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Abstract. Most social networks can be modeled as a heterogeneous graph. Recently,
advanced graph learning methods exploit the rich node properties and topological
relationships for downstream tasks. That means that more private information is
embedded in the representation. However, the existing privacy-preserving methods
only focus on protecting the single type of node attributes or relationships, which
neglect the significance of high-order semantic information. To address this issue, we
propose a novel Heterogeneous graph neural network with Semantic-aware Differential
privacy Guarantees named HeteSDG, which provides a double privacy guarantee and
performance trade-off in terms of both graph features and topology. In particular, we
first reveal the privacy leakage in heterogeneous graph and define a membership inference
attack with a semantic enhancement (MIS) that will improve the means of member
inference attacks by obtaining side background knowledge through semantics. Then
we design a two-stage mechanism, which includes the feature attention personalized
mechanism and the topology gradient perturbation mechanism, where the privacy-
preserving technologies are based on differential privacy. These mechanisms will defend
against MIS attacks and provide stronger interpretation, but simultaneously bring in
noise for representation learning. To better balance the noise perturbation and learning
performance, we utilize a bi-level optimization pattern to allocate a suitable privacy
budget for the above two modules. Our experiments on four public benchmarks conduct
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performance experiments, ablation studies, inference attack verification, etc. The results
show the privacy protection capability and generalization of HeteSDG.

Keywords: Heterogeneous graph; Semantic; Differential Privacy; Graph embedding

1. Introduction

Many existing works represent social networks with graphs, which make the data
with multi-nodes and multi-relationships constitute heterogeneous graph [1, 2]. It
makes up a more complex semantic structure and faces the fusion of multi-node
features and the representation of multi-relationship structures. Representation
learning for heterogeneous graph properties facilitates neural network models to
learn latent information and use it for downstream tasks, such as recommendation
systems [3,4]. However, in most cases, they only exploit some explicit information
such as nodes and edges, without considering higher-order and implicit semantic
information.

To adapt to the heterogeneity of social networks, heterogeneous graph neu-
ral networks (HGNNs) are popular in graph representation learning because of
their powerful representational capabilities [5–9]. In the existing works, to learn
the dependencies of node to neighbors and high-order nodes in graphs [10–16],
we divided HGNNs into two main categories: neighbor aggregation based on
convolutional kernel and random walk based on meta-path, meta-graph, and
meta-schema [1,17–19]. They are achieved remarkable achievements, where the
meta-path is regarded as semantic information. However, in real-world applica-
tions, powerful HGNNs boost the downstream representation ability while leading
to an additional risk of privacy leakage. They mine the implicit information on
the social graph, but more private information is undoubtedly implied in the rep-
resentation results. For example, some malicious behaviors can deliberately push
insecure links based on community detection to get private information, like social
relationships [20], behavioral trajectories [21–23], and medical records. The exist-
ing works focus on how to improve the representational power of heterogeneous
graph and ignore the security issues of private information.

While people benefit from the convenience of the HGNNs, they are faced with
recorded behavior data and learned and used all aspects of information. That
would bring a series of privacy leakage risks which are reflected in two important
graph properties, i.e., features and topology. Fortunately, to address privacy
problems, we can be inspired by some prominent works on common protection
methods in machine learning and privacy-preserving technology for homogeneous
graphs [20, 24–26]. They perturb the node features before they are input, or add
noise to the gradient of the model learning. And they use some popular and
advanced privacy protection technology like differential privacy [27, 28], which is
based on data distribution perturbation and with a strict mathematical definition.
However, existing differential privacy-based designs are difficult to adapt to
semantic data and are not resistant to MIS attacks. We use the recommendation
systems as an example to illustrate our MIS attack scenario. Fig. 1 (a) is a
heterogeneous graph schema that expresses the node types and edge types in
a social network. For feature MIS in Fig. 1 (b), it indicates that a meta-path
“UserA-Item1-Store-Item2-UserC (UA-I1-S-I2-UC)" as semantic information will
provide the similarity between nodes to infer the potential purchase records and
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(c)Topology MIS(b)Feature MIS(a)Heterogeneous Graph Schema
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Fig. 1. A toy example of privacy risk in a heterogeneous graph.

judge whether the records are in the training set. Some traditional methods
protect nodes from malicious inference attacks by perturbing homogeneous node
correlations and reducing the predicted probability. However, multi-types of nodes
and relationships in the heterogeneous graph will enhance the probability of a
successful attack. For topology MIS, we assume that a malicious attacker can
seek public networks with similar topologies and infer information about the
target network by comparing topological attributes. The background knowledge
allows attacker to obtain connections between arbitrary nodes regardless of node
types and analyze the semantics to get the preferences of a particular user.
Fig. 1 (c) reveals that a meta-graph “StoreD-UserA-StoreB-UserC (SD-UA-SB-
UC)” as a semantic relationship will benefit the attacker to extract topology
characteristics and infer whether the nodes are used for training models by
comparing them with similar networks. In conclusion, owing to the high-order
features and topological complexity caused by semantics, a unified framework
needs to be designed to implement privacy protection. We propose three main
challenges: (1) heterogeneous semantic information as higher-order information
enhances the attacker’s inference ability when node features are aggregated; (2)
even if the topology is changed, heterogeneous semantic information as side
information will complement the latent topological information and enhance
attack inference; (3) it is difficult to trade off privacy guarantees and compelling
predictions.

