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Abstract Dimensionality reduction has been explored to address the curse of
dimensionality in high dimensional datasets of modern pattern recognition ap-
plications. In pattern recognition tasks, it is important to quantify how distinct
two data samples are. Unsupervised metric learning serves for this purpose. In
dimensionality reduction, a more adequate metric for a given dataset is implicitly
learned. Principal Component Analysis is still the most used dimensionality reduc-
tion algorithm. Several modifications of this method have already been proposed
as other algorithms belonging to the nonlinear class as well. However, all of them
somehow rely on the Euclidean norm, which is known to fail in high dimensions
and to be sensitive to outliers. So, in this paper, a new entropic approach was pro-
posed, where the neighborhood of a data sample was mapped to an entropic space,
where a stochastic divergence replaces the Euclidean. This approach was adopted
to compute a new entropic covariance matrix that does not use inner product to es-
timate correlation between two features. A data sample neighborhood was mapped
into an univariate Gaussian distribution and the statistical distance used was the
Cauchy-Schwarz divergence. This new matrix was supplied to Principal Compo-
nent Analysis classic algorithm. We compared the new method with existing linear
and nonlinear algorithms. Using several real datasets, the comparison was made
under two perspectives: cluster analysis and classification. Using a statistical test,
it was possible to conclude that the new approach led to significant better results
in both perspectives in comparison to all other algorithms considered.
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1 Introduction

High dimensional data is present in several domains of science. A huge quantity
of features and samples is common on modern pattern recognition and machine
learning applications datasets. While a big quantity of examples is good for those
tasks, the increase in the feature number can bring negative consequences [6,8,12,
18,21,30,36].

The curse of dimensionality phenomena states that, as the quantity m of fea-
tures grows, more samples are needed to approximate the data governing function
[9,13,26]. Thus, a large sample size n is required in order to extract relevant in-
formation from high-dimensional data, but, in real-world contexts, n is limited or
even scarce in relation to m. Therefore, a natural way to mitigate this problem is
to reduce the data dimensionality m.

Supervised classification in high dimensional spaces can be difficult because
Euclidean properties are lost in high dimensions [14,26]. The Euclidean norm
(which is based on the inner product between two vectors) is bigger as the feature
quantity grows in a

√
m proportion. On the other hand, when m is large, the

norms variance tends to concentrate around some constant. This is known as the
concentration phenomena [18], where it is observed that Euclidean norm loses
discrimination power as space dimension raises.

In pattern recognition, the goal is to develop mathematical models for auto-
matic discovery of regularities in data through computational algorithms. In order
to extract relevant information from a vast amount of data, one of the key issues
in pattern recognition and machine learning is the definition of a suitable simi-
larity measure between samples [20,32]. Being able to properly quantify how far
apart two different observations are, is crucial for any kind of data analysis. In
this context, unsupervised metric learning methods try to overcome this issue by
finding suitable distance functions for the dataset.

Dimensionality reduction (DR) methods are mathematical tools for data anal-
ysis and metric learning. The intuition behind these methods is that, usually,
the observed data samples lie along a low-dimensional structure embedded in a
high-dimensional input space. The low dimensional space reflects some unknown
underlying parameters (i.e., local coordinates) that are encoded in the original fea-
ture space. Attempting to uncover this hidden structure in a dataset is the major
goal of DR algorithms. It has been shown that these methods have strong relation
to metric learning because, besides obtaining a better representation for a given
dataset, they also obtain and a distance metric that quantify dissimilarity between
its samples in a more appropriate way [3,20,32,28,33]. Therefore, besides helping
data visualization and alleviating the computational burden, these methods also
handle the curse of dimensionality by learning an adaptive data-dependent simi-
larity measure that leads to a more compact data representation.

Among all DR methods, Principal Component Analysis (PCA) [16] is still the
main algorithm used by researchers. It is based on finding the orthogonal direc-
tions that maximize the data variance. This is optimal from a data representation
point of view, since it is equivalent to the mean square error minimization between
the original and the reduced representation. For this reason, after the PCA trans-
formation, data is organized in clusters with large scattering, which is undesirable
for classification problems.
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Non-linear DR techniques and PCA also have the limitation of using the L2

distance, which does not work so well in outlier presence, where classification
accuracy decrease can be observed [1]. In high dimensions, there is inconsistency
and upward bias in the covariance matrix eigenvectors and eigenvalues [15]. So,
the use of traditional covariance matrix to characterize data distribution, may
not be a reasonable choice. Some alternatives to this limitation have already been
investigated [31].

