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Abstract

Traffic flow forecasting is a critical task for Intelligent Transportation
Systems. However, the existed forecasting can only be conducted at
certain timestamps, because the data, is discretely collected at these
timestamps. In contrast, traffic flow evolves in real-time via a contin-
uous manner in real world. Therefore, an ideal forecasting paradigm
should be performed at arbitrary timestamps instead of only at these
certain timestamps. Considering the forecasting timestamps will no
longer be restricted by these timestamps, we call such paradigm as
temporal super-resolution forecasting. In this paper, we incorporate
the idea of neural ordinary differential equations (Neural ODEs) to
handle the problem, modeling the change rate of traffic flow on the
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urban road. Therefore, due to the continuous nature of ordinary dif-
ferential equations, the traffic flow at arbitrary timestamps can be
forecasted by performing definite integral for the change rate. The
urban road is usually regarded as a network, and the change rate
of which can be described by continuous-time network dynamics, we
parameterize the network dynamics of the traffic flow to quantify
the change rate. On these foundations, we propose Spatial-Temporal
Continuous Dynamics Network (STCDN) to complete the temporal
super-resolution forecasting task. Extensive experiments on public traf-
fic flow datasets illustrate that our model can achieve high accuracy
on temporal super-resolution forecasting, while ensuring its performance
on conventional experimental settings at these certain timestamps.

Keywords: Temporal Super-Resolution Forecasting, Network Dynamics,
Continuous-Time

1 Introduction

With the urbanization and intelligence of human activities, traffic flow forecast-
ing plays a fundamental role in urban governance. Such a task can significantly
enhance various urban computing tasks, e.g., traffic congestion control, vehic-
ular trajectories analysis, estimating time of arrival and internet of vehicles
[1–4]. In most cases, traffic flow data is usually recorded at certain timestamps,
resulting in the recorded data has inherent discrete nature.

The discrete nature hinders us from handling the information within inter-
vals among recording timestamps. Because there is no information to be
contrasted within recording intervals, implying most of the information is
unrecorded and intractable, resulting in the forecasting can only be conducted
at these recording timestamps. For instance, when the recording interval is
5 minutes, one can’t forecast the traffic flow after 30 seconds or 7 minutes,
since there are no supervision signals to guide the forecasting at corresponding
timestamps. Under such circumstances, the forecasting flexibility will be signif-
icantly restricted. Especially in some cases, people usually need more flexible
or more frequent forecasting, e.g., rescue activities, emergencies or rush hours,
etc., the equal-resolution forecasting under the existing paradigm, where the
forecasting intervals equal to the original recording intervals, will powerless.
Therefore, a new forecasting paradigm that beyonds the original recording
timestamps, will be more valuable to those in need. The motivation can be
illustrated in Fig. 1 (A).

This paper aims to make the traffic flow forecasting can be conducted
at arbitrary timestamps, regardless of the recording intervals. In which, the
forecasting intervals can be far smaller than recording intervals. We call
such a forecasting paradigm as temporal super-resolution traffic flow fore-
casting (TSRF for short). Correspondingly, the conventional case that the
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Fig. 1 The illustration of our motivation and solution. For simplicity, we use integer
timestamps to represent recording timestamps, and use float timestamps timestamps to
represent any timestamps within recording intervals. (A) The motivation. Conventionally,
the forecasting can only be conducted at the recording timestamps, and can’t be conducted
at arbitrary timestamps within recording intervals. (B) The solution. We model the change
rate of traffic flow, and perform definite integral for the change rate, so that forecast the
traffic flow at arbitrary timestamps regardless of the recording intervals.

forecasting are conducted at recording timestamps is referred to as temporal
equal-resolution traffic flow forecasting (TERF for short) in this paper.

Despite its significance, TSRF is very challenging due to the following
reasons:

• The sparsity of supervision signals. The coarse-grained nature results
in the extreme sparsity of provided supervision signals, which means that the
forecasting at most timestamps is unavailable to contrast with supervision
signals. Therefore, we should make full use of the limited supervision signals
to overall optimize the forecasting at all timestamps, which is not focused
on in the previous studies.

• The causality of temporal correlations. Time series data always present
strong temporal causality [5], which implies that the evolution within any
tiny time intervals should meet such an abstract but actually existed tem-
poral causality. Because the causality is hard to be quantified, it will inject
extra complexity in TSRF.

• The dependencies of spatial correlations. Although the TSRF is con-
ducted in the temporal dimension, the traffic flow evolution also has spatial
correlations, which should be simultaneously modeled in the forecasting.

Fortunately, the idea of neural ordinary differential equations (Neural
ODEs) [6] points out that the traffic flow evolution within tiny time intervals
is not untraceable. We model the change rate for traffic flow, and perform the
definite integral for the change rate thus forecasting the traffic flow at arbitrary
timestamps due to the continuous nature of ordinary differential equations.
The solution is shown as Fig. 1 (B).

The urban road is usually modeled as a network, we use continuous-time
network dynamics to describe the change rate. Previous studies confirm that
traffic flow of adjacent vertices in road networks are typically similar to each



Springer Nature 2021 LATEX template

4 Article Title

A

C B

𝑝
!
" (𝑡)

(A) The Structure of Road Network 

𝑝"#(𝑡)

𝑝
#
!
(%
)

Traffic Flow 

Transition
Supervision 

Signals

Inferred 

Traffic Flow

Traffic Flow 

Transition

Probabilities

Edges of 

Road Network

Calculate

the Loss

T
ra

ff
ic

 F
lo

w

𝑡! 𝑡"

Recoring Interval

A
→
B

C →
A

(B) The Evolution of Traffic Flow

A

B

C

𝑡! +△ 𝑡 𝑡! + 2 △ 𝑡 𝑡! + 3 △ 𝑡 𝑡! + 4 △ 𝑡

(C
) C

o
rre

c
tio

n

B →
C

…

…

Fig. 2 The network dynamics of traffic flow on the urban road network. (A) The topology
of abstract road network, black lines represent the directed edges in the network, and the
orange dotted lines are modeled transition probabilities at the moment. (B) The traffic flow
evolution driven by flow transitions, where ∆t denotes a tiny time interval (mathematically
infinitesimal). (C) At the corresponding timestamps, where supervision signals are available,
we will use the supervision signals to correct the forecasting and optimize the network
dynamics.

