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Abstract: 

In recent years, researchers from academic and industrial fields have become increasingly 

interested in social network data to extract meaningful information. This information is used in 

applications such as link prediction between people groups, community detection, protein 

module identification, etc. Therefore, the clustering technique has emerged as a solution to 

finding similarities between social network members. Recently, in most graph clustering 

solutions, the structural similarity of nodes is combined with their attribute similarity. The 

results of these solutions indicate that the graph's topological structure is more important. Since 

most social networks are sparse, these solutions often suffer from insufficient use of node 

features. This paper proposes a hybrid clustering approach for link prediction in heterogeneous 

information networks (HINs). In our approach, an adjacency vector is determined for each node 

until, in this vector, the weight of the direct edge or the weight of the shortest communication 

path among every pair of nodes is considered. A similarity metric is presented that calculates 

similarity using the direct edge weight between two nodes and the correlation between their 

adjacency vectors. Finally, we evaluated the effectiveness of our proposed method using DBLP 

and Political blogs datasets under entropy, density, purity, and execution time metrics. The 

simulation results demonstrate that while maintaining the cluster density significantly reduces 

the entropy and the execution time compared with the other methods. 

Keywords: Social Network, Graph Clustering, Structural Similarity, Attribute Similarity, 

Hybrid Similarity, K- Medoids 

 

 

  

 

mailto:mo.ghobaei@


2 

 

1. Introduction 

Nowadays, social networks are very popular for facilitating and modelling the communication 

between different social groups [1]. These social networks provide a place for exchanging opinions 

and sharing people's views and feelings. Social networks contain vast and valuable data, and helpful 

information can be obtained from analyzing these data. Networks are divided into homogeneous 

and heterogeneous. In a homogeneous network, all objects and connections between them are of 

the same type. A heterogeneous network consists of nodes, which represent different types of 

objects, and edges, which establish relationships between them. In a social network, information 

can be shown with heterogeneous information networks (HINs). Various networks, including 

computer networks, social networks, signalling networks and etc., are usually modelled by graphs 

as an effective tool for examining objects and their relationships. The objects are associated with 

different attributes to enrich the information content of a network. Graph clustering is an exciting 

and challenging research field due to the difficult structures and connections between objects in the 

real world. As a result, various aspects of graph clustering have been studied to gain a better 

understanding of network structure and semantics [2]. The effective factor in clustering is finding a 

similarity criterion between objects so that the criterion is consistent with the purpose of clustering 

[3]. The similarity between objects is calculated according to their topological structure or feature. 

The state-of-the-art methods use only one of the two aspects. The S-Cluster algorithm is a baseline 

clustering algorithm that only considers topological structure [4,7]. The other baseline algorithm K-

SNAP partitions a graph such that each partition has nodes with identical attribute values [5]. In 

other words, the similarity of objects is measured based on only one of two aspects. In these 

methods, clustering is not quality because much of the network information is ignored during the 

similarity calculation and the clustering process.  

 Using the combined similarity measure effectively solves this limitation [2,6-18]. However, in 

clustering the objects of a network into different clusters based on the combination of two aspects, 

the structural relationships are still more effective than the characteristics of the nodes. For example, 

most of these methods cannot use the property of nodes completely. Therefore, the extracted clusters 

may be inaccurate, especially when the network is sparse. 

The purpose of this paper is to perform the clustering process on HINs with considering attributes. 

The proposed solution uses the graph clustering solution considering structure and context to 

achieve desired quality at a lower computational cost. It takes into account the type of connection 
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between nodes. Then, it calculates the adjacency vector for each node based on its relationships 

with other nodes and provides a similarity measure using the Pearson correlation coefficient. After 

that, the k-Medoids algorithm is applied to cluster the nodes based on their similarity score. 

The contributions of this work are summarized as follows: 

• We proposed a hybrid clustering approach for heterogeneous information networks, 

which uses the k-Medoids technique to partition nodes based on the combined similarity 

value. 

• We use the importance of disconnected nodes' presence to calculate the similarity 

between nodes.  

• We perform experiments on DBLP and Political blogs datasets regarding density, 

entropy, and purity metrics to evaluate our solution. 

The remaining parts of this paper are organized as follows: Section 2 examines related work 

on graph clustering for link prediction in social networks. In section 3, we explain the 

proposed solution in more detail. Section 4 provides an evaluation of the proposed method 

and discusses the results. Finally, we present conclusions and future research to develop the 

current work in Section 5. 

2. Related works  

This section will discuss the different approaches for graph clustering and link prediction 

problems using structure and attribute similarities in complex networks. Besides, we summarize 

the research studies to solve the graph clustering and link prediction problem. 

Ghorbanzadeh et al. [19] have proposed a new method for solving the link prediction problem 

using common neighbourhoods in directed graphs. Their proposed method used the authority, 

hub, and neighbourhood direction. Their solution performs in both supervised and unsupervised 

models. Further, they evaluated their strategy on the SmaGri, Wiki-vote, Political blogs, and 

Kohonen real-world datasets. They illustrated that their method outperforms in terms of 

precision and sensitivity metrics than with other methods.  

Zarei et al. [20] have proposed an approach for solving link prediction using hidden relations 

among users in social networks. Their proposed method categorizes each node's neighbours to 

calculate the similarity score between a pair of nodes. They used nine real-world datasets and 

demonstrated that their method was more accurate than the other methods. 
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In [21], the authors presented a link prediction approach for HINs via a deep convolutional 

neural network. The proposed method in link prediction based on community detection is 

performed in 4 steps: local neighborhood discovery, Local subgraph tensorization, Embedded 

learning, and link prediction. This approach was evaluated on four different types of HINs. In 

addition to applying to many scenarios, this approach has a reasonable execution time and can 

be used for various tasks. 

According to [22], the solution is proposed to rank and predict links in a network such that it 

expands the random walks via a distinct restart probability for each node. The results on two 

datasets reveal that the proposed method outperforms the classic random walk with restart 

(RWR) regarding link prediction. 

The label propagation algorithm for solving graph clustering has been improved by Berahmand 

et al. [23]. Their proposed version produced a weighted graph that is created from the initial 

graph by considering the node attributes and topological structure. Further, they evaluated their 

method on real and artificial datasets. They indicated that their approach is more efficient and 

precise on the criteria density, entropy, and Normalized Mutual information (NMI) index. 

Agrawal et al. [24] have studied graph clustering for detecting communities that combine both 

topological and attribute similarities in terms of communication type to provide an efficient 

plan. Further, their proposed plan balances the distance function and executes clustering using 

k-Medoid background. They used datasets of DBLP and Political blogs and measured density, 

entropy, and NMI measures to demonstrate the effectiveness of their algorithm. 

