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Abstract Event extraction is a fundamental task in information extraction. Most

previous approaches typically transform event extraction into two subtasks: trigger

classification and argument classification, and solve them via classification-based

methods, which suffer from some inherent drawbacks. To overcome these issues,

in this paper we propose a novel event extraction model Seq2EG by first formulat-

ing event extraction as an event graph parsing problem, and then exploiting a pre-

trained sequence-to-sequence (seq2seq) model to transduce an input sentence into

an accurate event graph without the need for trigger words. Based on the generative

event graph parsing formulation, our model Seq2EG can explicitly model the multiple

event correlations and argument sharing, and can naturally incorporate some graph-

structured features and the rich semantic information conveyed by the labels of event

types and argument roles. Extensive experimental results on the public ACE2005

dataset show that, our approach outperforms all previous state-of-the-art models for

event extraction by a large margin, respectively obtaining an improvement of 3.4%

F1 score for event detection and an improvement of 4.7% F1 score for argument

classification over the best baselines.

Keywords Event extraction · Event detection · Argument extraction · Graph

parsing · Seq2seq

1 Introduction

Event Extraction (EE) is an essential and challenging Information Extraction (IE)

task for natural language understanding. The event extraction task has been shown
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beneficial to a wide range of downstream tasks, such as document summarization,

question answering and so on [1; 2]. Technically speaking, as defined by the ACE

2005 dataset, a benchmark for event extraction [3], the event extraction task can be di-

vided into two subtasks, i.e., event detection (identifying instances of specified types

of events) and argument extraction (identifying arguments of each event type and

labeling their roles). For example, an event extraction instance is shown in Fig. 1.

EE is an actively studied task in IE where deep learning models have been the

dominant approach to deliver the state-of-the-art performance. Nevertheless, most

previous work typically treat EE as a classification problem. Specifically, most ex-

isting approaches generally transform the event extraction task into two subtasks:

trigger classification and argument classification, and then perform the two subtasks

in a joint fashion or a pipelined fashion [4; 5; 6; 7; 8]. Some recent works focus on

use syntactic dependency structure or external knowledge to boost the classification

performance [9; 10; 11; 12]. More recently, Li et al. [13] proposes to first perform

the trigger classification and then to reformulate argument extraction as a Machine

Reading Comprehension (MRC) task to utilize sophisticated MRC methods and large

annotated external MRC data. Methodologically speaking, the existing event extrac-

​In Baghdad, a cameraman died when an American tank fired on the Palestine Hotel.

​
​Life:Die Conflict:Attack

​Place Victim

Target

InstrumentInstrument

Place
​Target

Fig. 1: An example of event extraction. In this sentence, two different events are

expressed, which are denoted in red and in blue respectively.

tion approaches suffer from the following inherent drawbacks:

Firstly, most previous approaches depend heavily on the trigger word. On the

one hand, triggers are nonessential to event detection and event extraction; on the

other hand, the identification and classification of trigger words may, to some extent,

impede the accurate recognition of the events, due to the fact that some events may

be expressed by multiple discontinuous words or phrases in one sentence (See more

illustrations in Section 3.2). Particularly, the trigger-based models are prone to suffer

from the long tail issue [14]. Literatures available show that, Liu et al. [15] is the

only work for event detection without using trigger words, by simply casting event

detection as a multi-label classification problem for input sentences, which cannot

address the inherent issues with the trigger-based approaches, as illustrated below.

Secondly, current EE models do not exhibit good solutions to explicitly modeling

the correlations between multiple events in one sentence and multiple arguments of

different roles, and the event argument sharing issue. Though some existing works

have investigated the multiple events phenomenon [10; 7]. These approaches explore

to aggregate more contextual information from surrounding trigger candidates to gen-

erate a powerful representing vector for current candidate trigger by employing a

self-attention mechanism or a hierarchical tagging scheme, then respectively predict



the trigger label [10; 7]. However, note that, modeling the associations between trig-

gers is not equivalent to modeling the correlations between events. That is to say, the

existing models cannot explicitly model the correlations between multiple events and

multiple arguments.

Lastly, the existing approaches cannot leverage the semantic information of the

labels of event type and argument role. As a matter of fact, both of them are infor-

mative and conducive to event extraction. However, such rich semantic information

is neglected by the existing approaches.

To address these issues stated above simultaneously, we take a fresh look at event

extraction and formulate it as a graph parsing problem. By regarding the multiple

events expressed by one sentence as a whole, we argue that the goal of the EE task is

to output an event graph, as shown in Fig. 2. On the one hand, the event graph is con-

structed to model the potential interactions between the multiple events; on the other

hand, this graph parsing formulation can flexibly integrate some graph-structured fea-

tures. Furthermore, we employ a pre-trained sequence-to-sequence model to generate

the event graph, without the need for the identification of the trigger words. The ex-

perimental results demonstrate that our method substantially outperforms all previous

state-of-the-art models on the public dataset ACE2005.

To sum up, this paper makes the following contributions:

• In this paper, we innovatively formulate the event extraction task as graph parsing,

which delivers some typical benefits compared to the existing EE models. First,

this graph parsing formulation can naturally model the correlations between mul-

tiple events in one sentence and the argument sharing; second, the event graph can

be flexibly constructed to utilize more useful information, such as the semantic

representations of the event type labels and argument role labels.