other because vehicles traverse between them frequently [7, 8], which can be
recognized as the spatial local stationary property in statistics [9]. In light
of the traffic flow will spontaneously transfer with corresponding transition
probabilities to the adjacent vertices, the network dynamics can be quantified
as a transition process on the road network, which will be divided into two
parts: (1) real-time inference of transition probabilities for traffic flow; and (2)
calculation of traffic flow transition volume based on transition probabilities.
Intuitively, we take Fig. 1(B) as an example, the traffic flow of vertex A con-
tinuously transfer to vertex B with transition probability pAB(t) at timestamp
t, causing the traffic flow to increase in B but decrease in A. Therefore, we
can model the traffic flow evolution with a tiny time interval in terms of traffic
flow transitions, to better capture the spatial correlations.

By incorporating the concept of continuous network dynamics, we can well
tackle the three challenges mentioned above. Firstly, the continuous nature
of network dynamics can help us to infer the traffic flow at arbitrary desired
timestamps. Secondly, because of the additivity of definite integrals, subse-
quent states are completely determined by previous states, so that the temporal
causality can be well preserved. Lastly, we specify the network dynamics as
the form of GNNs to capture the complex spatial correlations due to the mes-
sage passing mechanism of GNNs [10]. Based on the above, we design a model,
Spatial-Temporal Continuous Dynamics Network (STCDN) 1. In STCDN,
we model the continuous-time network dynamics for traffic flow on the road
network, and forecast future instantaneous traffic flow at arbitrary desired
timestamps. Experiments on four public traffic flow datasets illustrate that our
model can not only achieve high accuracy on temporal super-resolution traffic

1The source code is available at https://github.com/Xieyyyy/STCDN
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flow forecasting, but also outperforms other baselines on conventional TERF
tasks.

In general, the major contributions can be summarized as follows:

• We identify a common but under-explored issue, that existing traffic fore-
casting studies can only be conducted at certain recording timestamps, and
fail to perform temporal super-resolution forecasting Therefore, we propose
Spatial-Temporal Continuous Dynamics Network (STCDN) to forecast the
traffic flow at arbitrary timestamps, rather than these certain recording
timestamps. We call such forecasting paradigm as temporal super-resolution
forecasting (TSRF).

• To this end, we incorporate the idea of neural ordinary differential equations
(Neural ODEs) to model change rate of traffic flow, and to forecast the
traffic flow at arbitrary timestamp via definite integrals. Considering the
urban road is usually recognized as a network, we specify the change rate of
traffic flow as continuous-time network dynamics.

• Extensive experiments illustrate that in temporal super-resolution fore-
casting tasks, comparing with an intuitive solution, i.e., incorporating
interpolation algorithms, our model respectively achieves averaged 8.0% per-
formance improvements. Meanwhile, in conventional experimental settings,
our model also outperforms other baselines evaluated by 10 out of 12 metrics
with averaged 2.60% improvements.

2 Related Work

2.1 Traffic Flow Forecasting

Traffic flow forecasting is a typical spatial-temporal modeling task that is
important for urban computing and is of great significance for the construc-
tion of smart cities. Earlier studies focus on traditional statistical methods
to analyze univariate time series, the representatives include Historical Aver-
age (HA), Vector Auto-Regression (VAR) [11, 12], Auto-Regressive Integrated
Moving Average (ARIMA) [13, 14], and Support Vector Regression Machines
(SVR) [15], etc. These shallow methods only capture the temporal dependen-
cies and simplify the traffic flow modeling into individual time-series forecast-
ing, the preconditions for these methods to capture complex spatial-temporal
correlations are sophisticated and manually designed feature engineering.

With deep neural networks proving their superiority of powerful represen-
tation ability, subsequent studies leveraged neural networks to complete more
accurate modeling [16–18], which completely ignores the spatial dependen-
cies. Accordingly, Convolutional Neural Networks (CNN) are utilized to model
spatial correlations of rasterized road networks [19–22]. Meanwhile, the tem-
poral information can be handled by sequential models, like Recurrent Neural
Networks (RNN) [20, 23] or Temporal Convolutional Networks (TCN) [24, 25].

However, CNN-based methods can only be applied to Euclidean data.
Therefore, Graph Neural Networks (GNN) are incorporated to tackle massive
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non-Euclidean spatial data, named spatial-temporal graph neural networks
[26]. Some graph-based methods adopt prior knowledge to construct a graph
structure via a pre-defined adjacency matrix [23, 24, 27, 28], in which the
graph structure remains constant because its information has been determined
by prior knowledge. In order to boost the representation ability of graph neu-
ral networks, various auxiliary adjacency matrices are introduced to describe
spatial relationships from different aspects, such as DTW distances [29, 30]
for measuring the feature relevance of vertices, or other specific functional
relevance (e.g., POI) [20, 31]. Recently, some studies have adopted entirely
data-driven optimizable semantic adjacency matrices [25, 32, 33] to capture
latent correlations among vertices. The spatial information and temporal infor-
mation will be further integrated and fused in different ways, such as stacking
[24, 27, 34], embedding [23, 25] or synchronization [28] etc.

Recently, some studies introduce Neural ODEs to to obtain spatial-
temporal hidden states with continuous depth, thus greatly improving the
representation ability of the model [30, 35–37]. Nonetheless, on the one hand,
in technique, these studies do not introduce the view of system dynamics to
associate the continuity with continuous physical time; on the other hand,
in application, few studies pay attention to those actually happened but
unrecorded information within recording intervals, and none of these studies
focus on the significant but under-valued temporal super-resolution forecasting
task. These methods above assume that the acquired temporal information is
absolutely complete, resulting in inflexible forecasting. Therefore, these ODE
based methods also cannot be directly utilized for temporal super-resolution
forecasting.

