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Abstract12

Semantics in natural language processing is largely dependent on contex-13

tual relationships between words and entities in a document collection.14

The context of a word may evolve. For example, the word “apple”15

currently has two contexts – a fruit and a technology company. The16

changes in the context of words or entities in text data such as sci-17

entific publications, and news articles can help us understand the18

evolution of innovation or events of interest. In this work, we present19

a new diffusion-based temporal word embedding model that can cap-20

ture short and long-term changes in the semantics of entities in different21

domains. Our model captures how the context of each entity shifts22

over time. Existing temporal word embeddings capture semantic evo-23

lution at a discrete/granular level, aiming to study how a language24

developed over a long period. Unlike existing temporal embedding meth-25

ods, our approach provides temporally smooth embeddings, facilitating26

prediction and trend analysis better than those of existing models. Exten-27

sive evaluations demonstrate that our proposed temporal embedding28

model performs better in sense-making and predicting relationships29

between entities in the future compared to other existing models.30

Keywords: word embedding, dynamic embeddings, temporal embeddings,31

neural network32
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2 Temporal word embedding with predictive capability

1 Introduction33

Text data available over the internet have grown exponentially in the past34

decade. There are ample techniques to transform an unstructured text collection35

into a structured representation allowing us to apply conventional data mining36

and machine learning algorithms for analytical purposes. An issue with the37

conventional approach to representing unstructured data is that the contextual38

changes in the meanings of words as the language evolves are not considered in39

the models. That is, conventional representation models do not consider text40

publications as evolving streams of data.41

The contextual evolution of a word plays a vital role in its contemporary42

semantics. For example, the context of the word Cloud changed over time in43

the last two decades. The word, Cloud, in news articles, reflected its connection44

with weather-related terms in the beginning. From 2008 to 2012, the word45

cloud started to reflect the context of web-based storage, such as Dropbox and46

Google drive. Slowly, from 2016 the word cloud started to reflect cloud-based47

computing services, such as Amazon Web Service (AWS), Microsoft Azure, and48

Google Cloud Platform, as the services became more affordable and popular.49

Figure 1 demonstrates that the nearest neighbors of the word cloud changed50

over the years for a news dataset. Taking all these changes in the neighborhood51

of cloud, how can we predict its neighborhood in the coming years?
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Fig. 1 The nearest neighbors of the word cloud over time.

52

To serve a larger set of analytic needs – including the prediction of a math-53

ematical space that words may represent in the future – modern unstructured54

data representation techniques are slowly drifting toward the analysis of tem-55

poral aspects of text [1–3]. Nevertheless, the ability to represent unstructured56

text with a temporal context is still in its infancy. In this paper, we present57

a temporal embedding model for representing text data in a structured way58

based on the temporal context.59

Our observation from timestamped text collections indicates that new60

concepts and events do not spike on one day and disappear on the next, rather61

concepts and events evolve over time. For example, the concept of COVID62

started to rise at a fast rate in February and March of 2020, but the topic63
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started several months before that. Similarly, the topic of Russia’s Ukraine64

invasion did not occur in one day. In unstructured text representations, discrete65

timestamps do not help much to reflect the rise and fall of entities well. The66

appearance of a new entity in one timestamp needs to be diffused earlier than67

when it appeared first, to reflect a smooth transition to capture evolution.68

However, not all words and entities evolve, and there can be some words that69

appear suddenly and then disappear quickly. The scope of this paper is limited70

to words and entities that evolve over time, with time units of around months71

or years.72

To provide a smooth transition for evolving words in their representations,73

in one of our previous research efforts, we presented the issue of capturing74

the evolution of concepts using a diffusion-based time-reflective representation75

[4]. Diffusion of a word, in [4], was reflected by smoothly incorporating its76

effect across timestamps, before and after it appears. This time-reflective77

representation enabled the tracking of the meaning of every word in terms of78

their neighborhood and captured changes in context over time.79

One of the challenges of [4] was that each word vector had a length equal80

to the number of documents in the corpus (See Section 4.1.1), which is not81

practical for analyzing a corpus containing thousands of documents. Moreover,82

since the vectors generated for the words were directly dependent on the83

documents where those words appeared, vectors for the same words in the84

future cannot be extrapolated (because the future documents are yet to be seen85

and not features of this representation). That means the model did not generate86

embeddings with prediction capability. To address these challenges, in the87

current paper, we construct a contextual low-dimensional temporal88

embedding space that mimics this high-dimensional representation89

while maintaining the essential diffusion information contained in90

the vectors. We introduce a neural-network-based framework that generates91

low dimensional temporal word embeddings while optimizing for multiple92

key objectives.93

Word embeddings are low-dimensional vector space models obtained by94

training a neural network using contextual information from a large text corpus.95

There are several variants of word embeddings with different features, such96

as word2vec [5, 6], GloVe [7], and BERT [8]. These embedding techniques do97

not explicitly address dynamic changes in context. The few existing efforts98

[3, 9–11] to generate dynamic low-dimensional language representations fail to99

integrate the concept of temporal diffusion into language models effectively.100

Moreover, these existing models cannot simultaneously capture both the short-101

term and long-term drifts in the meaning of words. As a result, sharply trending102

concepts, such as COVID-19 (coronavirus disease 2019), cannot be modeled in103

the embedding space when long-term drifts are considered. On the other hand,104

long-range effects – such as the change in the meaning of the word cloud – are105

not captured when these algorithms take only short-term drifts into account.106

Moreover, the existing models only have limited capability to generate dynamic107

embeddings that can be used for predicting future embeddings.108
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The diffusion-based temporal word embedding model that we propose in109

this paper is able to capture both short-term and long-term in the corpus. It110

incorporates diffusion into the modeling by integrating the time dimension111

smoothly into the model’s objective function. The temporal embeddings are112

generated for all words in all timestamps in a connected space, and hence the113

vectors can be used to predict embeddings of words in the future, unlike other114

existing temporal or dynamic embedding techniques. In this paper, we use115

the phrase temporal word embeddings and dynamic word embeddings116

interchangeably.117

The experimental results in Section 5 show that the proposed method118

performs significantly better than the state-of-the-art temporal embedding119

models [3, 11, 12] in capturing both short-term and long-term changes in word120

semantics. Additionally, our model provides embeddings to facilitate more121

meaningful predictions for the future context of a word.122

The contributions of this paper are summarized as follows:123

• This paper describes a neural network model that generates low-dimensional124

dynamic embeddings from high-dimensional time-reflective feature vectors125

without degrading the quality of word vectors.126

• Our proposed model creates a homogeneous embedding space for all times-127

tamps in the data so that each word’s temporal embedding can be seen as128

a multi-variate signal, which conventional signal prediction algorithms can129

leverage to predict embeddings in a future timestamp.130

• We introduced a diffusion mechanism in the objective function in order to131

smooth the embeddings for better prediction capability.132

• We compare the new model with regular temporal co-occurrence-based,133

dynamic-embedding-based, and time-masking transformer-based models on134

the task of semantic change detection.135

• In this paper, we introduce the application of predicting a future embedding136

space for an existing timestamped document collection.137

2 Related Work138

This section provides a detailed review of the literature on the various aspects139

of our research work in order to put our contributions in perspective. The140

related works presented here are divided into two subsections, describing two141

different tasks: the generation of temporal embeddings and the prediction of a142

future embedding space.143

2.1 Generation of temporal embeddings144

Semantic evolution: Meanings of words in a language change over time145

depending on their use [13, 14]. Temporal syntactic and semantic shifts are called146

diachronic changes [1]. Several probabilistic approaches tackle the problem147

of modeling the temporal evolution of a vocabulary by converting a set of148

timestamped documents into a latent variable model [15–18]. Other approaches149
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model diachronic changes using Parts of Speech features [19] or using graphs150

where the edges between nodes (that represent words) are stronger based151

on context information [20]. However, tracking semantic evolution is not152

possible using these techniques because they do not generate language models.153

Language Models: The state-of-the-art technique for language modeling154

is word2vec, introduced by Mikolov et al. [5, 6]. This method generates a155

static language model where every word is represented as a vector (also called156