To overcome this problem, in this paper is proposed a new patch-based ap-
proach that maps the KNN graph neighborhoods to an entropic feature space.
In this new space, the Euclidean distance between two vectors is replaced by an
information-theoretic measure between two statistical models in the covariance
matrix construction. In other words, the distance in the feature space is replaced
by a statistical divergence between probability distributions defined in the neigh-
borhood of each sample. In this paper we will use the Cauchy-Schwarz divergence
[11].

Overall, the obtained results show that the proposed method is capable to
improve three major aspects of other DR methods compared: 1) it less sensitive
to outliers and noise in data due to its patch-based characteristic; 2) the obtained
clusters show a lower intra-class scattering; 3) the extracted features have more
discriminant power providing higher supervised classification accuracies.

The paper is divided in the following way: Section 2 shows in details the pro-
posed method for unsupervised metric learning via DR. In Section 3, we detail the
experiments, results, and compare several non-linear and linear algorithms with
the proposed method. In Section 4, some conclusions are presented. In Section 5,
some future work possibilities are discussed.

2 PCA using Cauchy-Schwarz divergence

In the theoretical formulation, we will define the dataset as being the set X =
{~x1, ~x2, ..., ~xn}, where ~xi ∈ Rm. If, for all i, ~xi is linked with its k nearest neigh-
bors, the KNN graph is defined as G = (V,E), where |V | = n. The Euclidean
distance can be used for this linkage, assuming that a neighborhood is an Eu-
clidean subspace itself [24]. Although, other metrics such as Jaccard, Minkowski
and Cosine can be used also. A patch Pi is defined as {~xi} ∪ {~xj ∈ N(i)}, with
N(i) being the neighborhood of ~xi. So

Pi = [~xi, ~xi1, ~xi2, ..., ~xik] (1)

is the m × (k + 1) matrix that represents the i-th patch. We assume that each
row of the matrix Pi is a sample of size k + 1 of a univariate random variable
x, characterized by a probability density function p(x; ~θ), where ~θ ∈ RL is a
vector of L parameters. In this study, we consider a Gaussian model, that is,
L = 2 and θ1 = µ denotes the mean and θ2 = σ2 denotes the variance. So each
random variable corresponds to one of m input features. Each Pi is mapped to
a m-dimensional vector of 2D tuples, where each tuple j for j = 1, ...,m has the
maximum likelihood estimators of the parameters for each one of the features. In
other words, we compute the sample mean and variance of each line of the matrix
Pi.
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The entropic feature vector ~pi for the patch Pi is given by:

~pi =
[

~θ
(i)
1 , ~θ

(i)
2 , ..., ~θ

(i)
m

]

(2)

where each component is a tuple of two parameters:

~θ
(i)
j =

(

µ
(i)
j , (σ2

j )
(i)
)

(3)

Figure 1 shows the mapping from a patch Pi to an entropic feature vector ~pi.

Fig. 1 Mapping from a patch Pi on a graph to an entropic feature vector ~pi

The set of all ~pi, for i = 1, 2, ..., n defines the entropic feature space. We can
associate to the entropic feature space, a centroid, which represents the average
distribution:

~̃p =
1

n

n
∑

i=1

~pi (4)

Let the entropic difference between two vectors ~pi and ~pj in the entropic feature
space be the Cauchy-Schwarz divergence between each one of the tuples in the
vectors:

~pi − ~pj =
[

DCS(~θ
(i)
1 , ~θ

(j)
1 ), ..., DCS(~θ

(i)
m , ~θ

(j)
m )

]

(5)

= ~dCS (~pi, ~pj)

where DCS(p, q) is the Cauchy-Schwarz divergence between probability density
functions p and q [11]:

DCS(p, q) = −log

∫

p(x)q(x)dx
√

∫

p(x)2dx
∫

q(x)2dx

=
1

2
log

(
∫

p(x)2dx

)

+
1

2
log

(
∫

q(x)2dx

)

− log

(
∫

p(x)q(x)dx

)