• We propose a transformer-based encoder-decoder model to derive the events from

the global contextual information in the input sentences without relying on the

trigger words. Furthermore, we propose some skillful strategies for the event

graph linearization and an effective decoding algorithm to boost the generation

performance.

• The extensive experiments over the public dataset ACE2005 demonstrate that

the proposed simple approach outperforms the previous state-of-the-art models

for event extraction by a large margin1. Particularly, our model does not use any

syntactic dependency information and external knowledge.

This paper is a significant extension of our conference paper [16], which presents

the first work to formulate event detection as a graph parsing task, and to introduce

a novel generation-based method to predict event graph containing only event type

nodes. In this paper, we further demonstrate the universality of the graph parsing

framework by extending it to more complicated event extraction task, and propose

some skillful strategies for the complete event graph linearization and an effective

decoding algorithm to boost the generation performance.

The rest of this article is organized as follows. Section 2 discusses the related

work. Section 3 describes the novel view of event extraction. Section 4 presents the

1 The source code will be publicly released upon acceptance.



detailed event parsing method via a seq2graph transducer. Section 5 and Section

6 describe the experiment settings and report the experimental results and model

analysis. In section 7 we summarize the proposed approach and describe future work.

2 Related Work

2.1 Event Extraction

In this paper, we focus on the event extraction task that includes two basic subtasks:

event detection and argument extraction. Most recent works have focused on using

neural networks in this task and have achieved significant progress. We roughly divide

the recent approaches into three categories as following:

• Sequence-based models: This line of research operates on the word sequences

using the deep neural networks. Chen et al. [4] devises a dynamic multi-pooling

convolutional neural network to capture more information. Nguyen et al. [5]

presents a joint model based on bidirectional RNN for event extraction. Sha et

al. [6] adds dependency arcs with weight to BiLSTM to make use of tree struc-

ture and sequence structure simultaneously.

• GCN-based models: This line of research adopts the Graph Convolutional Net-

work (GCN) over the dependency tree of a sentence to boost the performance.

Nguyen et al. [9] is the first attempt to use GCN in ED. Liu et al. [10] employs a

syntactic GCN and a self-attention mechanism to model multiple events extrac-

tion. Yan et al. [11] improves GCN by combining multiorder word representation

from different GCN layers.

• Machine Reading Comprehension (MRC)-based models: Span-based MRC

tasks involve extracting a span from a paragraph [17] or multiple paragraphs [18].

Du et al. [19] introduces a new paradigm for event extraction by formulating it

as a question answering (QA) task. Liu et al. [20] and Li et al. [13] propose to

first perform the trigger classification and then to reformulate argument extraction

as a Machine Reading Comprehension (MRC) task to utilize sophisticated MRC

methods and large annotated external MRC data.

Unlike the existing EE models based on trigger classification and argument classi-

fication, we formulate EE as a novel graph parsing problem, therefore it can explicitly

model the multiple event correlations and incorporate some graph-structured features

and the rich information regarding the event types and arguments.

Recently, Lu et al. [21] proposes a sequence-to-structure model Text2Event for

EE, which can directly extract events from the text in an end-to-end manner. This

work has the similar spirit with our work, and it is roughly orthogonal to our work in

terms of time. However, different from the tree structure framework proposed in Lu

et al. [21], we use a powerful event graph structure to model the correlations between

events, which can provide a natural formulation to express event argument sharing

relations between different event types in a sentence.

Additionally, slightly different from the aim of this paper, another recent line of

research explores the joint entity recognition and event extraction [22; 19; 23].



2.2 Pre-trained Seq2seq Models

Pre-training a universal model and then fine-tuning the model on a downstream task

have recently become a popular strategy in the field of natural language process-

ing [24]. Recent studies also propose approaches to pre-training seq2seq models,

such as MASS [25], PoDA [26], PEGASUS [27], BART [28], and T5 [29].

In this paper, our experiments only examine BART. We leave explorations of

these models for future work.

3 A Novel View of Event Extraction

3.1 Task Description

Given a text document, an event extraction system should predict specified types

of events mentioned in the input text and their arguments from each sentence. The

most common used benchmark dataset in previous work is ACE 2005 corpus. The

task defines 8 event types such as Life, Business and so on, and 33 subtypes such as

Attack, End-Position, etc. Table 1 summarizes relevant terminologies.

Table 1: The terminologies of event extraction task.

Entity mention a reference to an entity, usually a noun phrase (NP)

Event trigger main word which most clearly expresses an event oc-

currence

Event arguments the entity mentions that are involved in an event

Argument roles the relation of arguments to the event where they par-

ticipate (35 total possible roles defined by ACE)

Event mention a phrase or sentence within which an event is described

including trigger and arguments

Following some previous work [8; 10; 20], we also assume that the golden-

standard entity mentions are provided as the argument candidates to the event ex-

traction systems.

