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Abstract

In the domain of streaming recommender systems, conventional meth-
ods for addressing new user IDs or item IDs typically involve assigning
initial ID embeddings randomly. However, this practice results in two
practical challenges: (i) Items or users with limited interactive data
may yield suboptimal prediction performance. (ii) Embedding new IDs
or low-frequency IDs necessitates consistently expanding the embed-
ding table, leading to unnecessary memory consumption. In light of
these concerns, we introduce a reinforcement learning-driven framework,
namely AutoAssign+, that facilitates Automatic Shared Embedding
Assignment Plus. To be specific, AutoAssign+ utilizes an Identity Agent
as an actor network, which plays a dual role: (i) Representing low-
frequency IDs field-wise with a small set of shared embeddings to
enhance the embedding initialization, and (ii) Dynamically determining
which ID features should be retained or eliminated in the embed-
ding table. The policy of the agent is optimized with the guidance
of a critic network. To evaluate the effectiveness of our approach,
we perform extensive experiments on three commonly used bench-
mark datasets. Our experiment results demonstrate that AutoAssign+
is capable of significantly enhancing recommendation performance by
mitigating the cold-start problem. Furthermore, our framework yields
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a reduction in memory usage of approximately 20-30%, verifying its
practical effectiveness and efficiency for streaming recommender systems.

Keywords: Recommender Systems, Reinforcement Learning, Cold-Start,
Streaming Recommendation

1 Introduction

With the rapid growth of personalized online applications, recommender sys-
tems have been widely implemented by various online businesses, including
E-commerce websites, news platforms, online advertising, and so on [1, 2].
Among them, streaming recommendation [3, 4] is one of the common forms of
recommender systems, where streaming data are constantly flowing into the
recommendation models for training, thus better modeling the user’s current
preferences. In addition, streaming recommendations are particularly impor-
tant for time-sensitive items, such as news, as they allow for rapid identification
and distribution of relevant content to interested users, which is critical for
commercial information retrieval systems. Due to the ability to effectively cap-
ture the highly nonlinear relationship between user and item end-to-end, neural
network-based models are rapidly becoming the mainstream of recommender
systems. As shown in Fig. 1, existing deep recommendation models typically
follow the “Embedding & Feature Interaction” paradigm [5]. The embedding
layer serves as the encoder to represent sparse features in dense latent space,
while the feature interaction layers serve to capture interactive signals among
these features.

In a streaming recommender system, new items and users are continually
added to the data corpus, creating a highly dynamic streaming environment
that presents several challenges, which can be summarized as:

• Cold-start: The streaming recommender system is confronted with a con-
stant influx of new users, many of whom can be classified as visitor-type
users and possess extremely limited behavior information. Furthermore, the
system is constantly updated with new items, yet there has not been enough
interaction with these items to generate an adequate level of training data.
The consequence of employing insufficiently trained new user/item embed-
dings is a significant decline in the performance of the recommendation
model.

• Interval interaction: Users’ preferences and activity levels exhibit tem-
poral fluctuations, manifesting as periods of “active → inactive → active
→ ...” behavior. Similarly, items display a comparable trend over time. In
order to predict the reactivation of users/items accurately, it is crucial to
maintain the inactive user/item ID parameters updated with the recommen-
dation model in real-time. Additionally, effectively recycling ID parameters
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of long-term inactive users/items can prevent the model from becoming over-
burdened with redundant data, leading to a significant reduction in model
size and conserving space.

Input Feature Embedding Output 

User ID

Item ID

Other Features

 Filter

Feature Interaction

Fig. 1: A typical deep learning based recommendation model.

The challenges faced by streaming recommender systems can be attributed
to the handling of (temporary) low-frequency user/item ID features. It is
impractical and problematic to consider high and low-frequency IDs as equal
entities. In industrial streaming recommender systems, a typical approach to
address low-frequency IDs is to replace their embeddings temporarily with
shared embeddings. As shown in Fig. 1, a pre-defined frequency threshold
can be used to filter those low-frequency IDs before the embedding lookup.
However, this straightforward approach has a few obstacles when applied
to streaming recommendation systems.: (i) Determining optimal pre-defined
thresholds for user/item IDs requires human expert knowledge and can be
time-consuming; (ii) The distribution of IDs can change over time, resulting in
an inadequate performance when a fixed threshold is used. One potential solu-
tion is to use an adaptive threshold that can be adjusted dynamically, based
on the current distribution of IDs.

Recent research efforts have focused on addressing the cold-start problem
in streaming recommender systems using auxiliary information [6–8]. Addi-
tionally, meta-learning has emerged as a popular approach for learning global
and general information for relevant tasks, thereby facilitating the initializa-
tion of new, related tasks. For example, MetaEmb [9] generates an initial ID
embedding for new items using item features, while MWUF [10] employs the
average of all existing ID embeddings in conjunction with scaling and shift-
ing functions to initialize cold-start IDs. However, the auxiliary information
methods [6–8] rely on rich user profiles or item attributes, such as user social
networks or item images, which may not be available in scenarios involving only
user/item IDs. Moreover, meta-embedding-based approaches that use global
parameters in the feature interaction layer or pre-trained parameters of the
embedding table to enhance initialization for new IDs can introduce deviations
in the embeddings of high-frequency IDs.
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To tackle the aforementioned difficulties, we propose Automatic Shared
Embedding Assignment Plus (AutoAssign+), a reinforcement learning-based
approach, which utilizes an Identity Agent to dynamically and field-wisely
assign shared embedding and unique embedding to the users/items ID features
that appear anytime in the streaming recommendation scenario. Besides, one
critic network is applied to optimize and fine-tune the policy of the agent
based on TD error. In our previous version, the Identity Agent of AutoAs-
sign generates the candidate embeddings based solely on the input features
and doesn’t take into account the performance of the recommendation model.
In AutoAssign+, the critic network is introduced to optimize the Identity
Agent by evaluating the quality of the candidate embeddings generated by
the Identity Agent, allowing it to adjust and optimize its candidate embed-
ding generation process to improve the recommendation model’s performance.
Notably, our Automatic Shared Embedding framework is designed to be ”plug
and play,” allowing it to be applied to various deep recommendation models.