(6)

In this study, we assume a univariate Gaussian model for each feature, that is,
we have the distributions p(x|~θi) and q(x|~θj) as N(µ1, σ

2
1) and N(µ2, σ

2
2), respec-

tively, which leads to [27]:

DCS(p, q) =
1

2
log

(

(σ2
1 + σ2

2)
2

4σ2
1σ

2
2

)

+
(µ1 − µ2)

2

σ2
1 + σ2

2

(7)
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We define the entropic kernel matrix C as a surrogate for the covariance matrix:

C =
1

n− 1

n
∑

i=1

~dCS(~pi, ~̃p)~dCS(~pi, ~̃p)
T (8)

where ~dCS(~pi, ~̃p) is a m-dimensional vector of Cauchy-Schwarz divergences. So an
entropic covariance matrix, is defined by the relative entropy (i.e., the Kullback-
Leibler divergence) between the local distributions estimated from each patch
and the average distribution. The Cauchy-Schwarz divergence is equivalent to the
Kullback-Leibler divergence for the quadratic entropy.

The following schemes illustrate the procedure from the feature covariance
computation point of view. In Figure 2 is represented a space which its span basis
is formed by the dataset samples vectors. Each vector dispersed in this space
corresponds to a feature vector fi. So the ith coordinate of fi is the value that ~x1

has in the ith feature. In blue we can see that, originally, the covariance between
fi and fj involves the inner product of these two vectors. Thus, the covariance can
also be related to the Euclidean distance between them.

In Figure 3 is represented the transformation to the entropic feature space, that
is, the mapping between a KNN graph to an univariate Gaussian distribution. In
the entropic space, the covariance between fi and fj no longer involves the inner
product between its vectors, but instead, the Cauchy-Schwarz divergence between
distributions p and q.

Notice that, all the proposed procedure does, is obtaining a new covariance ma-
trix that does not involve inner products, where a contextual approach replaces
the pointwise metric. Therefore, this new matrix can be used in the default PCA
algorithm. The final PCA projection matrix, responsible for the linear projection
from old to new coordinates, can be normally built with the new entropic covari-
ance matrix eigenvectors. So, from now on, we will refer the PCA method that
uses the entropic covariance matrix as Cauchy-Schwarz PCA (CSPCA). As a fi-
nal remark, it is important to highlight also that, the use of a projection matrix
allows an easy finding of an instance new coordinates in the lower dimensional
space, which is a big performance advantage in comparison to manifold learning
algorithms.

3 Experiments and results

We compared the proposed method performance against: the original PCA, Joint
Sparse PCA [35], Kernel PCA [25], Robust PCA [34], LLE [24], ISOMAP [29] and
Laplacian Eigenmaps [2] in several datasets available in www.openml.org. Those
datasets are very heterogeneous, having significant differences in the number of
features (m), samples (n) and classes (c). The experimental analysis is divided in
two sets: one focused on internal cluster assessment and another based on classi-
fication accuracy.

In the first experimental set, the goal is to assess the quality of the clusters
obtained after feature extraction. A cluster is a set of samples that belongs to
the same class in the original dataset, given that all samples were labeled in all
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Fig. 2 The sample space representation

Fig. 3 The entropic space representation

datasets (i.e. every sample belongs to some class). We used the Silhouette Coeffi-
cient (SC) [23] to measure the similarity between a given data sample and its own
cluster (cohesion) in comparison to different clusters (separation). This measure
provides a quantitative way to analyze the consistency within clusters. The idea
is to measure, for all clusters, how tight the cluster is. A high SC indicates low
intra-class scattering. We can find the results for 30 datasets in Table 1, where
column CSPCA denote the proposed entropic method under Gaussian hypothesis.
The best result in a line is boldfaced and the second best is underlined. At the
bottom of the table are also shown for each feature extraction algorithm the SC
average, standard deviation, median and mean absolute deviation (MAD).

The results indicate that, for these datasets, Cauchy-Schwarz PCA builds a
more meaningful representation from within clusters consistency perspective than
the other methods. Moreover, note that in 26 of 30 datasets, CSPCA obtained the
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Table 1 Silhouette coefficients for clusters produced by PCA, Kernel PCA, ISOMAP, LLE,
Laplacian Eigenmaps, Joint Sparse PCA, Robust PCA and Cauchy-Schwarz PCA.

