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Abstract

Federated learning carries out cooperative training without local data

sharing, the obtained global model performs generally better than inde-

pendent local models. Benefiting from the free data sharing, federated

learning preserves the privacy of local users. However, the performance

of the global model might be degraded if diverse clients hold non-

IID training data. This is because the different distributions of local

data lead to weight divergence of local models. In this paper, we

introduce a novel teacher-student framework to alleviate the negative

impact of non-IID data. On the one hand, we maintain the advantage

of the federated learning on the privacy-preserving, and on the other

hand, we take the advantage of the centralized learning on the accu-

racy. We use unlabeled data and global models as teachers to generate

a pseudo-labeled dataset, which can significantly improve the perfor-

mance of the global model. At the same time, the global model as a

teacher provides more accurate pseudo labels. In addition, we perform

a model rollback to mitigate the impact of latent noise labels and data

imbalance in the pseudo-labeled dataset. Extensive experiments have

verified that our teacher ensemble performs a more robust training.

The empirical study verifies that the reliance on the centralized pseudo-

labeled data enables the global model almost immune to non-IID data.
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1 Introduction

Federated learning is a promising decentralized private learning, in which all
local users cooperatively and decentrally train a global model without exposing
local private data [1]. Each client trains the local model and sends parameters
or gradients to the server for a global aggregation. The server returns a global
model to clients for more training iterations. Compared with the centralized
learning, federated learning can preserve clients’ privacy with taking the cost
of a modest accuracy loss [2]. However, data from clients may not always have
been independent in practice. The non-IID (non-independent and identical
distributed) data causes clients to get local models with weight divergence,
and deteriorate the performance of the corresponding aggregated global model
with a further accuracy loss on the learning model [3, 4]. The non-IID data
issue is also called the problem of statistical heterogeneity.

The leverage of unlabeled data is one of the approaches to alleviate the
adverse effects of non-IID data [5–13]. It has some advantages: The unlabeled
data are easier to be collected than the labeled data; fewer privacy concerns
might be raised on unlabeled data. Some literature [5–8] leverages unlabeled
data on clients with local semi-supervised learning methods to improve feder-
ated learning’s performance. Local semi-supervised learning relies on clients to
make use of unlabeled data, which puts more storage and computation pres-
sure on local clients. This might be unacceptable for resource-limited devices.
Others [9–13] have an opposite hypothesis that the unlabeled data is on the
server. The data is used for auxiliary centralized learning and alleviating the
weight divergence of local models. However, most of them have limited leverage
over the data when encountering non-IID data. Federated distillation [9–11]
communicates logits between server and clients and aggregates the logits to
generate pseudo labels for unlabeled data. The aggregation accuracy of the
logits relies on the size of the unlabeled dataset and has a significant decline
when non-IID data is encountered, resulting in a decrease in model perfor-
mance. Ensemble learning on unlabeled data with the local models and the
global model as the base learners [12, 13] has an unstable pseudo-labeling
accuracy due to the existence of biased local models.

In this work, we introduce a novel teacher-student framework to alleviate
the negative impact of non-IID data. On the one hand, we maintain the advan-
tage of the federated learning on the privacy-preserving, and on the other
hand, we take the advantage of the centralized learning on the accuracy. We
focus on the utilization of unlabeled data on the server side to improve the
performance of federated learning. We collect the aggregated global models by
time series as teachers (see Figure 1) and give pseudo labels to the unlabeled
data in an ensemble way.
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Fig. 1 We collect global models in different training rounds to form an ensemble with T

teachers. At the same time, the teacher ensemble promotes the next round of global model
training.

Different from previous work, we change the generation of the global model.
As the result of training with the pseudo-labeled data, we obtain a better global
model and a better teacher model to update a base learner in the ensemble.
The pseudo-labeling of the ensemble migrates the knowledge contained in the
distributed labeled data to the centrally collected unlabeled data, which has
a similar feature space to local data, a more uniform distribution, and more
accurate pseudo labels. We make the distributed federated learning has a closer
performance to centralized learning.

Compared with pseudo-labeling by a single model, teacher ensemble can
provide more accurate pseudo labels. The key to ensemble learning is the base
learners with good performance and diversity. The diversity is the differences
between the learners especially the differences in output [14, 15]. As multiple
models join in the teacher ensemble, combining their different outputs through
a specific voting method produces more accurate output. Due to the random-
ness of the model training process, at least before the global model converges,
the collection of global models by time series still maintains diversity and gives
play to the advantages of ensemble learning. In addition, the collection method
ensures the consistency and stability of the global model. We show that the
ensemble of aggregated global models can make the pseudo-labeling maintain
high accuracy and confidence, even if on the non-IID data.

We evaluated our method under different local distributions on CIFAR-
10/100 with a CNN and a ResNet-8. Experiments show that our method
improved the utilization of unlabeled data from the perspective of the quan-
tity of valid data, label accuracy, and distribution, and achieved higher test
accuracy. With the knowledge learned from local labeled data transferring
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to the unlabeled data, we achieved comparable performance with centralized
supervised learning with the same data size as the unlabeled data.

2 Preliminary

Federated learning is a distributed machine learning framework. It is proposed
to use the computation capability of edge devices to collaboratively train a
global model on a server, which performs better than any independent local
model generally. At the same time, each local device does not send personal
data to the server and keeps it locally to protect data privacy. The collab-
oration between the various local devices is embodied in the aggregation in
federated learning. Federated Averaging (FedAvg) [1] is one of the most com-
monly used aggregation methods, it is proposed to use a weighted average of
all local models’ parameters as the aggregated global model. The weight is
proportional to the amount of data on the local devices.

We consider there are N local clients and M of which participate in each
training round. Each model is parameterized by w, a labeled dataset is denoted
as D = ∪ (x, y) with distribution P , where x → R

d is an input instance in d

dimensional feature space, y ∈ {1, 2, . . . C}, C is the number of categories for
classification. Given a predictor f : x→ y′ and a loss function l : y′ × y → R,
the risk of a model parameterized by w on a classification task on D is defined
as L(D; w) := E(x,y)∈D [l(f(x; w), y)].