2.2 Super-Resolution Reconstruction

Super-resolution reconstruction was first widely studied in computer vision.
Researchers aim to reconstruct relatively higher resolution images based
on lower resolution images, referred to as super-resolution reconstruction
[38, 39]. Earlier studies adopt interpolation algorithms [40, 41] to reconstruct
fine-grained information on images and obtain high-resolution images. How-
ever, Super-resolution reconstruction is an inherently ill-posed problem, there
always exist multiple high-resolution images corresponding to one original
low-resolution image. Therefore, learned-based methods are incorporated to
reconstruct super-resolution images with richer semantic information [42, 43].
Subsequently, several studies referred to the idea of super-resolution recon-
struction to reconstruct fine-grained information of MRI information [44],
crowd flow information [45–47], and radio map information [48, 49], etc.
Nonetheless, these studies all focus on fine-grained spatial information recon-
striction. Very few studies focus on temporal information reconstriction and
temporal super-resolution forecasting. A similar task is missing value imputa-
tion of time series [50–52]. Nonetheless, the missing value imputation task has
fundamental differences with our task: (1) Task difference. The former is an
interpolation task, which aims to impute the original incomplete time series
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data. In our task, it is an extrapolation task, aiming to make the forecasting
intervals independent of recording intervals; (2) Data difference. The former
is usually adopted to tackle corrupted data, which might be caused by device
failures and human errors, etc. In our task, the data could be corrupted or not,
the coarse-grained and incomplete nature of which is mainly caused by the
inherent recording limitations. (3) Purpose difference. The former is usually
adopted to repair corrupted data, and our task is adopted to forecast future
traffic flow at flexible timestamps.

3 Problem Satatement

3.1 Definition (Traffic Network)

Let G = (V,E,A) denotes a traffic network, with the set of vertices V (sensing
devices), and the set of edges E (geographical or semantic connections). |V | =
n represents the graph G contains n vertices. A ∈ R

n×n denotes the adjacency
matrix of G. This paper will learn the adjacency matrix A with an end-to-
end manner. Additionally, at the timestamp t, there are features of vertices
X(t) ∈ R

n×i, where i is the original input feature dimension.

3.2 Temporal Super-Resolution Traffic Flow Forecasting
(TSRF)

The temporal super-resolution traffic flow forecasting task (TSRF) is intro-
duced to forecast traffic flow at arbitrary desired timestamps.

Formally, given the traffic network G and h historical observations from
the initial timestamp t−h to the terminal timestamp t−1: X (t−h : t−1) =
[X(t−h),X(t−h+1), · · · ,X(t−1)], our target is to find a mapping function
FΘ(t, ·) to forecast the traffic flow at an arbitrary timestamp t. Here, t

can be any timestamp that satisfies t ≥ t0. We should minimize the
error between the forecasted traffic flow and the supervision signals X (t0 :
tq−1) = [X(t0),X(t1), · · · ,X(tq−1)] at corresponding timestamps locate in
T = [t0, t1, · · · , tq−1]:

argmin
Θ

∑

t∈T

L(Y(t),X(t))

s.t. Y(t) = FΘ(t,X (t−h : t−1))

, (1)

where L is the objective function, Θ denotes all trainable parameters.
FΘ(t,X (t−h : t−1)) ∈ R

n×i is a matrix to describe the state at timestamp t,
X (t−h : t−1) ∈ R

h×n×i, Y(t),X(t) ∈ R
n×i are lists of values, we stack it as

matrices to facilitate parallelization. Note that we will use negative values to
denote the timestamps with historical observations, while t0 denotes the initial
timestamp of forecasting.
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3.3 Temporal Equal-Resolution Traffic Flow Forecasting
(TERF)

In order to correspond to the aforementioned TSRF, we introduce the tem-
poral equal-resolution traffic flow forecasting task (TERF) to represent the
conventional traffic flow forecasting, where the forecasting intervals equal to
the recording intervals.

Formally, given the traffic network G and h historical observations from
the initial timestamp t−h to the terminal timestamp t−1: X (t−h : t−1) =
[X(t−h),X(t−h+1), · · · ,X(t−1)], our target is to find a mapping function FΘ(·)
to forecast the next q-step traffic flow from the timestamp t0 to the terminal
tq−1 as Y(t0 : tq−1), and minimize the error between the forecasted traffic flow
and the supervision signals X (t0 : tq−1):

argmin
Θ

L(Y(t0 : tq−1),X (t0 : tq−1))

s.t. Y(t0 : tq−1)) = FΘ(X (t−h : t−1))
, (2)

where Y(t0 : tq−1),X (t0 : tq−1) ∈ R
q×n×i.

The Problem 1 is what our model should tackle, and the Problem 2 is the
conventional problem definition of previous studies. The difference between
the both is if we can flexibly select the forecasted timestamp t. In the former,
t can be any timestamp that satisfies t ≥ t0, while the forecasted timestamp
t are fixed in the latter. Actually, the latter is a subproblem of the former,
which implies that one can solve the former will certainly solve the latter, and
not vice versa.

4 An Overall Solution

From the continuous-time dynamical system view, the continuous depth of
neural networks is equivalent to continuous physical time [6, 53, 54]. Mean-
while, the discrete layer of neural networks can be converted as a continuous
one in the neural ODEs, also can be recognized as the change rate of features
at each moment [6]. Therefore, we impose the continuous depth on network
dynamics via neural ODEs, enabling it to represent continuous physical time.

Firstly, for better representation ability, we will use a fully-connected layer
to map the original input traffic flow feature X(t) ∈ R

n×i at timestamp t

into high-dimensional hidden space H(t) ∈ R
n×d with hidden dimension d.