PCA KPCA ISO LLE LAP JSPCA RPCA CSPCA

iris 0.401 0.469 0.452 0.365 0.541 0.470 0.551 0.603

blood 0.086 0.026 0.082 0.008 0.004 0.092 0.083 0.174

kc1 0.371 0.210 0.187 0.187 -0.459 0.370 0.369 0.467

Australian 0.279 0.276 0.291 0.130 0.346 0.272 0.312 0.423

transplant 0.485 0.436 0.486 0.410 0.438 0.480 0.520 0.542

servo 0.121 0.105 0.114 0.104 0.085 0.120 0.279 0.215
analcatdata 0.151 0.081 0.125 0.149 0.028 0.170 0.107 0.198

datatrieve 0.239 0.011 0.096 0.066 0.081 0.236 0.174 0.264

machine cpu 0.498 0.399 0.492 0.496 0.410 0.494 0.575 0.508
arsenic-female 0.122 0.008 0.170 0.143 0.030 0.104 0.068 0.212

page-blocks 0.419 0.218 0.527 0.581 0.436 0.426 0.419 0.634

arsenic-male 0.563 -0.182 0.674 0.697 -0.057 0.504 0.057 0.731

mw1 0.349 0.122 0.286 0.175 0.18 0.337 0.346 0.424

car 0.029 0.189 0.046 0.163 0.079 0.01 0.068 0.182
ar1 0.265 0.028 0.216 -0.004 -0.002 0.276 0.246 0.437

diggle table 0.406 0.409 0.450 0.328 0.304 0.407 0.444 0.471

rmftsa ladata 0.228 0.242 0.238 0.185 0.230 0.225 0.236 0.296

kc3 0.386 0.103 0.233 0.045 -0.129 0.394 0.394 0.569

diabetes 0.117 0.100 0.115 0.101 0.054 0.111 0.106 0.115
mammography 0.349 0.032 0.307 0.070 -0.251 0.348 0.349 0.640

bank-marketing 0.082 -0.006 -0.001 0.078 -0.257 0.082 0.082 0.317

heart-h 0.056 0.041 0.076 0.087 -0.004 0.066 0.134 0.205

molecular 0.106 0.134 0.138 0.035 0.137 0.105 0.170 0.248

delta ailerons 0.117 0.341 0.383 0.077 0.419 0.114 0.117 0.469

pc3 0.201 0.074 -0.017 -0.003 -0.341 0.201 0.188 0.227

ar4 0.357 0.176 0.318 0.203 0.131 0.361 0.356 0.473

KnuggetChase3 0.199 0.070 0.187 0.077 0.091 0.196 0.203 0.317

threeOf9 0.034 0.017 0.049 0.095 0.044 0.048 0.029 0.193

galaxy 0.179 0.255 0.193 0.235 0.270 0.177 0.219 0.275

thoracic surgery 0.006 -0.002 -0.006 0.082 -0.021 0.008 -0.075 0.303

Ave. 0.240 0.146 0.230 0.179 0.094 0.238 0.238 0.371

S. Dev. 0.156 0.154 0.178 0.174 0.240 0.153 0.167 0.167
Median 0.215 0.104 0.190 0.117 0.080 0.213 0.211 0.317

MAD 0.134 0.124 0.143 0.127 0.181 0.132 0.138 0.146

highest SC, that is, in 87% of the cases, the method produced better clusters than
the others, which indicates that it can be a promising alternative to unsupervised
metric learning via DR. Wilcoxon signed-rank test, for a significance level α = 1%,
shows that, CSPCA produced significantly better clusters than PCA (p-value =
1.91 × 10−6), Kernel PCA (p-value = 1.92 × 10−6), ISOMAP (p-value = 2.56 ×
10−6), LLE (p-value = 1.73×10−6), Laplacian Eigenmaps (p-value = 1.73×10−6),
JSPCA (p-value = 1.73× 10−6) and Robust PCA (p-value = 9.31× 10−6).