The main contributions of our work can be concluded as:

• We propose a new framework AutoAssign+ for streaming recommendation
scenarios, which is compatible with various deep recommendation models to
alleviate the low-frequency ID problem;

• AutoAssign+ utilizes an actor-critic structure from reinforcement learning
along with hierarchical shared embeddings to dynamically assign optimal
embeddings for each user/item ID based on their occurrence frequency.

• We performed extensive experiments on popular datasets to demonstrate
the effectiveness and superiority of AutoAssign+. The results show that
AutoAssign+ significantly outperforms the performance of AutoAssign while
reducing storage space by 20%-30%.

2 Preliminary

2.1 Deep Recommendation Model

The deep recommendation model utilizes dense vectors (embeddings) of
instances as input and makes predictions by feeding those embeddings into
subsequent feature interaction components [11, 12]. The instance dense vec-
tors can be constructed by concatenating the vector representations of each
sparse (categorical) feature [13]. As illustrated in Fig. 1, for a given user-item
pair, their IDs and corresponding features can be represented as:

x = [xu,xi,x1,x2, ...,xn], (1)

where xu and xi are feature vectors for user and item, n is the number of
other feature fields and xi is the high-dimensional sparse vector of ith field.
Then embedding layer transforms those sparse vectors into dense vectors:

ei = W ixi, (2)
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States

Action

Critic Network

Q Value

Fig. 2: The proposed overall framework contains an Identity Agent, which
serves to assign a shared ID to the User and Item before the embedding layer.

where W i ∈ Rd×h is a matrix (embedding table), d is the embedding dimen-
sion of dense vector and h is the number of feature value in ith field. These
embeddings are feed-in into the subsequent feature interaction layer to extract
informative interactions. In the binary classification task, the predicted target
is y ∈ {0, 1} where 0 refers to dislike and 1 refers to like in explicit user behav-
ior. We assume that the parameters of the deep recommendation model are θ.
Depending on the feature interaction function f(·), we get the prediction ŷ:

ŷ = f(θ, eu, ei, en), (3)

where eu and ei respectively denote the user ID and item ID embedding, and
en is the concatenate of n number other feature fields. The typical optimization
target for binary classification tasks is Logloss or Mean Square Error.

In the context of deep recommendation models, user/item ID embed-
dings are crucial as they encode the latent features of specific users/items
[14, 15]. However, in streaming recommendation scenarios, insufficient train-
ing of ID embeddings can arise due to two situations. Firstly, the emergence
of new users and items is commonly referred to as the cold-start problem.
Secondly, certain items or visitor-like users may have an inherently unpopular
nature, resulting in a long-tailed distribution issue. The initialization of low-
frequency and unpopular ID embeddings with random values cannot provide
valid information, ultimately leading to poor recommendation performance.
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2.2 Low-Frequency Filter

An intuitive approach to tackle the previously mentioned issue is to temporar-
ily use a shared embedding to represent the low-frequency IDs. As shown in
Fig. 1, a frequency threshold is adopted in a real-world industry recommender
system to filter those IDs with a frequency lower than the threshold before
performing the embedding lookup. Specifically, suppose the frequency thresh-
old for User ID is τ and we set a shared ID IDshared, the User ID is collected
as (IDi, F (i)), where i represents the ith user and F (·) represent its current
occurrence frequency. In low-frequency filter:

(IDi, F (i)) =

{
IDi if F (i) > τ

IDshared if F (i) ≤ τ
,

By training a shared embedding IDshared on a large number of low-frequency
IDs, it can obtain abundant generalized information. However, this method has
some practical drawbacks. Firstly, determining a fixed threshold τ to identify
low-frequency IDs requires expert knowledge or extensive search. Secondly,
the frequency distribution of different ID fields (such as user ID and item ID)
varies spatially and temporally, making it sub-optimal to use a fixed threshold
to define low-frequency IDs.

3 Framework

The AutoAssign+ framework is designed to address the limitations of existing
methods by automatically assigning user/item embeddings to low-frequency
targets, which helps to alleviate the negative impact caused by the low-
frequency ID features on the recommendation performance. In this section, we
will provide a detailed description of our proposed approach.

3.1 Reinforment Learning Setting

To address the embedding assignment problem, we formulate it as a Markov
Decision Process (MDP) that can be analyzed within the reinforcement learn-
ing framework where we train the Identity Agent to make optimal embedding
assignment decisions.