At timestamp t, the traffic flow hidden state is denoted as H(t) ∈ R
n×d, we

formulate the network dynamics of traffic flow on road network as a continuous-
time function fΘ(t,H(t)) over time t. The network dynamics should be the
form of ordinary differential equation [6]:

fΘ(t,H(t)) =
dH(t)

dt
, (3)
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where Θ denotes all trainable parameters. Essentially, the network dynamics
is the derivative function of hidden state H(t) over time t. Under the circum-
stances of our task, it can also be interpreted as the instantaneous rate of
change of traffic flow.

By integrating the Eqn (3) over time t from an initial hidden state H(t0) ∈
R

n×d at timestamp t0, Eqn (3) is actually equivalent to solving an initial value
problem [55]. We can infer the continuous-time instantaneous hidden state
H(t) at an arbitrary timestamp t ≥ t0 via the definite integral with variable
upper bound:

H(t) = H(t0) +

∫ t

t0

fΘ(τ,H(τ))dτ. (4)

Therefore, from the Eqn (4), we can model the traffic flow on road network
as a constant coefficient dynamical system with parameter sharing over time.
The larger upper bound t is, the ”deeper” the neural networks is, and in
physical meaning, the longer the evolution time consuming of traffic flow on
the road network is. Meanwhile, because the upper bound t can be arbitrarily
selected, as long as it satisfies t ≥ t0, we can infer the traffic flow at arbitrary
timestamps regardless of the recording intervals, realizing the TSRF task. Also,
the parameter sharing nature provides the opportunity to overall optimize the
network dynamics by minimizing the loss on partial timestamps.

We will use a self-attention based Graph Neural Network to specify the
network dynamics. Intuitively, in the context of traffic flow on road network,
the above idea can be interpreted as a straightforward phenomenon that the
ceaseless traffic flow transition in the road network will trigger the evolution of
traffic flow over time. The intuition is exactly meets the conventional physical-
guided traffic flow theories [7, 8, 56].

5 Methodology: Spatial-Temporal Continuous
Dynamics Network

5.1 Overview

The overview of Spatial-Temporal Continuous Dynamics Network (STCDN)
is shown as Fig. 3. From the illustration, we can see that STCDN is a typical
encoder-decoder model [57]. The most intuitive characteristic is our model
will generate a set of continuous dotted curves via the definite integral of the
network dynamics, which exactly represent the continuous Subsequently, we
will introduce the encoder and the decoder, respectively.

5.1.1 Encoder

Theoretically, if we have the initial hidden state H(t0), we can inference the
subsequent continuous-time hidden state via the Eqn (4). This implies that the
initial hidden state should contain rich semantic information. Therefore, we
design an encoder to incorporate the information from historical observations.
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Fig. 3 The overview of Spatial-Temporal Continuous Dynamics Network.

Formally, given the historical observations X (t−h : t−1) =
[X(t−h),X(t−h+1), · · · ,X(t−1)] from the from the initial timestamp t−h to
the terminal timestamp t−1, where X (t−h : t−1) ∈ R

h×n×i. We firstly use
a fully-connected layer to map it into a hidden space: H(t−h : t−1) =
[H(t−h),H(t−h+1), · · · ,H(t−1)], where H(t−h : t−1) ∈ R

h×n×d. We take
H(t−h) as the initial state to solve the initial value problem until the integral
upper bound t−h+1 via the network dynamics fΘE

(t,H(t)), and obtain the
hidden state at t−h+1:

H(t−h+1) = H(t−h) +

∫ t−h+1

t−h

fΘE
(τ,H(τ))dτ, (5)

where ΘE denotes all trainable parameters in the encoder, which implies the
parameters in the encoder and the decoder are not shared. After obtaining the
H(t−h+1) ∈ R

n×d, there are historical observations X(t−h+1) ∈ R
n×i that can

be used to complement the hidden state, reducing the errors accumulation.
We will use a linear combination to fuse the hidden state H(t−h+1) and the
historical observations X(t−h+1):

X(t−h+1) := FC(H(t−h+1)) + FC(X(t−h+1)), (6)

where FC(·) denotes a fully-connected layer with activation function. The
above process will be performed repeatly, until all historical observations are
encoded into an intermediate hidden state H ∈ R

n×d.
Although the TSRF will not be performed in the encoder, we still encode

the network dynamics, since we observe the network dynamics can be inter-
preted as a feature augmentation, enabling the model to achieve better
forecasting performance. The hypothesis will be confirmed in the ablation
study part.
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5.1.2 Decoder

The decoder takes the hidden state H as the initial information. Because no
any complementation information should be incorporated, we directly inte-
grate the network dynamics fΘD

(t,H(t)) to forecast the traffic flow Y(t) ∈
R

n×i at the timestamp t:

Y(t) = FC(H+

∫ t

t0

fΘD
(τ,H(τ))dτ). (7)

Analogously, ΘD denotes all trainable parameters in the decoder.

5.1.3 Optimization

STCDN provides an end-to-end manner to optimize. Formally, given the
ground-truth from t0 to tq−1, X (t0 : tq−1), as supervision signals, together with
the set of timestamps where supervision signals locate in: T = [t0, t1, · · · , tq−1].
We use Mean Absolute Errors (MAE) as the loss function:

L =
∑

t∈T

|Y(t)−X(t)|+ λ||Θ||2, (8)

where the latter term λ||Θ||2 denotes L2 regularization for avoiding over-
fitting.

We will only extract the forecasting results at timestamps that contained in
T to contrast the ground-truth and optimize. Because the network dynamics
share the same parameters, we optimize the model according to the forecast-
ing at these certain timestamps, forecasting at arbitrary timestamps will also
be adjusted simultaneously, since these forecasting are all generated by the
network dynamics. From this perspective, the TSRF can be regarded as a
semi-supervised learning task.

5.2 Specifying the Form of Network Dynamics

Secondly, the form of network dynamics fΘ(t,H(t)) should be specified. The
network dynamics should contain two processes: (1) real-time inference of tran-
sition probabilities for traffic flow; and (2) calculation of traffic flow transition
volume based on transition probabilities. We desing a self-attention mechanism
to complete the both processes.