To resolve the above problem, we propose a novel Heterogeneous Graph
Neural Network with Semantic-aware Differential Privacy Guarantees method
named HeteSDG1. First, we define a novel privacy leakage scenario for het-
erogeneous graph recommendation systems, and we reveal the privacy leakage
risks associated with the heterogeneity. Further, we design two stages of privacy-
preserving strategies about feature attention personalized mechanism (FeatADP)
and topology gradient perturbation mechanism (TopoGDP). The FeatADP is
based on a heterogeneous attention mechanism to learn and perturb the node
representations. And the degree of perturbation depends on the sensitivity of
features’ gaussian noise [29], which is influenced by the different types of neighbors
and relationships. Specifically, we follow meta-paths as semantic information to
build node neighbors and make them debias for semantic attention since the build
process would diminish the semantic information representation. For TopoGDP,
we input the perturbed node representations to heterogeneous variational graph
auto-encoders [30] for reconstructing the privacy-preserving topology, and design a
regularization term as the soft supervision objective of side semantic relationships.

1 The source code is released at https://github.com/AixWinnie/HeteDP.

https://github.com/AixWinnie/HeteDP
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And the link predictor can set learnable gradient clipping hyperparameters as
noise sensitivity to clip and perturb the gradients. In addition, to better integrate
these two properties, we use a bi-level optimization mechanism to achieve a trade-
off between privacy-preserving and performance optimization and a reasonable
privacy budget allocation.

A preliminary version of this work focuses on the Heterogeneous Graph Neural
Network for Privacy-Preserving Recommendation (HeteDP) is published in the
proceedings of ICDM 2022 [31]. This journal version has extended our method
from the traditional Markovian walk into personalized awareness enhancement
for semantic representation, and designed a semantic-centric regularization term.
In other words, we extend the two-stage mechanism using a semantic-aware
debias mechanism. In addition, we add more detailed technical explanations to
the journal version and add attack experiments for more extensive datasets and
analyses to evaluate our extended model HeteSDG.

The organization of this paper is listed as follows. We revisit previous works on
related topics in Section 2. We introduce the problem definition in Section 3, and
the overall proposed method in Section 4. The experimental results and analysis
are presented in Section 5. In the last Section 6, we present the conclusion of this
work.

2. Related Work

2.1. Heterogeneous Graph Embedding

Heterogeneous Graph Neural Networks (HGNNs) [32–34] are proposed to deal
with ubiquitous heterogeneous data. We divide HGNNs into two main cate-
gories: neighbor aggregation based on convolutional kernel and random walk
based on meta-path, meta-graph, and meta-schema. To learn high-order informa-
tion, some existing models performed graph convolution directly on the original
heterogeneous graph. HGT [35] proposed a transformer-based model for han-
dling large academic heterogeneous graph with heterogeneous subgraph sampling.
RGCN [33] captured the heterogeneity of graphs by projecting node embeddings
into different relational spaces using multi-relational aggregation weight matrices.
HetSANN [36] used a type-specific graph attention layer for the aggregation of
local information, avoiding manually selecting meta-paths.

In addition to mining explicit node features and topology structure in graphs,
some works extracted semantic information as additional guidance for hetero-
geneous graph embedding by adding meta-paths, meta-graph, or meta-schema
as prior knowledge to effectively fuse heterogeneous data and improve learning
performance. HetGNN [32] considered each node’s heterogeneous content (node’s
attribute information) and used the random walk to sample a fixed number
of strongly associated heterogeneous neighbors for graph nodes, and then used
BiLSTMs to process the heterogeneous graph. Metapath2vec [18] designed a
meta-path based random walk and utilized skip-gram to generate node embed-
dings. HIN2Vec [17] learned node representations based on meta-path random
walks to incorporate semantic information in heterogeneous graph. HGConv [35]
introduced node representation based on mixed micro/macro level convolution
operations on heterogeneous graph. A micro-level convolution can learn the de-
pendency of nodes under the constraints of the same relation, and a macro-level
convolution was used to distinguish subtle differences between relation types.
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With the contextualization of advanced research, many works had also made
excellent progress in recommendations [37, 38]. However, with the representa-
tion and application of rich information, more user information is undoubtedly
exposed, and the adversary collects the side information of the node features,
topology structure, or semantic information from public sources to infer the
private information.

2.2. Graph Privacy Protection

Since graph neural networks (GNNs) play a crucial role in deep learning, the
privacy problems in graph embedding are exposed, and some early work tried to
protect graph data privacy and achieve meaningful results.

For homogeneous graphs, some works preserved the user information by per-
sonalized privacy protection [39] and the use of anonymization mechanisms [40,41]
prevented an attacker from inferring private information. Recently, DPGGAN [28]
had carried out differential privacy in GNNs by referring to DP-SDG [42] privacy-
preserving design patterns and taking advantage of VGAE [30]. LDP [43] disturbed
local user features to protect the privacy of node features and solved precision
degradation by excessive injection noise through KProp. PrivGnn [44] randomly
sampled private data from the training set and input the sampled data into the
model for training pseudo labels, and then mixed pseudo labels in the public data
to achieve privacy protection. In application, GERAI [27] was a recommendation
model, in which a combination of GNNs and LDP ensures the practicability of
learning and protects users’ information from attribute inference attacks.

For heterogeneous graph, there was new work on the design of a heterogeneous
differential privacy mechanism [45] whose target was to solve the problem of
privacy budget allocation due to the different distribution of heterogeneous data.
However, with the addition of more side information (semantic information), the
inference capability of the attackers may be enhanced, and the existing methods
are difficult to adapt to the high-order feature and topological complexity caused
by semantics.

3. Preliminaries and Problem Definition

To efficiently implement privacy protection for heterogeneous graph, we use
differential privacy techniques [46] (DP) that are consistent with our data type
and framework design. Differential privacy is recognized as one of the quantifiable
and practical privacy-preserving models. The basic idea is that any computation
cannot be significantly affected by any operation such as add, delete and modify.
Even if the attackers know all records except this one, they cannot obtain any
information from it.