3.1.1 State

The entirety of the deep recommendation model’s pipeline is considered to be
the environment. With the available data sample obtained from the stream, the
deep recommendation model generated an output using the Identity Agent’s
policy decision. Under this pipeline, we define a group of hierarchical candi-
date shared ID with size k, i.e., {S1, S2, ..., Sk}, and its corresponding shared
embedding table Eshared = [es1, es2, ..., esk] ∈ Rd×k, where d is the embedding
dimension of shared ID and k is the size of shared ID group. In the case of
this study, we choose k = 2. These shared embeddings are pre-trained from
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the same data and parameters randomly. This hierarchical shared embedding
setting acts as a buffer before the unique embedding is assigned to a specific
user/item in the recommendation process.

The state is characterized as the present frequency of ID features along
with their current position pi, within the shared ID group of candidates (i.e.,
the ith embedding vector of the shared embedding table), State = (F (·), pi),
where i ∈ [1, k + 1] and F (·) is the current occurrence frequency of a certain
ID. Note that: (i) there is an additional position k + 1, which refers to a
unique ID already assigned to a certain ID, (ii) the state of a new coming ID is
initialized as Stateinit = (1, 1), which means that its current frequency is one
and assigned with the first embedding vector in the shared embedding table.

Hierarchical shared 
embedding group 

with size 2

Shared ID1 Shared ID2

Frequency:
Position:

1
0 01

Previous ID: 

Timeline

 Assigned ID:

9
0 01

50
0 0 1

51

No. of Days: 1 3 52

22
0 01

6 11

0 01

A new unique user ID

Fig. 3: Assign a shared ID / unique ID to a new user by AutoAssign+.

3.1.2 Action

The design and architecture of the Identity Agents are identical for both the
user and the item. We use the user ID agent to illustrate the action as shown
in Fig. 2. Given the state of a user ID, (F (·), p), we encode the frequency into
a dense representation ef and convert the discrete position of ID into one-hot
vectors v with size k + 1. After that, these two transformed representations
are concatenated and fed into multilayer perceptrons (MLP) with m hidden
layers and activation function tanh:

h1 = tanh(W1[e
f : v]) + b1

h2 = tanh(W2h1) + b2

...

hm = tanh(Wmhm−1) + bm

logits = softmax(hm)

(4)

Subsequently, the hidden state of the last layer denoted as hm is further pro-
cessed by the Softmax layer and outputs three probabilities that correspond to
the actions of ”Ascend”, ”Unchanged”, and ”Descend”. Specifically, selecting
”Ascend” as an action would indicate raising the position of the ID within the
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shared embedding candidates set (e.g., from pi to pi+1). “Unchanged” means
to remain in the same position. “Descend” means the Identity Agent decides
to make a “rollback” on the position of the given ID (e.g., from pi+1 to pi).
Recall that the group of candidate shared IDs is hierarchical, then the moti-
vation for designing the action of ascending or descending movements in this
hierarchical group is shown in Fig. 3 The approach adopted for updating the
position of an ID within the shared embedding candidates set is as follows:
(i) when the cumulative frequency of a particular user ID reaches a specific
threshold, the ID is elevated to a higher-frequency representation level; (ii) if
an ID’s popularity declines, it will descend to a lower-frequency representation.
It is noteworthy that (i) an ID’s position shifting from pk to pk+1 indicates
that it will no longer be a shared ID, and instead, it will be assigned its own ID
and corresponding embedding, which will be initialized using the last shared
embedding esk. This is based on the intuition that the embedding of shared IDs
is generally well-trained and, therefore, possesses sufficient generality to pro-
vide suitable initialization for individual IDs. (ii) When certain IDs move from
unique IDs to shared IDs, it helps in saving storage and avoiding parameter
updating issues.

3.1.3 Reward

The primary objective of the Identity Agent is to enhance the recommendation
performance by dynamically assigning either unique IDs or shared IDs to ID
features that are present in the data stream. To this end, we propose employ-
ing a reward function that can effectively evaluate the model’s performance.
Specifically, we define the reward as the prediction loss of the recommenda-
tion model utilized in our experiment. Given a pair of user u and item i and
their current prediction loss L and their corresponding last T prediction losses

Lu = (Lu
1 , L

u
2 , ..., L

u
T ) , L

i = (Li
1, L

i
2, ..., L

i
T ), where L

u/i
t refers to the tth pre-

diction loss of user u / item i, the reward is then defined as the difference
between the current loss L and the average of last T prediction losses:

Ru =
1

T

T∑
t=1

Lu
t − L (5)

Ri =
1

T

T∑
t=1

Li
t − L (6)

The policy of the Identity Agent can be thought of as maximizing the
reduction in the present prediction loss concerning the previous average loss.
In this paper, we set T = 30, which corresponds to the prediction loss of the
last 30 days. Using the past T prediction losses instead of just the last one has
several benefits in the proposed approach. It allows the system to consider the
historical performance of the model and incentivizes it to maintain a consistent
level of accuracy over time. Also, using the past T prediction losses can help to
reduce the impact of noise or fluctuations in the loss function that may occur
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due to random variation in the input data or other factors. This approach
allows the Identity Agent to make more informed decisions that result in lower
prediction loss during the process of continuous learning and optimization.

3.2 AutoAssign+

The overall framework of AutoAssign+ includes two steps in the learning
process, as shown in Fig. 2:

• The Forward Step. In the first step, the Identity Agent receives the cor-
responding states of each incoming ID and takes action to assign either a
unique ID or one of the hierarchical shared IDs to each ID in a batch of
user-item interactions. The action value and user-item combined features are
further processed by the critic network for calculating the Q-value, which
can fine-tune the performance of the Identity Agent. After the ID embed-
dings are assigned, the user and item IDs are processed using the embedding
layer and concatenated, following which they are fed into the inference layer.
The predicted output is then compared to the actual output, and the mean
square error (MSE) loss function is used to calculate the overall loss.