In the second experimental set, we analyse supervised classification perfor-
mance. For this purpose, eight different non-parametric and parametric classifiers
were used: K-Nearest Neighbors (KNN), Naive Bayes (NB), linear Support Vector
Machine (SVM), Decision Trees (DT), Multi-layer Perceptron (MPL), Quadratic
Discriminant Analysis (QDA) under Gaussian hypothesis, Random Forest Classi-
fier (RFC) and Gaussian Process Classifier (GPC). In all experiments, we selected
40% of the samples for testing and 60% for training. In some datasets, the QDA
classifier was not able to produce results, since there were classes with a single
sample, which makes unfeasible the class covariance matrix estimation. Table 2,
shows the classification accuracies average of all eight classifiers used for several
datasets after the feature extraction processes.
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Table 2 Average accuracies in supervised classification by different classifiers after PCA,
ISOMAP, Kernel PCA, LLE, Joint Sparse PCA, Laplacian Eigenmaps, Robust PCA and
Cauchy-Schwarz PCA.

PCA KPCA ISO LLE LAP JSPCA RPCA CSPCA

iris 0.94 0.86 0.91 0.83 0.65 0.94 0.96 0.98

engine1 0.81 0.84 0.86 0.73 0.78 0.81 0.86 0.92

crabs 0.57 0.58 0.59 0.60 0.56 0.57 0.61 0.65

hapiness 0.22 0.20 0.25 0.18 0.19 0.23 0.27 0.53

mux6 0.62 0.70 0.53 0.63 0.46 0.64 0.62 0.83

threeOf9 0.59 0.53 0.64 0.68 0.59 0.64 0.75 0.83

sa heart 0.65 0.68 0.70 0.67 0.66 0.64 0.69 0.73

breast-tissue 0.43 0.49 0.44 0.50 0.51 0.40 0.48 0.63

vertebra column 0.63 0.62 0.67 0.64 0.63 0.65 0.63 0.76

transplant 0.98 0.94 0.98 0.93 0.87 0.99 0.93 0.99

Hayes 0.59 0.63 0.61 0.62 0.60 0.56 0.65 0.77

plasma retinol 0.51 0.56 0.58 0.53 0.58 0.53 0.53 0.61

visualizing livestock 0.29 0.19 0.30 0.28 0.16 0.30 0.20 0.36

strikes 0.59 0.59 0.61 0.57 0.56 0.60 0.57 0.69

pwLinear(2) 0.64 0.65 0.70 0.70 0.59 0.66 0.79 0.82

paraty5 0.46 0.25 0.35 0.43 0.39 0.41 0.44 0.57

fruitfly 0.53 0.53 0.49 0.59 0.54 0.49 0.59 0.65

AIDS 0.33 0.31 0.33 0.31 0.33 0.34 0.53 0.59

lupus 0.79 0.71 0.79 0.70 0.67 0.80 0.66 0.81

pm10 0.52 0.52 0.50 0.48 0.50 0.53 0.53 0.56

Avg. 0.59 0.57 0.59 0.59 0.54 0.59 0.62 0.72

S. Dev. 0.20 0.22 0.21 0.20 0.20 0.20 0.20 0.17

Median 0.59 0.58 0.61 0.57 0.56 0.60 0.62 0.74

MAD 0.15 0.16 0.17 0.16 0.15 0.16 0.16 0.14

The results indicate that the proposed method in average outperformed all
other DR methods for these datasets. Wilcoxon signed-rank test, for a significance
level of 1%, shows that, CSPCA produced higher classification accuracies than
PCA (p-value = 2.56 × 10−23), Kernel PCA (p-value = 2.66 × 10−27), ISOMAP
(p-value = 2.53 × 10−24), LLE (p-value = 7.06 × 10−24), Laplacian Eigenmaps
(p-value = 6.32× 10−27), JSPCA (p-value = 1.36× 10−23) and RPCA (p-value =
2.46× 10−21).

Target dimensionality used for DR was always equals to 2. This dimensional-
ity allows data dispersion visualization to check DR methods difference. It is well
known that the target dimensionality has big influence in the feature extraction
step. Several methods for intrinsic dimensionality discovery of some dataset exist
[5,7,10,22]. Future works may experiment with some of those discovery strategies
such as exhaustive search guided by performance using SC and accuracy. There
are also strategies guided by representation power, such as ”DR method transfor-
mation matrix first largest eigenvalues sum over all eigenvalues sum” analysis [5].
In our work, we fixed the same dimensionality for all DR methods in order to use
a fair and simple criteria as for now.