embedding) by training a neural network to mimic the contextual patterns157

observed in a text corpus. There are several variants of this method which158

include probabilistic approaches [21] as well as matrix-factorization-based159

techniques such as GloVe [7]. A major challenge with static representations is160

that they do not incorporate any temporal information that can be used for161

tracking semantic evolution. Our work focuses on incorporating the temporal162

dimension of text data into text embedding models so that evolution of a vector163

space over time can be studied.164

Static to dynamic embeddings: A proposed solution to tracking seman-165

tic evolution is to obtain a static representation for each timestamp in a corpus166

and then artificially couple these embeddings over time using regression or sim-167

ilar methods [1, 3, 12, 22]. However, this approach has several drawbacks. First,168

it requires having a significant number of occurrences for all words at all times,169

which is usually not the case since words can gain popularity or appear at170

different times. Second, the artificial coupling of embeddings across timestamps171

can introduce artifacts in the model that may lead to wrong conclusions. A172

potential solution to the sparsity problem is introduced by Camacho et al. [4],173

which leverages diffusion theory [23] to generate a robust temporal representa-174

tion. The technique uses a temporal tf-idf representation in which the model175

changes size with the number of documents and as a result, is not extensible.176

Joint training of temporal embeddings: The drawbacks of using static177

word embedding models to generate temporal representations have led to the178

development of new techniques that can train the embeddings for different179

timestamps jointly. The models use filters or regularization terms to connect the180

embeddings over time. Yao et al. [10] propose to generate a co-occurrence-based181

matrix and factorize it to generate temporal embeddings. The embeddings182

over timestamps are aligned using a regularization term. Rudolph et al. [11]183

apply Kalman filtering to exponential family embeddings to generate temporal184

representations. Bamler et al. [9] use similar filtering but apply it to embeddings185

using a probabilistic variant of word2vec. According to Bamler et al. [9], using a186

probabilistic method makes the model less sensitive to noise. All these methods187

focus primarily on capturing long-term semantic shifts, while our goal is to be188

able to capture both long and short-term shifts.189

2.2 Prediction of a future embedding space190

Prediction using linear transformation: Several researchers have focused191

on studying multi-dimensional time-series prediction [24–27] using methods such192

as linear regression and accounting for temporal effects such as seasonality [25].193
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[28] discussed linear, homogenous, and heterogenous transformation of194

embeddings with timestamps for estimating embeddings for future timestamps.195

Linear transformation learns a mapping between embeddings of two consecutive196

timestamps. Homogenous transformation learns a mapping between stacked197

embeddings of timestamp 1 to (T − 1) and stacked embeddings of timestamp 2198

to (T ). In heterogeneous transformation, instead of stacking the embeddings199

from all the timestamps, it learns weight matrices for mapping embeddings200

from all pairs of consecutive timestamps and uses various smoothing functions201

to combine the weight matrices. However, the embedding vectors for each202

timestamp are learned separately, which means the embedding vectors at203

each timestamp are static. Some other studies [29], [30] also leverage linear204

transformations of embedding vectors in order to predict embeddings in the205

future timestamps [29] first train a dynamic embedding model then create a206

time-context vector to predict estimated embeddings for the next timestamp207

through the linear transformation of embeddings of the present timestamp.208

However, these models are not well-suited for the prediction of high-209

dimensional non-linear phenomena, which is the case of semantic evolution.210

Prediction using non-linear modeling: Our generated temporal embed-211

ding is a nonlinear sequence of signals. Therefore, our prediction of a future212

embedding space from existing time series data requires sequence modeling213

that can handle nonlinearity.214

To model non-linear phenomena, several neural-network-based sequence215

modeling techniques have been introduced recently [31–34]. In this paper, we216

leverage state-of-the-art techniques in terms of sequence modeling, such as (1)217

the Long Short Term Memory (LSTM) [31] and (2) Gated Recurrent Units218

(GRU) [32] recurrent neural networks (RNNs). We also explore the effect of219

adding an attention mechanism [33] to both LSTM- and GRU-based RNNs,220

which allows the network to focus on the most important elements of the221

sequence. Finally, we evaluate the non-recurrent attention-based Transformer222

model [34] which, in contrast to RNNs, can be trained in parallel.223

3 Problem Description224

In this paper, we focus on timestamped text corpora, such as collections of225

scientific publications, or news articles, that have publication dates. Let D =226

{d1, d2, . . . , d|D|} be a corpus of |D| documents and W = {w1, w2, . . . , w|W|}227

be the set of |W| entities (names, places, scientific terms) extracted from the228

text corpus D. We consider each of the entities a word.229

Each document d contains words from the vocabulary (Wd ⊂ W) in the230

same order as they appear in the original document of d. Every document d ∈ D231

is labeled with a timestamp td ∈ T , where T is the ordered set of timestamps.232

The goal of this paper is two-fold.233

• Task 1: Constructing a low-dimensional temporal embedding space,234

with predictive capability: The first task is to obtain a temporal word235

embedding model U from corpus D. For every timestamp t ∈ T , we seek236
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to obtain a vector representation uit for every word wi ∈ W. The word237

embeddings U are represented as a 3-dimensional matrix of size |W|×|T |×|u|238

where |u| is a user-given constant that indicates the size of each vector. We239

use the shorthand Ui to describe the 2-dimensional matrix of size |T | × |u|240

that represents word wi ∈ W over all the timestamps.241

• Task 2: Predicting a future embedding space: The second task is242

associated with predicting a future embedding space. We aim to train a243

model for which P(Uta:tb) ≈ U
tb+1 , i.e., a model that takes as input the244

temporal embedding vectors for every word between ta and tb timestamps245

and predicts as output embedding vectors for every word in the vocabulary246

for timestamp tb+1. The output of P can be used to forecast the future247

contexts of the words in the vocabulary.248

4 Methodology249

This section is divided into two subsections describing the two tasks: temporal250

embedding generation and prediction of a future embedding space, as outlined251

in the problem description.252

4.1 Construction of a temporal embedding space253

To construct a temporal embedding space that can be used for the prediction of254

future embedding space, we design an objective function that satisfies several255

crucial aspects in terms of similarity between words, weights reflecting relevance256

between contextual words, temporal diffusion of amplitudes of words, and257

connecting embedding spaces of different timestamps. We use a shallow neural258

network to accommodate the embedding generation with a complex objective259

function that models a temporally-driven training dataset. The training data260

generation and each component of the objective function are explained below.261

4.1.1 Training data for generating low-dimensional temporal262

embeddings263

To construct the training dataset for generating low-dimensional temporal264

embeddings, we use the diffusion-based time reflecting representation from our265

previous research efforts [4]. In this subsection, we first summarize the steps of266

generating a diffusion-based time-reflecting representation, constructed over267

a high-dimensional space and not having predictive capacity. Afterward, we268

discuss the process of creating training data.269

As part of our previous research [4], we compute the frequency of words270

appearing in the documents over time to track the semantic evolution of the271

words. In our earlier research, we observed that the distribution of the frequency272

of a word over time was severely irregular, in particular for words or noun273

phrases that suddenly appeared at a particular timestamp or that are used274

sporadically. A frequency distribution that is inconsistent or uneven with time275

does not help capture trends because an evolving trend is considered a slower276
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process compared to a sporadic one. Our idea of evolving trends is based on a277

social science concept known as the diffusion theory [23].278

Based on diffusion theory [23], which refers to the change of the distributional279

patterns of a phenomenon over time, the meaning of a word and, consequently,280

its vector representation, diffuses over time. In [4], to smooth the word vectors281

over time based on the diffusion theory, we assumed that every document is282

present in every timestamp but with a higher probability for the timestamps283

closer to when the document was initially published. We used a Gaussian filter284

to diffuse the contribution of the document smoothly before and after the285

publication date of the document. The Gaussian filter used a sliding window,286

going from the first to the last timestamp. The contribution of a document d287

increased the closer its timestamp td was to the current timestamp t. The tf-idf288

weight of a word was modified at each timestamp with Equation (1) to generate289

a time-reflective representation, which is referred to as temporal tf-idf [4].290