3.2 Formulating EE as Event Graph Parsing

Traditionally, an event extraction system first recognizes a single word or phrase as

the trigger in order to predict the event types of interest, and then identifies the event

arguments for each derived event type [10; 7; 15]. However, as pointed out by Liu et

al. [15], triggers are nonessential to event detection and event extraction. To a certain

extent, the dependence on trigger may impede the accurate recognition of the events

in the sentence.

In particular, some events may be triggered by multiple discontinuous words or

phrases in one sentence, not by a single word or phrase. Take a concrete example in



ACE 2005 dataset to illustrate: She lost her seat in the 1997 election. In this sentence,

an event type (Personnel:Elect) is mentioned, and its gold trigger was labelled as the

word lost. In effect, to correctly recognize the event type (Personnel:Elect) from this

sentence, we should comprehensively consider both the phrase lost her seat and the

word election in the sentence (See more cases in Section 6.5). Therefore, it does

not seem plausible that the problem of predicting an event from a whole sentence is

reduced to the representation learning of the single trigger word for trigger classifica-

tion or sequence labelling. Additionally, the trigger-based models are prone to suffer

from the long tail issue, which makes supervised methods prone to overfitting and

perform poorly on unseen/sparsely labeled triggers [14].

Sentence
In Baghdad, a cameraman died when an
American tank fired on the Palestine Hotel.

Event Graph

Linearization

<EVTS>, Life:Die, Location, <P0>, Baghdad, Place, Person,
<P1>, Cameraman, victim, Vehicle, <P2>, tank, Instrument,
<stop>, Conflict:Attack, Location, <P0>, Place, Person, <P1>,
Target, Vehicle, <P2>, Instrument, Facility, <P3>, hotel, Target,
<stop>

Fig. 2: An illustrative diagram of Seq2EG for the instance in Fig. 1.

In this paper, we look at the EE task from a new perspective. Given an input text,

EE aims to recognize and predict the mentioned event types and their correspond-

ing arguments. Intuitively, the multiple events derived from the same sentence should

have a certain degree of correlations between them. Therefore, to model the correla-

tions, we can view the multiple events expressed by the same sentence as a whole, by

linking them together as a single graph, as shown in Fig. 2.

Specifically, we first introduce a special node as the root, and then attach each

event type node as a child of the root; further, the multiple arguments of each specific



event type are linked as its children, with the edges being labeled as the argument

roles. It is worth noting that the root of this event graph is not a virtual node. The

root can take two possible values: EVTS and NA. While the input sentence does not

contain any event, the root is assigned the value NA; otherwise it is assigned the value

EVTS. Therefore, the prediction of root value is to judge whether the input sentence

expresses some events or not. In addition to facilitating modeling multiple event cor-

relations, our graph parsing formulation for EE also allows for the straightforward

inclusion of other types of graph-structured features:

• First of all, our event graph can be flexibly constructed to exploit more useful

information. For example, we know that each argument candidate is an entity

mention which has a specific entity type such as person, location, vehicle and

etc. This argument type is a critical feature in predicting the role of an argument

candidate. It is common practice to employ an auxiliary feature embedding to

encode the argument type for each argument candidate [10; 7]. In our event graph

parsing formulation, in order to make full use of the argument type feature, we

skillfully introduce a kind of argument type nodes in the event graph to represent

the entity types of the argument nodes to be generated next, as shown in Fig. 2.

• Another important benefit of our event extraction paradigm is that it can provide a

natural formulation to express event argument sharing relations between different

event types in an event graph, which is the exact reason why the event graph

constructed is a graph instead of a tree. For instance, the entity mention Baghdad

is an argument of the event type Life:Die, and it is also an argument of another

event type Conflict:Attack, as shown in Fig. 2.

• Additionally, our approach can effectively utilize the semantic representation of

event type label and argument role label. Most previous classification-based ap-

proaches to EE generally view each event type or argument role as a specific

class, omitting the semantic information conveyed by these type labels. In fact,

the type label itself, such as Divorce, Injure, etc, is informative to the learning

of EE models. In our graph parsing formulation, it is straightforward to incorpo-

rate the semantic representation of type label into the model. Specifically, during

decoding, we can encode every previously generated node or edge with the cor-

responding type label embedding to assist the prediction of later nodes.

4 Event Graph Parsing via a Seq2Graph Transducer

Under our graph parsing formulation, the EE task is to transduce an input sentence

into an event graph, as illustrated in Section 3. To achieve this, we choose to predict

nodes and edges sequentially rather than simultaneously, because (1) we believe the

previous node generation is informative to the current node generation; (2) variants of

efficient sequence-to-sequence (seq2seq) models can be employed to model this pro-

cess [30; 31; 28]. Theoretically, the advantages of applying a seq2seq model to event

graph parsing are two-fold. First, there is no need to use trigger words for event detec-

tion. Second, when predicting next node during decoding, the global contextual in-

formation in the input sentence can be taken into consideration by the cross-attention

mechanism between the decoder and encoder.



In this section, we first introduce our strategies for event graph linearization; next,

the neural network model adopted for the seq2graph transduction and the decoding

algorithm are illustrated respectively; lastly, a simple postprocessing procedure is

illustrated.

