖2
)2

=
‖a+ b‖2

(
1 + ‖b‖2‖a‖2 + 2aT b

)(
1 + 2aT b+ ‖a‖2‖b‖2

)2 =
‖a+ b‖2

1 + 2aT b+ ‖a‖2‖b‖2
. (34)

Next, use ‖b‖ = r and aT b = r‖a‖ cos(θ) in the above expression:

‖a⊕ b‖2 =
‖a‖2 + 2r‖a‖ cos(θ) + r2

1 + 2r‖x‖ cos(θ) + ‖a‖2r2

= 1− (1− r2)(1− ‖a‖2)

1 + 2r‖x‖ cos(θ) + ‖a‖2r2
. (35)

The function in (35) attains its maximum at θ = 0 and r = R. We also observe that (34) is symmetric in a, b. Thus, the same
argument holds for ‖b⊕ a‖.

CONVEX HULL ALGORITHMS IN POINCARÉ BALL MODEL

We introduce next a generalization of the Graham scan and Quickhull algorithms for the Poincaré ball model. In a nutshell,
we replace lines with geodesics and vectors

−−→
AB with tangent vectors logA(B) or equivalently (−A) ⊕ B. The pseudo code

for the Poincaré version of the Graham scan is listed in Algorithm 2, while Quickhull is listed in Algorithm 6 (both for
the two-dimensional case). The Graham scan has worst-case time complexity O(N logN), while Quickhull has complexity
O(N logN) in expectation and O(N2) in the worst-case. The Graham scan only works for two-dimensional points while
Quickhull can be generalized for higher dimensions [33].

Algorithm 6: Poincaré Quickhull

Input: Data points X = {xi}Ni=1 ∈ B2.
1 Initialization: Set S = ∅.
2 Find the left- and right-most points A,B. Add them to S.
// γA→B splits the remaining points into two groups, S1 and S2.

3 p0 = γA→B(1
2), v = logp0(B), w = v⊥;

4 for x ∈ X do
5 if

〈
w, logp0(x)

〉
≥ 0 then

6 Add x to S1;
7 end
8 if

〈
w, logp0(x)

〉
≤ 0 then

9 Add x to S2;
10 end
11 end
12 SL = FindHull(S1,A,B), SR = FindHull(S2,B,A);

Output: Union(SL,SR).

HYPERBOLOID PERCEPTRON

The hyperboloid model and the definition of hyperplanes. The hyperboloid model Lnc is another model for representing
points in a n-dimensional hyperbolic space with curvature −c (c > 0). Specifically, it is a Riemannian manifold (Lnc , gL) for
which

Lnc =

{
x ∈ Rn+1 : [x, x] = −1

c
, x0 > 0

}
,

gL(u, v) = [u, v] = u>Hv, u, v ∈ TpLnc , H =

(
−1 0>

0 Id

)
.

Algorithm 7: FindHull
Input: Set of points Sk, points P and Q.

1 if |Sk| is 0 then
Output: ∅

2 end
3 Find the furthest point F from γP→Q.
4 Partition Sk into three set S0, S1, S2: S0 contains points in ∆PFQ; S1 contains points outside of γP→F ; and S2

contains points outside of γF→Q.
5 SL = FindHull(S1,P,F), SR = FindHull(S2,F,Q)

Output: Union(F,SL,SR);

Throughout the remainder of this section, we restrict our attention to c = 1; all results can be easily generalized to arbitrary
values of c.

We make use of the following bijection between the Poincaré ball model and hyperboloid model, given by

(x0, . . . , xn) ∈ Ln ⇔
(

x1
1 + x0

, . . . ,
xn

1 + x0

)
∈ Bn. (36)

Additional properties of the hyperboloid model can be found in [38].
The recent work [34] introduced the notion of a hyperboloid hyperplane of the form

Hw = {x ∈ Ln : asinh ([w, x]) = 0}
= {x ∈ Ln : [w, x] = 0} (37)

where w ∈ Rn+1 and [w,w] = 1. The second equation is a consequence of the fact that asinh(·) is an increasing function and
will not change the sign of the argument. Thus the classification result based on the hyperplane is given by sgn ([w, x]) for
some weight vector w, as shown in Figure 9.

The hyperboloid perceptron. The definition of a linear classifier in the hyperboloid model is inherently different from that
of a classifier in the Poincaré ball model, as the former is independent of the choice of reference point p. Using the decision
hyperplane defined in (37), a hyperboloid perceptron [34] described in Algorithm 8 can be shown to have easily established
performance guarantee.

