
A Hybrid Clustering Approach for link prediction in
Heterogeneous Information Networks
Zahra Sadat Sajjadi

Islamic Azad University
Mahdi Esmaeili

Islamic Azad University
Mostafa Ghobaei-Arani (mo.ghobaei@iau.ac.ir)

Islamic Azad University
Behrouz Minaei-Bidgoli

Iran University of Science and Technology

Research Article

Keywords: Social Network, Graph Clustering, Structural Similarity, Attribute Similarity, Hybrid Similarity, K-
Medoids

Posted Date: March 2nd, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2626833/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2626833/v1
mailto:mo.ghobaei@iau.ac.ir
https://doi.org/10.21203/rs.3.rs-2626833/v1
https://creativecommons.org/licenses/by/4.0/

1

A Hybrid Clustering Approach for link prediction in

Heterogeneous Information Networks

Zahra Sadat Sajjadi 1, Mahdi Esmaeili 2, Mostafa Ghobaei-Arani *1, Behrouz Minaei-Bidgoli 3

1 Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran

2Department of Computer Engineering, Kashan Branch, Islamic Azad University, Kashan, Iran

3School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

*Corresponding author’s email: mo.ghobaei@iau.ac.ir

Abstract:

In recent years, researchers from academic and industrial fields have become increasingly

interested in social network data to extract meaningful information. This information is used in

applications such as link prediction between people groups, community detection, protein

module identification, etc. Therefore, the clustering technique has emerged as a solution to

finding similarities between social network members. Recently, in most graph clustering

solutions, the structural similarity of nodes is combined with their attribute similarity. The

results of these solutions indicate that the graph's topological structure is more important. Since

most social networks are sparse, these solutions often suffer from insufficient use of node

features. This paper proposes a hybrid clustering approach for link prediction in heterogeneous

information networks (HINs). In our approach, an adjacency vector is determined for each node

until, in this vector, the weight of the direct edge or the weight of the shortest communication

path among every pair of nodes is considered. A similarity metric is presented that calculates

similarity using the direct edge weight between two nodes and the correlation between their

adjacency vectors. Finally, we evaluated the effectiveness of our proposed method using DBLP

and Political blogs datasets under entropy, density, purity, and execution time metrics. The

simulation results demonstrate that while maintaining the cluster density significantly reduces

the entropy and the execution time compared with the other methods.

Keywords: Social Network, Graph Clustering, Structural Similarity, Attribute Similarity,

Hybrid Similarity, K- Medoids

mailto:mo.ghobaei@

2

1. Introduction

Nowadays, social networks are very popular for facilitating and modelling the communication

between different social groups [1]. These social networks provide a place for exchanging opinions

and sharing people's views and feelings. Social networks contain vast and valuable data, and helpful

information can be obtained from analyzing these data. Networks are divided into homogeneous

and heterogeneous. In a homogeneous network, all objects and connections between them are of

the same type. A heterogeneous network consists of nodes, which represent different types of

objects, and edges, which establish relationships between them. In a social network, information

can be shown with heterogeneous information networks (HINs). Various networks, including

computer networks, social networks, signalling networks and etc., are usually modelled by graphs

as an effective tool for examining objects and their relationships. The objects are associated with

different attributes to enrich the information content of a network. Graph clustering is an exciting

and challenging research field due to the difficult structures and connections between objects in the

real world. As a result, various aspects of graph clustering have been studied to gain a better

understanding of network structure and semantics [2]. The effective factor in clustering is finding a

similarity criterion between objects so that the criterion is consistent with the purpose of clustering

[3]. The similarity between objects is calculated according to their topological structure or feature.

The state-of-the-art methods use only one of the two aspects. The S-Cluster algorithm is a baseline

clustering algorithm that only considers topological structure [4,7]. The other baseline algorithm K-

SNAP partitions a graph such that each partition has nodes with identical attribute values [5]. In

other words, the similarity of objects is measured based on only one of two aspects. In these

methods, clustering is not quality because much of the network information is ignored during the

similarity calculation and the clustering process.

 Using the combined similarity measure effectively solves this limitation [2,6-18]. However, in

clustering the objects of a network into different clusters based on the combination of two aspects,

the structural relationships are still more effective than the characteristics of the nodes. For example,

most of these methods cannot use the property of nodes completely. Therefore, the extracted clusters

may be inaccurate, especially when the network is sparse.

The purpose of this paper is to perform the clustering process on HINs with considering attributes.

The proposed solution uses the graph clustering solution considering structure and context to

achieve desired quality at a lower computational cost. It takes into account the type of connection

3

between nodes. Then, it calculates the adjacency vector for each node based on its relationships

with other nodes and provides a similarity measure using the Pearson correlation coefficient. After

that, the k-Medoids algorithm is applied to cluster the nodes based on their similarity score.

The contributions of this work are summarized as follows:

• We proposed a hybrid clustering approach for heterogeneous information networks,

which uses the k-Medoids technique to partition nodes based on the combined similarity

value.

• We use the importance of disconnected nodes' presence to calculate the similarity

between nodes.

• We perform experiments on DBLP and Political blogs datasets regarding density,

entropy, and purity metrics to evaluate our solution.

The remaining parts of this paper are organized as follows: Section 2 examines related work

on graph clustering for link prediction in social networks. In section 3, we explain the

proposed solution in more detail. Section 4 provides an evaluation of the proposed method

and discusses the results. Finally, we present conclusions and future research to develop the

current work in Section 5.

2. Related works

This section will discuss the different approaches for graph clustering and link prediction

problems using structure and attribute similarities in complex networks. Besides, we summarize

the research studies to solve the graph clustering and link prediction problem.

Ghorbanzadeh et al. [19] have proposed a new method for solving the link prediction problem

using common neighbourhoods in directed graphs. Their proposed method used the authority,

hub, and neighbourhood direction. Their solution performs in both supervised and unsupervised

models. Further, they evaluated their strategy on the SmaGri, Wiki-vote, Political blogs, and

Kohonen real-world datasets. They illustrated that their method outperforms in terms of

precision and sensitivity metrics than with other methods.

Zarei et al. [20] have proposed an approach for solving link prediction using hidden relations

among users in social networks. Their proposed method categorizes each node's neighbours to

calculate the similarity score between a pair of nodes. They used nine real-world datasets and

demonstrated that their method was more accurate than the other methods.

4

In [21], the authors presented a link prediction approach for HINs via a deep convolutional

neural network. The proposed method in link prediction based on community detection is

performed in 4 steps: local neighborhood discovery, Local subgraph tensorization, Embedded

learning, and link prediction. This approach was evaluated on four different types of HINs. In

addition to applying to many scenarios, this approach has a reasonable execution time and can

be used for various tasks.

According to [22], the solution is proposed to rank and predict links in a network such that it

expands the random walks via a distinct restart probability for each node. The results on two

datasets reveal that the proposed method outperforms the classic random walk with restart

(RWR) regarding link prediction.

The label propagation algorithm for solving graph clustering has been improved by Berahmand

et al. [23]. Their proposed version produced a weighted graph that is created from the initial

graph by considering the node attributes and topological structure. Further, they evaluated their

method on real and artificial datasets. They indicated that their approach is more efficient and

precise on the criteria density, entropy, and Normalized Mutual information (NMI) index.

Agrawal et al. [24] have studied graph clustering for detecting communities that combine both

topological and attribute similarities in terms of communication type to provide an efficient

plan. Further, their proposed plan balances the distance function and executes clustering using

k-Medoid background. They used datasets of DBLP and Political blogs and measured density,

entropy, and NMI measures to demonstrate the effectiveness of their algorithm.