In [25], a strategy is proposed to solve link prediction in complex networks. The suggested 

technique uses path properties of different lengths to compute the similarity score between pairs 

of nodes. Their strategy has used the concept of allocation of network resources. This technique 

increases the quantity of information received at the destination node by limiting information 

leakage by shared neighbors and maximizes the two nodes' similarity score. This work has been 

tested on various datasets and evaluates this strategy against two measures AUC curve and 

average precision. The evaluation results revealed that their strategy differs considerably from 

the baseline techniques. 

 Kumar et al. [26] have introduced a new method to predict links based on level-2 node 

clustering coefficients. Their method presents level-2 common nodes and clustering coefficients 

to gather information about clusters from the seed node pair's level-2 familiar neighbors. They 
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used eleven real-world datasets in their work and evaluated their method with the baseline 

methods in metrics ROC curve, AUPR curve, precision, and recall. In comparison with state-

of-the-art algorithms, their proposed method showed superiority. 

Ghasemi et al. [27] have proposed a clustering-based method to improve link prediction. Their 

method is done in two steps: The first step is offline and is executed once. This step calculates 

local and global metrics for each node using the available data. Then, the classification algorithm 

is used to develop the classification-based link prediction model. Algorithm Ada Boost has been 

used as the best classifier. A clustering technique is employed in step two to group social items 

using estimated similarity criteria. Furthermore, they tested their method on the Facebook, 

HepTh, and Brightkite datasets and evaluated that based on precision, recall, and fitness metrics. 

Dmytro et al. [28] have presented a solution to predict links between objects in HINs. The HINs 

are analyzed to extract a meta-path, then links below a certain threshold level are removed, and 

their algorithm is used to calculate the connectional power. They used the Web of Science 

datasets to demonstrate their method's effectiveness. 

According to Table 1, we reviewed and summarized graph clustering and link prediction 

approaches and compared them in terms of datasets, techniques used, and performance metrics. 

 

Table 1. A comparison of the different graph clustering and link prediction approaches. 

Reference technique 

used 

Evaluating 

Tool 

Performance 

Metric 

Dataset Disadvantage Advantage 

(Ghorbanza

deh et 

al.,[19]) 

 

Hybrid-

based 

 

Simulation 

(Python) 

Precision, 

Sensitivity 

SmaGri, Wiki-

vote, Political 

blogs, 

Kohonen 

No forecast for the 

direction of the 

links 

the best 

performance in 

unsupervised 

mode, Low 

computational 

complexity 

(Zareie et 

al., [20]) 

 

Similarity-

based 

Simulation 

(Java) 

Identifying 

connections 

between nodes 

without common 

neighbors,   
Identifying the 

relationships 

among nodes by 

the number of 

common 

neighbors, 

Accuracy 

Nine different 

real-world 

networks 

No regard for 

directed and 

weighted 

networks 

superior accuracy 

results 
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(Xi Wang et 

al., [21]) 

 

Deep 

Embedding 

Simulation 

(PyTorch) 

F1- score, 

Computational 

efficiency(cost)

, Accuracy, 

Precision, 

Recall, AUC 

Wordnet, 

MovieLens, 

Douban, DBLP 

No prediction for 

the direction of 

the links, Loss the 

information, No 

regard for 

multimedia 

contents 

Better 

performance, the 

acceptable 

computational 

cost 

(Woojeong 

Jin et al., 

[22]) 

 

Random 

Walk With 

Extended 

Restart 

 

Simulation 

(MATLAB) 

Accuracy, 

Speed, 

Scalability, 

Memory Usage, 

AUC 

HepTh, HepPh working on 

homogeneous and 

without weights 

graphs 

The usage of a 

different restart 

probability for 

each node and the 

automated 

determination of 

restart 

probabilities  

(Kamal 

Berahmand 

et al., [23]) 

 

Label 

Propagatio

n (graph 

clustering) 

Simulation 

(Python) 

Density, 

Entropy, NMI, 

F1-Score 

Cora, Citeseer, 

Political blogs, 

LFR-EA 

The remove 

entropy from the 

results due to 

sparsity of the 

attributes of 

nodes 

Linear time 

complexity, 

Suitable for large 

datasets 

  (Agrawal 

et al., [24])  

 

Graph 

clustering 

Simulation 

(JDK, Python) 

Density, 

Entropy, NMI, 

Accuracy 

DBLP, 

Political blogs 

The quadratic 

time complexity 

for medium size 

graph 

Combine both 

topological 

structure and 

attributes 

similarities 

(Ajay 

Kumar et 

al., [25]) 

Path-based 

approach 

Simulation 

(MATLAB) 

AUROC, 

Average 

Precision 

Networks such 

as 

Collaboration, 

Social, 

Citation, 

Biological  

considering high-

order path index  

lead to affect little 

bit to prediction 

accuracy 

considering high-

order path index  

lead to affect little 

bit to prediction 

accuracy,  Reduce 

information 

leakage 

(Ajay 

Kumar et 

al., [26]) 

 

Level-2 

node 

clustering 

coefficient 

Simulation 

(MATLAB) 

AUROC, 

Accuracy, 

AUPR, average 

Precision, 

Recall 

11 real-world 

datasets 

No regard for 

directed and 

weighted 

networks, Poor 

predictive power 

compared to 

Nod2vec, SPM 

algorithms 

Define the notion 

of the level-2 

common node 

  (Ghasemi 

et al., [27])  

 

Graph 

Clustering 

(Hybrid-

based) 

WEKA Project, 

AdaBoost 

Classifier 

Precision, 

Recall, Fitness 

Facebook, 

Brightkite, 

HepTh 

High 

computational 

time due to global 

parameters 

With local and 

global parameters, 

precision is higher 

than with baseline 

methods 

(Dmytro et 

al., [28]) 

 

Meta-Path, 

Random 

Walk 

VOSviewer 

software, Perl 

language 

Number of 

restored links,  

Restored links 

percentage 

Scientific 

collaboration 

networks (Web 

of Science) 

High 

computational 

time, The impact 

of the sparseness 

of data on the 

predictive results 

The use 

heterogeneous 

information 

network 
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3. Proposed Approach 

In this section, an explanation of the proposed approach is described. First, a framework based 

on the combination of nodes' structural characteristics and attributes is presented. The clustering 

problem is then formulated. Finally, the proposed algorithm for graph clustering of 

heterogeneous information networks is explained. 

3.1. Proposed Framework    

This section will discuss a framework for combining topological structure and attribute of nodes 

to implement the suggested approach. As shown in Figure 1, the proposed framework includes 

five main steps: the data pre-processing, the connection extraction, the similarity calculation, 

the combining structural and attribute similarities, and the performing the process of clustering 

and evaluating the clusters, each of which is explained in the following: 

 

Fig. 1. The proposed clustering algorithm framework 
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A. Data pre-processing  

This step is responsible for pre-processing the input dataset. This step is divided into two 

processes filtering and coding. Filtering is in charge of data cleaning on the input dataset, and 

coding is responsible for building relationships between records within the data. The pre-

processing step is carried out once, and its results are used in all other steps.  