• The Backward Step. We first update the critic network based on the
gradients of Q-value and TD error until its convergent. Then the recommen-
dation model parameters are updated based on the computed loss, and the
Identity Agent parameters are updated by determining the reward based on
the prediction loss. As a result, during continuous training and evaluation,
the data-driven Identity Agent is fine-tuned and becomes capable of making
more informed decisions.

3.2.1 Critic Network

The standard approach involves using a critic network to estimate the action
value generated by the actor network, and then updating the actor network
parameters based on this value. However, when using the Identity Agent as
the actor network, the challenge lies in designing a suitable structure for the
critic network to facilitate parameter updating. Our solution involves a shared-
bottom layer in the critic network that simultaneously transforms the user-item
features and action information. To achieve this, we first apply an embedding
layer and an MLP structure to extract the features and then combine the
resulting user-item feature and action information as input to a differentiable
action value network that is parameterized by ϕ. This network outputs the
estimated Q-value based on the state-action information. Specifically, given
the current state s and action a, the Q-value is calculated as follows:

Q(s, a) = E[R+ γV (s′) | s, a] (7)

= R+ γ
∑
s′∈S

ps,a,s′ ·maxQ(s′, a′) (8)
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where V (.) is the state value function, and s′, a′ is the state and action
value of next step. The hyperparameter γ is the discount rate set as 0.95 for
our case. In our case, the action value a is estimated by the Identity Agent,
and the next state s′ is determined with a probability equal to 1. Therefore,
the Q-value function in a multi-critic structure can be calculated as follows:

Q(s, a; ϕ) = R+ γQ(s′, a′; ϕ) (9)

Since the actor-critic network framework often faces the challenge of failing
to converge, to address this issue, we incorporate the concept of Determin-
istic Policy Gradient Algorithms [16] by integrating target networks into the
learning framework. The target networks share the exact same structure as
the critic networks that have been proposed. We denote it as Q(s, a; ϕ̃), which

have lagging parameter ϕ̃. The structure of critic network is shown in Fig. 4.

Reward

Frequency sPosition

Feature 
Embedding

sActions

Critic Input 

Target Cr itic 
Network

MLP

MLP

TD Error  

Q'

Q

Update

Q-value

Feature 
Extraction

Feature 
Input

Current Cr itic 
Network

Soft update

Fig. 4: Structure of Critic Network.

3.3 Overall Optimization

In this section, we will discuss the optimization process of the deep recom-
mendation model, Identity Agent, and critic network, and present the overall
optimization framework under the streaming recommendation setting.

3.3.1 Critic Network Updates.

ϕ is the crucial parameter in the critic network, which determines the action
Q-value. Given transition. Given the action and state information, the TD
target of the target critic network is derived from:

TD = R+ γQ(s′, a′; ϕ̃) (10)
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where a′ = π(s′; θ̃k) is the estimated next action from target Identity Agent.
The Q-value generated from the current critic network, which estimates the
current action value is defined as:

Q = Q(s, a; ϕ) (11)

We calculate the average TD error δ after the training among the batch:

δ =
1

b

b∑
k=1

(TDk −Qk) (12)

=
1

b

b∑
k=1

[Rk + γQk(s
′, a′; ϕ̃)−Qk(s, a; ϕ)]

Then we update the current critic network for each task by the following
gradient decent method with a learning rate αϕ

ϕ← ϕ− αϕIδ∇ϕQ(s, a; ϕ) (13)

where ∇ϕQ(s, a; ϕ) is the gradient of the target Q-value. This completes the
optimization of the current critic networks.

The target critic network is updated until the current critic network reaches
the convergence condition towards the direction of parameters in current
networks:

ϕ̃ = βϕ̃+ (1− β)ϕ (14)

where β ∈ [0, 1] is the soft update rate.

3.3.2 Identity Agent Updates.

Let θ represent the parameters in the feature interaction model and ω represent
the parameters in the embedding table. In a binary classification task, the
Mean Square Error (MSE) can serve as the optimization target. Suppose we
have a mini-batch of user-item pairs {uj , ij}Nj=1 and their corresponding labels

{yj}Nj=1, where yj ∈ {0, 1} and 0/1 denotes a negative/positive view about a
certain item of a user. The MSE loss is defined as follows:

MSE(θ, ω) =
1

N

N∑
j=1

(yj − ŷj)
2
, (15)

where the predicted label of the deep recommendation model is denoted as ŷi.
With the Identity Agent parameterized by Ω and the reward function

designed in Eq. (5), the Identity Agent maximizes the expectation of rewards
as follows:

F (Ω) = EaΩ(a|s)(a | s) (16)
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where a is the action and s is the state. Before the TD error δ converges
to threshold ϵ, we update the Identity Agent parameterized by Ω through the
gradients back-propagation of loss function for each layer after the forward
process of each batch transitions:

Ω← Ω+ αΩI∇ΩJ (Ω) (17)

where the loss for tower layers is defined by the negative of average Q-value

J (Ω) = − 1
b

b∑
k=1

Q′(s,Ω(a | s)), which is generated from the critic network.