The first task is to infer the real-time transition probabilities for traffic
flow. Formally, given the hidden state H(t) and the adjacency matrix A at
timestamp t, the transition probabilities can be denoted as a transition matrix
M(t) ∈ R

n×n:

M(t) = Softmax(Filter(A ◦ (Q1(t) +Q2(t))K(t)⊤), (9)
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where
Q1(t) = H(t)ΘQ1,

Q2(t) = H(t)ΘQ2,

K(t) = H(t)ΘK

. (10)

Filter(Aij) =

{

Aij Aij ̸= 0

−∞ otherwise
. (11)

ΘQ1,ΘQ2,ΘK ∈ R
d×d are trainable parameters, ◦ denotes Hadamard product.

The purpose of the simultaneous existence of Q1(t) and Q2(t) is to obtain the
representations as the roles of target and source in a directed graph, respec-
tively. Filter(·) is a newly defined function to set 0-value entries as the negative
infinity, ensuring the transition probabilities of non-neighbor are always 0 after
the Softmax(·).
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Fig. 4 The illustration of the self-attention based network dynamics.

After obtaining the transition probabilities matrix, the next task is to cal-
culate the traffic flow transition volume C(t) ∈ R

n×d based on transition
probabilities:

C(t) = M(t)V(t), (12)

where
V(t) = H(t)ΘV , (13)

ΘV ∈ R
d×d is a matrix of trainable paramters. The purpose of Eqn (12) is

to complete traffc flow transition and perform feature transformation. The
traffic flow transition volume C(t) numerically equals to the network dynamics
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fΘ(t,H(t)). Intuitively, the traffic flow transition volume is exactly the volume
of cahnge of the traffic flow at each moment, which can represent the derivative
function of traffic flow on road network.

Combining Eqn (9), (10), (11), and (12), we can obtain a self-attention
based Graph Neural Network to represent the network dynamics, which can
be written as the following fully expanded form:

fΘ(t,H(t)) = Softmax(Filter(A ◦Q1(t)+

Q2(t))(K(t))⊤V(t)
. (14)

Similar to other self-attention based algorithms [58, 59], we impose multi-head
operation on the network dynamics to reduce parameters and enhance the
representation ability.

5.3 Implementation Details

5.3.1 Numerical Integration

We solve the initial value problem shown in Eqn (4), (5), and (7) by numer-
ical integration methods, such as Euler method, Runge-Kutta methood, or
Dormand-Prince method [60]. These numerical integration methods can infer
the continuous-time instantaneous hidden state that determined by network
dynamics.

5.3.2 Adjacency Matrix

Instead of using geographical adjacency matrix that generated by prior geo-
graphical relationships, we adopt the trainable adaptive adjacency matrix to
obtain the semantic relationships [25, 32, 33], which has been proved that can
achieve better performance:

A = TopK(Tanh(σ(M1 ·M
⊤
2 ))), (15)

where M1,M2 ∈ R
n×n′

are trainable parameter matrices with n′ ≪ n, initial-
ized by Xavier method [61]. σ(·) is the ReLU activation function. The Tanh(·)
function here is to constrain the entries within 0 to 1 (together with the
ReLU(·) function). TopK(·) function means that we will only retain a certain
percentage of edges according to the weight, and other edges will be removed,
the purpose of which is to ensure the sparsity of the adjacency matrix.

6 Evaluation

In this section, we conduct extensive experiments on four real-world datasets
to answer the following questions:

• Q1. How does the STCDN performs in the temporal super-resolution
forecasting (TSRF) tasks?



Springer Nature 2021 LATEX template

14 Article Title

Table 1 Basic information of datasets

Datasets #Vertices Interval #Timestamps

PeMSD3 358 5min 26208
PeMSD4 307 5min 16992
PeMSD7 883 5min 16992
PeMSD8 170 5min 28224

• Q2. How does the STCDN performs in the conventional temporal equal-
resolution forecasting (TERF) tasks?

• Q3. What the performance tendency of TSRF tasks is as the forecasting
resolution magnification increases?

• Q4. Does encoding network dynamics in the encoder improve the forecasting
performance?

6.1 Datasets

We will conduct conventional TERF on PeMSD3, PeMSD4, PeMSD7, and
PeMSD8, TSRF and other experiments will be conducted on PeMSD4 and
PeMSD8. Necessary information of datasets is given in Table 1. All datasets
record the information of traffic flow every 5 minutes. These datasets are the
benchmarks used in many existing studies [27–30, 62, 63].

According to these existing studies, for fairness, we adopt general solutions
to preprocess these datasets. Firstly, we utilize the Z-score normalization to
the input information X :

X :=
X −mean(X )

std(X )
, (16)

where mean(·) and std(·) are the mean value and the standard deviation of the
input information, respectively. All datasets aggregate records into 5-minute
interval, and 288 timestamps per day.

In addition, following these studies, we split the training set, validation
set, and test set for these datasets according to the chronological order by the
corresponding ratio, i.e., 60% for training set, 20% for validation set and 20%
for test set.

6.2 Basic Experimental Introduction

We design two types of basic experiments to answer the Q1 and Q2,
respectively.

6.2.1 Experimental Introduction of TSRF

Our model can perform TSRF tasks. Nonetheless, evaluating the quality of
TSRF is a problem, since there is no information within recording intervals,
thus, no ground-truth values can be provided to contrast and evaluate. In order
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to generate the ground-truth values in the TSRF task, we select a compromised
way: we expand the recording intervals by k times for training, correspond-
ing to the forecasting resolution magnification. Therefore, there are still extra
available data that do not participate in the training within recording intervals.
Meanwhile, these available data can be adopted as ground-truth to evaluate
the forecasting within recording intervals. In summary, we need more ground-
truth values than the supervision signals, to evaluate the super-resolution
forecasting performance. Specifically, in this part, we let the forecasting reso-
lution magnification k = 3, which means that the forecasting resolution in the
evaluation phase will be tripled of training phase.