B. Connection extraction 

The connection between node pairs is extracted once, and these connections are used in various 

steps. The nodes' connection is divided into three types: Directly connected, Indirectly 

connected, and Disconnected. Directly connected, in this connection type, there is a direct edge 

between two nodes. For example, in Figure 2-a, nodes A and B or A and D are Directly 

connected. Indirectly connected, in this kind of connection, there is no direct edge between two 

nodes, but a communication path passing through other nodes may establish a connection 

between two nodes. In Figure 2-a, nodes E and C are Indirectly connected. Disconnected, in this 

connection type, exists not a direct edge or a path between nodes. In the proposed method, these 

nodes may communicate with other nodes in the network based on common features.  

In Figure 2-a, the connection between nodes A and F is called Disconnected. After extracting of 

connections, the data are modelled in the form of two graphs: the simple graph (G1) and the 

bipartite graph (G2). 

 

 

 

 

 

 

 



9 

 

(a) (b) 

 

Fig. 2. Types of graphs a) Simple graph (G1), the dashed line shows the connection types; b) Bipartite graph (G2) 

C. Similarity calculation 

In this step, the structural similarity between node pairs in G1 is calculated according to the type 

of connection between them separately. The result of this step is the structural similarity matrix. 

In addition, attribute similarity between node pairs in G2 is calculated based on the type of 

connection between them separately. The result is an attribute similarity matrix. 

D. Combining similarities 

The hybrid similarity consists of the combined structural and attribute similarities between pairs 

of nodes according to their connection type. In this combination, the structural similarity is based 

only on the edges or communication paths between the nodes, and the attribute similarity is 

based only on node features. The output of this step is called the hybrid similarity matrix 

according to the influence degree of the two similarities. 

E. Clustering and evaluating  

In implementing the proposed algorithm, the K-Medoids method uses distance values for 

vertices partitioning. The outcome of the clustering is k clusters, each of which contains a set of 

vertices. Clusters are mutually separated and collectively complete. After the clustering process, 

the clusters will be evaluated using three criteria: density, entropy, and purity. 

 

3.2. Problem statement  

As shown in Table 2, this section introduces the notations and equations used in the proposed 

solution. The dataset is an undirected, weighted, multi-attributed graph G = {V, E, W, M, A}, 

not necessarily connected, where V and E are the set of all the vertices and undirected edges 

respectively, W is the weight of each edge, M is the number of node attributes, and A is the set 

of values of each attribute 𝐴 = {𝑎𝑡𝑡𝑟1, 𝑎𝑡𝑡𝑟2 , … , 𝑎𝑡𝑡𝑟𝑀 }.  Two graphs, G1 and G2, are extracted 

from graph G. G1 is an undirected and weighted graph G1 = {V1, E1, W1}, not necessarily 

connected, where V1, E1, and W1 are adapted from G. If there is a direct link among any pairs 

of vertices, e.g., Vn and Vm, then W1nm>0. Also, G2 is an undirected, weighted bipartite graph 

G2 = {V2, E2, W2, M, A}. Each attribute appears as a single node in the bipartite graph. 

Therefore, V2 equals the sum of G1 nodes and each of the attributes these nodes have. The 𝐸2 
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attribute edge is an edge between a node and each of the characteristics of that node. W2 

represents the edge weight for each attribute; by default, its value is equal to one. Also, M and 

A are adapted from G. In G1 and G2, parameter 𝑑𝑛 , indicates the degree of each node and the 

number of edges entered into it. In G1, 𝐶𝑁𝑛𝑚 , is the number of common neighbors of two 

nodes, e.g., 𝑉𝑛 and 𝑉𝑚. In G2, 𝐶𝑁𝑛𝑚 , is the number of common attributes between two nodes. 

The goal is to partition the graph into k segments using the combination of topological and 

attribute similarities such that the nodes in a partition have strong structural relationships and 

homogeneous attribute values. 

Table 2. Notations and definitions. 

Definition Notation 

An undirected, weighted, multi-attributed graph  G 

Set of vertices V 

Set of edges E 

Number of attributes of each node M 

Set of values of each attribute  A   

Edge weight between the vertices Vn and Vm 𝑊𝑛𝑚 

ith attribute edge weight 𝑊𝑎𝑡𝑡𝑖 
Two vertices, Vn and Vm, are Directly connected 𝑉𝑛  ↔ 𝑉𝑚 

Two vertices, Vn and Vm, are Indirectly connected 𝑉𝑛 ↮ 𝑉𝑚 

Two vertices, Vn and Vm, are Disconnected 𝑉𝑛… 𝑉𝑚 
Impact parameter α 

Structural similarity between two vertices Vn, Vm 𝑠𝑖𝑚(𝑉𝑛 , 𝑉𝑚)𝑆𝑡𝑟𝑢𝑐𝑡 
Attribute similarity between two vertices Vn, Vm 𝑠𝑖𝑚(𝑉𝑛 , 𝑉𝑚)𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 

The hybrid similarity between two vertices Vn, Vm 𝐻𝑆𝑖𝑚(𝑉𝑛, 𝑉𝑚)  
node degree 𝑑𝑛 

Common neighbors between two vertices Vn and 

Vm 

𝐶𝑁𝑛𝑚 

Distance function  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑛 , 𝑉𝑚) 
Number of clusters 𝐾 

The correlation coefficient between two vertices, 

Vn and Vm 

𝑐𝑜𝑟𝑟𝑛𝑚 

  

 

3.3. Proposed graph clustering algorithm 

This section provides a detailed explanation of the clustering algorithm, as shown in Algorithm 

1. Initially, the dataset must be processed before other steps can use it. The pre-processing 

consists of two processes: filtering and coding. In the filtering process, it is tried to extract a 

coherent dataset with a smaller volume than the initial dataset by applying appropriate filters. 

In the coding process, data coding is done with a simple coding method for greater integrity. 

The output of the pre-processing phase is the three sets of nodes, the edges, and the attributes of 
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nodes. In the proposed algorithm, once data pre-processing (line 3) and extracting the 

connections type between vertices with each other (line 4) is performed. Then, a simple, 

undirected, and weighted graph (G1) is extracted as a model to solve the structural similarity 

problem. Also, a bipartite, undirected, and weighted graph (G2) is a model for solving the 

attribute similarity problem. According to the output of line 4, structural similarity and attribute 

(lines 6-17) are repeated for both vertices. Then, the hybrid similarity and distance function of 

each pair of vertices will be calculated (lines 17-22) and finally, will be done clustering process 

(line 23).  
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Algorithm 1: Pseudocode Proposed Clustering Algorithm  

1: Input: A Dataset, K: number of Clusters, α: Impact Parameter. 