4.1 The Linearization Strategies of Event Graph

While applying a seq2seq paradigm to event graph parsing, we first need to convert

the event graph into a sequence of tokens by using linearization techniques. We do

not particularly consider the order of events in an event graph, even for the special

cases where there are two event nodes with the same type. Specifically, we employ

a depth-first traversal (DFS) as it is quite closely related to the way natural language

syntactic trees are linearized. While building the event graph for each sentence dur-

ing the training phase, we simply append the event nodes to graph by the order of

appearance in the ACE annotation. Additionally, when applying DFS to linearizing

an event graph, we also simply traverse the graph in a natural order from left to right.

However, different from the conventional graph traversal procedures, we particularly

propose some effective strategies for the event graph linearization to boost the gener-

ation performance.

Firstly, to tackle the argument sharing problem in the event graph, we innovatively

propose the use of special pointer symbols <P0>, <P1>, . . . , <Pi> to represent

argument nodes in the linearized sequence and to handle sharing arguments. When-

ever such special symbols occur more than once it indicates that a specific argument

node serves as multiple roles for multiple different events in an event graph. Our spe-

cial symbols approach is used in combination with the graph traversal techniques, i.e.

DFS.

Secondly, we introduce a flexible linearization ordering strategy while travers-

ing the event graph. Generally speaking, the linearized sequence of a graph consists

of the values of nodes and the labels of edges by the visiting order in the traversal

procedure; that is to say, for a given event type node, the edge label (argument role)

always comes in front of its child (argument type node). However, it is intuitively

plausible that the argument role should be predicted after both the event type node

and its child (argument type node) are generated. Therefore, we specially adjust the

linearization order by postponing the output of argument role to the back of the argu-

ment type node and argument node in the linearized sequence of an event graph. For

instance, for the example event graph shown in Fig. 2, the linearized representation

generated by using standard DFS procedure is “<EVTS>, Life:Die, Place, Location,

<P0>, Baghdad, victim, Person, <P1>, Cameraman, Instrument, Vehicle, <P2>,

tank, <stop>, Conflict:Attack, Place, Location, <P0>, Target, Person, <P1>, In-

strument, Vehicle, <P2>, Target, Facility, <P3>, hotel, <stop>”. As a contrast, the

sequential representation generated by applying our linearization ordering strategy is

also illustrated in Fig. 2. The importance of this linearization ordering strategy is also

verified by the results of ablation experiments (see Section 6.3).



Lastly, we found that the labels of part of edges (e.g. EVT-1, entity, etc.) are not

informative to event extraction in the preliminary experiments; we therefore omit

these labels while linearizing the event graph.

4.2 The Transformer-based Generation Network

Let x =< x1, ..., xn > be an input sentence and each xi is a token in the sentence.

Also, let E =< e1, ..., ek > be the entity mentions in this sentence (k is the number

of the entity mentions and can be zero). Each entity mention comes with the head and

the entity type. Our approach sequentially decodes a list of tokens y =< y1, ..., ym >

where each yi may be an event type, an event argument (i.e. an entity mention ej),

an argument role, an entity type, or a special symbol. When generating the argument

nodes for a specific event type node, our model predicts the head of each argument as

the argument output. Let Y be the output space. The transduction problem is to seek

the most-likely sequence of nodes given x:

ŷ = argmax
y∈Y

p(y|x)

= argmax
y∈Y

m∏

j

p(yj |y<j , x) (1)

To tackle the transduction problem, we adopt the transformer-based encoder-

decoder architecture to generate the event graph [31]:

{hi}
n
i=1

= Encoder({xi}
n
i=1

) (2)

{sj}
m
j=1

= Decoder({y<j}
m
j=1

, {hi}
n
i=1

) (3)

P (yj |x, y<j) = softmax(g(sj)) (4)

At the encoding stage, we convert the input text into the hidden vector represen-

tation by employing a multi-layer transformer encoder with the multi-head attention

mechanism. It is worth noting that our encoder just encodes the tokens in the input

sentence without using any additional information, including the POS tags and the

syntactic dependency structures. The decoder predicts the output sequence by fol-

lowing a similar scheme as the encoder, but including an encoder-decoder attention

sublayer in between to deal with input-output alignment. The generated sequence

starts from the special token “BOS” and ends with the special token “EOS”.

In order to alleviate the data sparsity, we adopt the pre-trained language model

BART as our transformer-based encoder-decoder architecture [28], so that we can

exploit the model’s latent knowledge (e.g., of semantics, linguistic relations, etc.)

that has been captured through pre-training. The BART architecture can be viewed

as a natural progression of “vanilla transformers” by Vaswani et al. [31], but with

pre-training inspired by BERT’s masked language model objective.



4.3 A Nested Constrained Beam Search Decoding Algorithm

For decoding in testing phase, it is a natural choice for our Seq2EG model to design

a decoding algorithm based on beam search that generates the token sequence of an

output event graph incrementally. However, while designing the beam search algo-

rithm, we face two practical problems: 1) how to guarantee the generation of a valid

event graph; 2) how to achieve fair and reasonable comparison when picking top-k

best partial graphs among all the candidate items on each step of beam search.