ŵ(w, d, td, t, ς) =

(

1√
2πς2

e
−

(td−t)2

2ς2

)

·







(1 + log(fw,d)(log
|D|
λw

)

∑

w′∈Wd

(

(1 + log(fw′,d)(log
|D|
λw′

)
)2






,

(1)
Here, ŵ is the weighted tf-idf value at timestamp t for the word w ∈ W291

in document d ∈ D, which was published at timestamp td. The term fw,d292

represents the term frequency of word w in document d, λw is the number of293

documents that contain word w, and Wd is the set of words that appear in294

document d. The standard deviation of the Gaussian distribution function is295

represented by ς, and is set by the user.296

In order to construct a training dataset for the current paper, using the297

temporal tf-idf representation of Eq. 1, we compute the cosine dissimilarity298

(1.0–cosine similarity) between every pair of words and store these as a dis-299

tance/dissimilarity matrix ∆, where each element can be addressed as δijt ∈ ∆.300

This distance/dissimilarity matrix ∆ becomes the training data for the expected301

distance/dissimilarity between a particular pair of words (wi, wj) ∈ W at time302

t ∈ T . We use the notation δij to represent a vector of size |T | with the tempo-303

ral tf-idf-based cosine dissimilarity between (wi, wj) ∈ W for all the timestamps.304

The cosine dissimilarities are later used in the output layer of our proposed305

neural network.306

4.1.2 Simplistic embedding model optimizing for similarity307

only308

One of our objectives is to obtain a low-dimensional word embedding model U309

such that computing the cosine dissimilarity between the word vectors results310

in a distance matrix that closely resembles ∆. Equation (2) formulates this311

objective as ϑ. In this case, we are optimizing the vectors in U to minimize312

the difference between the cosine dissimilarity of each pair of word vectors for313

every timestamp and the cosine dissimilarity from temporal tf-idf model in314
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∆ (Eq. (1)). The minimization of the difference will ensure that our model315

captures the same similarity as the temporal tf-idf model, but ours will provide316

low-dimensional contextual vectors.317

In this paper, the term dist(A,B) refers to the cosine dissimilarity between318

vectors A and B. The cosine dissimilarity between a pair of word vectors is319

bounded between [0, 1]. A cosine dissimilarity of 0 between two word vectors320

means that both words share the same context, while a cosine dissimilarity of321

1 means that the vectors are completely orthogonal, thus they do not share322

contextual similarities. The variable α is introduced as a scaling factor to avoid323

numerical stability issues with values close to zero. The simplest form of our324

objective function, incorporating only the similarity aspects, is as follows.325

ϑ1(U) =
|W|
∑

i=1

|W|
∑

j=1

|T |
∑

t=1

(α · dist(uit, ujt)− α · δijt)2 (2)

4.1.3 Weighing relevance: Giving more importance to the326

neighborhood of each word327

In our work, we focus on the task of studying the semantic evolution of a word328

based on changes to its context. Thus, it is more important that our word329

embedding model correctly captures the relevant neighborhood of a word. We330

empirically discovered that each word has a small number of relevant neighbors.331

That is, each word shares context with a small number of words. To take332

this into account in the objective function, we introduce a penalty when the333

temporal tf-idf-based cosine dissimilarity δijt is small, ensuring that our word334

embedding model captures the relevant context accurately.335

ϑ2(U) =
|W|
∑

i=1

|W|
∑

j=1

|T |
∑

t=1

(α · dist(uit, ujt)− α · δijt)2 · e−βδijt (3)

where β is a scaling parameter to increase/decrease the importance given to336

the samples with a smaller distance. Notice that e−βδijt in Eq. (3) imposes a337

higher penalty to examples with smaller baseline distances. The penalty is less338

when the dissimilarity from the temporal tf-idf model is large (that is a lesser339

penalty for contextually similar words). Equation (3) supports the phenomenon340

that, for a specific word, most of the words in the vocabulary are at a relatively341

large distance. The large distances need not be a part of the penalty because342

the objective function is only concerned about neighbors that appear in the343

vicinity for the temporal tf-idf model.344

4.1.4 Temporal diffusion filter345

In connection with the diffusion theory [23] (introduced earlier with frequency-346

based training data generation in Section 4.1.1), we assume that the meaning347

of a word, and consequently its vector representation, diffuses (or drifts) over348

time. Thus, our model should generate word embeddings that evolve smoothly349
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over time. To introduce this concept in our objective function, we model the350

effect of every word vector in all timestamps to some degree.351

We use a Gaussian filter (Eq. (4)) to diffuse the contribution of each vector352

smoothly before and after the timestamp of the current sample. The filter uses353

a sliding window, going from the first to the last timestamp. σ is a user-settable354

parameter representing the standard deviation of the Gaussian distribution. A355

large value of σ means that the diffusion of word vectors is slow over time. A356

small standard deviation allows for capturing short-term changes in meaning.357

γ(t, σ) =

〈(

1√
2πσ2

e−
(ti−t)2

2σ2

)

with ti = 1, . . . , |T |
〉

(4)

Equation (5) presents the updated objective ϑ3 which includes the temporal358

diffusion of the word embeddings.359

ϑ3(U) =
|W|
∑

i=1

|W|
∑

j=1

|T |
∑

t=1

(α · dist(γ(t, σ)Ui, γ(t, σ)Uj)− α · δijt)2 · e−βδijt (5)

4.1.5 Smoothness penalty: Creating a homogeneous temporal360

embedding space361

The second important goal that our word embedding model should achieve is to
be spatially smooth over time. Continuous or smooth temporal embeddings are
those where the distance (e.g., Manhattan or Euclidean) between two vectors
of the same word for consecutive timestamps is small. Equation (6) captures
the expected behavior by penalizing significant spatial changes.

ε1a(U) =
|W|
∑

i=1

|T |−1
∑

t=1

||uit+1, uit||2 (6)

The main issue with this expression is that by forcing consecutive vectors
to be very close together, we might be losing important information when the
vectors drift apart in the original data. Thus, we introduce weights, ωϑ, and
ωε to control the effect of each objective. The final objective function takes the
form of Eq. (7).

Fa(U) = ϑ3(U)ωϑε1(U)ωε (7)

An alternative form would be:

Fb(U) = ωϑ log ϑ3(U) + ωε log ε1(U) (8)

or
Fc(U) = ωϑϑ3(U) + ωεε1(U) (9)
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4.1.6 Implementation362

We implemented a neural network-based model using Tensorflow to generate363

our low-dimensional temporal word embeddings. An overall view of the364

architecture of our neural network is shown in figure 2. The goal of the neural365

network is to minimize Eq. (7). The embeddings for all words in all timestamps366

are generated in the hidden layer. We initialize the weights in the hidden layer367

in the range [0, 1]. The data used for training the model contains three inputs368

(one-hot encoding of a pair of words for which the cosine dissimilarity is known,369

and the timestamp) and one target value (cosine dissimilarity). The inputs370

are the indices for two random words wit and wjt, at timestamp t. The target371

value is the expected cosine dissimilarity between wit and wjt, obtained using372

the temporal tf-idf representations of Eq. (1).373

Fig. 2 The proposed neural network architecture for temporal embedding generation in the
hidden layer.