In [25], a strategy is proposed to solve link prediction in complex networks. The suggested

technique uses path properties of different lengths to compute the similarity score between pairs

of nodes. Their strategy has used the concept of allocation of network resources. This technique

increases the quantity of information received at the destination node by limiting information

leakage by shared neighbors and maximizes the two nodes' similarity score. This work has been

tested on various datasets and evaluates this strategy against two measures AUC curve and

average precision. The evaluation results revealed that their strategy differs considerably from

the baseline techniques.

 Kumar et al. [26] have introduced a new method to predict links based on level-2 node

clustering coefficients. Their method presents level-2 common nodes and clustering coefficients

to gather information about clusters from the seed node pair's level-2 familiar neighbors. They

5

used eleven real-world datasets in their work and evaluated their method with the baseline

methods in metrics ROC curve, AUPR curve, precision, and recall. In comparison with state-

of-the-art algorithms, their proposed method showed superiority.

Ghasemi et al. [27] have proposed a clustering-based method to improve link prediction. Their

method is done in two steps: The first step is offline and is executed once. This step calculates

local and global metrics for each node using the available data. Then, the classification algorithm

is used to develop the classification-based link prediction model. Algorithm Ada Boost has been

used as the best classifier. A clustering technique is employed in step two to group social items

using estimated similarity criteria. Furthermore, they tested their method on the Facebook,

HepTh, and Brightkite datasets and evaluated that based on precision, recall, and fitness metrics.

Dmytro et al. [28] have presented a solution to predict links between objects in HINs. The HINs

are analyzed to extract a meta-path, then links below a certain threshold level are removed, and

their algorithm is used to calculate the connectional power. They used the Web of Science

datasets to demonstrate their method's effectiveness.

According to Table 1, we reviewed and summarized graph clustering and link prediction

approaches and compared them in terms of datasets, techniques used, and performance metrics.

Table 1. A comparison of the different graph clustering and link prediction approaches.

Reference technique

used

Evaluating

Tool

Performance

Metric

Dataset Disadvantage Advantage

(Ghorbanza

deh et

al.,[19])

Hybrid-

based

Simulation

(Python)

Precision,

Sensitivity

SmaGri, Wiki-

vote, Political

blogs,

Kohonen

No forecast for the

direction of the

links

the best

performance in

unsupervised

mode, Low

computational

complexity

(Zareie et

al., [20])

Similarity-

based

Simulation

(Java)

Identifying

connections

between nodes

without common

neighbors,
Identifying the

relationships

among nodes by

the number of

common

neighbors,

Accuracy

Nine different

real-world

networks

No regard for

directed and

weighted

networks

superior accuracy

results

6

(Xi Wang et

al., [21])

Deep

Embedding

Simulation

(PyTorch)

F1- score,

Computational

efficiency(cost)

, Accuracy,

Precision,

Recall, AUC

Wordnet,

MovieLens,

Douban, DBLP

No prediction for

the direction of

the links, Loss the

information, No

regard for

multimedia

contents

Better

performance, the

acceptable

computational

cost

(Woojeong

Jin et al.,

[22])

Random

Walk With

Extended

Restart

Simulation

(MATLAB)

Accuracy,

Speed,

Scalability,

Memory Usage,

AUC

HepTh, HepPh working on

homogeneous and

without weights

graphs

The usage of a

different restart

probability for

each node and the

automated

determination of

restart

probabilities

(Kamal

Berahmand

et al., [23])

Label

Propagatio

n (graph

clustering)

Simulation

(Python)

Density,

Entropy, NMI,

F1-Score

Cora, Citeseer,

Political blogs,

LFR-EA

The remove

entropy from the

results due to

sparsity of the

attributes of

nodes

Linear time

complexity,

Suitable for large

datasets

 (Agrawal

et al., [24])

Graph

clustering

Simulation

(JDK, Python)

Density,

Entropy, NMI,

Accuracy

DBLP,

Political blogs

The quadratic

time complexity

for medium size

graph

Combine both

topological

structure and

attributes

similarities

(Ajay

Kumar et

al., [25])

Path-based

approach

Simulation

(MATLAB)

AUROC,

Average

Precision

Networks such

as

Collaboration,

Social,

Citation,

Biological

considering high-

order path index

lead to affect little

bit to prediction

accuracy

considering high-

order path index

lead to affect little

bit to prediction

accuracy, Reduce

information

leakage

(Ajay

Kumar et

al., [26])

Level-2

node

clustering

coefficient

Simulation

(MATLAB)

AUROC,

Accuracy,

AUPR, average

Precision,

Recall

11 real-world

datasets

No regard for

directed and

weighted

networks, Poor

predictive power

compared to

Nod2vec, SPM

algorithms

Define the notion

of the level-2

common node

 (Ghasemi

et al., [27])

Graph

Clustering

(Hybrid-

based)

WEKA Project,

AdaBoost

Classifier

Precision,

Recall, Fitness

Facebook,

Brightkite,

HepTh

High

computational

time due to global

parameters

With local and

global parameters,

precision is higher

than with baseline

methods

(Dmytro et

al., [28])

Meta-Path,

Random

Walk

VOSviewer

software, Perl

language

Number of

restored links,

Restored links

percentage

Scientific

collaboration

networks (Web

of Science)

High

computational

time, The impact

of the sparseness

of data on the

predictive results

The use

heterogeneous

information

network

7

3. Proposed Approach

In this section, an explanation of the proposed approach is described. First, a framework based

on the combination of nodes' structural characteristics and attributes is presented. The clustering

problem is then formulated. Finally, the proposed algorithm for graph clustering of

heterogeneous information networks is explained.

3.1. Proposed Framework

This section will discuss a framework for combining topological structure and attribute of nodes

to implement the suggested approach. As shown in Figure 1, the proposed framework includes

five main steps: the data pre-processing, the connection extraction, the similarity calculation,

the combining structural and attribute similarities, and the performing the process of clustering

and evaluating the clusters, each of which is explained in the following:

Fig. 1. The proposed clustering algorithm framework

8

A. Data pre-processing

This step is responsible for pre-processing the input dataset. This step is divided into two

processes filtering and coding. Filtering is in charge of data cleaning on the input dataset, and

coding is responsible for building relationships between records within the data. The pre-

processing step is carried out once, and its results are used in all other steps.

B. Connection extraction

The connection between node pairs is extracted once, and these connections are used in various

steps. The nodes' connection is divided into three types: Directly connected, Indirectly

connected, and Disconnected. Directly connected, in this connection type, there is a direct edge

between two nodes. For example, in Figure 2-a, nodes A and B or A and D are Directly

connected. Indirectly connected, in this kind of connection, there is no direct edge between two

nodes, but a communication path passing through other nodes may establish a connection

between two nodes. In Figure 2-a, nodes E and C are Indirectly connected. Disconnected, in this

connection type, exists not a direct edge or a path between nodes. In the proposed method, these

nodes may communicate with other nodes in the network based on common features.

In Figure 2-a, the connection between nodes A and F is called Disconnected. After extracting of

connections, the data are modelled in the form of two graphs: the simple graph (G1) and the

bipartite graph (G2).

9

(a) (b)

Fig. 2. Types of graphs a) Simple graph (G1), the dashed line shows the connection types; b) Bipartite graph (G2)

C. Similarity calculation

In this step, the structural similarity between node pairs in G1 is calculated according to the type

of connection between them separately. The result of this step is the structural similarity matrix.