(ϵ, δ)-Differential Privacy [47]. A random algorithm M satisfies (ϵ, δ)-
Differential Privacy for any two neighboring data sets D and D′ and any possible
subset of output O ⊆ Range (M), and it holds that

Pr [M (D) ∈ O] ≤ eϵPr [M (D′) ∈ O] + δ. (1)

where the nodes D and D′ differ by at most one record. The privacy strength
of DP increases as the privacy budget decreases, which is controlled by ϵ and δ.



6 Y. Wei et al

Table 1. Summary of notations.

Symbol Description

G Heterogenous graph
ϵ Global privacy budget
ϵf Feature perturbation privacy budget
ϵs Topology perturbation privacy budget
M Gaussian mechanism
△2S Sensitivity
Nfeat Feature noise-adding function
Ntopo Topology noise-adding function
m Meta-path
C Semantic-aware debias weight

Am
u Neighbor attention coefficient of node u on m

Bm Semantic Attention coefficient on m

C Gradient norm bound

h̃ Perturbed features
g̃ Perturbed gradient

X,h Node representation
A Relationship matrix
q (·) Feature encoder
p (·) Link predictor

Thus, (ϵ, δ)-DP is guaranteed by adding appropriate noise to the output of the
algorithm, and the amount of injected noise is calibrated to the sensitivity.

Sensitivity [47]. Given any query S on D, the sensitivity for any neighboring
data sets D and D′ which is defined as

∆2S = max
D,D′

∥S (D)− S (D′)∥2 . (2)

Gaussian Mechanism [29]. Let S : D → O
K be an arbitrary K-dimensional

function and define its l2 sensitivity to be ∆2S. The Gaussian Mechanism with
parameter σ adds noise scaled to N

(
0, σ2

)
to each of the K components of the

output. Given ϵ ∈ (0, 1), the Gaussian Mechanism is (ϵ, δ)-DP with

σ ≥
√
2 ln (1.25/δ)∆2S/ϵ. (3)

Adding noise is the primary means to implement privacy-preserving by differ-
ential privacy. In this work, we will apply Gaussian noise to the node features
and link prediction gradients of the heterogeneous graph G, respectively, and the
overall form is defined as

M (G)
△
= S (G) +N

(
0, (△2S)

2
σ2
)
, (4)

where ∆2S controls the amount of noise in the generated Gaussian distribution
from which we will sample noise into the target.

Privacy Leakage Analysis. Some existing works [28] only consider the
high-order influence of the same node types while reducing the probability of
malicious attackers stealing user interest orientations by perturbing their edges.
However, the heterogeneous graph with complex data in which will enhance the
attackers’ inference ability i.e. the attacker can obtain the membership of nodes
by inferring the semantic information from other types of nodes. Consequently,
the existing privacy-preserving methods are hard to adapt to the high-order
features and topological complexity caused by semantics. And MIS in HGNNs
will utilize node features and topology structure to further formulate semantic
links to infer private information. Therefore, we transform the privacy problem
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on heterogeneous graph into an associative differential privacy problem of graphs
with solid semantic correlation. This means that our problem further becomes
a multi-objective optimization problem for representation learning as well as
optimal privacy budget allocation. The key symbols of this paper are summarized
in Table 1.

Problem Definition. We aim to maximize the privacy-preserving effect
while minimizing the information loss due to the noise. Therefore, we combine
optimal privacy budget allocation with model optimization as a multi-objective
optimization problem. There is a heterogeneous graph G = (V,E, ϕ, ψ) with
an entity mapping function ϕ (v) : V → A and a relation mapping function
ψ (e) : E → R, where V and E are the set of nodes and edges. Each node v ∈ V
belongs to the node typeset A, and each edge e ∈ E belongs to the edge typeset

R. The graph has the meta-paths m = a1
r1→ a2

r2→ . . .
rN−1
→ aN constructed by

node type ai ∈ A (i = 1, 2, . . . , N) and edge type ri ∈ R (i = 1, 2, . . . , N) , where
ai = ϕ (vi) and ri = ψ (ei) = ψ (⟨vi, vi+1⟩). Then, given an objective function
with FeatADP f (x, y) and TopoGDP g (x, y) on the privacy budget of ϵf and ϵs,
the problem can be defined as follows

min
x∈ϵs

g (x, y) , s.t. y ∈ arg min
y∈ϵf

f (x, y) , (5)

where global privacy budget ϵ = ϵf + ϵs. Such problems usually difficult to find a
unified optimal solution, which is the same as the multi-objective optimization
in existing graph learning. We are inspired by the multi-head attention mecha-
nism [48] and differentially private stochastic gradient descent [42]. We formulate
two protection strategies for node and topology, respectively. In the next section,
we will specify our proposed privacy-preserving approach.

4. Proposed Methodology

In this section, we introduce the HeteSDG framework, a heterogeneous graph
neural network with semantic-aware differential privacy guarantees, and illustrate
the details of privacy mechanisms and learning optimization mechanisms. Fig. 2
presents our proposed framework with the two-stage DP mechanisms of node
features and topology structure. Specially, we elaborate on the HeteSDG ap-
proach (see Algorithm 1) and intuitive illustration that FeatADP will provide
the perturbed features for TopoGDP to execute downstream.

4.1. Feature Attention Personalized mechanism

In this section, we detail the node-level privacy-preserving mechanism and in-
corporate it into feature representation learning. Specially, we compute the
representation of various nodes by learning the influence weights of neighbors
and semantics.