4.2 Sequential model predicting a future embedding space:374

In this subsection, we explain how to extrapolate the generated temporal375

embeddings to build an embedding space for a future timestamp.376

For predicting a future embedding space, we leverage state-of-the-art tech-377

niques in terms of sequence modeling, such as (1) the Long Short Term Memory378

(LSTM) [31] and (2) Gated Recurrent Units (GRU) [32] recurrent neural net-379

works (RNNs). We also explore the effect of adding an attention mechanism [33]380

to both LSTM- and GRU-based RNNs, which allows the network to focus on the381

most important elements of the sequence. Finally, we evaluate the non-recurrent382

attention-based Transformer model [34] which, in contrast to RNNs, can be383

trained in parallel. The following subsections provide a detailed description of384

the four sequential models we used for predicting future embeddings.385
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4.2.1 LSTM model structure386

Most of the progress in RNN-based sequence modeling has been oriented towards387

machine translation, which uses an encoder-decoder architecture [32, 33, 35].388

The objective of the encoder part of the network is to summarize the input389

data as state vectors. The state vectors pass to the decoder layer, which is in390

charge of generating the outputs that best fit the input state. In the particular391

case of machine translation, a complete sentence such as “I love you” would be392

transformed into a single vector by the encoder, and then a decoder trained to393

generate text in Spanish would output “Te amo”.394

In our case, we only focus on the encoder part of the model, since our395

primary goal is to train the RNN in such a way that we can predict the next396

element in the sequence. Each element of the sequence is a word embedding397

for timestamp t, or, more generally, a fixed-size vector.398

Figure 3 illustrates the structure of the LSTM-based network we use for399

word embedding prediction. In this particular diagram, we are using three400

LSTM cells. This means that we predict the embedding vector for the next401

timestamp using the word embeddings of the previous three timestamps. The402

number of LSTM cells, or sequence length, is a user-defined parameter. The403

dense layer before the predicted embeddings is required because the output404

layer of the LSTM is always between -1 and 1 due to the tanh activation of405

the hidden state.406

LSTM LSTM

wt-1  wt wt+1 ht ht+1

tanh

ht-1

σ σ σtanh

 h0

predicted 
embedding

input 
embeddings

wt+2

Dense 
layer

Fig. 3 Structure of the LSTM-based network used for word embedding prediction.

4.2.2 GRU model structure407

Figure 4 illustrates the structure of the GRU-based network used to model the408

evolution of our temporal word embeddings. In this particular diagram, we409

are using two GRU cells, but the user-defined sequence length parameter can410

be used to change this number. This model also requires a dense layer before411

the predicted embeddings layer because of the tanh activation function in the412

GRU cell structure.413



Temporal word embedding with predictive capability 13

GRU

 ht

ht-1

wt-1ht-2

wt-1

ht-2

 wt

tanh
σ σ

-1
predicted 

embedding

input 
embeddings

wt+1
Dense 
layer

Fig. 4 Structure of the GRU-based network used for word embedding prediction.

4.2.3 Attention-based model structure414

Figure 5 illustrates a generic version of an attention-based network with RNNs.415

In our experiments, we replace the generic RNNs with LSTM and GRU cells.416

The α values in the figure refer to the attention weights. The diagram shows417

only one line going from one RNN to the next, but as we have explained in418

the LSTM section, it is possible to have more than one state passed from one419

cell to the next. Similar to the LSTM- and GRU-based networks, it is possible420

to change the training sequence length, which is set to 5 in this example for421

illustrative purposes.

RNN

 w1

 h1

 w6

RNN

 w2

 h2

RNN

 w3

 h3

RNN

 w4

 h4

RNN

 w5

 h5

attention 
mechanism

𝛂1 𝛂2 𝛂3 𝛂4 𝛂5

predicted 
embedding

input 
embeddings

Dense 
layer

Fig. 5 Structure of the attention-based networks [33] used for word embedding prediction,
with LSTM and GRU cells instead of vanilla RNNs.

422
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4.2.4 Transformer-based approach423

The sequential nature of the different versions of RNNs prohibits parallel424

training. The Transformer model [34] gets rid of the recurrence part of the425

previous networks and relies completely on a self-attention mechanism. This426

model allows for parallel training, and it is also good at learning long-term427

dependencies. Furthermore, distant elements can affect each other without428

running into the vanishing gradients issue [34].429

The Transfomer model uses a stack of self-attention layers to handle sequen-430

tial inputs. The idea of self-attention is to be able to generate a compressed431

representation of a sequence by studying (or attending to) different positions432

of the input. The original Transformer has an encoder-decoder architecture,433

but as in the previous cases, we only use the encoder portion of the model.434

Figure 6 presents a diagram of the resulting network, which consists of435

a stack of encoder layers, a positional encoding element, and the inputs and436

outputs. Each encoder layer contains:437

• A multi-head attention element, which is the most important (and complex)438

element of the encoder.439

• A feed-forward dense network, which consists of a dense layer with a ReLU440

activation function followed by a regular dense layer.441

• A normalization of the sum of the residual connection and the output of442

each of the previous two elements. This is introduced to avoid the vanishing443

gradients issue.444

The positional encoding is required to give the model information about the445

temporal dimension of the input word embedding vectors. There are different446

positional encoding functions, but we use the one presented by Vaswani et447

wt+1

wt

Multi-Head 
Attention

positional 
encoding

Add & Norm

Add & Norm

Feed Forward 
Network

predicted 
embedding

input 
embeddings

multiple 
layers

Fig. 6 Structure of the network used for word embedding prediction using only the encoder
layer from the Transformer architecture [34].
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al. [34], which consists of a vector of sine-cosine pairs at each position that448

rotate at different frequencies.449

5 Experimental Results450

We performed experiments using multiple datasets: a synthetic dataset, PubMed451

Pandemic dataset, PubMed COVID dataset, NyTimes news dataset, and the452

National Vulnerability dataset. Experimental analysis is conducted using these453

datasets to evaluate the stages of problems described in the problem description,454

namely (1) the generation of temporal embeddings and (2) the prediction of455

future embedding space. Based on these two stages, we present our experimental456

results in subsections 5.1 and 5.2.457

The datasets that we used in this section are outlined in table 1.458

Table 1 Datasets used for our experiments.

Data Documents Span # Timestamps

Synthetic Data 10,000 - 10
PubMed(Pandemic) 2 328,908 2000-2020 21
PubMed(COVID) 1 374,883 Jan 2020-May 2022 29

PubMed(CANCER) 2 613,949 1998-2018 21
NyTimes 2 812,857 1990-2018 29

NyTimes (President) 2 769,214 1990-2022 32
NyTimes (Russia-Ukraine) 2 4,957 Jan 2020-Dec 2021 24

NVD 2 165,552 1999-2021 23

Note: The PubMed(Pandemic), PubMed(Cancer), NyTimes, and NVD dataset files are
available in Kaggle link2 below.

1www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge[36]
2www.kaggle.com/datasets/ahnaffarhan/temporal-word-embedding

We generated the synthetic dataset consisting of 10,000 words and ten459

timestamps. For this dataset, we already know the 10-nearest neighbors of each460

word in every timestamp. Neighborhoods of larger sizes will contain random461

words starting at the 11th nearest neighbor.462

The PubMed pandemic dataset, contains 328,908 abstracts of pandemic463

and epidemic-related biomedical publications. The abstracts were published464

between years 2000 to 2020. The PubMed COVID dataset contains 374,883465

abstracts of biomedical papers related to COVID-19, published between 2020-466

2022. The corpus was collected from Kaggle COVID19 Open Research Dataset467

Challenge [36]. The PubMed CANCER consists of 21 years of data with468

613,949 abstracts that contain the keyword cancer.469

The New York Times corpus contains 812,857 news articles that were470

published over 29 years. We collected Russia-Ukraine related news from471

NYTimes that contains 50,000 news articles published between years 2020472

to 2021. The NVD dataset includes 165,552 bulletins published in the last 20473

years.474

www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge
www.kaggle.com/datasets/ahnaffarhan/temporal-word-embedding
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The named entities from the NYTimes and NVD dataset are extracted475

using spaCy ’s Named Entity Recognition (NER) model [37], and We extracted476

the biomedical entities for the PubMed abstracts using scispaCy ’s Biomedical477

Named Entity Recognition [38].478

The analysis of the PubMed and NVD datasets was limited to the top-479

3,000 entities based on their term frequency-inverse document frequency (tf-idf)480

weights, while the analysis of the New York Times corpus was limited to the481

top-5,000 words, based on their tf-idf weights.482

5.1 Experiments on the generated temporal embeddings483

We evaluate our temporal word embedding method by comparing its per-484

formance with that of a regular tf-idf model, the temporal tf-idf model [4],485

dynamic Bernoulli embeddings [11], temporal word embeddings with a com-486

pass (TWEC) [12], and tempoBert [3]. In all our experiments, we used an487

embedding size of 64.488

We seek to answer the following questions through experiments and case489

studies.490

1. What is the effect of introducing different penalty terms in our objective491

function? (Section 5.1.1)492

2. How well do the models perform in terms of capturing the neighborhood of493

entities over time, compared to the temporal tf-idf? (Section 5.1.2)494

3. How well do the models perform in terms of capturing changes in the495

neighborhood over time in the respective embedding spaces? (Section 5.1.3)496

4. How well does our algorithm track the quick evolution of a specific entity,497

such as COVID, compared to other methods? (Section 5.1.4)498

5. How well does our algorithm capture the semantic evolution of a general499

term, such as pandemic, compared to other methods? (Section 5.1.5)500

5.1.1 Effect of penalty terms501

In this experiment, we study the effect of the different versions of our objective502

function on the quality of the temporal word embedding model, focusing on the503

task of tracking semantic evolution. The versions under this study correspond504

to ϑ1 (2), ϑ2 (3), ϑ3 (5), Fa (7), Fb (8), and Fc (9). We quantify the quality505

of the resulting vectors with two different metrics: similarity and continuity.506