2: Output: k clusters where each cluster contains several nodes of the set V. 

3: Pre-processing; /* Nodes set, Edges set, Attributes set*/ 

4: Connection Extraction; /* Directed, Indirected and Disconnected connection- An 

Undirected, weighted graph(G1) and A Multi Attributed, weighted, and Undirected graph 

(G2) */ 

5:  Begin 

6:     for every pair of vertices 𝑉𝑛and 𝑉𝑚 in V where n  m 

7:      Begin 

8:        If 𝑉𝑛↔ 𝑉𝑚  then 

9:         Calculate Struct-similarity (𝑉𝑛, 𝑉𝑚 ) in G1; using Eq. (5) 

10:        Calculate Attribute-similarity (𝑉𝑛, 𝑉𝑚  ) in G2; using Eq. (10) 

11:      Else if 𝑉𝑛↮ 𝑉𝑚 then  

12:       Calculate Struct-similarity (𝑉𝑛, 𝑉𝑚  ) in G1; using Eq. (5) 

13:      Calculate Attribute-similarity (𝑉𝑛 , 𝑉𝑚 ) in G2; using Eq. (10) 

14:     Else /* 𝑉𝑛… 𝑉𝑚  */ 

15:      Struct-similarity=0; 

16:    Calculate Attribute-similarity (𝑉𝑛, 𝑉𝑚 ) in G2; using Eq. (10) 

17:    end for 

18:   for every pair of vertices 𝑉𝑛and 𝑉𝑚  in V where n  m 

19:    Begin 

20:    Calculate Hsim (𝑉𝑛, 𝑉𝑚  ); using Eq. (11) 

21:    Calculate Distance (𝑉𝑛, 𝑉𝑚  ); using Eq. (12) 

22:  End 

23: Perform k-Medoids clustering /* Based on Distance Matrix, between any pairs of Nodes */ 

24: End. 

 

 

3.3.1. Structural similarity 

This section calculates the structural similarity between the two vertices of the graph according 

to the connection type between vertices, as shown in Algorithm 2. In similarity-based methods 

in heterogeneous networks, with only an absolute emphasis on the number of common 

neighbors, cannot calculate the structural similarity among pairs of nodes well. On the other 

hand, beyond direct relationships, also hidden relationships between any pair of vertices, such 
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as indirect and disconnected connectivity, may contribute to the structural similarity calculation. 

First, the adjacency vector is calculated for each node of the G1 (line 4). Then, the union 

neighborhood set of the pairs of vertices (line 5) and the correlation between vectors is 

calculated to determine the correlation between two vertices (line 6). Finally, the structural 

similarity of the pair of vertices is obtained (line 7). The details of calculating the structural 

similarity of two nodes using the neighborhood of both nodes and their indirect interaction 

strength in three directly connected, indirectly connected, and disconnected states are described 

in the next section. 

Algorithm 2: Pseudocode for Indirect and Direct Connected Structural Similarity  

1: Begin 

2: for each vertex Vn in V /* 𝑣 ∈ 𝑉 */ 

3:    for each vertex Vm in V 

4:     Adjacency vector Calculate; using Eq. (1) 

5:    Union adjacency Vector; using Eq. (2) 

6:   Correlation Coefficient Calculate; using Eq. (3), (4) 

7:   Structural similarity Calculate; using Eq. (5) 

8: End. 

 

 

In the following, the method of calculating the structural similarity between directly and 

indirectly connected nodes is expressed. In most current techniques that consider the connection 

between nodes in the calculation of similarity, only paths with length two are considered in the 

indirectly connected type. Since paths with a length of more than two may contribute to the 

calculation of structural similarity in indirect connections, such paths are considered in the 

proposed method. The proposed adjacency vector in indirect nodes does not limit the path 

length. The adjacency vector of each node is calculated by Equation (1): 

 

 

 

(1) 
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 𝐴𝑉𝑛[𝑚] = 𝑚∈𝑣
{   
  
   ∑𝑤𝑛𝑖                                   𝑖𝑓 𝑛 = 𝑚𝑑𝑛

𝑖=1∑ 𝑤𝑛𝑖       𝑖𝑓 𝑉𝑛, 𝑉𝑚  𝑖𝑠 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑖=𝑠𝑜𝑢𝑟𝑐𝑒𝑤𝑛𝑚                 𝑖𝑓 𝑉𝑛, 𝑉𝑚  𝑖𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑0               𝑖𝑓 𝑉𝑛, 𝑉𝑚  𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

 

 

Where n is the node whose adjacency vector should be calculated. If the index number of the 

adjacency vector is equal to n, the sum of the weight of all edges entered into the node n is 

placed in this index. If the connection between n and m is indirect, the desired index value in 

the adjacency vector will be the sum of the weight of the shortest path between n and m in the 

simple graph. If n and m have a direct connection, then the weight of the direct edge is placed 

between them in the vector index. And if two nodes are disconnected, a zero value will be 

entered in the desired index. After calculating the adjacency vector of all nodes of the simple 

graph, the union neighborhood set between both indirectly and directly connected nodes is 

calculated based on Equation (2): 

(2)             𝑈𝑁𝐼𝑂𝑁𝑛𝑚 = {𝑧 | (𝐴𝑉𝑛[𝑧] > 0) 𝑜𝑟  (𝐴𝑉𝑚[𝑧] > 0)} 
To indicate the correlation between the pairs of nodes, the correlation coefficient between the 

union neighborhood set of the vectors is calculated by Equation (3): 

(3) 𝑐𝑜𝑟𝑟𝑛𝑚 = ∑ (𝐴𝑉𝑛[𝑧] − 𝐴𝑉𝑛̅̅ ̅̅ ̅)(𝐴𝑉𝑚[𝑧] − 𝐴𝑉𝑚̅̅ ̅̅ ̅)𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚√∑ (𝐴𝑉𝑛[𝑧] − 𝐴𝑉𝑛̅̅ ̅̅ ̅)2𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚 √∑ (𝐴𝑉𝑚[𝑧] − 𝐴𝑉𝑚̅̅ ̅̅ ̅)2𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚  

 

Where 𝐴𝑉𝑛̅̅ ̅̅ ̅ , is the average value of the union neighborhood set of vector 𝐴𝑉𝑛, which is obtained 

from Equation (4): 

(4) 𝐴𝑉𝑛̅̅ ̅̅ ̅ = ∑ 𝐴𝑉𝑛[𝑧]𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚|𝑈𝑁𝐼𝑂𝑁𝑛𝑚|  

Finally, the structural similarity of any two nodes connected indirectly and directly is calculated 

using Equation (5): 
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(5) 𝑠𝑖𝑚(𝑉𝑛, 𝑉𝑚)𝑆𝑡𝑟𝑢𝑐𝑡 = (1 +𝑊𝑛𝑚)(1 + 𝑐𝑜𝑟𝑟𝑛𝑚) 
Where 𝑊𝑛𝑚 , is the weight of the common edge between two nodes n and m in the simple graph 

and 𝑐𝑜𝑟𝑟𝑛𝑚 , is the correlation coefficient between them. Also, the structural similarity between 

disconnected nodes is assumed to be zero. 