The semantic neighbor building follows a Markov chain and meta-paths, i.e.
the conditional probability of the node u with type ai+1 at moment is determined
by the node v with type ai only, and the next node type to walk is fixed. In
particular, to adapt the heterogeneity of the data, we constrain the generation of
semantic neighbors through meta-pathsm. In addition, we obtain natural semantic
neighbor information weights C for preparing further conditioning semantic-level
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Fig. 2. The framework of HeteSDG. HeteSDG consists of two major components:
FeatADP and TopoGDP. The first part secures the node attributes, and the
second part protects the topology. The two parts are constrained by a global
privacy budget so that the perturbation to the model is within a reasonable range
and the optimal accuracy is pursued.

feature learning, which we call the semantic-aware debias mechanism. The
formulation is expressed formally as

(gsm, C)← P (ai+1 |ai, . . . , a1) = P (ai+1 |ai) = Am
ai+1ai

= Am
ri
, (6)

where ai+1 = a1. For multi-nodes, we map them to a uniform space through
linear transformation, and the embedding of the l-th layer neural network as

h(l)
u = w(l) ⊙ f (l)u , (7)

where h
(l)
u and f

(l)
u are the embedding and the original feature of the node u, and

w(l) is linear mapping matrices.
For neighbor-level aggregation, to learn the dependence between node u and

neighbor v, we leverage the attention mechanism and normalize the overall
attention value to quantify that we calculate the attention score between nodes
as

W
(l)
(uv;m) =

exp(σ(α(hu ∥ hv))
(l)
m )

∑
k∈Vgs(u)

exp(σ(α(hu ∥ hk))
(l)
m )

, (8)

where Vgs(u) is the set of neighbors which includes node v and following Eq. (6),
σ(·) is an activation function, α is a learnable weight vector and ∥ denotes
concatenation. Then, we introduce multi-head attention for node representation
learning to pay attention to more comprehensive neighbor information. And
we explicitly obtain the learnable influence weight of node u by other nodes
simultaneously as the guiding of neighbor-level perturbation. So we design the
multi-head attention coefficients and node representations between nodes on the
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(l + 1)-th layer of each subgraph as

h(m,l+1)
u = ||Kk=1σ



∑

v∈V (u)

W k
(uv;m)z

(l)
v


 , (9)

A(m,l+1)
u = σ


 1

K

K∑

k=1

∑

v∈V (u)

W k
(uv;m)


 , (10)

where K is the head of multi-head attention and z
(l)
v is the embedding of the

neighbor node. Specially, We use two types of multi-headed attention aggregation
for node embeddings and attention weights, this design is just to better fit our
data format, actually, they can be mixed.

For semantic-level aggregation, we utilize residual concatenate for the node
embeddings to retain more semantic dependency as

zmu = ||Mm=1h
m
u . (11)

where M is the number of meta-paths. As we analyzed, heterogeneous data are
more vulnerable to semantic inference attacks, and we further consider the impact
of semantic-level on node representation. The semantic attention from multilayer
perceptron (MLP) as

Wm =
1

|V |

∑

u∈N

LeakyReLU (w2z
m
u + b) , (12)

Bm =
exp(Wm + C)∑

m∈M exp(Wm + C)
, (13)

where Wm is the attention weight of m and Bm is the normalized attention
coefficient. We note that C can further metric the awareness of semantics and
provide more accurate semantic preferences following Eq. (6). So we get the
multi-level embeddings as

zu =

M∑

m

Bmzmu . (14)

For the privacy-preserving feature learning, we inject personalized noise into
the nodes individually, which means our noise fuse the weights of neighbor and
semantics. We design the sensitivity and Gaussian noise on heterogeneous graph
following Eq. (2), (10) and (13) as

△2Sfeat = max
D,D′

Am
u Bm · ∥S (D)− S (D′)∥2 ,

h̃ = zu + λ · N u
feat

(
0, σ2

ϵf
(△2Sfeat)

2I
)
,

(15)

where λ is a hyperparameter, the privacy budget ϵf < ϵ and N u
feat is the Gaussian

distribution with mean 0 and standard deviation σϵf△2Sfeat for u to satisfy
(ϵf , δ)-DP.
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Algorithm 1: HeteSDG.

Input: Meta-path m; Relationship matrix A; Node set V ; Node feature
h; Original sensitivity △2S; Local privacy budget ϵf or ϵs;
Number of negative sampling k; Number of training epochs T ;
Batch size B; Noise scale σ; Gradient norm bound C .

Output: Predicted result of the downstream task.
1 Initialize model parameters;
// FeatADP

2 (gsm, C)← Am;

3 W(uv∈V ;m) =
exp(σ(α(hu∥hv))m)∑

k∈Vgs(u)
exp(σ(α(hu ∥ hk))m)

;

4 Get A
(m,l+1)
u with multi-head attention from aggregating W ;

5 Get Wm from MLP;

6 Bm = exp(Wm+C)∑
m∈M exp(Wm + C)

;

7 Update sensitivity △2Sfeat = A
m
u Bm · △2S;

8 Calculate node embeddings zu ← (W,Bm);

9 h̃ = zu + λ · N u
feat

(
0, σ2

ϵf
(△2Sfeat)

2I
)

// TopoGDP

10 h̃k
v′ ← NegSample

(
h̃u, k|∀u ∈ V

)
;

11 for t = 1, 2, . . . , T do

12 Encode h̃ to z from encoder q(·);

13 Predict Ã from p(·)
14 L = Lr

D + γLKL + ηLC

15 Get gradient g;
16 Update sensitivity △2Stopo = C;

17 g̃ = 1
|B|

(∑
i∈B gr

i /max
(
1,

∥gr
i ∥2

△2Stopo

)
+Ntopo

(
0, σ2

ϵs
(△2Stopo)

2I
))

;

18 end

4.2. Topology Gradient perturbation mechanism

In this section, our design is based on a heterogeneous variable auto-encoder which
contains an embedding encoder and link predictor. It executes the heterogeneous
differential privacy stochastic gradient descent to achieve privacy protection for
topology structures.