After the convergence of the critic network, we tend to optimize the Identity
Agent based on the overall objective. Practically, it isn’t easy to calculate the
exact value of expectation reward, thus we use the Monte-Carlo sampling [17]
to estimate its gradient along with the optimization algorithm of Eq. (16):

∇ΩF (Ω) =
∑
a

R(a | s)∇Ω(a | s) (18)

=
∑
a

R(a | s)Ω(a | s)∇logΩ(a | s) (19)

= Ea Ω(a|s)[R(a | s)∇logΩ(a | s)] (20)

≈ 1

N

N∑
i=1

R(a | s)∇logΩ(a | s) (21)

where N is the number of samples. After obtaining the gradient of rewards,
the parameter of the Identity Agent network can then be updated with a
learning rate αI by:

Ω← Ω+ αI∇ΩF (Ω). (22)

Next, we present the optimization pipeline of the whole framework. The
user-item intersection data are in-flowed boundlessly in the online recom-
mender system in a data stream. We optimize the framework by iteratively
collecting mini-batch data with a size of b and updating the parameters of the
recommendation model, Identity Agent, and critic network alternately.

As shown in Algorithm 1, in the initialization stage, we initialize Θ, Ω and
ϕ from the kaiming initialization [18] (line 1). The state of each ID feature
that first time emerges in the data stream is initialized from (1,1). In the Ω
updating stage, we sample the last batch in the historical transaction data
as the validation batch (line 3) and sample action aval Ω(Dval) using the
importance sampling [19] (line 4). The state and sample action information is
further processed by the critic network to calculate Q-value and corresponding
TD error σ, which updates the parameter of the current critic network ϕ
(line 5). If the critic network is not converged to ϵ, we update the Identity
Agent by the critic network (lines 6-8). Next we calculate the adjusted the
position (ûj , îj)

b
j=1 based on sampled action aval (line 9). We then calculate
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Algorithm 1 Algorithm for overall optimization

Data: Boundless data stream S in recommender system in the form of
(userID, itemID, ground- truth label) with a mini-batch size b: D =
{(uj , ij , yj)}bj=1; Recommendation model parameter Θ; Identity Agent
parameter Ω; Critic network parameter ϕ

Result: Fine-tuned parameter of recommendation model, Identity Agent, and
critic network Θ∗, Ω∗ and ϕ∗

1 Initialize Θ, Ω and ϕ from kaiming initialization [18];
2 Repeat
3 Sample a validation batch from the last transaction in the history data

stream: Dval = {(uj , ij , yj)}bj=1

4 Sample action aval Ω(Dval) by importance sampling;
5 Forward action aval and state information into the critic network, calculate

the TD error based on Eq. (12). Then updated parameter of the critic
network by Eq. (13).

6 if δ ≥ ϵ then
7 Update the Identity Agent based on Eq. (17)
8 else

9 Adjust position of (uj , ij)
b
j=1 based on aval to get (ûj , îj)

b
j=1

10 Calculate the reward by Eq. (5) using the adjusted D̂val

11 Updated parameter of Identity Agent Ω by Eq. (22)

12 Given the current batch of user-item data Dtrain = {(uj , ij , yj)}bj=1

13 Calculate the action: atrain = argmax(Ω(Dtrain))

14 Adjust position of (uj , ij)
b
j=1 according to atrain

15 Updated the parameter of recommendation model Θ using the adjusted

D̂train = {(uj , ij , yj)}bj=1.

16 end

17 Perform soft updates of critic network ϕ̃← βϕ̃+ (1− β)ϕ

18 Until Θ & Ω converge or encounter the end of the data stream;

the reward by Eq. (5) with the ground-truth label under the evaluation mode
of the recommendation model (line 10). Then the parameter of Identity Agent
Ω can be updated by Eq. (22) (line 11). Here we introduce the Θ updating
stage: First, we collect the current batch of transaction data (line 12) and
get the corresponding action (the highest probability among three actions)
from the Identity Agent atrain argmax(Ω(Dtrain)) (line 13). Next we adjust

and record the position of (uj , ij)
b
j=1 according to atrain (line 14). Then the

parameter of recommendation model Θ can be updated using the adjusted
data D̂train = {(ûj , îj , yj)}bj=1 (line 15). The whole optimization process can
be terminated when meeting the satisfied criteria or at the end of the data
stream.
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4 Experiment

In this section, we will provide a detailed description of our experimental
setup. Subsequently, we will conduct extensive experiments on three datasets
to investigate four research questions:

(1) What is the overall performance of our method among different datasets,
and whether we have solved the significant cold-start problem?

(2) How is the generalizability of our method? Is it in line with the actual
streaming recommendation in the industry?

(3) How does each component in our proposed method contributes to the final
achievement?

(4) Is our method able to allocate unnecessary memory usage? If the answer is
affirmative, then what is the scale of specificity?

4.1 Experiment Settings

4.1.1 Dataset

We conduct the overall performance experiments on three popular datasets in
recommendations.
MovieLens 25M1: MovieLens 25M is a newly released stable benchmark
dataset for personalized movie recommendations. It contains 25 million inter-
sections and one million tag applications applied to 62,000 movies by 162,000
users. The ratings range from 1 to 5.
MovieLens Latest2: Similar to MovieLens 25M, it contains 27,000,000 rat-
ings and 1,100,000 tag applications applied to 58,000 movies by 280,000 users.
The major difference between this Dataset and MovieLens 25M is that this
dataset is highly sparse as it only has a density of 0.16%, which is suitable for
exploring the cold-start problem.
Netflix Price3: Netflix price open competition dataset for predicting user rat-
ings on movies. The movie rating file contains more than 100 million ratings
from 480,000 anonymous Netflix users and more than 17,000 movies. Data are
collected from October 1998 to December 2005.