Algorithm 8: Hyperboloid Perceptron

Input: Data points {xi}Ni=1 ∈ Ln, labels {yi}Ni=1 ∈ {−1,+1}.
1 Initialization: w1 = 0, k = 1.
2 for t = 1, 2, . . . do
3 Predict ŷt = sgn([wk, xt]).
4 if ŷt 6= yt then
5 wk+1 = wk + ytHxt, k = k + 1.
6 end
7 end

Theorem A.1: Let (xi, yi)
N
i=1 be a labeled data set from a bounded subset of Ln such that ‖xi‖ ≤ R ∀i ∈ [N]. Assume that

there exists an optimal linear classifier with weight vector w? such that yiasinh([w?, xi]) ≥ ε (ε-margin). Then, the hyperboloid
perceptron in Algorithm 8 will correctly classify all points with at most O

(
1

sinh2(ε)

)
updates.

Proof. According to the assumption, the optimal normal vector w? satisfies ytasinh([w?, xt]) ≥ ε and [w?, w?] = 1. So we
have

〈w?, wk+1〉 =
〈
w?, wk

〉
+ yt [w?, xt]

≥
〈
w?, wk

〉
+ sinh(ε)

≥ . . . ≥ k sinh(ε), (38)

where the first inequality holds due to the ε-margin assumption and because yt ∈ {−1,+1}. We can also upper bound ‖wk+1‖
as

‖wk+1‖2 = ‖wk + ytHxt‖2

= ‖wk‖2 + ‖xt‖2 + 2yt [wk, xt]

≤ ‖wk‖2 +R2

≤ . . . ≤ kR2, (39)

where the first inequality follows from yt [wk, xt] ≤ 0, corresponding to the case when the classifier makes a mistake.
Combining (38) and (39), we have

k sinh(ε) ≤ 〈w?, wk+1〉 ≤ ‖w?‖‖wk+1‖ ≤ ‖w?‖
√
kR

⇔ k ≤
(
R‖w?‖
sinh(ε)

)2

, (40)

which completes the proof. In practice we can always perform data processing to control the norm of w?. Also, for small
classification margins ε, we have sinh(ε) ∼ ε. As a result, for data points that are very close to the decision boundary (ε is
small), Theorem A.1 shows that the hyperbolid perceptron has roughly the same convergence rate as its Euclidean counterpart(
R
ε

)2
.

To experimentally confirm the convergence of Algorithm 8, we run synthetic data experiments similar to those described
in Section IV. More precisely, we first randomly generate a w? such that [w?, w?] = 1. Then, we generate a random set of
N = 5, 000 points xiNi=1 in L2. For margin values ε ∈ [0.1, 1], we remove points that violate the required constraint on the
distance to the classifier (parameterized by w?). Then, we assign binary labels to each data point according to the optimal
classifier so that yi = sgn([w?, xi]). We repeat this process for 100 different values of ε and compare the classification results
with those of Algorithm 1 of [11]. Since the theoretical upper bound O

(
1

sinh(ε)

)
claimed in [11] is smaller than O

(
1

sinh2(ε)

)
in Theorem A.1, we also plot the upper bound for comparison. From Figure 9 one can conclude that (1) Algorithm 8 always
converges within the theoretical upper bound provided in Theorem A.1, and (2) both methods disagree with the theoretical
convergence rate results of [11].

(a) (b) (c)

Fig. 9. (a) Visualization of a linear classifier in the hyperboloid model. Colors are indicative of the classes while the gray region represents the decision
hyperplane; (b), (c) A comparison between the classification accuracy of the hyperboloid perceptron from Algorithm 8 and the perceptron of Algorithm 1
of [11], for different values of the margin ε. The classification accuracy is the average of five independent random trials. The stopping criterion is to either
achieve a 100% classification accuracy or to reach the theoretical upper bound on the number of updates of the weight vector from Theorem 3.1 in [11]
(Figure (b)), and Theorem A.1 (Figure (c)).