Federated Learning. There are two components in federated learning:
multiple clients with local models and a server with a global model. The server
provides an initial model to the clients, while the clients apply their private
data to update the model and submit the model parameters to the server. As
the aggregated global model is used as a new initial model, federated learning
starts a new round of training. This procedure will iterate for R rounds.

FedAvg [1] is a standard aggregation method in federated learning. With
model parameters exchange, clients collaboratively train a global model with-
out exposing their data. By averaging the parameter values of multiple models,
FedAvg aggregates the multiple models into a single model to complete the
aggregation process in federated learning.

In local training, each client i performs supervised learning with its labeled
private data Di after being initialized with a global model:

wi = wi − η
∂L (Di; wi)

∂wi

(1)

where wi is the parameter of the local model on client i, η is the learning rate,
L(·) is the loss function. We use Cross Entropy Loss as the loss function in this
work. In FedAvg, the server averages the local models to obtain an updated
global model:

wg =
1

∑

i∈S |Di|

∑

i∈S

|Di| · wi (2)
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where S is the collection of clients who participate in the training, wg is the
averaged global model. The proportion of the local data to the total training
data is used as the weight of the local model parameters. In the standard
process of federated learning, the global model wg will then be sent back to
clients for the next round of training, and so on for finite rounds to complete
the whole learning process as shown in Figure 2(a).

Non-IID Data. In contrary to ideal identically and independently dis-
tributed data, non-IID data is a real and natural existence. Data generated by
different users, from different geographic locations and in different time win-
dows leads to the non-identicalness of data distributions [16]. With Pi and
Pj denoting the data distributions of any two clients i and j, x is a sample
with a label y, the non-IID data in federated learning typically refers to the
differences between Pi and Pj . From the perspective of conditional distribu-
tion, i.e. P (x, y) = P (y|x)P (x) = P (x|y)P (y), there are four main ways to
show the differences: a. different P (y|x) with same P (x); b. different P (x) with
same P (y|x); c. different P (x|y) with same P (y); d. different P (y) with same
P (x|y). In addition, the unbalancedness in different clients’ data also is a kind
of non-IID setting. In fact, data distributions between clients may contain a
more complex mixture of these effects.

Most of the existing work on simulating non-IID data focuses on making
a different P (y). Two methods are mainly used: i. distribute data directly in
proportion to a given percentage according to established data preferences of
different clients; ii. follow Dirichlet distribution randomly distribute data to
clients. The former is much easier to operate.

When encountered with non-IID data, the distribution differences between
local data will lead to weight divergence of local models, and the model
obtained by FedAvg will deviate from the ideal model. Introducing additional
data to training is a regular approach to alleviate the adverse effects of non-
IID data. Especially, unlabeled data is much easier to be collected than labeled
data, especially when the unlabeled data contains less privacy and no relevance
to a certain user. Since both of them are produced by users, the distribution of
the collected unlabeled data is somewhat consistent with the joint distribution
of all local data.

3 Migrating decentralized federated learning to
centralized learning

3.1 Overview of the teacher-student framework

In this section, we propose a novel teacher-student framework to migrate decen-
tralized federated learning to centralized learning and alleviate the impact of
non-IID data in federated learning. With a teacher ensemble, we migrate the
knowledge of feature-to-label mapping from distributed labeled data to central-
ized unlabeled data. With auxiliary training, we aim to make the decentralized
federated learning have a closer performance to centralized learning.
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Fig. 2 Overview of the method. (a) shows the framework of federated learning, we use
classical FedAvg as the aggregation method. (b) shows the way we generate the global model.

In federated learning, the statistical heterogeneity of local data caused the
weight divergence of local models, thus deteriorating the performance of the
global model. Rather than sending the aggregated model back directly, we
change the way to obtain the global model. Figure 2 shows the overview of
our method. We take the averaged model as a temporary global model and
the student model learned from the pseudo-labeled data as an auxiliary to
generate a teacher, while as a new global model. The teacher ensemble is
consist of T adjacent global models as shown in Figure 1. The pseudo-labeling
of the ensemble generates the pseudo labels, which are used as supervision to
learn a student model. Generally, the prediction of multiple teacher models
in an ensemble can achieve better accuracy than that of a single model. The
generated teacher instead of the flimsy averaged model will be sent back to
local clients for their next round of training. To mitigate the impact of possible
noise and imbalance of the pseudo-labeled data, we reset the global model to
varying degrees before the next global update.

We assume that the server can meet additional storage and computation
requirements. The above process would be repeated finite times until it con-
verged to an ideal student model. We summarize the whole training process
as Algorithm 1.

3.2 Pseudo-Labeling the Unlabeled Data

We collect unlabeled data and obtain the pseudo labels by the pseudo-labeling
of the teacher ensemble. For the sake of simplicity, we do not use the logits
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Algorithm 1 Illustration of D2C-FL. We collect global models in feder-
ated learning to form a teacher ensemble. With pseudo-labeling an unlabeled
dataset with the ensemble, we perform further training on the centralized
pseudo-labeled data and re-update the global model.

Require: The initial model weights winit; unlabeled data Du; size of teacher
ensemble T ; number of participants in each round M ; local labeled data
Di; learning rate η.

Ensure: global model weights w
′

g.
1: Initialization:

2: w
′

g ← winit

3: Get Teacher Ensemble ready with T ∗ winit.
4:

5: procedure Server

6: for r ← 1 to R do

7: Sample M clients as S to participate in training.
8: for each client ci ∈ S do

9: wi ← w
′

g;

10: wi ← Update(wi, Di, η); ⊲ Equation (1)
11: Send wi to the server;
12: end for

13: wg ← Aggregate the local models; ⊲ Equation (2)
14: Get pseudo-labeled dataset Dpseudo; ⊲ Equation (3)-(9)
15: wstu ← Update(wstu, Dpeudo, η); ⊲ Equation (10)
16: Get a new teacher wteacher and rollback student model wstu; ⊲

Equation (11) and Equation (12)
17: Replace the most corrupt model in the Teacher Ensemble with

wteacher;
18: w

′

g ← wteacher

19: end for

20: end procedure

output of the ensemble as soft labels to learn a student model as what would
be done in distillation. We directly use the assigned class value by logits as the
hard labels, then the dataset composed of pseudo labels and unlabeled data
has the same form as the dataset used in general supervised learning.