For embedding encoder. We build a two-layer heterogeneous graph neural
network (HeteGCN) inspired by some state-of-art model [30, 33, 49]. And its
aggregated representations of multi-nodes and multi-relationships as

z
(l+1)
dst = Agg

(
fr

(
G, h̃(l)

src, h̃
(l)
dst

)
|r∈R

)

s.t. z = HeteGCN(X,Ar),
(16)

where fr is the HeteGCN module of each r ∈ R, X = h̃ is node features, and Ar

is the relationship matrix. The hidden layer representation of each node under
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the relational subgraph as

z(l+1)
u = σ



∑

v∈V(u)

ζw(l)h̃(l)
v


 , (17)

where ζ is a normalization constant, and w(l) and h̃
(l)
v are the learnable weight

matrices and neighbor node embeddings of the l-th layer, respectively.
Our training process is an unsupervised representation learning and we design

negative sampling to enhance the generalizability of the model, which will compute
the difference in scores between two connected nodes and any pair of nodes. For
example, there is an edge e ∈ E between nodes u ∈ V and v ∈ V in graph G,
and we want the score between u and v to be higher than the score between u
and k nodes v′ sampled from an arbitrary distribution v′ ∼ Pn (v). We random
extract a batch negative sample in each iteration training through the neighbor
sampling of the multi-layer GNN, and the negative sampling definition as

h̃k
v′ ← NegSample

(
h̃u, k|∀u ∈ V

)
. (18)

Then, we adopt a two-layer HeteGCN model following Eq. (16) as an encoder
and utilize the reparameterization trick in training

q (Z|X,Ar) =

V∏

i=1

Pn
(
zi|µ

r
i ,
(
σ2
i

)r)
, (19)

where z is a stochastic latent sampling variable, µr = HeteGCNµ (X,Ar) is
the matrix of mean vectors µr

i and logrσ = HeteGCNσ (X,Ar) is the matrix of
standard deviation vectors σr

i .
For link predictor, we compute the inner product between latent variables

to reconstruct the edge and leverage the calculation to express the connection
probability of two different types of nodes ϕ(zu) and ϕ(zv) as

p
(
Ãr|Z

)
=

|Au|∏

i=1

|Av|∏

j=1

σ
(
zTu zv

)
, (20)

where zTu represents the transpose of zu.
The topology representation learning is to study a suitable and superior

data distribution and discover latent structure. Therefore, We can learn the
interdependence and association of node u and v based on semantic association
rules and calculate the score between the node pair with the unsupervised cross-
entropy loss of the graph as

Lr
D = − log σ (qu,v)− k · Ev′∼Pn(v) log (σ (−pu,v′)) , (21)

where k is the number of negative sampling. To alleviate the topology perturbation,
we set the KL divergence LKL to constrain the distribution between generated
samples and real samples. Specially, we design a regularization term LC as the
soft supervision objective of side semantic relationship. The loss function as

L = Lr
D + γLKL + ηLC

= Lr
D + γ

∑

i∈⟨u,v⟩

KL (qi||p (Zi)) + η
1

2N

V∑

i=1

∥∥∥(
∑

k∈V (ui)
zk)

T
i − (zTi )

∥∥∥
2

2
,

(22)
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where γ and η are hyperparameters, p (Zi) =
∏

i Pn (zi|0, I) is a Gaussian prior,
and

∑
k∈V (ui)

zk is the predicted average of neighbors V (ui) to nodes ui.

For the topology privacy-preserving learning, we protect topology by perturbing
the gradient of the representation learning. And we inject the Gaussian noise to
the training gradient, so the sensitivity further defines as △2Stopo = C following
Eq. (4).

Then, for each iteration in training, we calculate the gradient of predictor
g = ∇L from backpropagation, inject noise into the gradient after gradient
clipping and before gradient update, and finally perform gradient descent. Thus,
the perturbed gradients as

g̃ =
1

|B|

(
∑

i∈B

gr
i /max

(
1,
∥gr

i ∥2
△2Stopo

)
+Ntopo

(
0, σ2

ϵs
(△2Stopo)

2I
)
)
, (23)

where B and |B| are the batch and size for each training iteration, respectively,
∥gr

i ∥2 is the l2 norm of gradient clipping, and Ntopo (·) is the Gaussian distribution
with mean 0 and standard deviation σϵs△2Stopo. The distribution satisfies (ϵs, δ)-
DP, where the privacy budget ϵs < ϵ. We control the sensitivity to noise by
limiting the norm bound C of a gradient. To adapt to the noise distribution in
heterogeneous data, we utilize privacy accounting [42] to regulate the privacy
budget of each iteration. We set a constant number c2, the sampling probability
P , and the number of iterations T for training to make σϵs ≥ c2P

√
T log 1/δ.

4.3. Bi-level optimization of HeteSDG

In this section, we introduce a bi-level optimization mechanism [50] to achieve a
two-stage privacy budget allocation with Eq. (5). The aim is to maximize the
privacy-preserving effect while minimizing the information loss due to noisy inputs.
The optimization is organized into two processes. For FeatADP optimization,
we fix the hyperparameter of privacy budget ϵs and find the optimal value of ϵf
where {ϵf ∈ R : 0 < ϵf < ϵ}, and the approximate solution formula is

(ϵf )t = yt−1 −∇f(yt−1, x), (24)

where y ∈ ϵf , x ∈ ϵs, t = 1, 2, . . . T and ∇ denotes gradient descent. For TopoGDP
optimization, we fix the hyperparameter of privacy budget ϵf and find the optimal
value of ϵs where {ϵs ∈ R : 0 < ϵs < ϵ}, and the parameter update as

ϵs = x−∇xg(y, T, x). (25)

4.4. Privacy-Preserving Analysis of HeteSDG

In this section, we give a detailed privacy analysis and proof for HeteSDG in the
following theorem.