The similarity is measured as the number of intersections between the507

word neighborhoods obtained using the temporal tf-idf model and each of the508

different versions of our objective function. The goal of the similarity evaluation509

is to quantify how well our model mimics the temporal tf-idf model. It must be510

noted that we did not expect to have a perfect match in the neighborhoods of511

words since the temporal tf-idf model representation does not take into account512

latent contextual relationships between words.513

The continuity is measured using the average, maximum, and minimum514

mean squared errors (MSE) across consecutive timestamps for the word vectors515

obtained using the different versions of our objective function.516
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Figure 7 shows the results for the similarity evaluation with the synthetic517

dataset described at the beginning of Section 5. The objective function labeled518

as Fa on the figure performs significantly better than the other formulations.519

If we discard Fb and Fc, it is possible to see how the similarity improves with520

the progression in which we developed our objective function. Furthermore,521

taking into account that only the top-10 nearest neighbors are known and set as522

accurate in the synthetic data and the rest of the neighbors are random, having523

an average of 8 intersections means that our model can correctly capture the524

semantic evolution of the synthetic dataset.525

Evaluating continuity is required to ensure that there is a smooth transition526

between timestamps for the vectors of the same word. A high average or527

minimum MSE value indicates that there is a significant movement of the528

word vectors over time in the embedding space. However, a small maximum529

MSE value would mean that the word embeddings are not following the trends530

observed in the temporal tf-idf model-based training. Thus, the best model is531

one that has high similarity with the temporal tf-idf model while maintaining532

a low MSE value.533

Figure 8 shows the results for the continuity evaluation. In this case, Fc has534

a continuity of 0.0, which, in conjunction with the similarity results, indicates535

that this objective function produces static, unusable vectors. The second536

smallest average MSE value is obtained with Fa, which also showed the best537

performance in terms of similarity. Thus, the final objective function is Fa538

(Eq. (7)), and we confirm that the smoothness penalty (Eq. (6)) has a positive539

effect both on the similarity and continuity results.540

5.1.2 Capability to capture content neighborhood541

A major purpose of any temporal or dynamic word representation modeling is542

to capture content similarity over time. We compare three models – TWEC,543

Dynamic Bernoulli embeddings, and our temporal word embedding – with544

Temporal tf-idf [4] in Figure 9, using PubMed (pandemic) dataset. We use545

𝓕a

𝓕c
𝓕b

𝝑1

𝝑2

𝝑3

Fig. 7 Average number of intersections per timestamp for different neighborhood sizes (k)
between the neighborhoods obtained with the baseline method and those obtained using the
different versions of our objective function (embedding size = 64).
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𝓕a 𝓕c𝓕b 𝝑1 𝝑2 𝝑3 𝓕a 𝓕c𝓕b 𝝑1 𝝑2 𝝑3 𝓕a 𝓕c𝓕b 𝝑1 𝝑2 𝝑3

Fig. 8 Average mean squared error (MSE) for different versions of our objective function.
The average MSE is computed from obtaining the squared difference between vectors for the
same word for every pair of consecutive timestamps (embedding size = 64).

temporal tf-idf [4] for this comparison because it models content smoothly over546

time. Each line in the figure represents average set-based Jaccard similarity547

between the 10-nearest neighbors of 1000 randomly selected entities using548

temporal tf-idf and the 10-nearest neighbors of the same entities using one of the549

three models. Figure 9 demonstrates that our embedding model and TWEC have550

closer similarity with temporal tf-idf than Bernoulli embeddings. Additionally,551

our model has greater similarity with the neighborhood of temporal tf-idf in552

the earlier timestamps, compared to both TWEC and Bernoulli embeddings.553

Bernoulli embeddings over different timestamps do not change much to capture554

the evolution of words. This resulted in an almost horizontal line for Bernoulli555

embeddings in figure 9.556

Our model smoothly spreads word influence using diffusion over the years.557

As a result, our embedding model performs significantly better than other558

methods, even when the vocabulary is smaller in the earlier timestamps.559
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(PubMed (pandemic) dataset. Embedding size = 64.)
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5.1.3 Capability to detect changes in neighborhood560

An objective of a temporal embedding technique is to capture changes in561

the neighborhood of each word over time. The ability to capture changes562

allows us to study the evolution of concepts. This subsection provides an563

experiment to investigate how much change occurs from one year to another in564

the neighborhood using different models. We quantify the change in terms of set-565

based Jaccard dissimilarity (1.0-Jaccard similarity) between the neighborhood566

of a word in the current year and the neighborhood of the same word in the567

previous year. Average Jaccard dissimilarity over many words in a certain year568

for a model gives an overall idea of how much the model can detect changes in569

the neighborhood.570

Figure 10 demonstrates average Jaccard dissimilarity (change) at each year571

for five different models – our temporal embedding model, Bernoulli embeddings,572

TWEC, and vanilla tf-idf computed independently at each year, and temporal tf-573

idf using 1000 randomly selected entities from the PubMed (pandemic) dataset.574

The plot shows that our temporal embedding model detects more changes in575

terms of average Jaccard dissimilarity compared to other models.576

The Bernoulli embeddings capture the least amount of changes. Based on577

further investigation (not covered in this paper), we noticed that Bernoulli578

embeddings rarely capture any changes. These embeddings capture only a579

few long-term changes, whereas our temporal embedding model significantly580

captures both long-term and short-term changes. TWEC captures more changes581

than Bernoulli and temporal tf-idf, but lesser changes than the vanilla tf-idf.582

Our temporal word embedding performs even better than the vanilla tf-idf.583

Contextual changes are best-captured using our temporal embedding because584

the objective function of our model spreads the effect of each word smoothly585

from the current year to other years. As a result, our model captures changes, in586
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terms of average Jaccard dissimilarity, better than regular tf-idf and temporal587

tf-idf models.588

Our model is clearly superior in terms of the ability to capture changes. In589

subsection 5.1.4, we explain how the superiority in the detection of changes in590

the neighborhood helps in analyzing evolving concepts, such as COVID-19.591

5.1.4 Analyzing the neighborhood of COVID-19592

In this experiment, we analyze the changes in the neighborhood of the word593

COVID in the PubMed (COVID) dataset. Figure 11 presents how the simi-594

larities between the entity COVID and some of its nearest neighbors–China,595

epidemic, pandemic, and patients– change over time using (a) TWEC model,596

(b) Bernoulli embeddings, (c) temporal tf-idf, and (d) our temporal embed-597

ding model. The data contains ranges of two-weeks from January to July of598

2020. From August 2020, COVID-19 was considered a pandemic – which is a599

global outbreak rather than a local epidemic [39]. In figure 11, we observe that600