To get a single-value label for a sample, we assign the class value with the
highest probability among all the teachers as the pseudo label. The decision
relying on the highest probability indicates that the most confident teacher in
the ensemble determines the label of the sample. It gives full play to the high-
quality teacher in the ensemble. The pseudo-labeling process can be expressed
as:

ymax pseudos = {argmax {fi (xu; wi)} | i ∈ {1, 2, · · · , T}} (3)

ymax probs = {max {fi (xu; wi)} | i ∈ {1, 2, · · · , T}} (4)
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ypseudo =

{

ymax pseudos [argmax{ymax probs}] max{ymax probs} ≥ τ

NULL max{ymax probs} < τ
(5)

where xu is a sample of unlabeled data, fi(·) is the output of teacher i in
teacher ensemble, i.e. the logits, wi is the parameters of the teacher model.
ymax pseudos, ymax probs, ypseudo are the labels given by T teachers, the max
prediction probabilities of the T teachers and the final given pseudo label
for sample xu respectively. The threshold τ is used to determine whether the
data qualifies for subsequent training. If the highest probability reaches the
threshold τ , the corresponding label will be assigned to the sample as its
pseudo label and further learned by a student model. On the contrary, if the
highest probability is lower than the threshold τ , the sample will be discarded
from the subsequently generated dataset. The discard of the data with low
prediction probability will mitigate the over-fitting of the student model to the
noise labels.

Averaging the predictions of teachers as the output of ensemble is another
way to get pseudo labels and it is a commonly used method in ensemble
learning. The corresponding pseudo-labeling process can be expressed as:

yavg pseudo = argmax

{

1

T

T
∑

i=1

{fi (xu; wi)}

}

(6)

yavg prob = max

{

1

T

T
∑

i=1

{fi (xu; wi)}

}

(7)

ypseudo =

{

yavg pseudo yavg prob ≥ τ

NULL yavg prob < τ
(8)

where yavg pseudo, yavg prob are the labels and corresponding probabilities given
by the average output of T teachers.

After all the pseudo labels are checked by the threshold τ and assigned to
the unlabeled data, we get a new labeled dataset finally:

Dpseudo = ∪ (xu, ypseudo) (9)

To distinguish it from the local data Di, we use Dpseudo to denote it. Then
the student model will be updated through

wstu = wstu − η
∂L (Dpseudo; wstu)

∂wstu

(10)

where wstu is the parameters of student model. The student model will serve as
an auxiliary to generate a new global&teacher model and update the teacher
ensemble.
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3.3 Update the Teacher Ensemble

We update the teacher ensemble as shown in Figure 1. In the first T rounds,
the student model remains the same as the averaged global model. Therefore,
the first T collected teachers are exactly the first T averaged global models.
As we do not want the randomly initialized teachers to give bad predictions
on the unlabeled data before the target number of available models gathering
in the ensemble, the collection of teachers requires T rounds of preparation.

Once the target number of teachers is reached, we are able to perform
pseudo-labeling to get a new dataset. Therefore, we can train a new student
model which is different from the averaged model. A new teacher will be
generated by

wteacher = w
′

g = α · wg + (1− α) · wstu, where α ∈ [0, 1] (11)

where wteacher exactly is the parameters of the generated teacher, w
′

g means
the teacher will be sent back to clients as a new global model for a new training
round. The α is the weight of the averaged global model. When α = 0, the
student model will become the new teacher and be sent to clients directly
which is consistent with [12]; when α = 1, the averaged global model will be
the new teacher, the unlabeled data and the student model lose their auxiliary
values. Neither the student nor the averaged global model alone is the best
choice for the teacher.

The most corrupt teacher in the ensemble will be replaced by the new
teacher as the update of the ensemble. As long as the averaged model or
the student model does not converge, our teacher ensemble can maintain its
diversity which was important for ensemble learning.

3.4 Model Rollback

To alleviate the confirmation bias [17] of the global model on the latent noise
labels and data imbalance in the pseudo-labeled data, we add randomness to
each round of training with the model rollback.

Rollback of student. If the teachers in the ensemble have a worse align-
ment between the prediction probabilities and test accuracy, the threshold τ

cannot filter out the noisy data in pseudo-labeling. To this end, we perform a
rollback on the student model for its iterative updating. Specifically, we take a
weighted average of the student model and a new randomly initialized model
and assign it to the student model to be further updated.

wstu = β · wstu + (1− β) · winit , where β ∈ [0, 1] (12)

where winit is the new randomly initialized model. The β is the weight of the
student model in the re-initialization. β = 0 means resetting student model
to a completely random model at the beginning of each training round; β = 1
means withdrawing the rollback of student. When learning with pseudo-labeled
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data, resetting the model in each training round can prevent the model from
over-fitting the wrong labels and get a more stable convergence.

Rollback of teachers. As detailed in Subsubsection 3.3, each updated
student model must have a combination with the averaged temporary global
model to generate a new teacher. We regard the combination as a rollback
of the teacher. Compared with the student as a teacher directly, we regress
the teacher to an intermediate value between the student model and the tem-
porary global model. Even though the student model draws a much richer
and even dataset, it is not appropriate to make it alone becoming a teacher
directly. As using student model to re-pseudo-label the dataset it draws on,
the wrong predictions will be learned and reinforced again, thus deteriorating
the performance of the global model [18].