For the first problem, it is relatively easy to tackle by incorporating the event

schema knowledge into the search process to construct a constrained beam search al-

gorithm. To be specific, at the different generation step during the search process, we

can limit the candidate vocabulary for the choice of current item by referring to the

knowledge of event schema. For example, if the current item to be predicted should

be an event type name, we simply set the candidate vocabulary as the set of type

names defined by the event schema. Relatively speaking, the second problem is more

challenging. Unlike the target sentence generation task in traditional seq2seq mod-

els for machine translation where all elements in the target sequences are words, the

elements in a linearized event graph sequence include many distinct types, such as

the event type, argument type, argument role, entity mention, and some special sym-

bols. Thus, at each timestep during beam search, the candidates in the beam may be

the partial linearized event graph sequences ending with different types of elements,

which may not be compared directly with each other. Therefore, the standard beam

search algorithm cannot work well in this scenario. To address this issue, we propose

an effective nested beam search strategy for the decoding. On the whole, the lin-

earized sequence of an event graph consists of multiple events from a coarse-grained

view; and at the fine-grained level, each event may contain a different number of ar-

guments with different roles. Thus, to obtain fair comparison we introduce two types

of beam-search in a single decoding process: inter-event beam-search and intra-event

beam-search. In a nutshell, the inter-event beam-search is used to compete over com-

plete event candidates; while extending an event to identify its type and its arguments,

we switch on an intra-event beam-search to find top-k event structures. To facilitate

the nested beam search process, we particularly use a special symbol <stop> to in-

dicate the end of each event. Additionally, in the inner beam-search, an event with

more arguments will result in lower score, we therefore normalize it by the number

of arguments.

Based on the two considerations mentioned above, we design a nested constrained

decoding algorithm to generate a valid and accurate event graph for the given input

text. Algorithm 1 shows the pseudocode for the complete procedure of the decoder.

For purpose of brevity, we introduce some functional symbols in Algorithm 1. The

function Normalize(y, score) is used to normalize the score by the number of ar-

guments in the event structure y. The function CalConstraitedSet(last token) returns

a set of valid candidate tokens for the prediction of next token based on the pre-

ceding token represented by the parameter last token. For example, if the parameter

last token represents an argument type, this function returns the set of all argument

role names of the event type currently being predicted by referring to the knowledge

of event schema.



Algorithm 1: A nested constrained beam search decoding algorithm.

1 Input: The input text x =< x1, ..., xn >;

2 Output: A linearization sequence of an event graph y =< y1, ..., ym >;

3 // Initialization.

4 score = 0; y, finished = {}, {}; interBeam = {y, score};
5 // Encoding.

6 Encode(x);

7 // Decoding.

8 if P (EV TS)<P (NA) then

9 return y;

10 for i = 1 to max event num do

11 new beam = {};
12 {y, score} = interBeam.pop();

13 for vi in event type set ∪ EOS do

14 if vi == EOS then

15 finished.push({y, score});

16 else

17 y temp = y ∪ vi, score temp += P (vi);
18 intraBeam = {y temp, score temp};
19 for j = 1 to max event len do

20 temp beam = {};
21 {y t1, score t1} = intraBeam.pop();

22 last token = GetLastToken(y t1);

23 if last token == < stop > then

24 Normalize(y t1, score t1);

25 new beam.push({y t1, score t1});

26 else

27 token set = CalConstraintedSet(last token);

28 for ui in token set do

29 y t2 = y t1 ∪ ui;

30 score t2 = score t1 + P (ui);
31 temp beam.push({y t2, score t2});

32 intraBeam = temp beam.topK();

33 new beam += intraBeam.topK();

34 interBeam = new beam.topK();

35 // Finishing.

36 while interBeam.not empty() do

37 {y, score} = interBeam.pop();

38 finished.push({y, score});

39 {y, score} ← finished.topK(k = 1);

40 return y;

4.4 Postprocessing

In the preliminary experiments, we found that our event parsing model has a bias

toward identifying the entity itself as an argument of the predicted event type. For

example, in the sentence Powell, the most moderate member of the Bush cabinet,

said he fully agreed with the president’s policy on Iraq and had no plans to leave,

for the golden event type Personnel:End-Position with the trigger word leave, the



pronoun he, which is adjacent to the trigger, is annotated as an answer argument with

the role Person. However, our trigger-free generative model may tend to predict the

entity name Powell as the argument of this event type. Conceptually speaking, the

two entity mentions in this example are co-referenced and semantically equivalent.

One possible reason is that while our model extracts the arguments for a specific

event type, it recognizes the argument relations mainly by inspecting the contextual

information surrounding the candidate arguments without depending on the triggers,

and maybe the entity name itself contains richer contextual information than its men-

tions. In the dataset ACE2005, however, some entity mentions closer to the trigger

of event type are usually annotated as the gold-standard arguments. Therefore, before

the experimental evaluation we perform a light postprocessing to recover co-referring

nodes in the event graph predicted by our model. Concretely, we perform a reference

resolution operation by simply using the coreferee package that comes with python

3.8, and the ablation test of the use of coref system is shown in Table 2 in Section 5.

5 Experiments

5.1 Dataset and Evaluation Metrics

We utilized the ACE 2005 corpus as our dataset. For comparison, as the same as

previous work [32; 33; 8], we used the same test set with 40 newswire articles and

the same development set with 30 other documents randomly selected from different

genres and the rest 529 documents are used for training. Also, following previous

work [33; 8; 4; 34], we use the following criteria to evaluate the results:

• An event type is correct if the predicted event type and subtype match those of a

reference event.