(figure 11 (c)) temporal tf-idf and (figure 11 (d)) our temporal embedding can601

detect the rising trends of pandemic and falling trends of the word epidemic.602

This observation matches our known knowledge regarding COVID-19. TWEC603

(figure 11 (a)) is able to track this to some degree but with zigzag-patterns in the604

trends. Bernoulli embeddings (figure 11 (b)) give higher similarity for pandemic605

than epidemic with the word COVID, which is correct in July but the timeline606

does not demonstrate any rising and falling trends of the words pandemic and607

epidemic, as they should based on our knowledge about COVID-19.608

Our temporal embedding model (figure 11 (d)) demonstrates that the word609

China had high similarity with COVID in the beginning. The similarity started610

to fall by the end of March. According to our model, starting at the end of611

March, the word epidemic started to exhibit lesser similarity with COVID and612

the word pandemic started to show higher similarity. The temporal tf-idf model613

(figure 11 (c)) demonstrates a similar trend. The trends resemble our common614

knowledge regarding the COVID-19 pandemic. Also, TWEC (figure 11 (a))615

has an overall downward trend for the word China, but with zigzag movements616

over the timeline. Bernoulli embeddings (figure 11 (b)) do not demonstrate any617

change and capture a static similarity for the entire timeline. We noticed that618

the underlying vectors in Bernoulli embeddings change, but the neighbors of619

a word do not change much. That indicates that the changes in the vectors620

generated by Bernoulli embeddings might be the result of some scaling effect621

rather than changes due to the reformation of the neighborhood.622

We know that the number of COVID-infected patients increased over the623

months of 2020. Our temporal embedding model (as well as the temporal tf-idf)624

captures the rising-similarity of the word patients in the context of COVID625

quite smoothly (figure 11 (d)). TWEC also has an upward trend which is less626

smooth. However, the Bernoulli embeddings do not demonstrate any changes627

in the similarity between the words patients and COVID.628

This experiment demonstrates that our temporal embedding model captures629

the short-term changes in content (as shown by temporal tf-idf) while also630
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Fig. 11 Evolution of the word COVID in PubMed COVID-19-related abstracts published
in 2020 using four different models – TWEC, Bernoulli embeddings, temporal tf-idf, and our
temporal embedding model. Cosine similarity is used to compute the similarity between the
vectors of the word COVID and any other word.

capturing the context that we can track smoothly to study the evolution of a631

concept, such as COVID. In contrast, Bernoulli embeddings construct a context632

that is intractable in terms of similarity. TWEC provides noisy patterns that633

are difficult to interpret.634

5.1.5 Analysis of the the word Pandemic635

With the rise of the COVID-19 pandemic, it has become essential to study636

how biomedical scientists have dealt with a pandemic in the past years. Such637

an analysis requires a model that can capture long term changes. In this638

experiment, we attempt to track the closest term to the word pandemic in each639

year of the PubMed (pandemic) dataset, which spans biomedical abstracts640

from 2000 to 2020.641

Each line of figure 12 plots the similarity of the top nearest-neighbor of642

the word pandemic in each year. The five lines represent similarities using643

five different models – Bernoulli embeddings, our temporal embedding model,644

temporal tf-idf, vanilla tf-idf, and TWEC. Notice that our temporal embedding645
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model demonstrates peak similarities in 2009/2010 and in 2020, when H1N1646

influenza (swine flu) and COVID-19, respectively became prominent. This647

signal from our temporal embedding model reflects the fact that the worst648

pandemics in the last 20 years are the H1N1 influenza in 2009 [40] and COVID-649

19 in 2020 [41]. Note that other words like concerns in 2004 and public in 2015650

are detected as the top nearest neighbors, which are not highly similar to the651

word pandemic. This indicates that no entities appeared too close to the word652

pandemic in those years.653

TWEC captures influenza and H1N1 in the middle of the timeline but fails654

to capture COVID-related keywords in 2020 as the closest entity to pandemic.655

In figure 12, the Bernoulli model can pick up coronavirus as the nearest neighbor656

of pandemic but it was not able to pick up influenza in its trend. Moreover,657

coronovirus appears in all the years as the top nearest neighbor of pandemic658

which is not correct because the fact is that the coronavirus spread started in659

2019 and became a pandemic in 2020 [41]. Temporal tf-idf and vanilla tf-idf660

were able to pick up coronavirus/COVID. Temporal tf-idf and vanilla tf-idf661

were also able to pick up influenza subtype H1N1 (swine flu) but the respective662

similarities were not high.663

Based on the experiment presented in this subsection, our temporal embed-664

ding model has the ability to separate highly contextual words (such as H1N1665

and COVID) of a concept (such as pandemic) via similarity-peaks. Our model666
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helps in determining prominent neighbors of a concept in the past. Our vectors667

are able to construct a peak for a prominent nearest neighbor because our668

method models diffusion. That is, a concept that appears today affects the669

past and the future to some extent, regardless of whether the concept directly670

appears in the contents or not.671

5.1.6 Comparison with BERT temporal embedding672

Based on recent literature, there is a surge in applications using Bidirectional673

Encoder Representations from Transformers (BERT). BERT provides vectors674

for each appearance of words. The vectors of the same word appearing in the675

same timestamp can be used to create a word embedding vector for that word676

in that timestamp, leading to temporal word embeddings. TempoBert model [3]677

is such a mechanism. In the TempoBert model, the timestamps are added at678

the start and end of each sentence as a means of training text data for differ-679

ent timestamps. The BERT-generated embeddings are clustered for semantic680

evolution. In our experiment here, we use a variant of TempoBert, referred to681

as temporal BERT, which does not cluster vectors but rather calculates the682

arithmetic mean of embedding vectors of a word at each timestamp to generate683

one vector for one word at each timestamp.684

A drawback of the BERT-based model is its excessive computation time685

compared to other embedding models due to the complex structure of the deep686

learning model. Therefore, for this experimental analysis, we downsample the687

corpus to 10% of articles per month to ease the computation for BERT. The688

corpus for this experiment includes 10% of Pubmed COVID-related articles689

(between Jan 2020 – May 2022) and 10% of NYTimes Russia-Ukraine-related690

articles (over 24 months between Jan 2020 - Dec 2021). In this section, we691

examine, how the neighborhood of the words COVID and UKRAINE changes692

over time using the word embeddings generated by temporal BERT and our693

temporal embedding model.694
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Fig. 13 Cosine similarity of the embedding of ”COVID” with neighbor words at the different
timestamp. [Temporal BERT vs Our Model]
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Figure 13 presents the cosine similarity of embeddings of the word “COVID”695

with its neighboring words at different timestamps. The plot on the left (a) is696

generated by using embeddings from temporal BERT, and the plot on the right697

(b) is generated by using our temporal embedding model. In figure 13(b), we698

observe that at the beginning of the month of January 2020, the words “case”,699

“china”, “epidemic”, and “pandemic” are the closest neighbors of the word700

“COVID”. Then, over time, the similarities of the words “china” and “epidemic”701

with “COVID” decreases while the similarities of the words “pandemic”, “united702

states”, and “vaccination”, with COVID increase. The changing neighborhood703

of “COVID” reflects how “COVID” spreads throughout the world over time,704

starting from china and eventually becoming the world’s most widespread705

pandemic. Further, vaccination programs were initiated at the beginning of 2021.706

Our model captures these trends well, as reflected in the plot of figure 13(b).707

The plot on the left (figure 13(a)), on the other hand, provides mostly straight708

lines and fails to capture such changes in the neighborhood of “COVID”.709

Another experimental result in figure 14 presents the cosine similarity of710

embeddings of the word “UKRAINE” with its neighboring words at different711

timestamps. Based on our known knowledge from the news, Russia invaded712

Ukrainian territory in February 2022 [42]. As part of our experiment, we trained713

both the temporal BERT and our model with news data collected prior to the714

invasion. The embeddings generated by our model (Figure 14 (b)) shows that715

the similarities between each of the words “cold war”, “invasion”, and “Russia”716

with the word “UKRAINE” increased at the end of the year 2021, which is717

prior to the actual invasion. The temporal BERT, however, failed to detect any718

changes in the neighborhood of the word “Ukraine”. This analysis indicates719

that the embeddings generated by our model have better prediction capability720

compared to the temporal BERT embedding model.721

Temporal BERT does not perform well due to the fact that complex deep722

neural network models require extensive training on large datasets. In order to723

train a BERT model from scratch, it is recommended to use billions of sentences,724

b. Our Model
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Fig. 14 Cosine similarity of the embedding of “UKRAINE” with neighbor words at the
different timestamp. [Temporal BERT vs Our Model]
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which is sometimes not available for a specific domain. In our experiment related725

to COVID (figure 13), we used a pre-trained BERT model (clinical-bert [43]726

and fine-tuned it with our data. For the Russia-Ukraine-related experiment727

(figure 14), we used bert-small [44, 45]), which is later fine-tuned by the smaller728

dataset. In these experiments, we find that despite fine-tuning the BERT model,729

it fails to capture the temporal evolution of words. Our model performs well730

even with small datasets, requiring lesser training samples.731

5.1.7 Stacking cosine similarities732

A streamgraph is a stacked area chart widely used in concept visualization [46].733