Theorem 1. A random functionM is (ϵ, δ)-DP if the privacy loss CM (o,D,D′)
satisfies Pr [CM ≥ ϵ] ≤ δ, where the privacy loss define as

CM (o,D,D′) := ln
Pr [M (D) = o]

Pr [M (D′) = o]
.
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Proof. Let us partition O as O = O ∪ O′, where O = {o ∈ O : CM ≥ ϵf,s} and
O′ = {o ∈ O : CM < ϵf,s}. For any S ⊆ O, if Pr [CM (o,D,D′) ≥ ϵf,s] ≤ δ, we
have

Pr [M (D) ∈ S]

= Pr [M (D) ∈ S ∩ O] + Pr [M (D) ∈ S ∩ O′]

≤ Pr [M (D) ∈ O] + exp (ϵf,s) Pr [M (D′) ∈ S ∩ O′]

≤ δ + exp (ϵf,s) Pr [M (D′) ∈ S] ,

yielding (ϵ, δ)-DP for the Gaussian mechanism, where ϵf,s denotes the privacy
budget of noise on node features or topology.

Theorem 2. Let M1 : D → O1 be an (ϵf , δ)-DP algorithm, and M2 : D → O2

be an (ϵs, δ)-DP algorithm. Their combination defined to be A =M1,2 : D →
O1 ×O2 by the mapping: A (x) = (M1 (x) ,M2 (x)) is (ϵf + ϵs, δ)-DP.

Proof. Let x, y ∈ D and fix ∀ (o1, o2) ∈ O1 ×O2. Then

Pr [A (D) = O] + δ

=
(Pr [M1 (x) = o1] + δ) (Pr [M2 (x) = o2] + δ)

(Pr [M1 (y) = o1] + δ) (Pr [M2 (y) = o2] + δ)

=

(
Pr [M1 (x) = o1] + δ

Pr [M1 (y) = o1] + δ

)(
Pr [M2 (x) = o2] + δ

Pr [M2 (y) = o2] + δ

)

≤ exp (ϵf ) exp (ϵs) = exp (ϵf + ϵs) ,

which shows that the combination algorithm A satisfies (ϵf + ϵs, δ)-DP.

5. Experiments

5.1. Experimental Setup

In this section, we conduct experiments on four datasets and two tasks to demon-
strate the adaptability of heterogeneity privacy protection and the effectiveness of
heterogeneous graph learning. The experiment results of HeteSDG are shown in
Table 3, where the best accuracy is shown in bold and the best privacy-preserving
results are underlined. Furthermore, “−” indicates that the current model hardly
implements in the dataset. We then further analyze how HeteDP and HeteSDG are
affected by changing the strength of privacy-preserving, and our contribution to
the overall performance of the optimization model.

Datasets. We use four open social network datasets, including citation
networks (ACM and DBLP), an E-commerce dataset (Amazon), and a relational
movie network (IMDB). The dataset statistics are shown in Table 2 where we
mark the classified nodes and the predicted edges with bolded. For example, in
the downstream task of the ACM dataset, we perform node classification for
“paper” and link prediction for “paper-author”. The choices follow the majority of
heterogeneous graph learning.

Baselines. We compare the HeteDP and HeteSDG with state-of-the-art
heterogeneous baseline methods in different categories: (1) meta-paths-based
GNNs, we select metapath2vec [18] and HetGNN [32], where HetGNN has ignored
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Table 2. Statistics of Datasets.
Dataset # Nodes(Label) # Edges

ACM
author: 17,351 field: 72 paper-author: 13,407

paper: 4,025(3) paper-field: 4,025

DBLP
author: 4,025(4) conf: 20 paper-author: 19,645
paper: 14,328 term: 7,723 paper-conf: 14,328 paper-term: 85,810

Amazon
category: 22 item: 2,753(3) item-category: 5,508

user: 6,170 view: 3,857 item-user: 195,791 item-view: 5,694

IMDB
actor: 5,257 director: 2,081 movie-actor: 12,828

movie: 4,278(3) movie-director: 4,278

Table 3. Summary of experimental results: “F1 score in NC and ROC-AUC score
in LP” (%).

Dataset ACM DBLP Amazon IMDB Avg. R
Task NC LP NC LP NC LP NC LP (△)

Metapath2vec [18] 73.69 − 92.80 44.58 78.33 88.86 48.81 67.69 4.5
HetGNN [32] 82.82 89.99 90.43 55.73 70.61 72.37 54.78 59.24 3.9
HGConv [35] 88.89 82.15 93.40 57.00 92.17 63.43 63.43 64.00 3.1
HGT [11] 88.85 79.68 93.42 53.32 94.40 65.77 63.63 55.52 3.3
RGCN [33] 82.67 63.28 87.70 58.10 94.50 65.03 61.30 74.32 3.6

HeteDP (pure) 87.50 85.44 87.33 79.72 97.82 72.52 53.07 82.07 2.6
HeteDP (ϵ=0.01) 67.33 71.92 30.13 62.83 95.28 60.20 40.12 74.37 (↓ 17.9)
HeteDP (ϵ=0.1) 76.15 72.15 32.24 68.84 97.41 64.65 40.29 75.06 (↓ 14.8)
HeteDP (ϵ=1) 80.33 77.39 39.81 73.94 97.67 72.24 48.50 75.57 (↓ 10.0)
HeteSDG (ϵ=1) 89.31 80.13 35.40 80.87 98.60 64.29 54.01 74.56 (↓ 8.5)

the node representation fusion since our node is without self-loop edges; and (2)
convolution-based GNNs, we choose HGConv [35], HGT [11] and RGCN [33].