 

3.3.2. attribute similarity 

There are different types of nodes in heterogeneous networks, each node in such a network can 

contain an M attribute, and each attribute can have a different set of A values. Since the goal is 

to calculate the hybrid similarity in such a network, the attribute of the nodes should be 

considered. For example, in a bibliographic network, one of the types of nodes is authors, and 

one of the attributes of nodes is the interest of each author in different research fields. As shown 

in Figure 3, an attribute is defined for each node, which contains four values (e.g., Data Mining, 

Data Base, Programming, and Machine Learning, which are four values for the interesting 

attribute).  

A B

CD

E

G

F

Data Minning Data Mining

Programming

Data BaseProgramming

Machine Learning

DataBase

 

Fig.3. Graph with one attribute and four values  

The attribute similarity, the like the structural similarity, is calculated based on three connection 

types. To calculate the attribute similarity and simplify the calculations, the G2 is extracted from 

the sets of V and A. In a bipartite graph, there are two disjoint sets of nodes, such that the nodes 

of each set are not related, and only their connection is with the nodes of the opposite group, as 

shown in Figure 2-b. In all the calculations of this section and according to the connection types, 

the calculations of the attribute similarity will be done on the bipartite graph. The attribute 

similarity is responsible for calculating the attribute similarity between the two vertices of the 

graph, as shown in Algorithm 3. First, the adjacency vector is calculated for each node of the 
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G1 based on the G2 (line 3). Then, the union neighborhood set of the pairs of vertices (line 4) 

and the correlation between vectors to determine the correlation between two vertices (line 5) is 

calculated. Finally, the attribute similarity of both nodes is obtained (line 6). In the next section, 

attribute similarity calculation is described in detail. 

 

According to Algorithm 3, the adjacency vector of each node in G2 is calculated by Equation 

(6): 

(6) 

 

 𝐴𝑉𝑛[𝑚] = 𝑚∈𝑉
{   
  
   ∑𝑤𝑛𝑖                                                                                                                        𝑖𝑓 𝑛 = 𝑚𝑑𝑛

𝑖=1∑𝑐𝑜𝑚𝑚𝑜𝑛(𝑉𝑛,𝑉𝑚 ) ∗ 𝑤𝑎𝑡𝑡𝑟𝑖 +𝑤𝑛𝑚𝑀
𝑖=1             𝑖𝑓 𝑉𝑛,𝑉𝑚  𝑖𝑠 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑∑ 𝑐𝑜𝑚𝑚𝑜𝑛(𝑉𝑛,𝑉𝑚 )∗𝑤𝑎𝑡𝑡𝑟𝑖                                                 𝑖𝑓 𝑉𝑛,𝑉𝑚  𝑖𝑠 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑀𝑖=1   ∑ 𝑐𝑜𝑚𝑚𝑜𝑛(𝑉𝑛, 𝑉𝑚 ) ∗ 𝑤𝑎𝑡𝑡𝑟𝑖                              𝑖𝑓 𝑉𝑛,𝑉𝑚  𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑀𝑖=1

 

 

Where n denotes the node whose adjacency vector should be calculated, if m is equal to n, the 

weight of all edges entered into the node n in the G2 is placed in the m index. If n and m have a 

direct connection, then the weight of the common attribute edges between n and m in the G2 is 

summed with the weight of the common edge between them in the simple graph. We consider 

the edge weight of each attribute is always considered as one. If the connection between n and 

m is indirect or disconnected, the value of the desired m index will be the sum of the weight of 

the common attribute edges in the G2. 

After calculating the adjacency vector of all nodes, the union neighborhood set between both 

indirectly connected, directly connected, and disconnected  is calculated based on Equation (7): 

(7) 

Algorithm 3: Pseudocode for Indirect, Direct and Disconnect Connected Attribute Similarity  

1: Begin 

2: Input: Bipartite Graph and Indirect, Direct and Disconnect Connected Nodes Set. 

3:  Adjacency Vector Calculate; using Eq. (6) 

4:  Union adjacency Vector; using Eq. (7) 

5: Correlation Coefficient Calculate; using Eq. (8), (9) 

6: Attribute similarity Calculate; using Eq. (10) 

7: End. 
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𝑈𝑁𝐼𝑂𝑁𝑛𝑚 = {𝑧 | (𝐴𝑉𝑛[𝑧] > 0) 𝑜𝑟  (𝐴𝑉𝑚[𝑧] > 0)} 
 

A higher correlation between the union neighborhood set, 𝑈𝑁𝐼𝑂𝑁𝑛𝑚, vectors 𝐴𝑉𝑛 and 𝐴𝑉𝑚 , 

demonstrates a higher structural similarity among nodes n and m. The correlation coefficient 

between the union neighborhood set of the vectors is calculated by Equation (8): 

(8) 𝑐𝑜𝑟𝑟𝑛𝑚 = ∑ (𝐴𝑉𝑛[𝑧] − 𝐴𝑉𝑛̅̅ ̅̅ ̅ )(𝐴𝑉𝑚[𝑧] − 𝐴𝑉𝑚̅̅ ̅̅ ̅ )𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚√∑ (𝐴𝑉𝑛[𝑧] − 𝐴𝑛̅̅̅̅  )2𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚 √∑ (𝐴𝑉𝑚[𝑧] − 𝐴𝑉𝑚̅̅ ̅̅ ̅ )2𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚  

Where 𝐴𝑉𝑛̅̅ ̅̅ ̅ , is the average value of the union neighborhood set of vector 𝐴𝑉𝑛, which is obtained 

from Equation (9): 

(9) 𝐴𝑉𝑛̅̅ ̅̅ ̅ = ∑ 𝐴𝑉𝑛[𝑧]𝑧∈𝑈𝑁𝐼𝑂𝑁𝑛𝑚|𝑈𝑁𝐼𝑂𝑁𝑛𝑚|  

In Equation (9), the fraction's numerator is the sum of the non-zero values of the nth node's 

adjacency vector. The fraction's denominator is the number of members union neighborhood set 

by the adjacency vectors of two nodes, n and m. 

Finally, the attribute similarity between pairs of nodes based on the connection types will be 

calculated by Equation (10) as follows: 

(10) 𝑠𝑖𝑚(𝑉𝑛, 𝑉𝑚)𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = (1 +𝑊𝑛𝑚)(1 + 𝑐𝑜𝑟𝑟𝑛𝑚)/𝑀 

 

In Equation (10), 𝑊𝑛𝑚 is two nodes' common edge weight 𝑉𝑛 and 𝑉𝑚 in the simple graph, 𝑐𝑜𝑟𝑟𝑛𝑚, the correlation coefficient between them, and 𝑀 is the number of attributes of the graph 

nodes.  