In this subsection, we provide an analysis of the entity president using a734

streamgraph using the New York Times dataset. Cosine similarities of the735

nearest neighbors of the entity president are stacked in the streamgraph of736

figure 15.737

We observe how the entities Obama and Trump started to get closer to738

president only a few years before their presidency. Biden started to get closer739

to president in the year 2008 when he became the vice president. The cosine740

similarity between the word Biden and the word president increased in 2020,741

which matches with the actual event that Biden won the presidential election in742

2020. We also observe the particular cases of political families, such as the Bush,743

and Clinton families, that have been relevant to the presidential elections for744

the last four decades. General entities – such as White House, and United States745

– relevant to the entity president do not change much in similarity (the width746
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of each of the bands) but remain nearest neighbors at all times. This indicates747

the consistency of the words White House, and United States in relation to the748

word president. Other entities, on the other hand, appear and disappear over749

time based on their relevance to the word president. For example, Gore and750

Kerry were presidential candidates in the years 2000 and 2004, respectively.751

Their cosine similarity with the word president increased during those years.752

The results of this experiment demonstrate that our temporal embedding753

model effectively captures the trends of a historical concept. Additionally, the754

changes in the cosine similarity of the words are smooth, indicating that the755

embeddings are changing smoothly over time and that they are well suited756

for extrapolating into future timestamps for predicting the future state of757

the embeddings. Subsection 5.2.3 discusses experiments related to predicted758

embeddings of the word president.759

5.1.8 Sensitivity analysis for hyperparameters760

In this experiment, we evaluate the effect of performing a sweep of different val-761

ues for (a) the embedding size, (b) the exponential factor β, (c) the scale factor762

α, (d) the temporal diffusion filter standard deviation σ, (e) the smoothness763

penalty factor ωϵ, and (f) the learning rate of our model. We use the average764

number of intersections per timestamp between the neighborhoods obtained765

using our method and those generated using the temporal tf-idf method as our766

accuracy metric.767

Figure 16 presents the effect of changing the parameters of interest on the768

accuracy of our model. The results show that the embedding size, the scale769

Fig. 16 Average number of intersections per timestamp between the neighborhoods obtained
with temporal tf-idf [4] and our temporal embedding model for the NVD data with changing
(a)embedding size, (b)β, (c)α, (d)σ, (e)ωϵ, and (f) learning rate.
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factor (α), and the smoothness penalty factor (ωϵ) have significant effects on770

the accuracy of neighborhood-detection. Figure 16 only presents the results771

obtained using the NVD dataset. We performed similar analyses for the other772

datasets, which resulted in similar findings.773

Figure 16 (a) shows that using an embedding size of 128 resulted in slightly774

better performance than a size of 64. However, this slight improvement does775

not justify the significant increase in training time and computational/storage776

complexity. Training time increased from ∼ 18 hours to ∼ 50 hours per777

experiment in a GPU-enabled cluster when we increase the embedding size from778

64 to 128. Therefore, we decided to keep an embedding size of 64. The selection779

of all the parameters in a neural network with a complex cost function like780

ours is a “big data” challenge. After many different iterations, we discovered781

that the size of 64 provides reasonably meaningful results in reasonable run782

times with the available resources.783

5.2 Experiments on prediction capability784

In this section, we evaluate the selected time-series modeling techniques to785

generate temporal word embedding predictions. We perform the experiments786

on three different datasets: (1) PubMed abstracts [47], (2) New York Times787

articles, and (3) National Vulnerability Database (NVD) bulletins [48].788

The temporal word embeddings used as baseline data were generated using789

the method presented in section 4. We split the embeddings for each dataset into790

training and test datasets based on their timestamps. The word embeddings of791

the first X years out of |T | are the training data. The generated models were792

tested using the word vectors for the last |T | −X years, which are not part of793

the training data. The X parameter is user-defined.794

We evaluate the performance of the time-series modeling techniques using795

two different metrics: (1) average mean squared error (MSE) between the pre-796

dicted and the actual word vectors, and (2) neighborhood similarity (explained797

next). We define neighborhood similarity as the average of the average number798

of intersections between the neighborhoods generated using the actual word799

embeddings and those generated using the predicted word embeddings, divided800

by the neighborhood size k where k ∈ [1, 2, 4, 8, 16]. The neighborhood similar-801

ity is computed only for the test data timestamps. We formalize the concept of802

neighborhood similarity as follows:803

neighborhood similarity(Na,Nb) =
∑

w∈W

∑

k∈[1,2,4,8,16]

∑

t∈Ttest

Na(w, t, k) ∩Nb(w, t, k)

k

where Na(w, t, k) returns the k nearest neighbors of word w at time t obtained804

from word embeddings generated using method a.805

In this section, we seek to answer the following questions.806
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1. Which sequence modeling technique is most well-suited to predict future807

word embeddings? (Section 5.2.1)808

2. How sensitive is the selected time-series modeling technique to changes in809

the hyperparameters? (Section 5.2.2)810

3. How well does our algorithm predict the evolution of a specific term?811

(Section 5.2.3)812

5.2.1 Model selection for prediction813

The main goal of this experiment is to identify the sequence modeling technique814

that has the best performance in terms of predicting the semantic evolution of815

the given corpora. First, we identify the best hyperparameters by performing816

a sensitivity analysis for (1) LSTM, (2) GRU, (3) LSTM with attention, (4)817

GRU with attention, and (5) the Transformer model. Section 5.2.2 describes818

this sensitivity analysis in more detail.819

For each model, we generate predicted word embeddings for every timestamp820

of the test dataset. We use the neighborhood similarity metric to measure the821

performance of each model.822

Figures 17 and 18 present a comparison, for each dataset, between the best823

versions of each sequence modeling technique. Figure 17 presents the results824

in terms of the neighborhood similarity, while Figure 18 shows the effect of825

changing the neighborhood size K on the average number of intersections826

between the baseline and the predicted embeddings.827

Fig. 17 Neighborhood similarity between the neighborhoods obtained with the baseline
temporal embedding method (Eq. 7) and neighborhoods obtained using the predict-next
technique with different sequential models for the NVD, PubMed and New York Times
datasets, using dynamic values of K.
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Fig. 18 Average number of intersections for different neighborhood size k per timestamp
between the neighborhoods obtained with the baseline temporal embedding method (Eq. 7)
and neighborhoods obtained using the predict-next technique with different sequential models
for the NVD, PubMed and New York Times datasets (embedding size = 64), using dynamic
values of K.