In order to simulate the real-world streaming recommendation scenario, we
sort the samples uniformly based on their timestamps and use one epoch from
the start to the end without multiple iterations. It is important to construct
the dataset through timestamps to align with the real-world recommendation
scenario, where user interests and preferences are sequential and change over
time, avoiding the issue of data traversal. After sorting, we use the first 80% of
the samples for parameter training and evaluate the accuracy and loss of the
prediction results over the last 20% of the data. In the testing phase, we predict
and record the performance alternately and continuously train our model [20],
as mentioned in the previous optimization section.

1https://grouplens.org/datasets/MovieLens/
2https://grouplens.org/datasets/MovieLens/
3https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data

https://grouplens.org/datasets/MovieLens/
https://grouplens.org/datasets/MovieLens/
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
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Table 1: Overall information of Datasets

Dataset Total User Total Item Ratings Density

MovieLens Latest 280,000 58,000 27,000,000 0.16%

MovieLens 25M 162,000 62,000 25,000,000 0.25%

Netflix Price 480,000 17,000 100,000,000 1.22%

4.1.2 Evaluation Metrics

Since the focus of our study is on the binary classification task, we have con-
verted the ratings of the three datasets to binary labels where 1 (>3) represents
the user likes the item and 0 (≤3) represents the user dislikes the item. To eval-
uate the performance of our model, we have used Mean Square Error (MSE)
loss, Accuracy, and Area Under the Curve (AUC) as the evaluation metrics.

4.1.3 Implementation details

In our experiments, we adopt one hidden layer in our agent network with a
size of 512, and the embedding dimension of frequency is 32. For the recom-
mendation model, we adopt an embedding size of 128 for both the user and
item and two hidden layers with a size of 512 and use LeakyRelu as the acti-
vation function. Both the agent networks and recommendation networks use
Adam optimizer and 0.0001 and 0.001 as the learning rates, respectively. The
structure of the critic network is an input embedding layer with dimension
128, a 128×512×256 Multi-Layer Perceptron (MLP) as the bottom layer, and
a 256 × 128 × 64 × 1 MLP as the tower layer applying Adam optimizer with
learning rate 0.0001, the default soft update rate β = 0.2 and batch size is 500.
According to the experimental results, we set the size of the user/item shared
embedding candidates group to 1 and 2, respectively. To clearly demonstrate
the effectiveness of our method and solely investigate the difference between
well-trained and under-trained embeddings, we only utilize the user and item
embeddings as the input of our recommendation model in the horizontal com-
parison of these datasets. The implementation code is available online to ease
reproducibility.4

4.1.4 Baselines

• Origin This model does not employ a threshold to filter out low-frequency
ID features. It is used as a reference to demonstrate the negative impact and
harm that low-frequency IDs and the cold-start problem can have on model
performance.

• LFF (Grid/Random) LFF method is used to filter low-frequency IDs
by setting a fixed frequency threshold. Those IDs that occur less than this
threshold are assigned one shared embedding. The best two thresholds for
User and Item are selected through grid search and random search.

• AutoAssign Automatic Shared Embedding Assignment method with only
one agent network, which is the original version.

4https://github.com/Applied-Machine-Learning-Lab/AutoAssign-Plus
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4.2 Overall Performance

Table 2 presents the overall performance of the evaluated methods. From the
results, we can observe that

Table 2: Overall Performance

Dataset Model MSE Loss Accuracy AUC Time (min) Improve (%)

Origin 0.2155 0.6578 0.7105 10 —

MovieLens LFF-Grid 0.2079 0.6747 0.7314 110 2.56

25M LFF-Random 0.2074 0.6754 0.7322 231 2.67

AutoAssign 0.2052 0.6792 0.7364 18 3.25

AutoAssign+ 0.2046 0.6817⋆ 0.7386⋆ 39 3.63

Origin 0.2157 0.6567 0.7108 12 —

MovieLens LFF-Grid 0.2077 0.6749 0.7315 140 2.77

Latest LFF-Random 0.2073 0.6756 0.7328 294 2.87

AutoAssign 0.2050 0.6802 0.7377 20 3.56

AutoAssign+ 0.2040⋆ 0.6821⋆ 0.7422⋆ 41 3.87

Origin 0.1914 0.7062 0.7640 26 —

Netflix LFF-Grid 0.1819 0.7234 0.7883 280 2.43

Price LFF-Random 0.1818 0.7235 0.7883 588 2.45

AutoAssign 0.1792 0.7293 0.7946 45 3.27

AutoAssign+ 0.1756⋆ 0.7349⋆ 0.8093⋆ 87 4.06

Bold denotes the highest score, and the underline indicates the best result of the baselines.
* represents the significance level p-value < 0.05 comparing with the best baselines.

• Our method AutoAssign+ outperforms the baseline Origin in all evalua-
tion metrics with a significant average relative improvement of 3.85% in
Accuracy. This finding supports the effectiveness of the proposed method in
improving the predictive ability of the recommendation model by dynam-
ically and automatically assigning shared embedding to low-frequency
features using the critic network.

• Baseline LFF-Grid and LFF-Random achieved a remarkable result com-
pared to the baseline Origin (roughly 2.6% relative improvement in average
Accuracy). It demonstrates that the intuition of using shared ID embeddings
to represent those low-frequency IDs is simple yet effective.