In addition, attribute similarity between node pairs in G2 is calculated based on the type of

connection between them separately. The result is an attribute similarity matrix.

D. Combining similarities

The hybrid similarity consists of the combined structural and attribute similarities between pairs

of nodes according to their connection type. In this combination, the structural similarity is based

only on the edges or communication paths between the nodes, and the attribute similarity is

based only on node features. The output of this step is called the hybrid similarity matrix

according to the influence degree of the two similarities.

E. Clustering and evaluating

In implementing the proposed algorithm, the K-Medoids method uses distance values for

vertices partitioning. The outcome of the clustering is k clusters, each of which contains a set of

vertices. Clusters are mutually separated and collectively complete. After the clustering process,

the clusters will be evaluated using three criteria: density, entropy, and purity.

3.2. Problem statement

As shown in Table 2, this section introduces the notations and equations used in the proposed

solution. The dataset is an undirected, weighted, multi-attributed graph G = {V, E, W, M, A},

not necessarily connected, where V and E are the set of all the vertices and undirected edges

respectively, W is the weight of each edge, M is the number of node attributes, and A is the set

of values of each attribute 𝐴 = {𝑎𝑡𝑡𝑟1, 𝑎𝑡𝑡𝑟2 , … , 𝑎𝑡𝑡𝑟𝑀 }. Two graphs, G1 and G2, are extracted

from graph G. G1 is an undirected and weighted graph G1 = {V1, E1, W1}, not necessarily

connected, where V1, E1, and W1 are adapted from G. If there is a direct link among any pairs

of vertices, e.g., Vn and Vm, then W1nm>0. Also, G2 is an undirected, weighted bipartite graph

G2 = {V2, E2, W2, M, A}. Each attribute appears as a single node in the bipartite graph.

Therefore, V2 equals the sum of G1 nodes and each of the attributes these nodes have. The 𝐸2

10

attribute edge is an edge between a node and each of the characteristics of that node. W2

represents the edge weight for each attribute; by default, its value is equal to one. Also, M and

A are adapted from G. In G1 and G2, parameter 𝑑𝑛 , indicates the degree of each node and the

number of edges entered into it. In G1, 𝐶𝑁𝑛𝑚 , is the number of common neighbors of two

nodes, e.g., 𝑉𝑛 and 𝑉𝑚. In G2, 𝐶𝑁𝑛𝑚 , is the number of common attributes between two nodes.

The goal is to partition the graph into k segments using the combination of topological and

attribute similarities such that the nodes in a partition have strong structural relationships and

homogeneous attribute values.

Table 2. Notations and definitions.

Definition Notation

An undirected, weighted, multi-attributed graph G

Set of vertices V

Set of edges E

Number of attributes of each node M

Set of values of each attribute A

Edge weight between the vertices Vn and Vm 𝑊𝑛𝑚

ith attribute edge weight 𝑊𝑎𝑡𝑡𝑖
Two vertices, Vn and Vm, are Directly connected 𝑉𝑛 ↔ 𝑉𝑚

Two vertices, Vn and Vm, are Indirectly connected 𝑉𝑛 ↮ 𝑉𝑚

Two vertices, Vn and Vm, are Disconnected 𝑉𝑛… 𝑉𝑚
Impact parameter α

Structural similarity between two vertices Vn, Vm 𝑠𝑖𝑚(𝑉𝑛 , 𝑉𝑚)𝑆𝑡𝑟𝑢𝑐𝑡
Attribute similarity between two vertices Vn, Vm 𝑠𝑖𝑚(𝑉𝑛 , 𝑉𝑚)𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

The hybrid similarity between two vertices Vn, Vm 𝐻𝑆𝑖𝑚(𝑉𝑛, 𝑉𝑚)
node degree 𝑑𝑛

Common neighbors between two vertices Vn and

Vm

𝐶𝑁𝑛𝑚

Distance function 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑛 , 𝑉𝑚)
Number of clusters 𝐾

The correlation coefficient between two vertices,

Vn and Vm

𝑐𝑜𝑟𝑟𝑛𝑚

3.3. Proposed graph clustering algorithm

This section provides a detailed explanation of the clustering algorithm, as shown in Algorithm

1. Initially, the dataset must be processed before other steps can use it. The pre-processing

consists of two processes: filtering and coding. In the filtering process, it is tried to extract a

coherent dataset with a smaller volume than the initial dataset by applying appropriate filters.

In the coding process, data coding is done with a simple coding method for greater integrity.

The output of the pre-processing phase is the three sets of nodes, the edges, and the attributes of

11

nodes. In the proposed algorithm, once data pre-processing (line 3) and extracting the

connections type between vertices with each other (line 4) is performed. Then, a simple,

undirected, and weighted graph (G1) is extracted as a model to solve the structural similarity

problem. Also, a bipartite, undirected, and weighted graph (G2) is a model for solving the

attribute similarity problem. According to the output of line 4, structural similarity and attribute

(lines 6-17) are repeated for both vertices. Then, the hybrid similarity and distance function of

each pair of vertices will be calculated (lines 17-22) and finally, will be done clustering process

(line 23).

12

Algorithm 1: Pseudocode Proposed Clustering Algorithm

1: Input: A Dataset, K: number of Clusters, α: Impact Parameter.

2: Output: k clusters where each cluster contains several nodes of the set V.

3: Pre-processing; /* Nodes set, Edges set, Attributes set*/

4: Connection Extraction; /* Directed, Indirected and Disconnected connection- An

Undirected, weighted graph(G1) and A Multi Attributed, weighted, and Undirected graph

(G2) */

5: Begin

6: for every pair of vertices 𝑉𝑛and 𝑉𝑚 in V where n m

7: Begin

8: If 𝑉𝑛↔ 𝑉𝑚 then

9: Calculate Struct-similarity (𝑉𝑛, 𝑉𝑚) in G1; using Eq. (5)

10: Calculate Attribute-similarity (𝑉𝑛, 𝑉𝑚) in G2; using Eq. (10)

11: Else if 𝑉𝑛↮ 𝑉𝑚 then

12: Calculate Struct-similarity (𝑉𝑛, 𝑉𝑚) in G1; using Eq. (5)

13: Calculate Attribute-similarity (𝑉𝑛 , 𝑉𝑚) in G2; using Eq. (10)

14: Else /* 𝑉𝑛… 𝑉𝑚 */

15: Struct-similarity=0;

16: Calculate Attribute-similarity (𝑉𝑛, 𝑉𝑚) in G2; using Eq. (10)

17: end for

18: for every pair of vertices 𝑉𝑛and 𝑉𝑚 in V where n m

19: Begin

20: Calculate Hsim (𝑉𝑛, 𝑉𝑚); using Eq. (11)

21: Calculate Distance (𝑉𝑛, 𝑉𝑚); using Eq. (12)

22: End

23: Perform k-Medoids clustering /* Based on Distance Matrix, between any pairs of Nodes */

24: End.

3.3.1. Structural similarity

This section calculates the structural similarity between the two vertices of the graph according

to the connection type between vertices, as shown in Algorithm 2. In similarity-based methods

in heterogeneous networks, with only an absolute emphasis on the number of common

neighbors, cannot calculate the structural similarity among pairs of nodes well. On the other

hand, beyond direct relationships, also hidden relationships between any pair of vertices, such

13

as indirect and disconnected connectivity, may contribute to the structural similarity calculation.