6.2.2 Experimental Introduction of TERF

The TERF task is a conventional task that widely conducted in previous stud-
ies [27–30, 62, 63]. We refer to the experimental settings in previous studies for
fairness, using past 12 timestamps of historical observations to forecast traffic
flow of future 12 timestamps, in which the recording intervals are 5 minutes.

6.3 Baselines

Up to our knowledge, there is no spatial-temporal modeling algorithm that
dedicated to independently perform TSRF tasks. We divide all baselines into
basic baseline models and interpolation models. The former class can complete
TERF. We introduce a compromised way, imposing interpolation models on
the forecasting results of these basic baseline models to simulate TSRF tasks.

6.3.1 Basic Baseline Models

• Vector Auto-Regression (VAR) [11], a time series model to capture the
pairwise relationships among time series;

• Long Short-Term Memory (LSTM) [64], a classical variant of Recurrent
Neural Networks (RNNs) for time series;

• Diffusion Convolutional Recurrent Neural Networks (DCRNN) [23], in
which the spatial dependencies are captured by random walks, and the
temporal dependencies are captured by RNNs;

• Spatial Temporal Graph Convolution Networks (STGCN) [24], which
formulates the problem on graphs and builds the model with complete
convolutional structures;

• Graph WaveNet (GWN) [25], a framework for Deep Spatial-Temporal
Graph Modeling, which applys a learnable adaptive adjacency matrix to
capture the hidden spatial dependency;

• Attention Based Spatial-Temporal Graph Convolutional Networks
(ASTGCN) [27], which designs spatial attention and temporal attention
mechanisms to model spatial and temporal dynamics, respectively;

• Spatial-Temporal Synchronous Graph Convolutional Networks (STSGCN)
[28], which synchronously captures the spatial and temporal information by
stacked graph convolutional neural networks.
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• Spatial-Temporal Fusion Graph Neural Networks (STFGNN) [29], which
adopt a data-driven temporal graph to compensate several existing correla-
tions that spatial graph may not reflect.

• Spatial-Temporal Graph ODE Networks (STGODE) [30], an model that
captures spatial-temporal dynamics through a tensor-based Ordinary Dif-
ferential Equation.

6.3.2 Interpolation Models

• Lagrange Interpolation (LAG), an interpolation algorithm based on poly-
nomials [65];

• Slinear Interpolation (SLI), a spline interpolation of first order;
• Quadratic Interpolation (QUA), a spline interpolation of second order;
• Cubic Interpolation (CUB), a spline interpolation of third order [66];
• Linear Interpolation (LIN), an interpolation algorithm that the interpola-
tion function is a polynomial of the first degree;

• Nearest Interpolation (NEA), an interpolation algorithm that selects the
nearest information to perform interpolating.

Performing interpolating requires sampling points, which should be coarse-
grained. These coarse-grained sampling points should be provided by other
forecasting algorithms, referred to as basic model. In this paper, we select
DCRNN [23], STGCN [24], Graph WaveNet [25], ASTGCN [27], and STGODE
[30] as basic models, and perform interpolating based on the forecasting results
of these models.

6.4 Experimental Settings

6.4.1 Implementation Settings

Our experiments were conducted on the computer environments with Tesla
V100 GPU cards. We implement our algorithm by PyTorch. Batch size is
set as 32, the number of attention heads (Z) is 8, hidden dimension in
our algorithm (d) is 128, learning rate is 0.0003. We incorporat Adam opti-
mizer [67] to train our model. In the adjacency matrix, we retain 7.5% edges
with the largest weight, and remove others. In computation, we select the 5-
order Dormand-Prince method [60] for numerical integration. Notability, the
numerical integration methods can be selected arbitrarily, e,g., Euler method,
Runge-Kutta method, etc.

6.4.2 Evaluation Metrics

Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Mean
Absolute Percentage Errors (MAPE) are used as the evaluation metrics. Exper-
iments on all datasets are conducted at least 5 times with different random
seeds, the shown metrics are the mean value all experiments. Note that we
prefer to refer to the experimental results of baselines given by authors if



Springer Nature 2021 LATEX template

Article Title 17

any. Otherwise, we tune the hyper-parameters of baselines carefully, detailed
settings of hyper-parameters for baselines are given on Github.

6.5 Experimental Results

6.5.1 Performance Comparison of TSRF

Table 2 Performance Comparison of TSRF (bold fonts denote the best performance
and undelines denote the second best performance)

Datasets
Interpolations

LAG SLI QUA CUB LIN NEA

Algorithms Metrics

P
e
M

S
D

4

DCRNN
MAE 32.88 28.63 30.53 29.13 30.96 30.67
RMSE 45.62 42.64 43.40 42.26 45.93 43.39

MAPE(%) 29.40 25.43 26.03 25.10 26.94 25.08

STGCN
MAE 38.71 30.36 31.47 32.16 31.89 31.70
RMSE 55.93 48.73 47.52 48.29 45.28 47.23

MAPE(%) 42.02 30.28 33.28 34.77 31.16 31.53

GWN
MAE 29.39 25.66 25.67 25.99 26.06 26.10
RMSE 43.86 38.24 38.10 38.28 38.50 38.61

MAPE(%) 21.34 20.05 20.01 19.40 19.99 19.39

ASTGCN
MAE 29.72 28.85 28.46 27.60 28.34 28.36
RMSE 42.19 42.40 41.62 40.85 41.41 41.74

MAPE(%) 24.21 21.50 21.64 21.47 24.69 22.91

STGODE
MAE 29.57 26.54 26.37 27.23 27.10 26.91
RMSE 42.60 38.21 39.44 39.51 40.71 40.33

MAPE(%) 22.34 19.19 20.22 19.31 19.52 19.47

STCDN
MAE 24.23 (↓ 5.57%)
RMSE 36.15 (↓ 5.12%)