• Our proposed method outperforms all the baselines. The LFF-Grid and
LFF-Random methods require an extensive searching process and yield sub-
optimal results due to several limitations. (1) They use stationary thresholds
that cannot capture the complex and dynamic distribution of user and item
IDs in the streaming environment. (2) These methods use only frequency
as the standard of criterion and have only one shared embedding, ignoring
the alteration of the distribution of ID features in space and time. In con-
trast, the AutoAssign+ method has a group of hierarchical candidate shared
embeddings that capture the fine-grained information of features with dif-
ferent frequencies. Temporally, AutoAssign+ has a fallback mechanism that
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captures the pattern of users who have had no interactive data for a long
time but already has used a unique ID and reassigns the shared embedding
to them.

• AutoAssign+ outperforms AutoAssign on both three datasets. The Iden-
tity Agent of AutoAssign generates the candidate embeddings based solely
on the input features and doesn’t take into account the performance of the
recommendation model. By incorporating the critic network into the opti-
mization process, AutoAssign+ can generate more accurate and effective
embeddings for the low-frequency IDs, leading to better performance of the
recommendation model compared to AutoAssign.

• The train time of grid search and random search is time-consuming com-
pared to the Origin method, while the AutoAssign+ requires only 3.4 times
of the Origin method, which is acceptable in a real industrial scenario.

4.3 Cold-Start Stage

This experiment compares the performance of our proposed AutoAssign+
method with other baselines in terms of the cold-start stage in recommenda-
tion systems. As shown in Fig. 5, we choose the MovieLens Latest dataset,
and the average accuracy of different user and movie frequencies was plotted,
varying from 0 to 1,000. The results showed that our proposed AutoAssign+
method consistently outperformed other baselines in terms of accuracy. Specif-
ically, in the user part, the gap between our method and other baselines was
more significant, with an average accuracy improvement of 1.1% compared to
LFF. In the movie part, the baseline LFF suffered a dramatic downward trend
in the beginning stage due to the low number of movies, while AutoAssign+
reached a stable and much higher performance. The reason for this is that
a fixed shared embedding threshold makes all movies use one ID embedding,
causing a severe deviation. However, AutoAssign+ can dynamically make dif-
ferent judgments for each movie by minimizing the different losses that result
from using the shared ID and smoothly avoiding the deviation caused by the
single frequency information, even when using frequency information similarly.

4.4 Ablation Study

An ablation experiment was conducted on MovieLens Latest dataset to
demonstrate how each component of AutoAssign+ contributed to the overall
performance. The method ”No Descend” involved reducing the output of the
agent network to only two actions: ”Ascend” and ”Unchanged,” while ”Sin-
gle SE” meant setting the number of shared embeddings of both userID and
itemID to only 1. The results in Table 3 showed that both AutoAssign (No
Descend) and AutoAssign (Single SE) produced a minor gap from AutoAs-
sign but still achieved a superior performance to the baseline LFF. However,
AutoAssign (Single SE + No Descend) performed worse than LFF. The reward
of the RL-based Identity agent was based on the last five prediction losses of
each ID, and the behavior of different IDs dynamically changed in both spatial
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Fig. 5: Accuracy over different frequencies.

and temporal manners. In such a case, the use of both uni-directional action
and a single shared embedding would make the agent’s decision excessively
judgmental, generating the same deviation as LFF. Therefore, the hierarchical
group of shared embedding and descend action had to be used simultaneously
to achieve a better result. The critic network in AutoAssign+ further improved
the model performance by optimizing the Identity Agent’s policy, enhancing
the stability and efficiency of the framework.

Table 3: Effectiveness of Different Components

Method MSE loss Accuracy Improve

Origin 0.2155 0.6578 —

AutoAssign(No Descend) 0.2059 0.6785 3.15%

AutoAssign(Single SE) 0.2056 0.6793 3.26%

AutoAssign(Single SE + No Descend) 0.2082 0.6732 2.34%

AutoAssign 0.2052 0.6801 3.40%

AutoAssign+ 0.2047 0.6819 3.66%
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4.5 Practicality Comparison

To ensure fairness in the evaluation of the low-frequency filter, we apply grid
search and random search methods to optimize its performance. As shown in
Fig. 6, the frequency thresholds for the user and movie were selected from a
range of 5 to 200 with an interval of 10 in the grid search, and the same thresh-
old was applied to all three datasets. We observed that the performance of the
low-frequency filter decreased monotonically when the frequency threshold was
set to 20 or higher. To further improve the effectiveness of the low-frequency
filter, we conducted a random search for different threshold combinations on
the user and movie sides in the interval of 5-20. The threshold group with the
highest Accuracy was selected as the experimental group for overall perfor-
mance, as presented in Fig. 7. Also, note that in Table 2, the train time of
AutoAssign is much faster than grid search and random search, proving our
model’s efficiency in real-world recommendations.
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Fig. 6: Grid Search of LFF Threshold.

4.6 Parameter Reduction

Reducing memory consumption is a crucial factor in designing efficient rec-
ommender systems, especially for online platforms. The embedding layer is
one of the most significant contributors to the total number of parameters
in deep recommender models. The proposed Automated Shared Embedding
approach in AutoAssign+ aims to reduce memory consumption by assigning
shared embeddings to low-frequency IDs, thus avoiding unnecessary allocation
of unique embeddings to these IDs. Table 4 presents the parameter usage of the
embedding layer in AutoAssign+ and the deduction ratio achieved by using the
shared embedding approach. The Deduction column shows the percentage of
parameters saved in different datasets, and the Total column shows the overall
deduction ratio. The results demonstrate that the shared embedding approach
reduces the total number of parameters in the embedding layer by 20% to 30%,
depending on the dataset. At the same time, the model’s accuracy is improved
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Fig. 7: Random Search of LFF Threshold.

due to the enhanced representative ability of the shared embeddings. There-
fore, the Automated Shared Embedding approach in AutoAssign+ can reduce
memory consumption without compromising the model’s accuracy.