 

 

 

 

3.3.3. Hybrid similarity and distance function 

The overall similarity of both nodes with the combination of structural and attribute similarities 

are calculated by Equation (11): 
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(11) 𝐻𝑠𝑖𝑚(𝑉𝑛,𝑉𝑚 ) = 𝛼. 𝑠𝑖𝑚(𝑉𝑛,𝑉𝑚)𝑆𝑡𝑟𝑢𝑐𝑡 + (1 − 𝛼). 𝑠𝑖𝑚(𝑉𝑛,𝑉𝑚)𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒     

In Equation (11), the degree of influence of the two similarities is not the same. The α parameter 

is a weighting factor used to control the influence of both similarities, and, in advance, it must 

be in the range of [0,1] to be given. The suitable amount of α is the value that divides the graph 

into k clusters such that the nodes of each cluster have coherent communication structures and 

the same attribute values. In our method, based on the analysis of the results, the value of this 

coefficient is assumed to be 0.5, in which identical importance is given to structural and attribute 

similarities. After calculating the hybrid similarity measure according to connection types for 

performing the graph clustering process, the distance value for each pair of nodes in the graph 

is computed with Equation (12): 

(12) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑛,𝑉𝑚) = { 1𝐻𝑠𝑖𝑚(𝑉𝑛 ,𝑉𝑚)                    𝑖𝑓 𝐻𝑠𝑖𝑚 > 0          ∞                                  𝑖𝑓 𝐻𝑠𝑖𝑚 = 0                   
 

The distance value is the inverse of the similarity value. The smaller the distance between the 

nodes placed in a cluster, the better the clustering quality. 

3.3.4. Graph clustering 

K-Medoids algorithm is applied for graph clustering. K-Medoids is an iterative partitioning 

solution, as shown in Algorithm 4. We carry out the clustering process until the clusters 

converge. The number of clustering algorithm iteration and the cluster's number (k) is input to 

the proposed algorithm. The top k vertices with the maximum degree in V are selected as the k 

initial centres for the clusters (line 4). The rest of the nodes are assigned to each cluster according 

to their distance from the primary centroids (line 7). In each iteration of the algorithm, one node 

is selected from the remaining nodes to have the highest degree among the rest of the nodes 

(line 12). It is the new centroid of its cluster. The distance of the newly selected centre with all 

other graph nodes is calculated, and the clusters are updated. Next, the distance between each 

cluster's nodes and the centroid is computed. The total distances of all clusters are added together 

(lines 13-15). Suppose the obtained value is more suitable than the same value in the previous 

clustering. In that case, the new centroid is fixed, and the process continues (lines 16-18), else 
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the centroid is removed, and the node with the next maximum degree is chosen, and the process 

will be repeated. 

 
 

 

 

Algorithm 4: Pseudocode for K-Medoids Clustering  
 

 1: Begin 

 2: Input: K: number of clusters, MaxIterationNumber: The maximum number of iterations. 

 3:    Output: K Clusters c1, c2, …, ck.   

 4:      ClusterCentroid =Top k Maximum Degree vertices in V set. 

 5:       remainingNodes= V – ClusterCentroid. 

 6:     for (every 𝑉𝑖  in remainingNodes) 

 7:       Cluster[i]= min {Distance(i,j)} i, j for all centroids j =1...k. 

 8:    while iterations <= MaxIterationNumber 

 9:               begin 

10:            for each v in remainingNodes 

11:             begin 

12:                Choice node with Maximum degree from the set of remainingNodes as newly   

                     Centroid. 

13:                Calculate the distance of all the remainingNodes to the new centroid. 

14:                Assign one node to a cluster that has a minimum distance from the centroid that  

                      Cluster. 

15:                update total clusters. 

16:                 if (the sum of distances in all clusters is the minimum) then 
                          
17:                          update the ClusterCentroid. 

18:                end 

19:       iterations ++. 

        20:  End.   
 

4. Performance evaluation 

This section validates the proposed solution using two real datasets, DBLP and Political blogs. 

Then, it describes the simulation parameters setup and performance metrics. Finally, a 

discussion of the simulation results follows it will provide. 

4.1. Experimental setup 

The experiments were performed on a 64-bit machine with a 2.80 GHz Intel Core i7 processor 

with 8 GB main memory and Windows 10 as an operating system. Python 3.9 is used as the 

open-source language to implement the suggested method. We compare the proposed method 

with the following three basic approaches to evaluate it. These methods have been fully 

simulated and implemented under the same conditions. We chose these methods because they 
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calculate collaborative similarity using topological structures and features in undirected, multi-

attribute, and weighted networks similar to ours. The following methods: 

IGC-CSM [2]: A collaborative approach for clustering a weighted, multi-attribute, and 

undirected graph. This method computes topological similarity and attributes depending on the 

types of connection between nodes. The directly connected nodes' similarity is according to the 

similarity of Jaccard and the weight of the neighbors of the nodes. The structural and attribute 

similarities of nodes connected indirectly are the linear product of the structural similarity and 

the linear product of the attribute similarity of the two directly connected nodes in the path of 

the indirectly connected pair. This approach uses a shortest-path strategy to decrease the 

computation cost and search space. The K-medoids method is used to cluster the graph. 

AR-Cluster [12]: A collaborative approach for graph clustering is based on the type of 

connection between nodes. Attracting and Recommending Degrees are used in this algorithm to 

compute the structural similarity. In addition, the K-medoids method is used to cluster the graph. 

SAG-Cluster [24]: According to the type of connection of nodes, a cooperative approach is to 

cluster the graph with the K-Medoids framework. In calculating the structural similarity between 

directly connected nodes, the weight of all the edges with the neighboring nodes of each node 

is considered. Through the use of the classical Basel theorem and the maximum weighted 

average, they calculate the similarity between each indirectly connected pair. 

In our experiments, we utilize two real datasets, DBLP and Political blogs. 

 Political blogs1:  Political blogs included 1,490 blogs about United States politics, with 19,090 

links among these web blogs. The attribute of each blog is its political leaning, the value of 

which is either liberal or conservative. In the experiments, the edge weight between blogs is 

considered one; also, one attribute with two liberal or conservative values for the nodes is 

considered.   

DBLP2: We use a subset of DBLP bibliography information data. This network includes 

information on articles, citations to articles, information on authors, and author collaborations 

between them. The used sub-network was collected between 2004 and 2014. Our selected sub-

network contains four research areas of Artificial Intelligence (AI), Information Retrieval (IR), 

 
1  http://www-personal.umich.edu/~mejn/netdata/ 

 
2 https://www.aminer.org/aminernetwork 

 

https://www.aminer.org/aminernetwork
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Data Mining (DM), and Data Base (DB). This network is a network weighted and multi 

attributes. In experiments, the attributes of the nodes are the authors' interest in different research 

fields. The number of co-authorships between authors is the edge weight between them. Each 

node has four attributes, and each attribute has a value. Looking at the datasets used according 

to the communication types among the nodes, the number of connections of various types is not 

the same. The number of indirectly connected links in Political blogs is more than the same type 

in the DBLP dataset. In DBLP, the number of disconnected links is more than the like in the 

Political blogs dataset.  