Regarding parameter tuning, it is worth mentioning also that, differently than
manifold learning methods, the definition of the patch-neighborhood size K plays
an important role in the proposed method. Different values of K can lead to
significantly different results. In our experiments, we adopted a supervised linear
search to estimate the best value of K for a given dataset. Basically, we defined the
set of possible values ofK by considering an initial value, and an increment window
based on the number of samples n. Then, we computed the average classification
accuracies (considering the classifiers previously defined) for several values of K,
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and selected the value that maximizes the average accuracy. An intuition behind
this choice is that, a smaller K is usually preferred in small datasets to preserve
patch locality. But, for suitable parameter estimation, the trade-off between a large
enough sample size and locality preservation, must be considered. Also, the best
K for supervised classification may not be the best for clustering analysis (for the
former purpose, the

√
n criteria is usual).

4 Conclusions

Results with several real datasets indicated that, besides improving the produced
clusters quality, the proposed method can also improve the supervised classification
accuracy in comparison to other algorithms. So, in unsupervised metric learning
tasks, the use of this new approach can be a better choice than original PCA and
some of its modifications, and even manifold learning techniques.

In comparison with the other DR methods considered in this study, the main
positive points of the proposed method can be summarized as: 1) It is fast because
it does not involve optimization step in its process. 2) In general, the obtained
clusters show a lower intra-class scattering, which is interesting for unsupervised
classification. 3) It is a patch-based approach (in contrast to PCA, Kernel PCA
and other variants that are point-wise methods), which makes it less sensitive to
outliers, noise and perturbations in data. 4) In several real datasets, the extracted
features provided higher supervised classification accuracies than the other algo-
rithms compared (i.e., the features obtained show in average more discriminant
power). 5) Evaluation of new instances is straightforward since, once the projec-
tion matrix is built, the mapping is direct; so, unlike manifold learning algorithms,
once a new sample arises, there is no need to retrain the model.

Recently, deep learning has been considered by many practitioners and re-
searchers as the state-of-the-art for crafting features from high dimensional datasets,
especially from image data [4]. Deep learning is a class of neural networks that uses
multiple layers to progressively extract higher level features from the raw input
[17]. One requirement for deep learning is to have a large sample size, that is, a
huge amount of data is needed in order to properly adjust its parameters. But, this
requirement is not always met. DR algorithms on the other hand, are able to learn
features from smaller datasets, producing good results even when the number of
samples n is less than or equal the number of original features m. Moreover, most
deep learning models work with the supervised learning paradigm, since they are
generalizations of multi-layer perceptrons, which means that information about
the class labels is required, which is not always possible too.

5 Future works

Our results could be further improved by searching in a wider range of values for
the parameter K (patch-neighborhood size). In this study, the value of K is global,
but we intend to perform analysis of the local Hessian matrix in order to bring
insights about how to adjust the K parameter adaptively - samples in areas with
lower curvature should have larger neighborhoods and samples in higher curvature
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areas could have a smaller neighborhood. A possible problem is the computational
cost, since the number of operations in the algorithm would significantly increase

Also, other metrics than Euclidean can be employed in the KNN graph con-
struction. Another possible improvement is a supervised version of CSPCA, which
considers only neighbors that belong to the same class of the central data sample.

The same new entropic approach proposed for PCA in this paper could be
also incorporated in Linear Discriminant Analysis and Isometric Feature Mapping
methods for example. Extensions to non-linear DR by the incorporation of different
kernels can be considered.

The proposed method can be extended to other statistical divergences and
models. It is straightforward to generalize the method to distinct probability den-
sities. The Cauchy-Schwarz divergence can be calculated to other distributions.
If the dataset has multi-modal features, Gaussian Mixture Model can be used.
Kernel Density Estimation is another possibility to this modeling.

We were able to show already that the method is efficient with the Bhat-
tacharyya distance as well [19], which is a sign of its robustness. So future works can
experiment other information-theoretic measures such as Renyi, Sharma-Mittal,
Tsallis and Total Variation.

Regarding the performance evaluation steps, other metrics (e.g., Adjusted
Rand Index, Kappa) and tests (e.g., Friedman) can be used.
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