PROOF OF THEOREM 4.2 AND 4.3

Let xi ∈ Bn and let vi = logp(xi) be its its logarithmic map value. The distance between the point and the hyperplane
defined by w ∈ TpBn and p ∈ Bn can be written as (see also (14))

d(x,Hw,p) = sinh−1

(
2 tanh (σp‖vi‖/2) |〈vi, w〉|(

1− tanh2 (σp‖vi‖/2)
)
‖w‖σp‖vi‖/2

· σp
2

)
. (41)

For support vectors, |〈vi, w〉| = 1 and ‖vi‖ ≥ 1/‖w‖. Note that f(x) = 2 tanh(x)
x(1−tanh2(x))

is an increasing function in x for x > 0

and g(y) = sinh−1(y) is an increasing function in y for y ∈ R. Thus, the distance in (41) can be lower bounded by

d(xi, Hw,p) ≥ sinh−1
(

2 tanh(σp/2‖w‖)
1− tanh2(σp/2‖w‖)

)
. (42)

The goal is to maximize the distance in (42). To this end observe that h(x) = 2x
1−x2 is an increasing function in x for x ∈ (0, 1)

and tanh(σp/2‖w‖) ∈ (0, 1). So maximizing the distance is equivalent to minimizing ‖w‖ (or ‖w‖2), provided σp is fixed.
Thus the Poincaré SVM problem can be converted into the convex problem of Theorem 4.2; the constraints are added to
force the hyperplane to correctly classify all points in the hard-margin setting. The formulation in Theorem 4.3 can also be
seen as arising from a relaxation of the constraints and consideration of the trade-off between margin values and classification
accuracy.

PROOF OF THEOREM 5.1
We generalize the arguments in [16] to hyperbolic spaces. Let A0 = aI . The matrix Ak can be recursively computed from

Ak = Ak−1 + ztz
T
t , or equivalently Ak = aI +XkX

T
k . Without loss of generality, let tk be the time index of the kth error.

ξTk A
−1
k ξk = (ξk−1 + ytkztk)TA−1k (ξk−1 + ytkztk)

= ξTk−1A
−1
k ξk−1 + zTtkA

−1
k ztk + 2ytk(A−1k ξk−1)T ztk

= ξTk−1A
−1
k ξk−1 + zTtkA

−1
k ztk + 2ytk(wtk)T ztk

≤ ξTk−1A−1k ξk−1 + zTtkA
−1
k ztk

(a)
= ξTk−1A

−1
k−1ξk−1 −

(ξTk−1A
−1
k−1ztk)2

1 + zTtkA
−1
k−1ztk

+ zTtkA
−1
k ztk

≤ ξTk−1A−1k−1ξk−1 + zTtkA
−1
k ztk

where (a) is due to the Sherman-Morrison formula [39] below.
Lemma A.1 ([39]): Let A be an arbitrary n × n positive-definite matrix. Let x ∈ Rn. Then B = A + xxT is also a

positive-definite matrix and

B−1 = A−1 − (A−1x)(A−1x)T

1 + xTA−1x
. (43)

Note that the inequality holds since Ak−1 is a positive-definite matrix and thus so is its inverse. Therefore, we have

ξTk A
−1
k ξk ≤ ξTk−1A−1k−1ξk−1 + zTtkA

−1
k ztk ≤

∑
j∈[k]

zTtjA
−1
j ztj

(b)
=
∑
j∈[k]

(
1− det(Aj−1)

det(Aj)

)
(c)

≤
∑
j∈[k]

log(
det(Aj)

det(Aj−1)
)

= log(
det(Ak)

det(A0)
) = log(

det(aI +XkX
T
k)

det(aI)
) =

∑
i∈[n]

log(1 +
λi
a

),

where λi are the eigenvalues of XkX
T
k . Claim (b) follows from Lemma A.2 while (c) is due to the fact 1−x ≤ − log(x),∀x >

0.
Lemma A.2 ([16]): Let A be an arbitrary n× n positive-semidefinite matrix. Let x ∈ Rn and B = A− xxT . Then

xTA†x =

{
1 if x /∈ span(B)

1− det6=0(B)
det6=0(A) < 1 if x ∈ span(B)

, (44)

where det 6=0(B) is the product of non-zero eigenvalues of B.
This leads to the upper bound for ξTk A

−1
k ξk. For the lower bound, we have√

ξTk A
−1
k ξk ≥

〈
A
−1/2
k ξk,

A
1/2
k w?

‖A1/2
k w?‖

〉
=
〈ξk, w?〉
‖A1/2

k w?‖
≥ kε′

‖A1/2
k w?‖

.

Also, recall ξk =
∑
j∈[k] yσ(j)zσ(j). Combining the bounds we get

(
kε′

‖A1/2
k w?‖

)2 ≤ ξTk A−1k ξk ≤
∑
i∈[n]

log(1 +
λi
a

).