MAPE(%) 17.60 (↓ 12.05%)

P
e
M

S
D

8

DCRNN
MAE 28.07 23.58 23.03 23.80 23.94 23.01
RMSE 40.53 35.55 35.47 34.83 34.69 33.48

MAPE(%) 21.66 18.67 17.61 18.53 18.31 18.78

STGCN
MAE 30.95 26.64 26.97 26.13 25.17 26.73
RMSE 46.51 38.21 40.23 39.52 41.73 42.43

MAPE(%) 31.28 20.33 21.38 23.17 22.78 21.12

GWN
MAE 22.89 20.87 20.34 20.10 21.48 21.57
RMSE 34.91 31.14 31.60 31.70 31.01 31.20

MAPE(%) 20.37 14.81 15.32 15.41 14.90 14.69

ASTGCN
MAE 27.83 25.28 25.66 25.24 25.48 25.57
RMSE 40.89 37.27 37.33 36.80 37.18 37.31

MAPE(%) 19.43 18.16 17.48 17.66 16.82 17.34

STGODE
MAE 24.13 21.51 21.32 20.87 21.44 21.39
RMSE 36.67 32.58 32.33 31.89 33.64 32.70

MAPE(%) 20.68 15.31 14.64 14.01 14.88 14.41

STCDN
MAE 19.05 (↓ 5.22%)
RMSE 29.43 (↓ 5.49%)

MAPE(%) 12.56 (↓ 14.50%)

The detailed comparison of TSRF is given in Table 2. Note that the com-
parison shown in the Table 2 is under the forecasting resolution magnification
k = 3, other forecasting resolution magnifications will be analyzed in the
subsequent section.
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From the comparison, we can see that STCDN presents the best per-
formance on TSRF tasks. Concretely, comparing STCDN with the second
best performance, STCDN achieves averaged 7.58% and 8.40% performance
improvements on the two datasets, respectively. Such a superiority mainly
comes from the fundamental difference between STCDN and other basic
baseline models.

Interpolation-based methods overally exhibit less performance. On one
hand, the performance of these interpolation-based methods is highly depen-
dent on the basic baselines that they rely on. Moreover, basic baselines that
perform well on conventional TERF task are not consistent with the TSRF
task. For instance, GWN can perform better on TSRF task when it is consid-
ered as a basic baseline, but it failed to present competitivity in TERF task
as shown in Table 3. This results in selecting a ideal basic baseline a diffi-
cult and tricky affair. Meanwhile, Since different interpolation strategies take
into account different orders, the performance of these methods also depen-
dent on the selecting of interpolation strategies. The above two items make
the construction of interpolation-based methods more like a time-consuming
permutation and combination when performing the TSRF task. Even so, this
approach did not achieve the desired performance.

In contrast, STCDN consideres the traffic flow on road network as a
physical-guided way, i.e. continuous-time dynamical system. Whether classi-
cal physics-guided traditional theories [56], or human intuitive perception of
traffic flow transitions [7, 8] have confirmed that comparing with conventional
spatial-temporal models that directly fusing spatial information and temporal
information [27–30, 62, 63], our proposed continuous-time transition of traffic
flow can better reflect the nature of the road network as a complex physical
system. Meanwhile, such a continuous-time nature can also more accurately
approximate the real traffic flow at arbitrary timestamps in a more natural
mean.

6.5.2 Performance Comparison of TERF

The performance comparison of TERF is given in Table 3, which has the
conventional experimental settings. The comparison shows that our proposed
model overall outperforms other baselines in four public traffic flow datasets
on 10 out of 12 metrics with averaged 2.60% improvements. As we mentioned
above, the modeling ideas of STCDN are fundamentally different the idea
of directly fusing spatial information and temporal information, which more
meets the natural evolution of traffic flow. Additionally, in the numerical inte-
gration methods, there will be a lot of temporary hidden states are generated,
which can be regarded as feature augmentation. Therefore, we hypothesize
that such a performance superiority mainly comes from the augmented fea-
tures provided by the generated hidden states, which will be verified in the
subsequent ablation studies.

Among these baselines, STFGNN [29] and STGODE [30] achieve the sec-
ond best performance. The both, utilized DTW-augmented graphs to complete
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Table 3 Performance Comparison of TERF

Datasets PeMSD3 PeMSD4

Metrics
MAE RMSE MAPE(%) MAE RMSE MAPE(%)

Algorithms

VAR 23.56 38.26 24.51 24.54 38.61 17.24
LSTM 21.33 35.11 23.33 26.77 40.65 18.23

DCRNN 17.99 30.31 18.34 21.22 33.44 14.17
STGCN 17.55 30.42 17.34 21.16 34.89 13.83
GWN 19.22 32.77 18.89 24.89 39.66 17.29

ASTGCN 17.34 29.56 17.21 22.93 35.22 16.56
STSGCN 17.48 29.21 16.78 21.19 33.65 13.90
STFGNN 16.77 28.34 16.30 20.48 32.51 16.77
STGODE 16.50 27.87 16.69 20.84 32.82 13.77

STCDN
16.33

(↓ 1.03%)
26.14

(↓ 6.21%)
15.87

(↓ 2.64%)
20.41

(↓ 0.34%)
31.24

(↓ 3.91%)
13.85

Datasets PeMSD7 PeMSD8

VAR 50.22 75.63 32.22 19.19 29.81 13.10
LSTM 29.98 45.94 13.20 23.09 35.17 14.99

DCRNN 25.22 38.61 11.82 16.82 26.36 10.92
STGCN 25.33 39.34 11.21 17.50 27.09 11.29
GWN 26.39 41.50 11.97 18.28 30.05 12.15

ASTGCN 24.01 37.87 10.73 18.25 28.06 11.64
STSGCN 24.26 39.03 10.21 17.13 26.80 10.96
STFGNN 23.46 36.60 9.21 16.94 26.25 10.60
STGODE 22.59 37.54 10.14 16.81 25.97 10.62

STCDN
22.40

(↓ 0.84%)
35.22

(↓ 3.77%)
10.10

16.48

(↓ 1.96%)
24.90

(↓ 4.12%)
10.51

(↓ 0.85%)

the feature augmentation. Therefore, the performance superiority of these two
algorithms mainly comes from more powerful feature engineering. Interest-
ingly, in previous comparison in TSRF, GWN based algorithms achieve strong
performance with interpolation, but it do not perform well in TERF tasks.
This also confirms the randomness and uncertainty of selecting the combina-
tion of basic baselines and interpolations when performing TSRF. Also, the
experiment illustrates that STCDN can not only perform excellently in TSRF
with significant performance improvements, it also present strong competivity
in conventional TERF tasks.