Table 4: Parameter Deduction on AutoAssign+

Dataset(field) Origin Para AutoAssign+ Para Deduction Total

ML-Latest(user) 35,840,000 25,553,937 28.7% 31.3%

ML-Latest(movie) 7,424,000 4,164,872 43.9%

ML-25M(user) 20,736,000 16,153,349 22.1% 23.1%

ML-25M(movie) 7,936,000 5,833,016 26.5%

4.7 Case Study

In this subsection, we present a comparison between our proposed AutoAs-
sign+ method and the LFF baseline to illustrate the effectiveness of our
approach. On the left-hand side instance, we consider a new user from the
MovieLens-25M dataset, whose frequency increases to 12 at timestamp t+ 2,
which is below the threshold of 20. In this case, LFF assigns a shared ID to
the user. However, at timestamp t + 4, the user frequency increases to 33,
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Fig. 8: Case Study on MovieLens-25M.

which is above the threshold, leading LFF to assign a specific user ID to this
user. In contrast, AutoAssign+ adopts a different ID assignment strategy. At
timestamp t+2, when the user frequency increases to 12 with a position shift
from p1 to p2, AutoAssign+ assigns a shared ID with a higher hierarchy to the
user. This hierarchical candidate shared ID setting with reinforcement learn-
ing powered embedding assignment results in a reduction in the average loss
from 0.2093 to 0.2047, which highlights the efficiency of AutoAssign+.

5 Related Work

5.1 Cold-Start problem

The purpose of the recommender system is to recommend a set of items that
the user may be interested in. However, if the user interaction data is limited,
the performance of the recommendation model will be significantly reduced,
which is called the cold-start problem. Cold-start problem is a ubiquitous and
challenging problem in personalized recommendation, where extensive stud-
ies have been done concerning this issue [21–25]. Some content-based methods
[6] make relevance between zero shot-learning and cold-start recommendation
and propose a low-rank linear auto-encoder to solve the cold-start problem
using the user’s auxiliary information. Internal and contextual attention net-
works (ICAN) [8] strengthen the interaction of the feature domain and use
auxiliary information among multiple queues to get a better cold-start per-
formance in the matching stage. Meta-learning is a common method to learn
the global and general information for pertinent tasks and serves to speed up
the initialization of new relative tasks. MetaEmb [9] and MeLU [26] apply
Model-Agnostic Meta-Learning, where MetaEmb trains a generator to initial-
ize embedding, and MeLU learns the initialization parameters of the whole
model to solve the cold-start problem. MWUF [10] uses the average pooling of
all items to initialize the new item embedding and uses two meta-network to
enhance their representation. These methods mentioned above have their own
limitations and are discussed in the introduction section.
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5.2 Reinforcement Learning Based Recommendation

Numerous studies have explored the integration of Reinforcement Learning
(RL) with Recommender Systems (RS) [27–34]. Instead of optimizing imme-
diate user feedback similar to traditional learning-to-rank approaches [35],
RL-based Recommender Systems seeks to optimize the cumulative reward
function, which estimates multiple rounds of interactions between the recom-
mendation policy and the user response environment. Specifically, the problem
of sequential user-system interactions can be formulated as a Markov Deci-
sion Process (MDP) [36]. Various RL solutions have been investigated under
this formulation, including tabular-based methods that store and update a
table that represents the estimated value or quality of each state-action pair
[37–39], value-based methods utilized to assess the effectiveness of a specific
action or state [40–43], policy gradient methods that optimize the recommen-
dation policy based on long-term reward [44, 45], and actor-critic methods
[46] that simultaneously learn an action evaluator network and action genera-
tor, which is based on policy gradient [47–50]. Some of the major difficulties
in employing RL for recommender systems include the vast state and action
space [51, 52], uncertainty in the user environment [53, 54], exploration effec-
tiveness and efficiency [55], and creating suitable reward function that caters
to diverse behaviors [56]. Our work addresses reward function design while
simultaneously enhancing the agent’s performance by utilizing the actor-critic
framework.

6 Conclusion

In this study, we analyze the cold-start problem in streaming deep recom-
mender systems, which results in poorly trained ID embeddings and reduces
prediction performance, as well as leads to unnecessary memory usage in
the model. To address these issues, we propose a framework called Auto-
matic Shared Embedding Assignment Plus (AutoAssign+), which includes a
critic network-enhanced Identity Agent that can automatically and field-wisely
assign shared IDs to low-frequency IDs. AutoAssign+ reduces the human effort
required in the time-consuming search process and expert knowledge and takes
action to improve performance and reduce the model’s parameter usage by
20%-30%. The proposed framework is independent of the inference layer, mak-
ing it easily applicable to various existing recommendation models that use
an embedding lookup layer. We demonstrate the effectiveness of AutoAssign+
in addressing the cold-start problem and the practicality of their approach
through extensive experiments on three popular datasets. However, the selec-
tion of actions (ascend/unchanged/descend) made by the actor network is
somewhat opaque and not easily interpretable, which makes it difficult to gain
a clear understanding of how the system is making decisions. This is one of
the directions for further improvement.
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