• An argument is correctly identified if its event subtype and offsets match those of

any of the reference argument mentions.

• An argument is correctly identified and classified if its event subtype, offsets and

argument role match those of any of the reference argument mentions.

5.2 Implementation Details

We adopt BART-Large, which has 12 encoder and decoder layers, 1024 hidden units,

and 16 attention heads, as our encoder-decoder model. Other hyper-parameters are

tuned on the validation set. Specifically, the models are trained using cross-entropy

with RAdam as optimizer and a learning rate of 5∗10−5. Gradient is accumulated for

10 batches. Dropout is set to 0.25. Our models are trained for 50 epochs, the batch

size in our training experiments is set to 400. For decoding, we set beam size to 3.



5.3 Overall Performance

In this section, we comprehensively compare our performance with the following

state-of-the-art related methods that focus on the two event extraction subtasks: event

detection and argument extraction:

• JointBeam [8] proposes a structure-based system by manually designed global

features which explicitly capture the dependencies of multiple triggers and argu-

ments.

• DMCNN [4] uses dynamic multi-pooling to extract the best features from the

different parts of a sentence according to the position of trigger and argument

candidate.

• JRNN [5] proposes a joint framework with bidirectional recurrent neural net-

works and manually designed features to jointly extract event triggers and argu-

ments.

• dbRNN [6] is an LSTM-based framework that leverages the dependency graph

information to extract event triggers and argument roles.

• JMEE [10] models dependency relations between words by Graph Convolutional

Networks (GCNs) to exploit syntactic information.

• RCEE [20] proposes a new learning paradigm of EE, by explicitly casting it as a

machine reading comprehension problem (MRC) based on BERT-Large model.

• EKD [14] leverages the wealth of the open-domain trigger knowledge to improve

the event detection subtask.

• Text2Event [21] proposes a sequence-to-structure model Text2Event for EE,

which can directly extract events from the text in an end-to-end manner.

Table 2 shows the overall performance comparison between our best system

and the above state-of-the-art models. From Table 2, we can see that our approach

achieves the best Precision, Recall and F1 score in event detection, argument iden-

tification and classification among all the compared methods. It is worth noting that

our model simultaneously significantly improves both Precision and Recall without

using any additional information including the POS tags, the syntactic dependency

and external knowledge, which shows the superiority of the proposed graph parsing

formulation for EE.

In Table 2, for our approach we also conduct ablation study on beam search to

investigate contributions from the model architecture itself and the nested constrained

beam search algorithm. Our model Seq2EG without beam search is already better

than the previous best models. Further, the proposed decoding algorithm results in a

significant improvement of 2.7% F1 score for final argument classification subtask.

In addition, we conduct the ablation test of the use of coref system mentioned in the

postprocessing section. If our model does not use the coref system, the F1 value for

argument classification is 66.5%, leading to a performance drop of 1.8%.

Particularly, among all baselines, the Text2Event model is similar in spirit to our

approach though the two methods have different experimental settings. For fair com-

parison, we modified their public code2 to include the golden entity mention infor-

mation as input by specifying the set of candidate arguments in the decoding algo-

2 https://github.com/luyaojie/Text2Event

https://github.com/luyaojie/Text2Event


Table 2: Overall Performance compaison to the state-of-the-art methods with golden-

standard entities on ACE2005 dataset. The results of baselines are adapted from their

original papers. † indicates that the method uses dependency structures, ∧ indicates

that the method uses external knowledge and resources, - indicates that the corre-

sponding score is not available.

Method

Event

Detection(%)

Argument

Classification(%)

P R F1 P R F1

JointBeam(Li et al., 2013)† 73.7 62.3 67.5 64.7 44.4 52.7

DMCNN(Chen et al., 2015)† 75.6 63.6 69.1 62.2 46.9 53.5

JRNN(Nguyen et al., 2016)† 66.0 73.0 69.3 54.2 56.7 55.4

dbRNN(Sha et al., 2018)† 74.1 69.8 71.9 66.2 52.8 58.7

JMEE(Liu et al., 2018b)† 76.3 71.3 73.7 66.8 54.9 60.3

RCEE(Liu et al., 2020)∧ 75.6 74.2 74.9 63.0 64.2 63.6

EKD(Tong et al., 2020)†∧ 79.1 78.0 78.6 - - -

Text2Event(Lu et al., 2021) 69.6 74.4 71.9 52.5 55.2 53.8

- with golden-standard entities 77.9 70.0 73.8 60.0 66.3 62.9

Seq2EG (ours) 83.8 80.2 82.0 68.3 68.3 68.3

- w/o nested constrained beam 81.2 80.9 81.0 66.0 65.2 65.6

- w/o coref system 83.8 80.2 82.0 65.9 67.1 66.5

rithm, and presented the corresponding results in Table 2. Thus, in the same setting,

our model significantly outperform the Text2Event model by 5.4% F1 value for ar-

gument classification. The possible reasons are two-fold: 1) our trigger-free fashion

leads to more accurate event detection performance; 2) more importantly, our graph

parsing framework can naturally model shared argument elements compared to the

tree-based model (see more experimental analyses in Section 6.2).