First, the adjacency vector is calculated for each node of the G1 (line 4). Then, the union

neighborhood set of the pairs of vertices (line 5) and the correlation between vectors is

calculated to determine the correlation between two vertices (line 6). Finally, the structural

similarity of the pair of vertices is obtained (line 7). The details of calculating the structural

similarity of two nodes using the neighborhood of both nodes and their indirect interaction

strength in three directly connected, indirectly connected, and disconnected states are described

in the next section.

Algorithm 2: Pseudocode for Indirect and Direct Connected Structural Similarity

1: Begin

2: for each vertex Vn in V /* 𝑣 ∈ 𝑉 */

3: for each vertex Vm in V

4: Adjacency vector Calculate; using Eq. (1)

5: Union adjacency Vector; using Eq. (2)

6: Correlation Coefficient Calculate; using Eq. (3), (4)

7: Structural similarity Calculate; using Eq. (5)

8: End.

In the following, the method of calculating the structural similarity between directly and

indirectly connected nodes is expressed. In most current techniques that consider the connection

between nodes in the calculation of similarity, only paths with length two are considered in the

indirectly connected type. Since paths with a length of more than two may contribute to the

calculation of structural similarity in indirect connections, such paths are considered in the

proposed method. The proposed adjacency vector in indirect nodes does not limit the path

length. The adjacency vector of each node is calculated by Equation (1):

(1)

14

 𝐴𝑉𝑛[𝑚] = 𝑚∈𝑣
{

 ∑𝑤𝑛𝑖 𝑖𝑓 𝑛 = 𝑚𝑑𝑛

𝑖=1∑ 𝑤𝑛𝑖 𝑖𝑓 𝑉𝑛, 𝑉𝑚 𝑖𝑠 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑖=𝑠𝑜𝑢𝑟𝑐𝑒𝑤𝑛𝑚 𝑖𝑓 𝑉𝑛, 𝑉𝑚 𝑖𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑0 𝑖𝑓 𝑉𝑛, 𝑉𝑚 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

Where n is the node whose adjacency vector should be calculated. If the index number of the

adjacency vector is equal to n, the sum of the weight of all edges entered into the node n is

placed in this index. If the connection between n and m is indirect, the desired index value in

the adjacency vector will be the sum of the weight of the shortest path between n and m in the

simple graph. If n and m have a direct connection, then the weight of the direct edge is placed

between them in the vector index. And if two nodes are disconnected, a zero value will be

entered in the desired index. After calculating the adjacency vector of all nodes of the simple

graph, the union neighborhood set between both indirectly and directly connected nodes is

calculated based on Equation (2):

(2) 𝑈𝑁𝐼𝑂𝑁𝑛𝑚 = {𝑧 | (𝐴𝑉𝑛[𝑧] > 0) 𝑜𝑟 (𝐴𝑉𝑚[𝑧] > 0)}
To indicate the correlation between the pairs of nodes, the correlation coefficient between the

union neighborhood set of the vectors is calculated by Equation (3):

(3) 𝑐𝑜𝑟𝑟𝑛𝑚 = ∑ (𝐴𝑉𝑛[𝑧] − 𝐴𝑉𝑛̅̅ ̅̅ ̅)(𝐴𝑉𝑚[𝑧] − 𝐴𝑉𝑚̅̅ ̅̅ ̅)𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚√∑ (𝐴𝑉𝑛[𝑧] − 𝐴𝑉𝑛̅̅ ̅̅ ̅)2𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚 √∑ (𝐴𝑉𝑚[𝑧] − 𝐴𝑉𝑚̅̅ ̅̅ ̅)2𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚

Where 𝐴𝑉𝑛̅̅ ̅̅ ̅ , is the average value of the union neighborhood set of vector 𝐴𝑉𝑛, which is obtained

from Equation (4):

(4) 𝐴𝑉𝑛̅̅ ̅̅ ̅ = ∑ 𝐴𝑉𝑛[𝑧]𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚|𝑈𝑁𝐼𝑂𝑁𝑛𝑚|

Finally, the structural similarity of any two nodes connected indirectly and directly is calculated

using Equation (5):

15

(5) 𝑠𝑖𝑚(𝑉𝑛, 𝑉𝑚)𝑆𝑡𝑟𝑢𝑐𝑡 = (1 +𝑊𝑛𝑚)(1 + 𝑐𝑜𝑟𝑟𝑛𝑚)
Where 𝑊𝑛𝑚 , is the weight of the common edge between two nodes n and m in the simple graph

and 𝑐𝑜𝑟𝑟𝑛𝑚 , is the correlation coefficient between them. Also, the structural similarity between

disconnected nodes is assumed to be zero.

3.3.2. attribute similarity

There are different types of nodes in heterogeneous networks, each node in such a network can

contain an M attribute, and each attribute can have a different set of A values. Since the goal is

to calculate the hybrid similarity in such a network, the attribute of the nodes should be

considered. For example, in a bibliographic network, one of the types of nodes is authors, and

one of the attributes of nodes is the interest of each author in different research fields. As shown

in Figure 3, an attribute is defined for each node, which contains four values (e.g., Data Mining,

Data Base, Programming, and Machine Learning, which are four values for the interesting

attribute).

A B

CD

E

G

F

Data Minning Data Mining

Programming

Data BaseProgramming

Machine Learning

DataBase

Fig.3. Graph with one attribute and four values

The attribute similarity, the like the structural similarity, is calculated based on three connection

types. To calculate the attribute similarity and simplify the calculations, the G2 is extracted from

the sets of V and A. In a bipartite graph, there are two disjoint sets of nodes, such that the nodes

of each set are not related, and only their connection is with the nodes of the opposite group, as

shown in Figure 2-b. In all the calculations of this section and according to the connection types,

the calculations of the attribute similarity will be done on the bipartite graph. The attribute

similarity is responsible for calculating the attribute similarity between the two vertices of the

graph, as shown in Algorithm 3. First, the adjacency vector is calculated for each node of the

16

G1 based on the G2 (line 3). Then, the union neighborhood set of the pairs of vertices (line 4)

and the correlation between vectors to determine the correlation between two vertices (line 5) is

calculated. Finally, the attribute similarity of both nodes is obtained (line 6). In the next section,

attribute similarity calculation is described in detail.

According to Algorithm 3, the adjacency vector of each node in G2 is calculated by Equation

(6):

(6)

 𝐴𝑉𝑛[𝑚] = 𝑚∈𝑉
{

 ∑𝑤𝑛𝑖 𝑖𝑓 𝑛 = 𝑚𝑑𝑛

𝑖=1∑𝑐𝑜𝑚𝑚𝑜𝑛(𝑉𝑛,𝑉𝑚) ∗ 𝑤𝑎𝑡𝑡𝑟𝑖 +𝑤𝑛𝑚𝑀
𝑖=1 𝑖𝑓 𝑉𝑛,𝑉𝑚 𝑖𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑∑ 𝑐𝑜𝑚𝑚𝑜𝑛(𝑉𝑛,𝑉𝑚)∗𝑤𝑎𝑡𝑡𝑟𝑖 𝑖𝑓 𝑉𝑛,𝑉𝑚 𝑖𝑠 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑀𝑖=1 ∑ 𝑐𝑜𝑚𝑚𝑜𝑛(𝑉𝑛, 𝑉𝑚) ∗ 𝑤𝑎𝑡𝑡𝑟𝑖 𝑖𝑓 𝑉𝑛,𝑉𝑚 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑀𝑖=1

Where n denotes the node whose adjacency vector should be calculated, if m is equal to n, the

weight of all edges entered into the node n in the G2 is placed in the m index. If n and m have a

direct connection, then the weight of the common attribute edges between n and m in the G2 is

summed with the weight of the common edge between them in the simple graph. We consider

the edge weight of each attribute is always considered as one. If the connection between n and

m is indirect or disconnected, the value of the desired m index will be the sum of the weight of

the common attribute edges in the G2.

