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Abstract

In partial multi-label learning (PML) problems, each training sample is partially annotated
with a candidate label set, among which only a subset of labels are valid. The major hardship
for PML is that its training procedure is prone to be misled by false positive labels concealed in
the candidate label set. To train a noise-robust multi-label predictor for PML problem, most
existing methods hold the assumption that sufficient training samples are available. However,
in actual fact, especially when dealing with new tasks, we more often only have a few PML
samples for the target task. In this paper, we propose a unified model called FsPML-SF (Few-
shot Partial Multi-Label Learning with Synthetic Features Network). FsPML-SF includes
three modules: label disambiguation, data augmentation and classifier induction. Specifically,
FsPML-SF attempts to update the label credibility of each PML sample by leveraging the
feature and semantic similarities, the label credibility of other samples and label co-occurrence
in a unified objective function. Next, FsPML-SF introduces a synthetic feature network
to generate more training samples from pairs of given samples with corresponding label
credibility values. FsPML-SF then utilizes the original and synthesized samples to induce
a noise-tolerant multi-label classifier. We conducted extensive experiments on benchmark
datasets, FsPML-SF outperforms recent competitive PML baselines and few-shot solutions.
Both the label denoising and data augmentation improve the performance of PML on few-
shot data.

Keywords: Partial Multi-label Learning, Few-shot Learning, Weakly-supervised Learning,
Noisy Labels, Label Correlations, Data augmentation

1. Introduction

As a novel weakly supervised learning framework, Partial Multi-label Learning (PML) [1,
2] models the scenario where each instance is associated with a set of candidate labels, but
only a subset of these labels corresponds to the ground-truths. Because of the difficulty



and expense to obtain precise annotations, PML is more practical in real-world applications
comparing with the prevalent classification problem multi-label learning (MLL) [3], where
each sample is assigned with multiple valid labels simultaneously. Specifically, the task of
PML naturally arises in crowdsource annotations. In such a scenario, the object might
be annotated with multiple labels provided by different annotators to form the candidate
label set, which is usually overcomplete and contains irrelevant labels [4]. Recent years have
witnessed an growing research and application of PML in various domains, such as image
analysis [5, 6], text mining, gene function prediction [2, 7], and so on.

PML aims to train a classifier from partially labeled data so as to predict the correct
labels for an unseen instance automatically. The key challenge of PML is how to deal with
the ambiguities caused by the irrelevant labels in candidate label set. One straightforward
way is to simply treat all candidate labels as valid ones, and then adapt any off-the-shelf
multi-label classification method to induce the classifier. However, such strategy ignores the
false positive labels concealed in the candidate label set, which would significantly mislead
the learning process and degrade the performance of learning model. To tackle this problem,
many approaches follow the label disambiguation strategy to elicit the ground-truth labels
from candidate label set and then adopt the elicited labels to induce the classifier. They
usually define a confidence score to predict the probability for each candidate label to be
ground-truth one. For example, the smooth assumption that similar (dissimilar) samples have
similar (dissimilar) label assignments is utilized to extract high confidence labels [8, 9]. While
others focus on the sparsity constraint of the latent ground-truth label matrix [2, 10, 11].
In addition, the label correlation is also employed to recover label confidence [1, 12]. A
recent work [13] proposed a new perspective for PML that considers the label information
is precise while the feature information is missing, and re-interpret the task of PML as a
Feature Completion problem.