Analysis. We validated our method with different α and β on CIFAR-10
with a simple CNN (2 convolutional layers). We considered 100 clients, 10 of
them participated in training with 20000 local labeled data and 10000 unla-
beled data. Each client performed supervised learning with the same amount
of 600 samples. We simulated two different non-IID settings, the data distribu-
tions of 20 randomly sampled clients can be seen in Figure 3. The test accuracy
with different α and β can be seen in Figure 4. It is shown that neither train-
ing based on a randomly initialized model (i.e. β = 1) nor the student in the
last round (i.e. β = 0) alone can achieve the best test accuracy. Also, making
the student directly as a teacher (i.e. α = 0) is not necessarily the optimal
solution, which is also possible to have α be an intermediate value. But tak-
ing the model obtained by average aggregation as a teacher (i.e. α = 1) is
definitely not the optimal solution. Since when α = 1, the global model has
nothing to do with the student model. Furthermore, the global model will not
be affected by the β at all as shown at the bottom of Figure 4. α = 1 means
the student model becomes a redundant model on the server side and local
clients learned nothing from the unlabeled data. The rollback of the student
and teachers realizes a better performance and of which on student model has
more effect on the global model obviously.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
client
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1
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Fig. 3 Illustration of the two non-IID settings on CIFAR-10. 0.8-bias: 80% of data on each
client belongs to its preference class and the rest of the data belongs to the other classes
uniformly. 2-class: The data on each client evenly belongs to two classes.
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Fig. 4 Test accuracy with different α and β on CIFAR-10 with CNN.

3.5 Discussion on the method

Cost analysis. We exchange model parameters between server and clients in
each communication round, which is consistent with general methods regard-
less of communication cost. As the fact that the leverage of unlabeled data
makes a drastic increase of model’s test accuracy and faster convergence
than FedAvg, it reduces required communication rounds and indirectly saves
communication cost. Additional computing and storage costs resulting from
additional training of the student model are borne by the server and do not
burden local clients.

Unlabeled data. The assumption of large amounts of unlabeled data that
do not involve privacy may hinder our method applying in a wider range of
scenarios, as the disputes in Subsubsection 5.3. Some generative methods have
been used in federated learning to generate synthetic data to assist model
learning. Ideally, the generative methods may only be used to assist global
learning and add no additional computing and storage costs to clients.

Robustness to attacks. Since we have migrated the focus of model learn-
ing from decentralized labeled data to centralized unlabeled data, it’s intuitive
that our method will be more robust against malicious clients, it needs to be
verified.

4 Experimental evaluation

4.1 Experimental setup

Datasets and models. In the experiment, we evaluate the classification on
CIFAR-10/100 [19]. CIFAR-10/100 contains 50000 training images and 10000
test images with 10/100 classes. To highlight the guidance of unlabeled data
to the whole training performance, we distribute more data to the server as
unlabeled. We assign 20000 of training data to the clients, and the rest of the
training data is assigned to the server along with the whole test set. 80% of the
data on the server side is used as unlabeled data to train and 20% of the data is
used to test the global model. We use a CNN Net with two convolutional and
three fully-connected layers, which has the same structure as LeNet-5 [20]. We
also compare the performances of ResNet-8 following [12] for a more complex
model.
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Federated learning settings. Referring to the setting in [21], we con-
sider that there are 100 clients locally and 10 clients are selected in each round
to participate in the training. Each client keeps 600/100 pieces of data which
is taken from the 20000 data pool according to the client’s special data distri-
bution preference for CIFAR-10/100. When the data in the pool is deficient,
it will be supplemented with the taken data. As a result, a certain amount of
data duplication between clients.

Heterogeneity settings. In addition to the IID setting, we also consider
two classical non-IID settings following [22]: α-bias, 2-class. IID: The data on
each client is distributed evenly, with all the clients fetching the same amount
of data from each class in the local data pool. α-bias: Each client has a data
preference for a certain class to the degree of α. This means there will be an
alpha ratio of data belonging to the preferred class and the rest of the data
belongs to the other classes uniformly. In this experiment, we fixed α at 0.8
for corresponding training and evaluations. 2-class: The data on each client
evenly belongs to two classes.

Training Details. We set both local epochs and global epochs to 5, the
batch size is 128, the initial learning rate of local training is 0.001, and decay
it by 0.95 in each epoch. Referring to the suggestion of [13], we directly set
the size T of the teacher ensemble to 10 for experiments. The threshold τ for
filtering unlabeled data is set to 0.75. The optimal (α, β) in model rollback
varies according to different models and different datasets. (0.2, 0.7)/(0.2, 0.4),
(0.8, 0.9)/(0.2, 0.4) are for CNN on CIFAR-10/100, ResNet-8 on CIFAR-10/100
respectively. Adam is used as the optimizer, which will be reset in each
communication round to get a cyclical learning rate.

Baselines. FedAvg [1], as a typical aggregation method, is used as one of
the baselines. We also compared our method with FedDF [12], FedBE [13]. The
difference between them is the composition of the teacher ensemble. FedDF
takes the local model as the teacher ensemble directly. FedBE implements the
collection of teachers by using multiple linear combinations of local models
to simulate sampling from local models distribution. The coefficients of lin-
ear combinations follow a Dirichlet distribution and the simulation achieves a
comparable test accuracy with sampling models from Gaussian. The distilla-
tions with soft labels are eliminated to simplify the experiment, hard labels
are used as a substitute to retrain a global student model. The One-Shot
federated learning method [21] is not considered since it is similar to the one-
round-version of FedDF, except it performs more local epochs training in each
round. As the effect of our method largely depends on the leverage of central-
ized unlabeled data, we also compared our method with centralized learning
on the same amount of labeled data.