After calculating the adjacency vector of all nodes, the union neighborhood set between both

indirectly connected, directly connected, and disconnected is calculated based on Equation (7):

(7)

Algorithm 3: Pseudocode for Indirect, Direct and Disconnect Connected Attribute Similarity

1: Begin

2: Input: Bipartite Graph and Indirect, Direct and Disconnect Connected Nodes Set.

3: Adjacency Vector Calculate; using Eq. (6)

4: Union adjacency Vector; using Eq. (7)

5: Correlation Coefficient Calculate; using Eq. (8), (9)

6: Attribute similarity Calculate; using Eq. (10)

7: End.

17

𝑈𝑁𝐼𝑂𝑁𝑛𝑚 = {𝑧 | (𝐴𝑉𝑛[𝑧] > 0) 𝑜𝑟 (𝐴𝑉𝑚[𝑧] > 0)}

A higher correlation between the union neighborhood set, 𝑈𝑁𝐼𝑂𝑁𝑛𝑚, vectors 𝐴𝑉𝑛 and 𝐴𝑉𝑚 ,

demonstrates a higher structural similarity among nodes n and m. The correlation coefficient

between the union neighborhood set of the vectors is calculated by Equation (8):

(8) 𝑐𝑜𝑟𝑟𝑛𝑚 = ∑ (𝐴𝑉𝑛[𝑧] − 𝐴𝑉𝑛̅̅ ̅̅ ̅)(𝐴𝑉𝑚[𝑧] − 𝐴𝑉𝑚̅̅ ̅̅ ̅)𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚√∑ (𝐴𝑉𝑛[𝑧] − 𝐴𝑛̅̅̅̅)2𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚 √∑ (𝐴𝑉𝑚[𝑧] − 𝐴𝑉𝑚̅̅ ̅̅ ̅)2𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚

Where 𝐴𝑉𝑛̅̅ ̅̅ ̅ , is the average value of the union neighborhood set of vector 𝐴𝑉𝑛, which is obtained

from Equation (9):

(9) 𝐴𝑉𝑛̅̅ ̅̅ ̅ = ∑ 𝐴𝑉𝑛[𝑧]𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚|𝑈𝑁𝐼𝑂𝑁𝑛𝑚|

In Equation (9), the fraction's numerator is the sum of the non-zero values of the nth node's

adjacency vector. The fraction's denominator is the number of members union neighborhood set

by the adjacency vectors of two nodes, n and m.

Finally, the attribute similarity between pairs of nodes based on the connection types will be

calculated by Equation (10) as follows:

(10) 𝑠𝑖𝑚(𝑉𝑛, 𝑉𝑚)𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = (1 +𝑊𝑛𝑚)(1 + 𝑐𝑜𝑟𝑟𝑛𝑚)/𝑀

In Equation (10), 𝑊𝑛𝑚 is two nodes' common edge weight 𝑉𝑛 and 𝑉𝑚 in the simple graph, 𝑐𝑜𝑟𝑟𝑛𝑚, the correlation coefficient between them, and 𝑀 is the number of attributes of the graph

nodes.

3.3.3. Hybrid similarity and distance function

The overall similarity of both nodes with the combination of structural and attribute similarities

are calculated by Equation (11):

18

(11) 𝐻𝑠𝑖𝑚(𝑉𝑛,𝑉𝑚) = 𝛼. 𝑠𝑖𝑚(𝑉𝑛,𝑉𝑚)𝑆𝑡𝑟𝑢𝑐𝑡 + (1 − 𝛼). 𝑠𝑖𝑚(𝑉𝑛,𝑉𝑚)𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒

In Equation (11), the degree of influence of the two similarities is not the same. The α parameter

is a weighting factor used to control the influence of both similarities, and, in advance, it must

be in the range of [0,1] to be given. The suitable amount of α is the value that divides the graph

into k clusters such that the nodes of each cluster have coherent communication structures and

the same attribute values. In our method, based on the analysis of the results, the value of this

coefficient is assumed to be 0.5, in which identical importance is given to structural and attribute

similarities. After calculating the hybrid similarity measure according to connection types for

performing the graph clustering process, the distance value for each pair of nodes in the graph

is computed with Equation (12):

(12)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑛,𝑉𝑚) = { 1𝐻𝑠𝑖𝑚(𝑉𝑛 ,𝑉𝑚) 𝑖𝑓 𝐻𝑠𝑖𝑚 > 0 ∞ 𝑖𝑓 𝐻𝑠𝑖𝑚 = 0

The distance value is the inverse of the similarity value. The smaller the distance between the

nodes placed in a cluster, the better the clustering quality.

3.3.4. Graph clustering

K-Medoids algorithm is applied for graph clustering. K-Medoids is an iterative partitioning

solution, as shown in Algorithm 4. We carry out the clustering process until the clusters

converge. The number of clustering algorithm iteration and the cluster's number (k) is input to

the proposed algorithm. The top k vertices with the maximum degree in V are selected as the k

initial centres for the clusters (line 4). The rest of the nodes are assigned to each cluster according

to their distance from the primary centroids (line 7). In each iteration of the algorithm, one node

is selected from the remaining nodes to have the highest degree among the rest of the nodes

(line 12). It is the new centroid of its cluster. The distance of the newly selected centre with all

other graph nodes is calculated, and the clusters are updated. Next, the distance between each

cluster's nodes and the centroid is computed. The total distances of all clusters are added together

(lines 13-15). Suppose the obtained value is more suitable than the same value in the previous

clustering. In that case, the new centroid is fixed, and the process continues (lines 16-18), else

19

the centroid is removed, and the node with the next maximum degree is chosen, and the process

will be repeated.

Algorithm 4: Pseudocode for K-Medoids Clustering

 1: Begin

 2: Input: K: number of clusters, MaxIterationNumber: The maximum number of iterations.

 3: Output: K Clusters c1, c2, …, ck.

 4: ClusterCentroid =Top k Maximum Degree vertices in V set.

 5: remainingNodes= V – ClusterCentroid.

 6: for (every 𝑉𝑖 in remainingNodes)

 7: Cluster[i]= min {Distance(i,j)} i, j for all centroids j =1...k.

 8: while iterations <= MaxIterationNumber

 9: begin

10: for each v in remainingNodes

11: begin

12: Choice node with Maximum degree from the set of remainingNodes as newly

 Centroid.

13: Calculate the distance of all the remainingNodes to the new centroid.

14: Assign one node to a cluster that has a minimum distance from the centroid that

 Cluster.

15: update total clusters.

16: if (the sum of distances in all clusters is the minimum) then

17: update the ClusterCentroid.

18: end

19: iterations ++.

 20: End.

4. Performance evaluation

This section validates the proposed solution using two real datasets, DBLP and Political blogs.

Then, it describes the simulation parameters setup and performance metrics. Finally, a

discussion of the simulation results follows it will provide.