4.2. Performance metric 

We used the following performance measures to validate the proposed solution with other 

algorithms.  

Density: Density is the ratio of the number of edges in a cluster to the number of edges in the 

entire graph. The proportions of all clusters are accumulated to assess their impact [2]. The 

density values lie in the range [0, 1]. The density is calculated by Equation (13): 

(13)    𝐷𝑒𝑛𝑠𝑖𝑡𝑦({𝑉𝑐}𝑐=1𝑘 ) = ∑ |{(𝑉𝑚,𝑉𝑛)|𝑉𝑚,𝑉𝑛 ∈ 𝑉𝑐 ,(𝑉𝑚,𝑉𝑛) ∈ 𝐸}||𝐸|𝑘𝑐=1    

Where k is the number of clusters, and the c is each of the graph clusters, |𝐸| is the 

total number of edges in the graph and |(𝑉𝑚 ,𝑉𝑛)| , is the number of edges in cluster 

c. 

 Entropy: This metric is described to determine the relationships between vertices in terms of 

attributes [12]. A lower entropy means a better quality of clustering. The entropy value is in the 

range of [0, 1] and is expressed by Equation (14): 

(14)    

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦( {𝑉𝑐}𝑐=1𝑘  ) =  ∑( 𝑊𝑎𝑡𝑡𝑟𝑐∑ 𝑊𝑎𝑡𝑡𝑟𝑠𝑀𝑠=1 ∑|𝑉𝑖||𝑉|𝑘
𝑖=1  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑎𝑡𝑡𝑟𝑐 , 𝑉𝑖))𝑀

𝑐=1  

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑎𝑡𝑡𝑟𝑐 , 𝑉𝑖) =  −∑𝑃𝑟𝑐𝑛𝑡𝑐𝑖𝑛 𝑙𝑜𝑔2 𝑃𝑟𝑐𝑛𝑡𝑐𝑖𝑛𝑛𝑐
𝑛=1  
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Where i is each of clusters, i= {1, 2, …, k}, 𝑊𝑎𝑡𝑡𝑟𝑐 , is the weight of the cth attribute, n is attribute 

values, and nc , is the number of attribute values. Prcntcin is defined as the percentage of vertices 

in cluster j that have the value attrcn in the attribute attrc.  

Purity: This metric shows how many percentages of the nodes in a cluster have the same 

attributes. A higher value for this measure indicates better clustering performance. The purity 

value is in the range [0,1] and is calculated by Equation (15): 

 

(15) 

𝑃𝑢𝑟𝑖𝑡𝑦( {𝑉𝑐}𝑐=1𝑘  ) =  ∑|𝑉𝑖||𝑉|𝑘
𝑖=1  𝑃𝑢𝑟𝑖𝑡𝑦(𝑉𝑖) 𝑃𝑢𝑟𝑖𝑡𝑦(𝑉𝑖) = 𝑀𝑎𝑥𝑗(𝑃𝑖(𝑎𝑡𝑡𝑟𝑗)) 

Where i is each of clusters, i ={1, 2,…,k}, the ith cluster consists of Vi nodes, V is the whole 

number of graph nodes, and Pi(attrj) is the ratio of attribute jth in the ith cluster. 

4.3. Experimental analysis 

Simulation parameters are set in our proposed solution and other implemented algorithms, as 

shown in Table 3. α equals 0.5. Also, because specific instructions to achieve the maximum 

effective value of the MaximumIteration parameter are not defined, the appropriate value of this 

parameter, according to the analysis results, is assumed to be 45. The MaximumIteration 

parameter is the number of iterations of the clustering algorithm until the clusters converge. 

Table 3. Setting simulation parameters 

 DataSets MaxIteration α  

DBLP Political 

blogs 

   

 k=10 k=3 45 0.5  

 k=30 k=5 45 0.5  

 K=50 k=7 45 0.5  

 k=70 k=9 45 0.5  

 

 

 The quality of the results is evaluated using three criteria: density, entropy, and purity. The final 
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results are presented as follows. 

Figure 4 compares the density criterion for four approaches in the Political blogs dataset. In 

figure 4, the number of clusters is assumed to be 3, 5, 7, and 9, respectively. As the figure shows, 

when k increases in each approach, the cluster density decreases. In all cases, the IGC-SCM 

approach has a greater density than the other three. When k = 7 or 9, the proposed approach's 

density value is higher than in the SAG-Cluster, and AR-Cluster approaches. The density of the 

AR-Cluster approach is lower than other approaches in every case. The values of density of the 

SAG-Cluster and the proposed method are nearly close in k=5. 

Fig4. Comparison of density value in Political blogs. 

Entropy is used to determine the attribute relationships among nodes. A lower value of entropy 

means more homogeneity of the nodes of a cluster in terms of their attributes. Figure 5 compares 

the entropy criterion for four approaches on the Political blogs dataset with cluster numbers k = 

3, 5, 7, and 9. The proposed method has the lowest entropy value in different values of K. We 

can infer that the proposed method is strictly considered attribute similarity. The entropy of the 

SAG-Cluster is better than IGC-CSM and AR-Cluster. AR-Cluster has a much higher entropy 

than the other three approaches in the above cluster numbers, which shows the weaker 

performance of this method. 
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Fig 5. Comparison of entropy value in Political blogs. 

Figure 6 compares the density criterion for four approaches on the DBLP dataset using cluster 

numbers 10, 30, 50, and 70. The density value of the IGC-CSM is the highest. While k = 10, the 

density value of the proposed method is lower than the density of the SAG-Cluster approach. 

The density values of the proposed method are higher than the SAG-Cluster and AR-Cluster 

when k = 30. The values of density of the AR-Cluster and the proposed method are nearly equal 

at k=70. The density values of the SAG-Cluster are higher than the proposed method when k 

=50,70. 

 

Fig6. Density value comparisons on DBLP.  
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Figure 7 compares the entropy criterion for four approaches on the DBLP dataset with cluster 

numbers k = 10, 30, 50, and 70. The entropy values of the AR-Cluster, IGC-CSM, and the SAG-

cluster when k = 10, 30, or 50 are almost close. SAG-Cluster entropy is less than AR-Cluster 

and IGC-CSM when k reaches 70. The proposed method's entropy is less at different K values 

than the other three methods. We can infer that in the proposed method paying attention to the 

attributes of nodes is much more than the other methods. 