4.2 Performance under different data settings

In this section, we compare the performance under different data settings. We
evaluated the convergence of the global model from the aspect of test accuracy
on CIFAR-10 and CIFAR-100 respectively.
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Performance under the IID data setting. Figure 5 shows the test
accuracies of all the baselines with CNN and ResNet-8 under the IID data
setting. All methods with teacher ensemble begin pseudo-labeling at round
10, before which the accuracies are consistent with FedAvg. Benefits from the
leverage of unlabeled data, our method achieves a significant improvement
compared to FedAvg on both CIFAR-10 and CIFAR-100. Since the pseudo-
labeling on the unlabeled data, our model gets a new richer dataset to learn
and achieves a much better generalization effect. Due to less data on clients
and the inherent complexity of the classification on CIFAR-100, FedAvg has
a poor performance and the improvement of our method is more obvious.

By comparing with FedDF and FedBE, our method gets a significant
improvement in the test accuracy with both CNN and ResNet-8. In addition
to acquiring knowledge from the pseudo-labeled data which is consistent with
FedDF and FedBE, we perform a rollback on teachers and the student to deal
with the possible noise data and imbalance in the pseudo-labeled data. As a
result, our model fits data features better and obtains more accurate mapping
between the features and labels.
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Fig. 5 Comparison of the test accuracies under the IID data setting on CIFAR-10/100 with
CNN and ResNet-8 in 100 communication rounds.

From Figure 5 we can see that ResNet-8 performs better than CNN gener-
ally. The generation and extensive use of pseudo-labeled data have resulted in
a significant increase in test accuracy. Due to the poor leverage of unlabeled
data (see Subsubsection 4.3), FedDF and FedBE with CNN suffer from a loss
of test accuracy before the model converges. This also accords with the obser-
vation in [3], which showed that a pre-trained model would not learn from the
FedAvg training on non-IID data and even had an accuracy drop on CIFAR-
10. It is exactly the poor leverage of unlabeled data that makes it possible to
generate another non-IID dataset and decrease the test accuracy. Those with
ResNet-8 (except FedDF on CIFAR-10) may even keep declining and can not
reach a convergence within 100 training rounds. A possible explanation for the
result may be the stronger confirmation bias of ResNet which has been studied
in [17].
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In the case of training on fully labeled data, the residual block in ResNet
solves the degradation problem of a deep neural network. When it comes to the
training on pseudo-labeled data, the residual block would also be stubborn on
the possible noise labels and cause the degradation again. Once confirming the
knowledge in noise data, with the block of the threshold in filtering, it is hard
for the poor ensemble to give pseudo labels. When the pseudo-labeled data is
no longer generated, the global model gradually degenerates to FedAvg as local
models fit the local labeled data, resulting in a decrease in test accuracy. Our
method alleviates the problem by a different formation of teacher ensemble and
a rollback on the teachers and student, making the model accuracy increase
like monotonically on CIFAR-10. Due to the complexity of CIFAR-100, the
test accuracy on CIFAR-100 has more obvious fluctuations, but it does not
prevent our method achieves a higher test accuracy than others.

Performance unde the 0.8-bias data setting. The test accuracies with
different models under the 0.8-bias data setting are compared in Figure 6. On
the whole, our method still outperforms the baselines by a notable margin.
With encountering the non-IID data, the test accuracy of FedAvg is likely to
have a drop that matches the observation in [3]. Due to relying on pseudo-
labeled data, FedDF, FedBE and our method with CNN do not show much
influence in test accuracy and have a consistent performance with that in the
IID data setting. While the test accuracy of FedBE with ResNet-8 has a steep
decrease and degenerated to FedAvg, the test accuracy of our method keeps
climbing with a slight fluctuation.
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Fig. 6 Test accuracy of federated learning under the 0.8-bias data setting on CIFAR-10
with CNN and ResNet-8 in 100 communication rounds.

Performance under the 2-class data setting. Figure 7 shows the
comparison between the baselines with different models under the 2-class data
setting. With the greater degree of non-IID, it is even hard for FedAvg to have
an increase of the test accuracy in 100 training rounds. The performance of
FedBE with ResNet-8 on both CIFAR-10 and CIFAR-100 degrade to FedAvg
like what is shown in the 0.8-bias data setting, but with a steeper degrada-
tion. While FedDF and FedBE with CNN and FedDF with ResNet-8 have
a consistent performance with that in the IID data setting, we still perform
better.
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Fig. 7 Test accuracy of federated learning under the 2-class data setting on CIFAR-10 with
CNN and ResNet-8 in 100 communication rounds.

Summarizing the performance under different data settings, our method
consistently performs better than FedAvg and achieves generally higher test
accuracy than FedDF and FedBE. When encountering non-IID data, FedAvg’s
performance degrades significantly, which is consistent with the observations
in [3]. Other methods including ours leveraging centrally unlabeled data don’t
show much fluctuation in test accuracy. When the performance of our method
with ResNet-8 on CIFAR-10 has a limited 0.5% improvement under the 2-class
data setting, that under other data settings has a maximum 3% improvement
on CIFAR-10 and 4% improvement on CIFAR-100, our method with CNN on
CIFAR-10 and CIFAR-100 brings maximum 4% and 8% increases respectively.

Comparison with centralized learning. While our method performs
model training on 20000 local labeled data and 40000 unlabeled data at the
same time in a semi-supervised learning way, we compare it with supervised
learning on 40000 and 60000 centralized labeled data respectively. Figure 8
shows the results. When we are almost immune to non-IID data, we achieve
test accuracy comparable to supervised centralized learning. Benefits to the
learning from labeled data on clients, we take full advantage of 40000 unla-
beled data and achieve better performance than using only 40000 labeled data.
Thus, we migrate the decentralized federated learning to centralized learning
successfully.