4.1. Experimental setup

The experiments were performed on a 64-bit machine with a 2.80 GHz Intel Core i7 processor

with 8 GB main memory and Windows 10 as an operating system. Python 3.9 is used as the

open-source language to implement the suggested method. We compare the proposed method

with the following three basic approaches to evaluate it. These methods have been fully

simulated and implemented under the same conditions. We chose these methods because they

20

calculate collaborative similarity using topological structures and features in undirected, multi-

attribute, and weighted networks similar to ours. The following methods:

IGC-CSM [2]: A collaborative approach for clustering a weighted, multi-attribute, and

undirected graph. This method computes topological similarity and attributes depending on the

types of connection between nodes. The directly connected nodes' similarity is according to the

similarity of Jaccard and the weight of the neighbors of the nodes. The structural and attribute

similarities of nodes connected indirectly are the linear product of the structural similarity and

the linear product of the attribute similarity of the two directly connected nodes in the path of

the indirectly connected pair. This approach uses a shortest-path strategy to decrease the

computation cost and search space. The K-medoids method is used to cluster the graph.

AR-Cluster [12]: A collaborative approach for graph clustering is based on the type of

connection between nodes. Attracting and Recommending Degrees are used in this algorithm to

compute the structural similarity. In addition, the K-medoids method is used to cluster the graph.

SAG-Cluster [24]: According to the type of connection of nodes, a cooperative approach is to

cluster the graph with the K-Medoids framework. In calculating the structural similarity between

directly connected nodes, the weight of all the edges with the neighboring nodes of each node

is considered. Through the use of the classical Basel theorem and the maximum weighted

average, they calculate the similarity between each indirectly connected pair.

In our experiments, we utilize two real datasets, DBLP and Political blogs.

 Political blogs1: Political blogs included 1,490 blogs about United States politics, with 19,090

links among these web blogs. The attribute of each blog is its political leaning, the value of

which is either liberal or conservative. In the experiments, the edge weight between blogs is

considered one; also, one attribute with two liberal or conservative values for the nodes is

considered.

DBLP2: We use a subset of DBLP bibliography information data. This network includes

information on articles, citations to articles, information on authors, and author collaborations

between them. The used sub-network was collected between 2004 and 2014. Our selected sub-

network contains four research areas of Artificial Intelligence (AI), Information Retrieval (IR),

1 http://www-personal.umich.edu/~mejn/netdata/

2 https://www.aminer.org/aminernetwork

https://www.aminer.org/aminernetwork

21

Data Mining (DM), and Data Base (DB). This network is a network weighted and multi

attributes. In experiments, the attributes of the nodes are the authors' interest in different research

fields. The number of co-authorships between authors is the edge weight between them. Each

node has four attributes, and each attribute has a value. Looking at the datasets used according

to the communication types among the nodes, the number of connections of various types is not

the same. The number of indirectly connected links in Political blogs is more than the same type

in the DBLP dataset. In DBLP, the number of disconnected links is more than the like in the

Political blogs dataset.

4.2. Performance metric

We used the following performance measures to validate the proposed solution with other

algorithms.

Density: Density is the ratio of the number of edges in a cluster to the number of edges in the

entire graph. The proportions of all clusters are accumulated to assess their impact [2]. The

density values lie in the range [0, 1]. The density is calculated by Equation (13):

(13) 𝐷𝑒𝑛𝑠𝑖𝑡𝑦({𝑉𝑐}𝑐=1𝑘) = ∑ |{(𝑉𝑚,𝑉𝑛)|𝑉𝑚,𝑉𝑛 ∈ 𝑉𝑐 ,(𝑉𝑚,𝑉𝑛) ∈ 𝐸}||𝐸|𝑘𝑐=1

Where k is the number of clusters, and the c is each of the graph clusters, |𝐸| is the

total number of edges in the graph and |(𝑉𝑚 ,𝑉𝑛)| , is the number of edges in cluster

c.

 Entropy: This metric is described to determine the relationships between vertices in terms of

attributes [12]. A lower entropy means a better quality of clustering. The entropy value is in the

range of [0, 1] and is expressed by Equation (14):

(14)

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦({𝑉𝑐}𝑐=1𝑘) = ∑(𝑊𝑎𝑡𝑡𝑟𝑐∑ 𝑊𝑎𝑡𝑡𝑟𝑠𝑀𝑠=1 ∑|𝑉𝑖||𝑉|𝑘
𝑖=1 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑎𝑡𝑡𝑟𝑐 , 𝑉𝑖))𝑀

𝑐=1

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑎𝑡𝑡𝑟𝑐 , 𝑉𝑖) = −∑𝑃𝑟𝑐𝑛𝑡𝑐𝑖𝑛 𝑙𝑜𝑔2 𝑃𝑟𝑐𝑛𝑡𝑐𝑖𝑛𝑛𝑐
𝑛=1

22

Where i is each of clusters, i= {1, 2, …, k}, 𝑊𝑎𝑡𝑡𝑟𝑐 , is the weight of the cth attribute, n is attribute

values, and nc , is the number of attribute values. Prcntcin is defined as the percentage of vertices

in cluster j that have the value attrcn in the attribute attrc.

Purity: This metric shows how many percentages of the nodes in a cluster have the same

attributes. A higher value for this measure indicates better clustering performance. The purity

value is in the range [0,1] and is calculated by Equation (15):

(15)

𝑃𝑢𝑟𝑖𝑡𝑦({𝑉𝑐}𝑐=1𝑘) = ∑|𝑉𝑖||𝑉|𝑘
𝑖=1 𝑃𝑢𝑟𝑖𝑡𝑦(𝑉𝑖) 𝑃𝑢𝑟𝑖𝑡𝑦(𝑉𝑖) = 𝑀𝑎𝑥𝑗(𝑃𝑖(𝑎𝑡𝑡𝑟𝑗))

Where i is each of clusters, i ={1, 2,…,k}, the ith cluster consists of Vi nodes, V is the whole

number of graph nodes, and Pi(attrj) is the ratio of attribute jth in the ith cluster.

4.3. Experimental analysis

Simulation parameters are set in our proposed solution and other implemented algorithms, as

shown in Table 3. α equals 0.5. Also, because specific instructions to achieve the maximum

effective value of the MaximumIteration parameter are not defined, the appropriate value of this

parameter, according to the analysis results, is assumed to be 45. The MaximumIteration

parameter is the number of iterations of the clustering algorithm until the clusters converge.

Table 3. Setting simulation parameters

 DataSets MaxIteration α

DBLP Political

blogs

 k=10 k=3 45 0.5

 k=30 k=5 45 0.5

 K=50 k=7 45 0.5

 k=70 k=9 45 0.5

 The quality of the results is evaluated using three criteria: density, entropy, and purity. The final

23

results are presented as follows.

Figure 4 compares the density criterion for four approaches in the Political blogs dataset. In

figure 4, the number of clusters is assumed to be 3, 5, 7, and 9, respectively. As the figure shows,

when k increases in each approach, the cluster density decreases. In all cases, the IGC-SCM

approach has a greater density than the other three. When k = 7 or 9, the proposed approach's

density value is higher than in the SAG-Cluster, and AR-Cluster approaches. The density of the

AR-Cluster approach is lower than other approaches in every case. The values of density of the

SAG-Cluster and the proposed method are nearly close in k=5.

Fig4. Comparison of density value in Political blogs.