This leads to the bound k ≤ ‖A
1/2
k w?‖
ε′

√∑
i∈[n] log(1 + λi

a). Finally, since ‖w?‖ = 1, we have

‖A1/2
k w?‖2 = (w?)T (aI +XkX

T
k)w? = a+ λw? ,

which follows from the definition of λw? . Hence,

k ≤ 1

ε′

√√√√(a+ λw?)
∑
i∈[n]

log(1 +
λi
a

), (45)

which completes the proof.

PROOF OF THEOREM 5.2

To prove Theorem 5.2, we need the following lemmas A.3 and A.4.
Lemma A.3: For any ṽt in the update rule, we have ηtyt 〈ṽt, w?〉 ≥ sinh(ε), where w? stands for the optimal classifier in

Assumption 4.1. Also, for any wk, we have 〈wk, w?〉 ≥ 0.
Proof. The proof is by induction. Initially, w1 = 0 and all arriving points get classified as positive. The first mistake occurs

when the first negative point zt arrives, which gets classified as positive. In this case, w2 = −ηtvt, where vt = logp(zt) and

ηt =
2 tanh

(
σp‖vt‖

2

)
(
1−tanh

(
σp‖vt‖

2

)2
)
‖vt‖

. Also, vt must be unmanipulated (i.e., vt = ut) since it will always be classified as positive.

Therefore, based on Assumption 4.1, we have

ηt 〈vt, w?〉 = ηt 〈ut, w?〉 ≤ − sinh(ε), 〈w2, w
?〉 = −ηt 〈vt, w?〉 ≥ 0. (46)

Next, suppose that wt−1 denotes the weight vector at the end of step t − 1 and 〈wt−1, w?〉 ≥ 0. We need to show that
ηtyt 〈ṽt, w?〉 ≥ sinh(ε). By definition, for any point such that 〈vt,wt−1〉

wt−1
6= α

σp
, ṽt = vt. According to Observation 1, those

points are also not manipulated, i.e. ṽt = vt = ut. Therefore the claim holds. For data points such that 〈vt,wt−1〉
wt−1

= α
σp

, if
they are positive, we have ṽt = vt = ut + β wt−1

‖wt−1‖ , where 0 ≤ β ≤ α
σp

. The reason behind β always being positive is that all
rational agents want to be classified as positive so the only possible direction of change is wt−1. Hence,

ηt 〈ṽt, w?〉 = ηt

〈
ut + β

wt−1
‖wt−1‖

, w?
〉
≥ ηt 〈ut, w?〉 ≥ sinh(ε). (47)

For data points with negative labels such that 〈vt,wt−1〉
wt−1

= α
σp

, ṽt = vt − αwt−1

σp‖wt−1‖ and vt = ut + β wt−1

‖wt−1‖ . This implies that

ṽt = ut +
(
β − α

σp

)
wt−1

‖wt−1‖ . Therefore,

ηt 〈ṽt, w?〉 = ηt

〈
ut +

(
β − α

σp

)
wt−1
‖wt−1‖

, w?
〉
≤ ηt 〈ut, w?〉 ≤ − sinh(ε). (48)

Combining the above two claims we get ηtyt 〈ṽt, w?〉 ≥ sinh(ε).
The last step is to assume 〈wt−1, w?〉 ≥ 0 and ηtyt 〈ṽt, w?〉 ≥ sinh(ε). I this case, we need to show 〈wt, w?〉 ≥ 0. If the

classifier does not make a mistake at step t, the claim is obviously true since wt−1 = wt. If he classifier makes a mistake, we
have

〈wt, w?〉 = 〈wt−1 + ηtytṽt, w
?〉 ≥ 〈wt−1, w?〉 ≥ 0. (49)

This completes the proof.
Lemma A.4: If Algorithm 5 makes a mistake on an observed data point vt then yt 〈ṽt, wt−1〉 ≤ 0.
Proof. If the algorithm makes a mistake on a positive example, we have 〈vt,wt−1〉

‖wt−1‖ < α
σp

. By Observation 2, no point will fall

within the region 0 < 〈vt,wt−1〉
‖wt−1‖ < α

σp
. Thus one must have 〈vt,wt−1〉

‖wt−1‖ ≤ 0. Since yt = +1, ṽt = vt. Therefore, 〈ṽt, wt−1〉 ≤ 0.

If the algorithm makes a mistake on a negative point, we have 〈vt,wt−1〉
‖wt−1‖ ≥

α
σp

. For the case 〈vt,wt−1〉
‖wt−1‖ > α

σp
, we have ṽt = vt.