Settings. We separately set the parameters of FeatADP and TopoGDP. The
common parameters are set the following: training epoch to 100, epsilon ϵ from
0.01 to 1, and the probabilistic of breaking privacy protection δ to 1e− 5. For
the special values, FeatADP and TopoGDP are set learning rates lr of 0.005
and 0.001, and hidden layer dimensions of 64 and 32. For the other parameters,
in feature representation learning, we set the dropout of training to 0.8, the
regularization coefficients to 0.001, the number of heads of the multi-headed
attention mechanism K to 8, and a hyperparameter λ to 0.01. Specially, we define
the meta-paths m for each node type from all possible walks, and the number of
layers depends on the meta-paths m and the types of edges R in the graph. In
topology learning, we set the batch size |B| to 2048 and the number of negative
sampling k to 5. For the baseline models, the parameters are set as the default
values in their papers. To sum up, the categories of node classification and edge
prediction set for each data selection follow Table 2 and the dataset split setting
following VGAE [30].

5.2. Performance Comparison

We set up two downstream tasks to test the performance of our proposed method,
node classification (NC) and link prediction (LP). Table 3 summarizes the
performance of HeteDP and HeteSDG in the different downstream tasks and on
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(c) LP on IMDB.

Fig. 3. Ablation study of ROC-AUC scores of LP on validation set with ϵ = 0.01.

four datasets, comparing with the baseline methods, which reflects the inherent
generalizability and the privacy-preserving effect.

For the node classification task, we consider the practice of unsupervised
node classification [49], using negative sampling of edges for training and 2-order
neighbor sampling at each iteration of validation. We use the F1 score as a
classification effectiveness measure. For the link prediction task, we extend the
sampler [49] to negative sampling on heterogeneous graph, sampling k negative
pairs for each edge. Each training randomly selects a specific size of data to form
batch training. The encoder of TopoGDP consists of heterogeneous convolutional
layers following Eq. (16) and Eq. (17), and the link predictor calculates the scores
of positive and negative sample pairs by inner product, respectively. We utilize
the ROC-AUC score as an indicator to judge the performance of HeteSDG. The
experimental results show that HeteDP and HeteSDG reduce the average score
by 10.0% and 8.5% when privacy budget ϵ = 1. This phenomenon indicates the
utility of privacy preservation, and with the work of semantic-aware mechanism, it
is feasible to design privacy noise more efficiently and with a lower loss of accuracy.
Our designed framework has the highest average accuracy ranking in the pure
state, indicating that our privacy-preserving mechanism can be implemented with
a state-of-the-art learning model, ensuring the fundamental performance of the
model under perturbations.

Overall, in the LP task of DBLP and IMDB, compared to the runner-up model,
our proposed HeteDP (pure) improves performance over 21.62% and 7.75%. And
we likewise observe that the noise of different sensitivities to each dataset brings
diverse levels of influence. For example, the model accuracy improves in different
magnitudes with an increasing privacy budget, such as the ROC-AUC score of
Amazon is only reduced by 0.28% with ϵ = 1. It shows that the generalization
ability of our model is guaranteed to a certain extent, and the model can maintain
the utility of the data under the influence of noise. Similar to what has been
elaborated above, the ACM dataset has an accuracy reduction of about 14% on
the LP task when setting the privacy-preserving strength of ϵ = 0.01. It shows
that our proposed privacy-preserving method can affect MIS attack enhanced by
semantic relations (graph topology).

5.3. Further Analysis

In this section, we conduct an ablation study, bi-level optimization, sensitivity
analysis and MIS attack verification. Some results demonstration follows HeteDP
because they are a similar validation form of HeteSDG and we will not perform
a new presentation of the results.
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Fig. 4. The visualization of node types on ACM.

Ablation study. We further conduct ablation experiments to assess the
necessity of FeatADP and TopoGDP privacy-preserving mechanisms. We design
a total of four experiments in the LP task for comparison: the first is “w/o
TopoGDP” (Feature perturbed), which only protects the features of various
node types by Eq. (15) in FeatADP, and the output will be used for TopoGDP;
second, our expression is “w/o FeatADP” (Topology perturbed) which attains
the features by aggregating the information of node neighbors and semantics,
and protects the semantic relationships in the topology representation learning
process with Eq. (23); the third is the version of the node feature data and
the topology data are double-protected in HeteDP; Finally, the semantic-aware
mechanism is added to the model named HeteSDG. Their privacy budget is 0.01
and the results are shown in Fig. 3. From the elaborated results, we can observe
that both perturbations are significant, and compared with the node feature
disturbance, topology perturbed has a greater impact on the model. And our
training eventually reaches convergence and maintains some utility. Nevertheless,
The accuracy of HeteSDG is improved faster than HeteDP. At the convergence,
HeteSDG accuracy is higher, which indicates that HeteSDG has better availability
and stronger adaptive capability after the usage of the semantic-aware mechanism.

Furthermore, we visualize node types to observe the utility of privacy pro-
tection in Fig. 4. It shows the 2-dimension node embedding visualization of
all nodes in ACM using t-SNE [51], where the colors indicate node types. We
design pure model, feature perturbed, topology perturbed, HeteDP and Het-
eSDG experiments, where the privacy budget is 3. The visualization from left
to right generally shows increasingly tight clustering among similar nodes. For
feature perturbed, we observe that node perturbation makes the spacing within
the “paper” node type closer, which affects the classification effect within that
node. And topology perturbed has clearer boundaries among different node types
and causes a large change in the position of individual nodes even at higher ϵ.
This perturbation phase has a lower impact within the node type, while the
different node types become more dispersed. Compared with the pure model, this
phenomenon indicates our method can distinguish different types of nodes and
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Fig. 5. Bi-level optimization experiments and sensitivity experiments of ROC-
AUC scores on LP task.

perturb similar nodes to achieve privacy and ensure utility. Finally, compared
with HeteDP, HeteSDG provides semantic information on FeatADP to make the
same type of nodes more difficult to distinguish, and adds semantic regularization
terms on TopoGDP to make the different types of node boundaries clearer. Since
ablation studies prove that topology perturbations have a greater impact on the
model, the semantic regularization term has a greater effect and the overall model
accuracy is improved.