Entropy is used to determine the attribute relationships among nodes. A lower value of entropy

means more homogeneity of the nodes of a cluster in terms of their attributes. Figure 5 compares

the entropy criterion for four approaches on the Political blogs dataset with cluster numbers k =

3, 5, 7, and 9. The proposed method has the lowest entropy value in different values of K. We

can infer that the proposed method is strictly considered attribute similarity. The entropy of the

SAG-Cluster is better than IGC-CSM and AR-Cluster. AR-Cluster has a much higher entropy

than the other three approaches in the above cluster numbers, which shows the weaker

performance of this method.

24

Fig 5. Comparison of entropy value in Political blogs.

Figure 6 compares the density criterion for four approaches on the DBLP dataset using cluster

numbers 10, 30, 50, and 70. The density value of the IGC-CSM is the highest. While k = 10, the

density value of the proposed method is lower than the density of the SAG-Cluster approach.

The density values of the proposed method are higher than the SAG-Cluster and AR-Cluster

when k = 30. The values of density of the AR-Cluster and the proposed method are nearly equal

at k=70. The density values of the SAG-Cluster are higher than the proposed method when k

=50,70.

Fig6. Density value comparisons on DBLP.

25

Figure 7 compares the entropy criterion for four approaches on the DBLP dataset with cluster

numbers k = 10, 30, 50, and 70. The entropy values of the AR-Cluster, IGC-CSM, and the SAG-

cluster when k = 10, 30, or 50 are almost close. SAG-Cluster entropy is less than AR-Cluster

and IGC-CSM when k reaches 70. The proposed method's entropy is less at different K values

than the other three methods. We can infer that in the proposed method paying attention to the

attributes of nodes is much more than the other methods.

Fig7. Entropy value comparisons on DBLP.

Our proposed method's time complexity is quadratic, making it suitable for small and medium-

sized graphs. Figure 8 shows the execution time of the proposed method in terms of the size of

the graph based on the number of nodes in several examples on political blogs and DBLP data.

26

Fig8. An analysis of the proposed approach execution time on Political blogs and DBLP datasets

The execution time of the proposed approach is shorter than that of the other three approaches,

especially in the Political blogs dataset, which has more indirect relationships. Since all three

approaches calculate collaborative similarity based on the shortest path between indirectly

connected nodes, this step increases the overall execution time in them. For example, the

execution time of the proposed approach, according to Figure 8, on a subset of the Political

blogs dataset with about 382 nodes is approximately 158 seconds, and the execution time of the

SAG-Cluster approach on the same set is higher than 5400 seconds. Thus, the proposed approach

has a superior runtime compared to other methods.

Figures 9 and 10 show a plot of density versus entropy. A line connects all points related to an

algorithm. The direction of each line shows the treatment of the corresponding algorithm as the

number of clusters increases. Arrowheads and tails indicate the minimum and maximum number

of clusters [18]. The best performance is where the plot between density and entropy is in the

upper left corner of the x-y plane, where density is the highest value and entropy is the lowest

value. The quality of the proposed and the SAG-Cluster approaches on the DBLP dataset is quite

effective compared to the other techniques, as shown in Figure 9. In the Political blogs dataset,

the quality of the proposed approach is more effective than the three different approaches. The

AR-Cluster approach is weaker than the comparative approaches, as shown in Figure 10.

27

Fig9. The trade-off (density versus entropy). Analysis of the DBLP dataset

28

Fig10. The trade-off (density versus entropy). Analysis of Political blogs dataset

For further evaluation, we use the purity criterion. Our proposed algorithm is compared to three

others in the purity criterion on Political blogs and DBLP, as shown in Figure 11. Experimental

results show that the purity of the proposed method on both data sets is higher than other

methods. Especially this value is much higher in the DBLP dataset. In Figure 11, in the Political

blogs and DBLP datasets, respectively, purity is the average purity of clustering with k = 3, 5,

7, 9, and K = 10, 30, 50,70. A higher value for purity indicates a better clustering quality. In

other words, the nodes of a cluster have more same attributes.

29

Fig11. Purity value comparisons on DBLP and Political blogs.

To evaluate the effectiveness of the proposed method, we considered it with the previous three

methods according to density, entropy, execution time, and purity under two datasets of DBLP

and Political blogs. Tables 4 and 5 show the performance of all four approaches under the two

datasets used. According to these tables, in all experiments, the entropy of the proposed

approach is lower than other approaches. When the number of nodes in the selected network is

not high, the proposed approach gives a better density than entropy. By increasing the number

of nodes, the entropy of the proposed approach will be better than the density. The purity metric

in our method is always efficient and more than comparable methods.

30

Table 4. Comparison of different approaches on the Political blogs dataset

K Density Entropy Purity

 IGC-

CSM

AR-

Cluster

SAG-

Cluster

Proposed IGC-

CSM

AR-

Cluster

SAG-

Cluster

Proposed IGC-

CSM

AR-

Cluster

SAG-

Cluster

Proposed

3 0.851658

0.476003

0.810209

0.718586

0.28

0.99 0.2 0.14 0.95026178

0.54973822

0.965968586

0.976439791

5 0.574607

0.320244

0.494764

0.483421

0.23

0.65 0.18

0.16 0.955497

0.811518

0.965969

0.968586

7 0.526178

0.172775

0.411867

0.430628

0.23

0.65 0.17 0.15 0.955497

0.777487

0.965969

0.965969

9 0.366492

0.157504

0.327225

0.372164

0.22 0.29 0.18 0.12 0.958115

0.929319

0.965969

0.97644

Table 5. Comparison of different approaches on the DBLP dataset

K Density Entropy Purity

 IGC-

CSM

AR-

Cluster

SAG-

Cluster

Proposed IGC-

CSM

AR-

Cluster

SAG-

Cluster

Proposed IGC-

CSM

AR-

Cluster

SAG-

Cluster

Proposed

10 0.924296

0.899648

0.913732

0.892606

0.278128

0.279333

0.276846

0.070947

0.640237

0.63787

0.643787

0.946746

30 0.880282

0.84507

0.860915

0.861402

0.269545

0.269927

0.268256

0.047961

0.656805

0.656805

0.660355

0.956213

50 0.829225

0.797535

0.809859

0.764085

0.260844

0.262008

0.260155

0.043375

0.672189

0.671006

0.674556

0.956213

70 0.792254

0.758803

0.774648

0.75291

0.249405

0.249661

0.233026

0.04333

0.689941

0.688757

0.700592

0.959763

31

5. Conclusion

With the rapid development of social networks, data analysis of these networks to explore

valuable information has become a significant research area. Clustering is one of the approaches

to data analysis. The fundamental challenge in the clustering process is to consider the

importance of both the structural relationships and the homogeneous characteristics of nodes.

In this study, we proposed a hybrid clustering solution to predict links in heterogeneous

information networks. It uses a combination of structural similarity and attribute similarity of

nodes. Hence, we proposed a similarity measure according to the type of connection and

correlation among the adjacency vectors of nodes. This measure in indirect nodes does not limit

the path length. We evaluated the effectiveness of our solution under two real data sets. By

comparing the proposed method with the existing methods, the simulation results showed that

it is more effective in terms of entropy, purity, and execution speed. In addition, the cluster

density is also preserved. We propose a quadratic time complexity method for small and

medium-sized graphs. We will work on large-scale networks in the future, and we can also study

the clustering of an information network with directed connections. Furthermore, we will

develop a function to detect the convergence of the clustering algorithm based on density and

entropy. In addition, we will follow the ability to find the best value for K based on the ratio of

density to entropy without K being the input parameter of the clustering algorithm.