In this case, 〈ṽt, wt−1〉 ≥ 0 obviously holds. For 〈vt,wt−1〉
‖wt−1‖ = α

σp
, we have

〈ṽt, wt−1〉 =

〈
vt −

αwt−1
σp‖wt−1‖

, wt−1

〉
= 0. (50)

The above equality implies that for a negative sample we have 〈ṽt, wt−1〉 ≥ 0. Therefore, for any mistaken data point,
yt 〈ṽt, wt−1〉 ≤ 0.

We are now ready to prove Theorem 5.2.

Proof. The analysis follows along the same lines as that for the standard Poincaré perceptron algorithm described in
Section IV. We first lower bound ‖wk+1‖ as

‖wk+1‖ ≥ 〈wk+1, w
?〉

= 〈wk, w?〉+ ηikyik 〈ṽik , w?〉
≥ 〈wk, w?〉+ sinh(ε) ≥ · · · ≥ k sinh(ε), (51)

where the first bound follows from the Cauchy-Schwartz inequality, while the second inequality was established in Lemma A.3.
Next, we upper bound ‖wk+1‖ as

‖wk+1‖2 = ‖wk + ηikyik ṽik‖2

= ‖wk‖2 + 2ηikyik 〈wk, ṽik〉+ ‖ṽik‖2

≤ ‖wk‖2 + ‖ṽik‖2

≤ ‖wk‖2 +

(
2 tanh(

σp‖vik‖
2)

1− tanh(
σp‖vik‖

2)2
+

α

σp

)2

≤ ‖wk‖2 +

(
2Rp

1−R2
p

+
α

σp

)2

≤ · · · ≤ k

(
2Rpσp + α(1−R2

p)

σp(1−R2
p)

)2

, (52)

where the first inequality was established Lemma A.4 while the second inequality follows from the fact that the manipulation
budget is α.

Combining (51) and (52) we obtain

k2 sinh(ε)2 ≤ k

(
2Rpσp + α(1−R2

p)

σp(1−R2
p)

)2

k ≤

(
2Rpσp + α(1−R2

p)

σp(1−R2
p) sinh(ε)

)2

, (53)

which completes the proof.

DETAILED EXPERIMENTAL SETTING

For the first set of experiments, we have the following hyperparameters. For the Poincaré perceptron, there are no
hyperparameters to choose. For the Poincaré second-order perceptron, we adopt the strategy proposed in [16]. That is, instead
of tuning the parameter a, we set it to 0 and change the matrix inverse to pseudo-inverse. For the Poincaré SVM and the
Euclidean SVM, we set C = 1000 for all data sets. This theoretically forces SVM to have a hard decision boundary. For the
hyperboloid SVM, we surprisingly find that choosing C = 1000 makes the algorithm unstable. Empirically, C = 10 in general
produces better results despite the fact that it still leads to softer decision boundaries and still breaks down when the point
dimensions are large. As the hyperboloid SVM works in the hyperboloid model of a hyperbolic space, we map points from
the Poincaré ball to points in the hyperboloid model as follows. Let x ∈ Bn and z ∈ Ln be its corresponding point in the
hyperboloid model. Then,

z0 =
1−

∑n−1
i=0 x

2
i

1 +
∑n
i=1 x

2
i

, zj =
2xj

1 +
∑n
i=1 x

2
i

∀j ∈ [n]. (54)

On the other hand, Olsson’s scRNA-seq data contains 319 points from 8 classes and we perform a 70%/30% random split
to obtain training (231) and test (88) point sets. CIFAR10 contains 50, 000 training points and 10, 000 testing points from 10
classes. Fashion-MNIST contains 60, 000 training points and 10, 000 testing points from 10 classes. Mini-ImageNet contains
8, 000 data points from 20 classes and we do 70%/30% random split to obtain training (5, 600) and test (2, 400) point sets. For
all data sets we choose the trade-off coefficient C = 5, and use it with all three SVM algorithms to ensure a fair comparison.
We also find that in practice the performance of all three algorithms remains stable when C ∈ [1, 10].

	I Introduction
	II Relevance and Related Work
	III Review of Hyperbolic Spaces
	IV Classification in hyperbolic spaces
	IV-A Classification Algorithms for Poincaré Balls
	IV-B The Poincaré Perceptron
	IV-C Discussion
	IV-D Learning Reference Points
	IV-E The Poincaré SVM

	V Perceptron variants in hyperbolic spaces
	V-A The Poincaré Second-Order Perceptron
	V-B The Poincaré Strategic Perceptron

	VI Experiments
	VI-A Synthetic Data Sets
	VI-B Real-World Data Sets

	VII Conclusion
	References
	Appendix