Notability, our model significantly outperforms all baselines in metrics
MAE and RMSE, but failed to achieve the best in MAPE. This is because of
we modeled network dynamics is essentially a first-order ordinary differential
equation mathematically. If only the first-order terms are considered, with-
out incorporating higher-order terms, the modeled evolution trajactories of
traffic flow will be smooth. Such a smooth nature will result in excellent aver-
age forecasting performance for all timestamps, but tends to be insensitive to
mutations or jumps. This will be the future direction of our subsequent studies.

6.6 Parameter Sensitivity Analysis

To answer Q3, we will discuss the influence of forecasting resolution magnifi-
cation k on the accuracy of TSRF.

Based on the settings in the TSRF tasks, we will discuss the influence
of forecasting resolution magnification k ranges from 2 to 6 on PeMSD4 and
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Fig. 5 The forecasting performance comparison under different resolution magnifications.

PeMSD8 datasets, i.e. correspond to the cases of forecasting intervals of 150
seconds to 50 seconds respectively, under the 5-minute recording interval.
As a comparison, we also illustrate the TSRF performance of basic models
with Slinear Interpolation algorithms, which presents the overall best TSRF
performance among all baselines.

The TSRF comparison under different resolution magnification is shown
as Fig (5). Generally, the comparison illustrates that with the resolution mag-
nification increases, the forecasting performance of all algorithms are getting
worse, which is intuitive. Because a larger resolution magnification implies the
more information should be forecasted, while the less information we known,
thereby increasing the difficulty of accurate forecasting. Additionally, in our
settings, we expand the recording intervals to simulate the case of lager inter-
vals, which also leads to numerical increasement. But this does not prevent us
from comparing the relative performance among models.

In the comparison, we can see that our model consistently achieves the best
performance among these algorithms in the task. Meanwhile, we can see with
the forecasting resolution magnification k increases, the performance degrada-
tion of our algorithm is minimal overall. The experiment illustrate that even
in the case of sparse recording data to be the supervision signals, STCDN can
still perform accurate TSRF compared to other baselines.
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6.7 Ablation Study

In this subsection, to answer the Q4, we will analyze how the existence of
continuous-time hidden states that are generated by integrating the network
dynamics affects forecasting performance.

To this end, we no longer regard the network dynamics, shown in Eqn
(14), as dynamical information, but as a simple spatial information extractor.
Therefore, we will not perform a definite integral in the temporal dimension.
Insteadly, we incorporate the idea of DCRNN [23] that using an RNN block
to handle the temporal information. The ablation model is referred to as
STCDN(w/o dynamics). The experiment will conducted on all datasets, and
all evaluation metrics are obtained via TERF tasks. Thus, STCDN follows the
conventional strategy that fusing spatial and temporal information. Results
are shown in Table 4.

From the comparison, we can see that the continuous-time hidden states
from the view of network dynamics can enhance the forecasting performance
with 4.50% improvements. We hypothesize such superiority can be explained
from two aspects: (1). the continuous-time hidden states that are generated by
the physical-guided way can better approximate the nature of the continuous
evolution of traffic flow on the road network, enabling STCDN to have a bet-
ter representation ability; (2). the continuous-time hidden states can also be
regarded as a way of feature augmentation to improve forecasting performance.

Table 4 Ablation Study of Network Dynamics

Models STCDN STCDN(w/o dynamics)

Metrics
MAE RMSE MAPE(%) MAE RMSE MAPE(%)

Datasets

PeMSD3
16.33

(↓ 4.00%)
26.14

(↓ 11.12%)
15.87

(↓ 9.83%)
17.01 29.41 17.60

PeMSD4
20.41

(↓ 1.93%)
31.24

(↓ 1.21%)
13.98

(↓ 1.62%)
20.81 31.62 14.21

PeMSD7
22.40

(↓ 6.75%)
35.22

(↓ 6.11%)
10.10

(↓ 6.31%)
24.02 37.51 10.78

PeMSD8
16.48

(↓ 0.36%)
24.90

(↓ 2.28%)
10.51

(↓ 2.41%)
16.54 25.48 10.77

7 Conclusions and Future Work

In this paper, we notice that the widely applied recording way in traffic flow
might result in the coarse-grained and incomplete nature of supervision signals,
leading to the forecasting intervals being strictly limited by recording intervals.
Therefore, we propose a new task named Temporal Super-Resolution Traffic
Flow Forecasting to help the forecasting intervals eliminate the limitations of
recording intervals. Specifically, we regard the traffic flow on the road network
as a continuous-time dynamical system. By modeling the network dynamics
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and incorporating the idea of ordinary differential equations, we can model the
continuous-time hidden states, and further infer the traffic flow at arbitrary
desired timestamps.

This is a novel attempt at making the forecasting intervals independent of
the recording intervals, enabling traffic forecasting with more flexible intervals.
Theoretically, such a continuous-time dynamical system based idea can be
expanded to any domain that is related to time series, not just traffic flow
forecasting. Therefore, it can also benefit more potential applications. On the
other hand, we also need to confront some problems due to the immaturity of
this solution for the novel task, such as insensitivity of mutations or jumps,
and time-consuming. In the future, we will work to solve these problems, and
improve the idea to better tackle such a novel problem.
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