Bi-level optimization. Privacy budget allocation is an essential task in
privacy protection. The aim is to reduce the probability of data being accessed
by attackers, weigh the training accuracy, and try to address the problem of
model performance degradation due to privacy noise. To further improve the
utility of the model in privacy-preserving, we design a bi-level optimization trick
to allocate the privacy budget of Gaussian noise on FeatADP and TopoGDP. We
fix the topology noise and seek the optimal privacy budget allocation on node
features by experiments in a specific interval according to Eq. (5) and Eq. (24).
Next, we fix the amount of noise on features to find the optimal privacy budget
on topology following Eq. (5) and Eq. (25). The results are shown in Fig. 5 (a).
The figure compares the effect of an equally divided privacy budget and a bi-level
optimized privacy budget and shows that bi-level optimization can bring better
performance for the model, which achieves the purpose of the trade-off between
protection power and utility.

Sensitivity Analysis. We analyze the sensitivity of the overall noise of
HeteDP. Specifically, we test the influence of parameter ϵ on the LP task. We
set 9 values of ϵ on ACM, IMDB and DBLP, and show in Fig. 5 (b). We observe
that the ACM dataset achieves a score close to 80% at ϵ = 1, which is nearly 8%
higher than ϵ = 0.01. IMDB, however, is not as sensitive to ϵ because its network
structure is fragile, and it is harder to improve the learning ability once it is
disturbed. The experiments show that different datasets have myriads of changes
in sensitivities to the privacy budget due to inconsistencies in their natural data
distributions, and it is necessary to find a suitable noise range to protect the
model and maximize its effectiveness.

MIS Attack Verification. In the real world, the membership inference
attack with semantic enhancement (MIS) models used by attackers is diverse
and unknown. We use the shadow model which is similar to the structure of
the original model to get the training set of the attack model and obtain the
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Table 4. Micro-F1 score and Weighted-F1 score of attack accuracy.

Dataset
original Naive Bayesian KNN Decision Tree

M-F1 W-F1 M-F1 W-F1 M-F1 W-F1 M-F1 W-F1

A
C

M

HGConv 90.82 90.34 74.15 71.31 77.13 71.09 71.86 69.28
HGT 87.91 85.21 79.22 71.52 77.73 71.29 72.86 69.44
RGCN 83.48 83.02 75.34 71.10 75.74 70.02 68.78 67.37
HeteSDG (ϵ = 0.01) 81.14 80.59 44.13 40.99 45.22 45.84 45.74 43.19
HeteSDG (ϵ = 1) 88.31 88.37 46.62 47.13 45.52 45.75 47.61 48.12

IM
D

B

HGConv 57.62 57.10 41.05 36.83 50.99 52.89 50.09 52.10
HGT 55.56 54.95 51.88 53.35 48.90 50.99 49.40 51.42
RGCN 51.50 51.70 41.94 41.04 49.10 51.10 50.59 52.64
HeteSDG (ϵ = 0.01) 42.92 42.73 30.41 16.34 32.89 25.76 40.85 40.06
HeteSDG (ϵ = 1) 52.80 52.70 34.89 26.76 33.59 26.38 42.84 42.72

(a) HGConv (b) HGT (c) RGCN

(d) HeteSDG (ϵ = 1) (e) HeteSDG (ϵ = 0.01)

Fig. 6. “paper” embedding visualization of ACM.

results of the target model query to get the test set of the attack model [52]. To
make the attack experiments more representative, we utilize three widely familiar
classical inference models as attack models: Naive Bayesian, KNN, and Decision
Trees. We selected the convolution-based aggregation methods in the baseline
(HGConv, HGT, RGCN) as the comparison models, i.e., the meta-paths-based
design methods are not considered in the design of the attack models, since
this is a semantic enhancement-like and an independent process from the model
training. Table 4 shows the attack accuracy of each attacker who conducts “paper”
node type inference on ACM and “movie” node type inference on IMDB. The
experimental results expose that the attack models obtain more information
on the baseline model but achieve poorer inference results on our model. In
particular, HeteSDG achieves the lowest attack accuracy at stronger privacy-
preserving strengths. It shows that our method is able to resist inference attacks
while maintaining the representation learning capability. In addition, we show
“paper” embedding visualization of ACM in Fig. 6 and we also obtain the same
conclusion as above. An additional gain is that the perturbation ability of privacy
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budget strength on representation learning is demonstrated. In general, HeteSGD
can guarantee privacy while ensuring accuracy for downstream tasks. For example,
with ϵ = 1, the classification accuracy for the paper is 88.31%, which is higher
than HGT and RGCN. And the classification visualization is well bounded which
indicates the availability, while the attack accuracy decreases at least by 40.7%
which shows the power of privacy protection.

6. Conclusion

In this work, we propose HeteSDG, a novel heterogeneous graph neural network
with semantic-aware differential privacy guarantees, i.e. we propose a two-stage
privacy-preserving mechanism based on differential privacy, capable of adapting
to the high-order features and topological complexity caused by semantics. For
multi-nodes and multi-relationships, we learn the representation distribution
and aggregation of nodes on each relationship through multi-relational convo-
lutional layers and adapt to various downstream tasks through unsupervised
learning. Considering that nodes and topology are vulnerable to MIS attack in
heterogeneous graph scenarios, we perturb the node features and the topology
structure, respectively. In particular, we design a unique semantic-aware debias
mechanism to guide more accurate noise generation and enhance the utility of
the privacy-preserving model. Then, we balance the privacy budget allocation of
the node feature and the topology structures, and achieve higher performance by
bi-level optimization. Comprehensive experiments on four datasets demonstrate
the privacy-preserving capability and adaptability of HeteSDG, and the MIS
attack experiments on three basic attack models show that our model produces
resistance against MIS attacks with guaranteed accuracy utility. We hope that
our work could bring some inspiration to privacy protection in more complex
graph data.
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