4.3 Utilization of unlabeled data

Utilization of unlabeled data on CIFAR-10 with CNN. With 40000×
80% unlabeled data on the server for global training, Figure 9 shows the evo-
lution of pseudo-labeled data in the training process from the perspective of
accuracy and quantity, as well as the distribution in the last training round.
The preparation of teacher ensemble in our method results in the empty of
the pseudo-labeled dataset in the first T = 10 rounds, and the model accuracy
is consistent with FedAvg. To make the comparison more visualized, we sus-
pend the pseudo-labeling in FedDF and FedBE at the same time, which also
provides them a better initialization of teacher ensembles.
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(a) CNN on CIFAR-10
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(b) CNN on CIFAR-100
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(c) ResNet-8 on CIFAR-10
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(d) ResNet-8 on CIFAR-100

Fig. 8 Test accuracy of our method with 20000 labeled and 40000 unlabeled data,
compared with the test accuracy of centralized learning with 40000/60000 labeled data.
The comparison was performed on CIFAR-10 and CIFAR-100 with CNN and ResNet-8
respectively.

As Figure 9 shows, our method always has the highest pseudo-labeling accu-
racy in all the data settings. As we expected, it has almost become impervious
to non-IID data while other methods have a decline in data accuracy with the
deepening of non-IID. The pseudo-labeled data was selected by a prediction
probability threshold τ , which indirectly reflects that our prediction results
have much better alignment between confidence and accuracy (i.e. higher con-
fidences, higher accuracy) in the confidence interval of [τ , 1.0]. While other
methods are less accurate than ours, the size of the dataset generated by them
is also decreasing, much steeper in the case of non-IID. In our method, the
accuracy and size are little affected by the non-IID data and rise steadily to
better convergence. The bottom line of Figure 9 shows the data distribution
in the last communication round. We can see that the generated data by our
method has a more stable and even distribution, and it is an approximately
IID dataset.

The high quality of the pseudo-labeled dataset generated by our method
leads to incremental model accuracy. The evolution of the quality of the
pseudo-labeled dataset is consistent with that of model accuracy shown in
Subsubsection 4.2. As the generation of pseudo-labeled data leads to a sharp
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increase in model accuracy and its almost immunity to non-IID data, we suc-
cessfully generate a centralized pseudo-labeled dataset for the global model to
learn from.
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Fig. 9 Utilization of unlabeled data by all methods within 100 rounds using CNN on
CIFAR-10.The top line shows the variation in the accuracy of the pseudo-labeled data, the
middle line shows the variation in the quantity of the pseudo-labeled data and the bottom
line shows the data distribution in the last communication round. It can be seen from the
figure that the data generated by our method can always maintain considerable quality,
especially on non-IID data.

Utilization of unlabeled data in other cases. Figure 10 shows the
evolution of pseudo-labeled data on CIFAR-100 with CNN. It is apparent
that our method still gains an advantage in data accuracy, especially for non-
IID data. Although our method does not have an advantage in terms of data
quantity, benefits from high data accuracy and model rollback, our method
can still achieve the best test accuracy. As the data size is not the only factor
that determines model performance, the labeling accuracy and the prevention
of over-fitting are both important.

Figure 11 and Figure 12 show the same comparisons on CIFAR-10 and
CIFAR-100 with ResNet-8. We gain advantages in both data accuracy and
quantity, along with the more stable and even distribution, we still get a
pseudo-labeled dataset with high quality. Different from the performance with
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Fig. 10 Utilization of unlabeled data by all methods within 100 rounds using CNN on
CIFAR-100.The top line shows the variation in the accuracy of the pseudo-labeled data, the
middle line shows the variation in the quantity of the pseudo-labeled data and the bottom
line shows the data distribution in the last communication round.

CNN, FedBE with ResNet-8 begins to degenerate to vanilla FedAvg after only
a few rounds of training on the pseudo-labeled data. The sharp degradation
of the pseudo-labeling causes the empty of the pseudo-labeled dataset, and
its model accuracy continues to decline which has been shown in Subsubsec-
tion 4.2. We suspect that the aggregation of the local models and the residual
block in ResNet-8 enhance the teacher’s knowledge of noise data. A single local
model as a teacher in FedDF would not have such a strong confirmation bias,
the teachers in our method rely more on student model and β of which roll-
back to a randomly initialized model in each communication round, both of
them keep the generation of pseudo-labeled data for global training.

With different sizes of unlabeled dataset. We investigate dif-
ferent sizes of unlabeled data on CIFAR-10 with CNN in Figure 13.
{10000, 20000, 30000, 40000} were used as the variable values in the experi-
ment. The result shows that the model accuracy increases with the size of the
unlabeled dataset and tends to increase. Although we can not pseudo-labeling
and utilize all the unlabeled data due to the inevitable model error and the
threshold τ , a larger unlabeled dataset always leads to a larger pseudo-labeled
dataset and our method gains more than others regardless of the data settings.
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Fig. 11 Utilization of unlabeled data by all methods within 100 rounds using ResNet-8 on
CIFAR-10.The top line shows the variation in the accuracy of the pseudo-labeled data, the
middle line shows the variation in the quantity of the pseudo-labeled data and the bottom
line shows the data distribution in the last communication round.

4.4 Case studies

Different ensemble sizes. Keep 40000 data unlabeled on the server side,
Figure 14 shows the utilization of the data and corresponding test accuracy
with different teacher ensemble sizes. Due to the preparation of the teachers,
the pseudo-labeling processes of different ensemble sizes begin in different com-
munication rounds. We can see that a single teacher generates a pseudo-labeled
dataset with the highest labeling accuracy but the smallest data size. With the
increase of ensemble size, the labeling accuracy has a slight decrease while the
data size has a noticeable increase. Since with the diversity of teachers, mul-
tiple teachers give samples multiple opportunities to pass the threshold τ and
join in the pseudo-labeled dataset. Whenever a poor teacher generates a wrong
label with high confidence, the sample will become noise data and be learned
by the student model. As a result, the test accuracy has an irregular fluctua-
tion in the 0 ∼ 3% range instead of a significant improvement. Nevertheless,
multiple teachers are more likely to produce the best performance.