 

Fig7. Entropy value comparisons on DBLP.  

Our proposed method's time complexity is quadratic, making it suitable for small and medium-

sized graphs. Figure 8 shows the execution time of the proposed method in terms of the size of 

the graph based on the number of nodes in several examples on political blogs and DBLP data. 
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Fig8. An analysis of the proposed approach execution time on Political blogs and DBLP datasets 

The execution time of the proposed approach is shorter than that of the other three approaches, 

especially in the Political blogs dataset, which has more indirect relationships. Since all three 

approaches calculate collaborative similarity based on the shortest path between indirectly 

connected nodes, this step increases the overall execution time in them. For example, the 

execution time of the proposed approach, according to Figure 8, on a subset of the Political 

blogs dataset with about 382 nodes is approximately 158 seconds, and the execution time of the 

SAG-Cluster approach on the same set is higher than 5400 seconds. Thus, the proposed approach 

has a superior runtime compared to other methods. 

Figures 9 and 10 show a plot of density versus entropy. A line connects all points related to an 

algorithm. The direction of each line shows the treatment of the corresponding algorithm as the 

number of clusters increases. Arrowheads and tails indicate the minimum and maximum number 

of clusters [18]. The best performance is where the plot between density and entropy is in the 

upper left corner of the x-y plane, where density is the highest value and entropy is the lowest 

value. The quality of the proposed and the SAG-Cluster approaches on the DBLP dataset is quite 

effective compared to the other techniques, as shown in Figure 9. In the Political blogs dataset, 

the quality of the proposed approach is more effective than the three different approaches. The 

AR-Cluster approach is weaker than the comparative approaches, as shown in Figure 10. 
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Fig9. The trade-off (density versus entropy). Analysis of the DBLP dataset 
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Fig10. The trade-off (density versus entropy). Analysis of Political blogs dataset 

 

For further evaluation, we use the purity criterion. Our proposed algorithm is compared to three 

others in the purity criterion on Political blogs and DBLP, as shown in Figure 11. Experimental 

results show that the purity of the proposed method on both data sets is higher than other 

methods. Especially this value is much higher in the DBLP dataset. In Figure 11, in the Political 

blogs and DBLP datasets, respectively, purity is the average purity of clustering with k = 3, 5, 

7, 9, and K = 10, 30, 50,70. A higher value for purity indicates a better clustering quality. In 

other words, the nodes of a cluster have more same attributes. 
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Fig11. Purity value comparisons on DBLP and Political blogs. 

 

To evaluate the effectiveness of the proposed method, we considered it with the previous three 

methods according to density, entropy, execution time, and purity under two datasets of DBLP 

and Political blogs. Tables 4 and 5 show the performance of all four approaches under the two 

datasets used. According to these tables, in all experiments, the entropy of the proposed 

approach is lower than other approaches. When the number of nodes in the selected network is 

not high, the proposed approach gives a better density than entropy. By increasing the number 

of nodes, the entropy of the proposed approach will be better than the density. The purity metric 

in our method is always efficient and more than comparable methods. 
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Table 4. Comparison of different approaches on the Political blogs dataset 

 

K Density Entropy Purity 

 IGC-

CSM 

AR-

Cluster 

SAG-

Cluster 

Proposed IGC-

CSM 

AR-

Cluster 

SAG-

Cluster 

Proposed IGC-

CSM 

AR-

Cluster 

SAG-

Cluster 

Proposed 

3 0.851658 

 

0.476003 

 

0.810209 

 

0.718586 

 

0.28 

 

0.99 0.2 0.14 0.95026178 

 

0.54973822 

 

0.965968586 

 

0.976439791 

 

5 0.574607 

 

0.320244 

 

0.494764 

 

0.483421 

 

0.23 

 

0.65 0.18 

 

0.16 0.955497 

 

0.811518 

 

0.965969 

 

0.968586 

 

7 0.526178 

 

0.172775 

 

0.411867 

 

0.430628 

 

0.23 

 

0.65 0.17 0.15 0.955497 

 

0.777487 

 

0.965969 

 

0.965969 

 

9 0.366492 

 

0.157504 

 

0.327225 

 

0.372164 

 

0.22 0.29 0.18 0.12 0.958115 

 

0.929319 

 

0.965969 

 

0.97644 

 

 

 

Table 5. Comparison of different approaches on the DBLP dataset 

 

K Density Entropy Purity 

 IGC-

CSM 

AR-

Cluster 

SAG-

Cluster 

Proposed IGC-

CSM 

AR-

Cluster 

SAG-

Cluster 

Proposed IGC-

CSM 

AR-

Cluster 

SAG-

Cluster 

Proposed 

10 0.924296 

 

0.899648 

 

0.913732 

 

0.892606 

 

0.278128 

 

0.279333 

 

0.276846 

 

0.070947 

 

0.640237 

 

0.63787 

 

0.643787 

 

0.946746 

 

30 0.880282 

 

0.84507 

 

0.860915 

 

0.861402 

 

0.269545 

 

0.269927 

 

0.268256 

 

0.047961 

 

0.656805 

 

0.656805 

 

0.660355 

 

0.956213 

 

50 0.829225 

 

0.797535 

 

0.809859 

 

0.764085 

 

0.260844 

 

0.262008 

 

0.260155 

 

0.043375 

 

0.672189 

 

0.671006 

 

0.674556 

 

0.956213 

 

70 0.792254 

 

0.758803 

 

0.774648 

 

0.75291 

 

 

0.249405 

 

0.249661 

 

0.233026 

 

0.04333 

 

0.689941 

 

0.688757 

 

0.700592 

 

0.959763 
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5. Conclusion 

With the rapid development of social networks, data analysis of these networks to explore 

valuable information has become a significant research area. Clustering is one of the approaches 

to data analysis. The fundamental challenge in the clustering process is to consider the 

importance of both the structural relationships and the homogeneous characteristics of nodes. 

In this study, we proposed a hybrid clustering solution to predict links in heterogeneous 

information networks. It uses a combination of structural similarity and attribute similarity of 

nodes. Hence, we proposed a similarity measure according to the type of connection and 

correlation among the adjacency vectors of nodes. This measure in indirect nodes does not limit 

the path length. We evaluated the effectiveness of our solution under two real data sets. By 

comparing the proposed method with the existing methods, the simulation results showed that 

it is more effective in terms of entropy, purity, and execution speed. In addition, the cluster 

density is also preserved. We propose a quadratic time complexity method for small and 

medium-sized graphs. We will work on large-scale networks in the future, and we can also study 

the clustering of an information network with directed connections. Furthermore, we will 

develop a function to detect the convergence of the clustering algorithm based on density and 

entropy. In addition, we will follow the ability to find the best value for K based on the ratio of 

density to entropy without K being the input parameter of the clustering algorithm. 

………………………………………………………………………………………………………………………… 
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