6 Model Analysis

6.1 Effect of Multiple Event Extraction

Compared to the existing work, our EE approach provides a more natural formulation

to model the multiple event correlations. To evaluate the effect of our approach to

the multiple event recognition, we divide the test data into two parts (1/1 and 1/N)

following previous work and perform evaluations separately [4; 5]. 1/1 means that

one sentence only has one trigger or one argument plays a role in one sentence;

otherwise, 1/N is used.

Table 3 illustrates the performance (F1 scores) of DMCNN [4], JRNN [5], JMEE [10]

and HBTNGMA [7], the four baseline models and our model for EE task. As shown

in Table 3, our model significantly outperforms all the other methods. In the 1/N data

split, our method is 7.9% better than the best baseline in the event detection phase,

and 9.9% better than the best baseline in the argument classification phase. The ex-

perimental results demonstrate that our method works well on the task of multiple

event extraction.



Table 3: Performance comparison on single event sentences (1/1) and multiple event

sentences (1/N).

Method

Event

Detection

Argument

Classification

1/1 1/N All 1/1 1/N All

DMCNN 66.7 45.9 54.4 74.4 70.7 72.5

JRNN 75.6 64.8 69.3 50.0 55.2 55.4

HBTNGMA 78.4 59.5 73.3 - - -

JMEE 75.2 72.7 73.7 59.3 57.6 58.5

Seq2EG 83.7 80.6 82.0 69.6 67.5 68.3

6.2 Effect of Exploiting of the Graph-structured Features

As illustrated in Section 3.2, our graph parsing formulation allows for incorporating

some graph-structured features for EE, including exploiting the label semantics of

event type and argument role, and introducing the argument type node to extend the

event graph. In this section, we check the effects of these graph-structured features

by the ablation study.

Concretely, the effect of the semantic representations of the event type and argu-

ment role labels is verified by treating them as a special symbol, without using their

word embedding learned in the pre-trained language model. More specifically, we

utilize both the event type label and the subtype label by averaging their word em-

beddings to make full use of the semantic representations with different granularities.

Additionally, we evaluate the effect of the argument type nodes by removing this type

of nodes from the extended event graph.

Table 4 shows F1 scores of the full Seq2EG model and with different components

turned off one at a time. We can observe that, ignoring the semantic representation

of event type and argument role labels leads to the decrease of F1 score of argument

classification by 3.2% and 3.8%, respectively. Additionally, removing this type of

nodes from the extended event graph results in a 4.2% drop in terms of F1 score of

argument classification. We verified that all these components contribute to the main

model, as the performance deteriorates with any of the components missing.

Table 4: Ablation studies on the the graph-structured features used in our model.

Method

Event

Detection

Argument

Classification

P R F1 P R F1

Full model 83.8 80.2 82.0 68.3 68.3 68.3

- w/o event type label 80.5 80.3 80.4 64.9 65.2 65.1

- w/o argument role label 80.1 81.3 80.7 61.6 67.6 64.5

- w/o argument type node 80.9 75.8 78.3 64.7 63.5 64.1



In order to further verify the effect of our graph parsing formulation on solving

the argument sharing problem, we first construct a test subset by selecting the sen-

tences with argument sharing phenomenon in the test data, and then run our model

Seq2EG and the tree-structure based model Text2Event on this subset respectively.

As shown in Table 5, our approach can substantially improve the argument classifica-

tion performance by 8.9% in terms of F1 score compared to the baseline Text2Event,

which demonstrates the great superiority of our graph parsing formulation in dealing

with argument sharing phenomenon.

Table 5: Comparison of the argument classification performance between our model

and the baseline Text2Event on the argument sharing test subset.

Method P R F1

Text2Event 66.7 50.0 57.1

Seq2EG 75.8 58.5 66.0

6.3 Do Different Linearization Strategies Matter?

In this section, we inspect the effects of linearization strategies we proposed for the

linearizing the event graph in Section 4.1. Firstly, we evaluate the linearization strat-

egy for handling argument sharing by removing the use of special pointer symbols

<P0>, <P1>, . . . , <Pi> that represent the argument nodes in the linearized se-

quence of an event graph; next, we investigate the performance of our linearization

ordering strategy by adopting the conventional graph traversal order, i.e., not post-

poning the output of argument role in the linearized sequence. Finally, we also try

another traversing method breadth-first search (BFS) for comparison.

Table 6: Ablation studies on the linearization strategies of our model.

Method

Event

Detection

Argument

Classification

P R F1 P R F1

Full model 83.8 80.2 82.0 68.3 68.3 68.3

- w/o pointer symbols 80.1 78.0 79.1 64.9 57.1 60.7

- w/o ordering strategy 80.5 79.8 80.1 63.4 64.6 64.0

- w BFS linearization 80.9 82.0 81.5 67.3 60.3 63.6

From the Table 6, we can observe that both the two different linearization strate-

gies are greatly beneficial to the performance boosting of our model. The lineariza-

tion ordering strategy can improve the argument classification performance by 4.3%

in terms of F1 score. Particularly, a significant performance difference is visible in the



argument sharing strategy. Removal of argument sharing part leads to a 7.6% drop in

terms of F1 score of argument classification. This result indicates that the argument

sharing plays a key role in the overall performance. Besides, it is easy to understand

that the performance drops in event detection are relatively small, compared to the

argument classification subtask. The results in the last row in Table 6 demonstrate

that DFS is a better traversing method for the event graph linearization compared to

BFS.