Different optimizers. We evaluate our method with SGD as the opti-
mizer. The (α, β) is set to (0.2, 0.8). As another learning rate strategy, we fix
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Fig. 12 Utilization of unlabeled data by all methods within 100 rounds using ResNet-8 on
CIFAR-100.The top line shows the variation in the accuracy of the pseudo-labeled data, the
middle line shows the variation in the quantity of the pseudo-labeled data and the bottom
line shows the data distribution in the last communication round.
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Fig. 13 Performances with different sizes of the unlabeled dataset on CIFAR-10 with CNN.
Our method always gains more from the unlabeled data in test accuracy.

the learning rate at 0.001 rather than a cyclical learning rate. The compari-
son shows in Figure 15. We can see that the learning with Adam has a faster
convergence but an extremely slight over-fitting. Under the IID and the 0.8-
bias data settings, SGD and Adam achieve comparable test accuracy. In the
case of the 2-class data setting, with a deeper non-IID degree, SGD with a
constant learning rate performs better. It indicates that keeping a constant
rather than cyclical learning rate is better when encountering non-IID data.
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Fig. 14 Effects of different teacher ensemble sizes on model accuracy on CIFAR-10 with
CNN.

The advantage still maintained is that the test accuracy is little affected by
the non-IID data.
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Fig. 15 Effects of different optimizers on model accuracy on CIFAR-10 with CNN.
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5 Related Work

5.1 Federated Learning

Although federated learning has made good progress in both privacy protec-
tion and decentralized learning, there are some issues specific to federated
learning that have been extensively studied. Like statistical heterogeneity due
to different users characteristics, system heterogeneity as a result of differ-
ent computing and storage capabilities of edge devices, communication cost in
poor communication conditions, and security aiming at malicious clients or a
malicious server [2, 23–26]. All of these would lead to poor convergence of the
aggregation model. In this work, we mainly focus on the problem of statistical
heterogeneity, related work of which will be discussed in the next subsection.

5.2 Challenges on Non-IID Data in Federated Learning

In conventional distributed learning, the model owner has rich data and dis-
tributes it to other devices to train a model collaboratively. Different from it,
the server in federated learning does not have available data to learn, it uses
not only the computing capability of local devices but also the data on them.
As a result, the distributions of the data on different devices vary according
to the users’ personalities, become independent due to the possible connec-
tions between users. This non-IID data in the context of federated learning
is also called statistical heterogeneity. Zhao et al.[3] had verified that the test
accuracy of the global model trained by FedAvg decreased significantly under
non-IID settings, the convergence rate also slowed down. How to eliminate
the effect of non-IID data on the performance of the global model has been
extensively studied.

Some existing researches deal with non-IID data by sharing part of the
labeled data. Zhao et al.[3] shared 5% of labeled data to the server to improve
the performance of the global model. Yoshida et al.[27] proposed to use 1%
shared IID data to train a model with the same role as local models to par-
ticipate in aggregation, so as to alleviate the impact of non-IID data. In this
case, sharing labeled data has a great risk when the key information about
data privacy lies exactly in the labels.

Active selection of participants is a good way to solve the problem of statis-
tical heterogeneity. Lu et al.[28] proposed to select participants by clustering
according to data distribution, to make local data used in training approximate
to the global distribution. Wang et al.[22] proposed to use reinforcement learn-
ing to accomplish this participant selection process. The improvement brought
by these methods is limited, and the model performance is still restricted by
the non-IID data.

Sattler et al.[29] and Briggs et al.[30] didn’t think that one model can fit
the distribution of all clients’ data, they proposed to cluster the local clients
and aggregate different global models for different types of data distributions.
When there are no explicit clusters of clients, Jamali-Rad et al.[31] proposed to
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learn the task correlation between clients with a contractive encoding of local
data to perform more efficient federated aggregation of heterogeneous data.

Hu et al.[32] proposed to use GAN to train a feature extractor for local
data to enhance the correlation between clients. The weight of each client
who participates in aggregation is determined by the feature quality. Jeong et
al.[33] proposed to use federated augmentation (FAug) to enhance local data,
so as to make non-IID data between local clients become IID data. But clients
executing FAug incurred additional computing and storage costs, making the
conditions for participation more stringent. Li et al.[34] accelerated conver-
gence by adding differences between local and global models as a regularization
term, which was different from our purpose.

5.3 Data Disputes in Federated Semi-Supervised

Learning

Federated Semi-Supervised Learning focuses on the problem of labels defi-
ciency in federated learning [5]. It also refers to the leverage of additional
unlabeled data to improve model performance. There are different scenarios
based on different locations of labeled and unlabeled data. Part of the exist-
ing work studies that the server has labeled data, and the client has only
unlabeled data because of the cost of labeling. Zhang et al.[6] used the consis-
tent regularization loss [35] which was widely used in semi-supervised learning,
and adopted the group-based model average method. Liu et al.[7] employed a
minimax optimization-based client selection strategy to select the clients who
hold high-quality models and used geometric median aggregation to robustly
aggregate model updates.

At the same time, another part of the work believes that it is reason-
able only for the client to have both labeled and unlabeled data. Directly,
Albaseer et al.[36] performed the vanilla semi-supervised learning locally. Jeong
et al.[5] proposed to decompose the parameters and perform disjoint learning
on labeled data and unlabeled data respectively. Long et al.[37] sent different
parts of model parameters to the server through a Teacher-Student framework,
and the communication cost decreases with the convergence of the model.

There is also a scenario that the unlabeled data is only collected on the
server side, while the client owns the labeled data. Jeong et al.[10] and Sattler
et al.[9] aggregated the output of the supervised local model (i.e. logits) for
each class to perform distillation. At the same time, Itahara et al.[11] shared
all the labeled data, generated logits for each data for distillation. Although
using logits could decrease the communication cost, the model performance
was often poor. Lin et al.[12] still communicate model parameters between
the clients and server. The local supervised models are used as an ensemble
to give unlabeled data logits predictions. Chen et al.[13] fit the distribution
of local models, sampling from the distribution to obtain an ensemble with
higher quality. The unlabeled data were used to retrain the global model after
being labeled with the logits.
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In this work, we only study the last case. Following [12, 13], we use an
ensemble to pseudo-labeling the unlabeled data.