……

Declarations:

Ethical approval: All procedures performed in studies involving human participants were in accordance

with the ethical standards of the institutional and/or national research committee and with the 1964

Helsinki declaration and its later amendments or comparable ethical standards. This article does not

contain any studies with human participants or animals performed by any of the authors.

 Competing interests:

We certify that there is no actual or potential conflict of interest in relation to this article.

Authors' contributions:

Zahra Sadat sajjadi: Conceptualization, Data curation, Formal analysis, Methodology, Software,

Validation, Writing - original draft. Mehdi esmaeili: Conceptualization, Data curation, Supervision.

Mostafa Ghobaei-Arani: Conceptualization, Data curation, Supervision. Behrouz minaei:

Conceptualization, Writing - review & editing

 Funding:

This research received no specific grant from any funding agency in the public, commercial, or not-for-

profit sectors.

Availability of data and materials:
The data that support the findings of this study are available from the corresponding author, [author

initials], upon reasonable request.

32

References

[1] Aggarwal, C. C. (ed.) (2011) Social Network Data Analytics. Boston, MA: Springer US.

[2] Nawaz, W. et al. (2015) "Intra graph clustering using collaborative similarity measure," Distributed and parallel

databases, 33(4), pp. 583–603. https://doi: 10.1007/s10619-014-7170-x.

[3] Skabar, Andrew. 2017. "Clustering Mixed-Attribute Data Using Random Walk." Procedia Computer

Science 108: 988–97. https://doi.org/10.1016/j.procs.2017.05.083.

[4] Roh, G.-P. and Hwang, S.-W. (2011) "Online clustering algorithms for semantic-rich network

trajectories," Journal of computing science and engineering: JCSE, 5(4), pp. 346–353.

[5] https://doi: 10.5626/jcse.2011.5.4.346.

[6] Tian, Y., Hankins, R. A. and Patel, J. M. (2008) "Efficient aggregation for graph summarization,"

in Proceedings of the 2008 ACM SIGMOD international conference on Management of data - SIGMOD '08.

New York, New York, USA: ACM Press.

[7] Fortunato, S. and Hric, D. (2016) "Community detection in networks: A user guide," arXiv [physics. Soc-ph].

Available at: http://arxiv.org/abs/1608.00163.

[8] Zhou, Yang, Hong Cheng, and Jeffrey Xu Yu. 2009. "Graph Clustering Based on Structural/Attribute

Similarities." Proceedings of the VLDB Endowment International Conference on Very Large Data Bases 2 (1):

718–29. https://doi.org/10.14778/1687627.1687709.

[9] Cheng, H., Zhou, Y. and Yu, J. X. (2011) "Clustering Large Attributed Graphs: A Balance between Structural

and Attribute Similarities," ACM Trans. Knowl. Discov. Data, 5.

[10] Sun, Y. et al. (2011) "Pathsim: Meta path-based top-k similarity search in heterogeneous information

networks," Proceedings of the VLDB Endowment, 4, pp. 992–1003.

[11] Shi, C. et al. (2014) "HeteSim: A general framework for relevance measure in heterogeneous networks," IEEE

transactions on knowledge and data engineering, 26(10), pp. 2479–2492. https://doi:

10.1109/tkde.2013.2297920.

[12] Li, X. et al. (2017) "Semi-supervised clustering in attributed heterogeneous information networks,"

in Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva,

Switzerland: International World Wide Web Conferences Steering Committee.

[13] Zhou, H. et al. (2017) "A graph clustering method for community detection in complex networks," Physica A,

469, pp. 551–562. https://doi: 10.1016/j.physa.2016.11.015.

[14] Yang, J., McAuley, J. and Leskovec, J. (2014) "Community detection in networks with Node Attributes," arXiv

[cs.SI]. Available at: http://arxiv.org/abs/1401.7267.

[15] Lu, J., Gong, Z. and Lin, X. (2017a) "A novel and fast SimRank algorithm," IEEE transactions on knowledge

and data engineering, 29(3), pp. 572–585. https://doi: 10.1109/tkde.2016.2626282.

[16] Shakibian, H. and Moghadam Charkari, N. (2017) "Mutual information model for link prediction in

heterogeneous complex networks," Scientific reports, 7(1). https://doi: 10.1038/srep44981.

[17] Bai, L. et al. (2017b) "Fast graph clustering with a new description model for community

detection," Information sciences, 388–389, pp. 37–47. https://doi: 10.1016/j.ins.2017.01.026.

[18] Huang, X., Cheng, H. and Yu, J. X. (2015) "Dense community detection in multi-valued attributed

networks," Information sciences, 314, pp. 77–99. https://doi: 10.1016/j.ins.2015.03.075.

[19] Li, X. et al. (2022) "SCHAIN-IRAM: An efficient and effective semi-supervised clustering algorithm for

attributed heterogeneous information networks," IEEE transactions on knowledge and data engineering, 34(4),

pp. 1980–1992. https://doi: 10.1109/tkde.2020.2997938.

[20] Ghorbanzadeh, H. et al. (2021) "A hybrid method of link prediction in directed graphs," Expert systems with

applications, 165(113896), p. 113896. https://doi: 10.1016/j.eswa.2020.113896.

https://doi.org/10.1016/j.procs.2017.05.083
https://doi.org/10.14778/1687627.1687709
http://arxiv.org/abs/1401.7267

33

[21] Zareie, A. and Sakellariou, R. (2020) "Similarity-based link prediction in social networks using latent

relationships between the users," Scientific reports, 10(1), p. 20137. https://doi: 10.1038/s41598-020-76799-4.

[22] Wang, X. et al. (2021) "Link prediction in heterogeneous information networks: An improved deep graph

convolution approach," Decision support systems, 141(113448), p. 113448. https://doi:

10.1016/j.dss.2020.113448.

[23] Jin, W., Jung, J. and Kang, U. (2019) "Supervised and extended restart in random walks for ranking and link

prediction in networks," PloS one, 14(3), p. e0213857. https://doi: 10.1371/journal.pone.0213857.

[24] Berahmand, K. et al. (2022) "A new attributed graph clustering by using label propagation in complex

networks," Journal of King Saud University - Computer and Information Sciences, 34(5), pp. 1869–1883.

https://doi: 10.1016/j.jksuci.2020.08.013.

[25] Agrawal, S. and Patel, A. (2021) "SAG Cluster: An unsupervised graph clustering based on collaborative

similarity for community detection in complex networks," Physica A, 563(125459), p. 125459. https://doi:

10.1016/j.physa.2020.125459.

[26] Kumar, A. et al. (2020) "Link prediction in complex networks based on Significance of Higher-Order Path

Index (SHOPI)," Physica A, 545(123790), p. 123790. https://doi: 10.1016/j.physa.2019.123790.

[27] Kumar, A. et al. (2019) "Level-2 node clustering coefficient-based link prediction," Applied Intelligence,

49(7), pp. 2762–2779. https://doi: 10.1007/s10489-019-01413-8.

[28] Ghasemi, S. and Zarei, A. (2022a) "Improving link prediction in social networks using local and global

features: a clustering-based approach," Progress in artificial intelligence, 11(1), pp. 79–92. https://doi:

10.1007/s13748-021-00261-3.

[29] Lande, D. et al. (2020) "Link prediction of scientific collaboration networks based on information

retrieval," World wide web, 23(4), pp. 2239–2257. https://doi: 10.1007/s11280-019-00768-9.