The results show that the GRU and LSTM-based networks outperform the828

more complex sequential models in all datasets. For both GRU and LSTM,829

the inclusion of the attention mechanism did not result in better performance.830

This is because the attention mechanism is explicitly designed to model long831

sequences [34], but our text-based embeddings have a limited number of times-832

tamps, resulting in a small temporal sequence. There fore GRU and LSTM833

without the attention mechanism are more appropriate for predicting future834

embeddings.835

5.2.2 Sensitivity analysis836

In this section, we present the effect of performing a sweep of the hyperpa-837

rameters on the GRU-based sequential model. We performed similar analyses838

for the other variants, but, for brevity, we only present the results obtained839

with the best model. The evaluated parameters are (a) the batch size, (b) the840

fraction of timestamps used for training, (c) the input sequence length, (d)841

the number of encoder units for the neural network, (e) the optimizer, and (f)842

the learning rate. We use the neighborhood similarity metric to quantify the843

performance of each parameter combination.844

Figure 19 presents the effect of changing the batch size (Figure 19(a)) and845

the fraction of timestamps used for the training/test split (Figure 19(b)) on846

neighborhood similarity. Based on the plots, it appears that changing the batch847

size does not have a significant effect on neighborhood similarity. Meanwhile,848

changing the train-test size has little effect on neighborhood similarity.849

Figure 20 (a) presents the effect of changing the input sequence length on850

neighborhood similarity. This plot reveals that using an input consisting of851

the word embeddings for two or more timestamps results in a slightly better852
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performance. Figure 20 (b) shows that changing the number of encoder units853

for the neural network has a negligible effect on the neighborhood similarity.854

The plots of figures 19 and 20 indicate that the generation of neighborhoods855

of words from predicted embeddings is not sensitive to batch size, training/test856

split, input sequence size, and the number of encoder units, in general.857

Figure 21 presents the effect of changing the optimizer and learning rate858

on neighborhood similarity. It is important to note that for these plots, a859

learning rate of 0.0 on the x-axis actually represents the neighborhood similarity860

obtained using the dynamic learning rate presented by Vaswani et al. [34]. The861

results clearly exhibit downward or upward trends with increasing learning862

rates. This is an indication that the neighborhood similarity is sensitive to the863

Fig. 19 Neighborhood similarity between the neighborhoods obtained with the baseline
temporal embedding method (Eq. 7) and the neighborhoods obtained using the predict-next
techniques with different sequential models for the NVD, PubMed and New York Times
datasets, using dynamic values of K, while changing (a) the batch size and (b) the fraction
of timestamps used for training.

Fig. 20 Neighborhood similarity between the neighborhoods obtained with the baseline
temporal embedding method (Eq. 7) and the neighborhoods obtained using the predicted
embeddings with different sequential models for the NVD, PubMed and New York Times
datasets, using dynamic values of K, while changing (a) the input sequence size and (b) the
number of encoder units.
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Fig. 21 Neighborhood similarity between the neighborhoods obtained with the baseline
temporal embedding method (Eq. 7) and neighborhoods obtained using the predicted
embeddings with different sequential models for the NVD, PubMed and New York Times
datasets, with different optimizers and learning rates. The learning rate of 0.0 represents the
dynamic learning rate presented by Vaswani et al. [34].

learning rate and hence the model requires tuning with different learning rate864

values to make sure the optimizer does not get stuck in local minima.865

5.2.3 Case study and trend analysis866

In this section, we perform a qualitative analysis of the performance of the867

predicted temporal word embeddings on the task of tracking semantic evolution.868

In this subsection, we report prediction results using LSTM. Similar results are869

observed using GRU. We used New York Time data for two case studies – how870

well do the predicted embeddings (1) relevant to the word war represent our871

knowledge about contemporary political tension between different countries,872

and (2) capture entities in the US political domain while studying the word873

president .874

Figure 22(a) contains cosine similarity of the nearest neighbors of the word875

war . Relevant nearest neighbors – “Russia”, “Ukraine”, “ISIS”, “Syria”, and876

“Taliban” – were selected from the predicted embedding for the year 2022.877

Embeddings from previous years were used for training the LSTM. Figure 22(a)878

shows that the embeddings of the words “Syria” and “ISIS” were two words879

most similar to the embedding of war in the beginning. Their similarity880

with war gradually declined. The prediction for the year 2022 demonstrates881

the continuous decline of “Syria” and “ISIS” from the word war . The word882

“Taliban” became more similar to the word war between 2017 and 2020. The883

U.S. and the Taliban peace deal occurred in 2020 [49]. The Taliban took over884

the Afghan government in 2021 [50]. The prediction for 2022 reflects the end885

of a long-lasting “war” by showing that the similarity of the word “Taliban”886

and war will be lesser.887

The similarities of the words “Russia” and “Ukraine” with war were888

declining through 2017-2020 but started to rise between 2020 and 2021. The889

predicted embeddings in the year 2022 show that “Russia” becomes the topmost890
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Fig. 22 Evolution of the neighborhood of the term war in the NYTimes dataset where the
embeddings of words at timestamp 2022 is extrapolated using LSTM (a) cosine similarity
between the embedding of the word war and relevant word embeddings at different times-
tamps. (b) Rank (position) of relevant words in the nearest neighborhood of the word war

at different timestamps.

nearest neighbor of war . Simultaneously, the similarity between “Ukraine” and891

war is predicted to increase in 2022.892

Figure 22(b) shows the ranks of the same nearest neighbors of the word893

war . The smaller the rank value more similar a neighbor is to the word war .894

The vertical axis is in logarithmic scale for better visualization. Similar trends895

as figure 22(a) are observed in figure 22(b). For example, ‘Russia” and “Ukraine”896

both are coming closer in rank to the word war , which is reflected as a falling897

pattern in figure 22(b). Also, it is noticeable that the prediction of ‘Syria” for898

2022 has an upward direction indicating that ‘Syria” is shifting away from the899

word war . On the other hand, the downward direction of “Russia” in the 2022900

prediction supports our known knowledge that “Russia” moved closer to war .901

For the second case study, our word of interest is President . We selected902

some relevant words – “Obama”, “Trump”, “Biden”, “Bernie”, “Democrats”,903

and “Republicans”– which have been closely associated with the word President904

based on our knowledge of US politics of the past decade. We used embeddings905

from 2011 to 2020 for training and extrapolated the embeddings of 2021.906

In figure 23(a), we observe that the embedding of the word “Obama” is the907

most similar to the embedding of President in the year 2011. In the year 2016,908

the embedding of the word “Trump” gains more similarity to the word President909

as “Trump” was elected as the new president of the United States. On the other910

hand, the similarity of the words “Biden” and “Bernie” started to increase in911

the year 2018 as they were competing for the presidential candidate for the912

election in the year 2020. The predicted embeddings in the year 2021 show that913

the similarity of the embedding of the word “Biden” increases substantially,914

and it becomes the second top closest neighbor between all the relevant words915

in this study. Figure 23(b) shows that the position of “Biden” in the nearest916
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Fig. 23 Evolution of the neighborhood of the term President in the NYTimes dataset
where the embeddings of words at timestamp 2021 is extrapolated using LSTM (a) cosine
similarity between the embedding of the word President and relevant word embeddings at
different timestamps. (b) Rank (position) of relevant words in the nearest neighborhood of
the word President at different timestamps.

neighbors of President dropped significantly from 1000 to 9 in the last 3 years,917

indicating that “Biden” quickly moved closer to the word President.918

These case studies demonstrate that the predicted embeddings using an919

LSTM-based prediction model can capture the trend in the training data and920

provide well-explainable relationships between entities in a predicted embedding921

space of a future timestamp. The performance of forecasting the embeddings922

depends heavily on the ability of temporal embeddings to capture trends. In923

section 5.1, we demonstrate that the state-of-the-art models cannot capture924

changes in the context of words and cannot produce smooth transitions of word925

similarity over time. While our temporal embedding model can capture the926

change in the context and produce a smooth transition of embeddings, thus927

performs well when extrapolated into the future embedding space.928

6 Conclusions929

This paper introduces a new technique to generate low-dimensional temporal930

word embeddings for timestamped documents and predict a future embedding931

space. We compare our temporal word embedding technique with other state-932

of-the-art techniques. Our temporal embeddings reflect a representation that:933

(1) can track changes observed within a short period, (2) provides a smooth934

evolution of the word vectors over a continuous temporal vector space, (3) uses935

the concept of diffusion to capture trends better than the existing models, (4)936

is low-dimensional, and (5) performs well in capturing future neighborhoods of937

words. Unlike previous dynamic embedding models, our proposed model creates938

a homogeneous space over every timestamp of the embeddings. As a result,939

the generated vectors of timestamps perform well in the prediction of a future940
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embedding space using conventional predictive models. The future direction941

of our research is to automate hyperparameter tuning and study temporal942

embedding models for images to learn text-image joint temporal embeddings.943
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