6.4 Can Our Approach Alleviate the Long Tail Issue?

The trigger-based event extraction models generally suffer from the long tail is-

sue [35; 14]. Taking the benchmark ACE2005 as an example, trigger words with

frequency less than 5 account for 78.2% of the total. The long tail issue makes the

trigger-based models perform poorly on unseen/sparsely labeled trigger words. In

this section, we evaluate whether our approach could cope with the long tail issue.

Following previous work [14], we divide the event instances in the test set into

three categories: Unseen, Sparsely-Labeled and Densely-Labeled, according to their

trigger frequency in the training set. Specifically, the frequency of Sparsely Labeled

is less than 5 and the frequency of Densely Labeled is more than 30. Also, following

the work [14], we choose the following baselines for comparison: (1) DMBERT [4],

(2) DGBERT [36], (3) BOOTSTRAP [37], and (4) the method EKD [14]. Note that

the encoders in the first three baselines are replaced with more powerful BERT to

make the baseline stronger.

As shown in Table 7, our approach substantially outperforms all baselines in

two settings, especially on unseen setting (+14.7%). Why can our approach effec-

tively mitigate the long tail issue? Besides the better generalization endowed by our

seq2seq event graph parsing formulation, an important possible reason is that since

our approach adopts a trigger-free way to detect the events, the event types corre-

sponding to the unseen or sparsely-labeled triggers can also be expressed with other

different triggers and thus appear many times in the training set, thereby alleviating

the long tail problem. The experimental results clearly indicate that, the trigger-free

event extraction approach may be a better alternative to the traditional trigger-based

models.

6.5 Analysis of Cross-Attention Mechanism

In the absence of trigger words, can our Transformer-based seq2seq event extraction

framework capture the key clues in the source sentence that express the target event

type? In this section, we answer this question by the case study.

Fig. 3 presents several examples of the attention distributions learned by our

model. In the first case, the target event type is Life:Die and the gold trigger is

the word killed. We can see that when predicting this event type, our attention not

only successfully attends the trigger word killed, but also attends another strongly

indicative phrase two people with higher score. In the second case, the target event



Table 7: Performance comparison on the unseen, sparsely-labeled and densely-

labeled settings.

Method
Unseen Sparsely Labeled Densely Labeled

P R F1 P R F1 P R F1

DMBERT 66.7 45.9 54.4 74.4 70.7 72.5 84.8 83.5 84.1

DGBERT 76.5 42.6 54.7 75.7 70.1 72.8 85.9 83.8 84.3

BOOTSTRAP 73.7 45.9 56.6 76.0 71.3 73.6 90.6 83.5 86.9

EKD 79.0 52.0 62.7 80.8 72.4 76.4 92.5 82.2 87.1

Seq2EG 85.2 71.0 77.4 91.5 71.4 80.2 92.8 77.6 84.5

Fig. 3: Visualization of cross-attention scores of sample instances learned by our

model.

type is Conflict:Attack, and the gold trigger is the word strike. It can be observed

that, the three words: destroyed, houses and killed are assigned with higher attention

scores than the trigger strike, which seems plausible for this target type prediction.

In the third case, the target event type is Personnel:Elect, and the gold trigger is the

wordlost. For this target type, there are relatively strong connections with the phrase

lost her seat and another indicative word election.

These cases demonstrate that, though the triggers are not used in our model, the

cross-attention mechanism between the decoder and encoder can learn to automat-

ically capture the correlation between the target event type and multiple indicative

words or phrases in the source sentence. However, on the other hand, we also found

that our model may derive some redundant predictions due to the flexibility of the

cross-attention mechanism. For instance, for the sentence the demonstration came as

Iraq’s top US overseer Paul Bremer began his second week on the job amid contin-

uing lawlessness in the country, the annotated target event type is Conflict: Demon-

strate. Given this input sentence, our model predicts an additional event type Person-

nel: Start-Position besides the target event type. Through analysis we consider that

the event Personnel: Start-Position is wrongly predicted presumably because both

the word began and job in the source sentence are strongly attended by the attention

mechanism. Therefore, we will explore to employ the multiple attention mechanisms

under the encoder-decoder architecture to further enhance the prediction accuracy in

future work.



7 Conclusion

This paper presents the first work to formulate event extraction as a graph parsing

task, and introduces a novel generation-based method to predict event graph by using

a pre-trained seq2seq model. Our approach is conceptually simple and does not use

syntactic dependency information and any other extra knowledge; however, it sig-

nificantly outperforms the traditional classification-based encoder-only approaches,

advancing the state of the art in event extraction.

In future work, we will integrate the syntactic dependency structure and external

knowledge into our model to enhance the event extraction performance; additionally,

we will further extend our model to perform the joint entity recognition and event

extraction.
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