5.4 Pseudo Labeling and Knowledge Transference

Generally, consistency regularization is a commonly used method in semi-
supervised learning. It encourages the model to make the same prediction on
the original sample and its perturbed samples. Differently, we use model pre-
dictions to generate pseudo labels to learn the knowledge in unlabeled data,
which has been studied in [17]. In the context of federated learning, some exist-
ing researchers have used Ensemble Learning to make predictions. Ensemble
learning constructs and integrates multiple base learners to make predictions,
which could achieve better performances than predictions obtained from any
base learner alone [38]. Guha et al.[21] and Lin et al.[12] drew on the idea of
bagging in ensemble learning, they treated local clients as naturally formed
bags to form the ensemble. The former carried out only once ensemble learn-
ing process while the latter iterated it finite times for incremental performance
improvements. The basic models in bagging can be parallel trained, just as the
training process on local clients can also be performed in a parallel manner.
Mao et al.[39] and Chen et al.[13] both proposed to have a linear transforma-
tion on the base learners. Mao et al. aimed for pursuing the optimal projective
direction of the linear transformation to have a better performance of the
ensemble. Chen et al. simulated the sampling from the possible distribution
of base learners through multiple linear transformations to catch better base
learners. The sampled base learners consisted of a new ensemble and maintain
its diversity.

In contrast to the parallel formation of the ensemble, we collect the base
learners of the ensemble in tandem. The global model obtained in each round of
federated learning will be collected as a base learner of our ensemble. Generally,
the classification results obtained by multiple base learners, i.e. the ensemble,
are better than those of a single classifier. The more accurate the pseudo-
labeling technique, the less likely the target model is to over-fit the noise
data. Since the strong temporal correlation of our base learners, the collection
method is similar to boosting in ensemble learning.

6 Conclusion

In this work, we leveraged a large amount of unlabeled data to improve the
performance of federated learning, especially on non-IID data. We assume the
unlabeled data is from users but detached from the users and does not pose
a privacy threat. We collected the global models obtained from each training
round as teachers to make predictions on the unlabeled data. By using the
predictions on the data as the pseudo labels, we migrated the focus of feder-
ated learning on decentralized labeled data to centralized pseudo-labeled data
successfully. In addition, we used a model rollback to alleviate the impact of
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possible data imbalance and noise data in the pseudo-labeled data. Simula-
tion shows that our method has a great improvement to federated learning,
achieving similar and even higher accuracy compared to others. In addition,
we achieved comparable performance with centralized supervised learning with
the same data size as the unlabeled data. To explain the performance of the
proposed method, we analyzed the utilization of pseudo-labeled data from
the perspective of accuracy, quantity and distribution. The result is that our
method can achieve greater utility of the unlabeled data and almost be immune
to non-IID data.

References

[1] McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized
data. In: Artificial Intelligence and Statistics, pp. 1273–1282 (2017)

[2] Lim, W.Y.B., Luong, N.C., Hoang, D.T., Jiao, Y., Liang, Y.-C., Yang,
Q., Niyato, D., Miao, C.: Federated learning in mobile edge networks:
A comprehensive survey. IEEE Communications Surveys & Tutorials 22,
2031–2063 (2020)

[3] Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

[4] Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the conver-
gence of fedavg on non-iid data. In: International Conference on Learning
Representations (2020)

[5] Jeong, W., Yoon, J., Yang, E., Hwang, S.J.: Federated semi-supervised
learning with inter-client consistency & disjoint learning. In: International
Conference on Learning Representations (2021)

[6] Zhang, Z., Yao, Z., Yang, Y., Yan, Y., Gonzalez, J.E., Mahoney,
M.W.: Benchmarking semi-supervised federated learning. arXiv preprint
arXiv:2008.11364 17 (2020)

[7] Liu, Y., Yuan, X., Zhao, R., Zheng, Y., Zheng, Y.: Rc-ssfl: Towards robust
and communication-efficient semi-supervised federated learning system.
arXiv preprint arXiv:2012.04432 (2020)

[8] Diao, E., Ding, J., Tarokh, V.: Semifl: Communication efficient semi-
supervised federated learning with unlabeled clients. arXiv preprint
arXiv:2106.01432 (2021)

[9] Sattler, F., Marban, A., Rischke, R., Samek, W.: Communication-efficient
federated distillation. arXiv preprint arXiv:2012.00632 (2020)



Springer Nature 2021 LATEX template

26 Migrating Federated Learning to Centralized Learning

[10] Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.-L.:
Communication-efficient on-device machine learning: Federated distil-
lation and augmentation under non-iid private data. arXiv preprint
arXiv:1811.11479 (2018)

[11] Itahara, S., Nishio, T., Koda, Y., Morikura, M., Yamamoto, K.:
Distillation-based semi-supervised federated learning for communication-
efficient collaborative training with non-iid private data. IEEE Transac-
tions on Mobile Computing, 1–1 (2021)

[12] Lin, T., Kong, L., Stich, S.U., Jaggi, M.: Ensemble distillation for robust
model fusion in federated learning. In: NeurIPS (2020)

[13] Chen, H.-Y., Chao, W.-L.: Fed{be}: Making bayesian model ensemble
applicable to federated learning. In: International Conference on Learning
Representations (2021)

[14] Mao, S., Chen, J., Jiao, L., Gou, S., Wang, R.: Maximizing diversity by
transformed ensemble learning. Appl. Soft Comput. 82 (2019)

[15] Zhou, Z.-H.: Ensemble Learning, pp. 181–210. Springer, ??? (2021)

[16] Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji,
A.N., Bonawitz, K.A., Charles, Z., Cormode, G., Cummings, R.,
D’Oliveira, R.G.L., Eichner, H., Rouayheb, S.E., Evans, D., Gardner, J.,
Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P.B., Gruteser, M., Har-
chaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M.,
Javidi, T., Joshi, G., Khodak, M., Konečný, J., Korolova, A., Koushan-
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