Although these solutions have shown improvement of practical performance for solving
PML tasks, most of them hold an implicit/explicit assumption that sufficient data is available
to induce the classifier. But in practice, acquiring sufficiently annotated/training samples
is an expensive and even infeasible task, which consume huge manual power and financial
resources. Thus, in real-world scenarios, it’s more practical to perform partial multi-label
classification with only few-shot data. In such scenario, these methods will suffer from the
data limitation and fail to perform well, as shown in our experiments. Although Xie et.

al. [14] recently proposed a solution named PML-MD [14], which performs disambiguation
in a meta-learning fashion, it still requires abundant samples for inducing the classifier. In
addition, Few-shot Multi-Label Learning (FsMLL) [15, 16] methods and zero-shot multi-label
learning approaches [17, 18] are also incapable to tackle this problem. The irrelevant labels
concealed in the candidate label set will seriously mislead these methods when generalizing
to the target task, causing a compromised performance. Due to the difficulty to obtain
extensive and precisely annotated samples in most real-world scenarios, partial multi-label
learning on few-shot data is a task with practical significance but under-studied yet. To tackle
this problem, a recent proposed work FsPML [19] aims to rectify the positive and negative
prototypes of labels in the prototype network framework [20]. Despite the advances FsPML
has achieved, a potential limitation is its representation ability of the prototypes. When
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Figure 1: The overall schematic framework of FsPML-SF. Given a pair of samples and their candidate labels
(the red labels are irrelevant ones), FsPML-SF first performs label disambiguation by leveraging the feature
and label similarity between samples, label credibility of other samples and label correlations to update the
label confidence vector for each sample. Next, we send the given pairs of samples with their corresponding
label confidence vectors into the synthetic features network fθs . The synthetic features network is designed
to learn label-specific features and to synthesize new samples with credible labels. Both the original and
generated samples are then used to induce the multi-label classifier fθc .

applying to new tasks, due to the small number of relevant samples per label, the prototypes
may be biased towards several labels [21]. Besides, FsPML predicts the ground-truth label
by measuring the distance between embedded sample and the label’s positive and negative
prototypes. It simplifies the multi-label classification problem into a binary one, thus fails to
explicitly model the important correlations between all candidate labels. To sum up, existing
PML solutions are restricted to the quantity of training samples, and FsMLL methods are
incapable to handle irrelevant annotations, while FsPML is still limited by the representation
ability of the prototypes and fails to leverage PML data in a sensible way. Therefore, how to
implement partial multi-label learning in few-shot scenarios is still an under-studied problem.

This paper studies an under-studied and challenging few-shot multi-label classification
using scarce samples with noisy labels. For this purpose, we propose a unified method called
FsPML-SF (Few-Shot Partial Multi-Label Learning with Synthetic Features Network). The
FsPML-SF model comprises three component: label disambiguation, data augmentation and
classifier induction. In the label disambiguation procedure, FsPML-SF disambiguates the
label confidence vector for each PML sample in a rational way. The feature and semantic
similarities, the label credibility of other samples and label co-occurrence are collaboratively
utilizing into a unified objective function. In the data augmentation procedure, given a pair of
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samples with their confidence vectors, FsPML-SF introduces a synthetic features network to
generate a new feature vector with corresponding label credibility values, which also encode
the label correlations of training data. In the classifier induction procedure, the original and
synthesized samples are both utilized to induce a noise-tolerant multi-label classifier. Note
that these three procedures are operated in a reciprocal reinforcement manner by a unified
framework, and we develop an alternative optimization strategy to optimize them. The whole
framework of FsPML-SF is illustrated in Figure 1.

This paper is a major extension of our previous work [22]. As new material, this paper
contains an extended discussion on few-shot multi-label classification and a more in-depth
analysis of the experimental results. In addition, we conduct various simulated experiments
to achieve better understanding of our model. Our main contributions are summarized as
follows:
(i) We focus on a typical and practical few-shot multi-label learning problem and propose
an approach (FsPML-SF) to achieve FsPML from a new perspective, allowing the gener-
ation of new multi-label samples with credible labels by pairing limited training samples.
The label-informative features with high credibility are highlighted in the synthetic vectors.
Therefore, FsPML-SF surmounts the bottleneck of scarce training samples for inducing the
noise-resistant multi-label classifier.
(ii) In the label disambiguation stage, FsPML-SF dislodges irrelevant labels of training data
in a sensible way by leveraging the feature and semantic similarity between pairwise samples,
label co-occurrence, credible labels of other samples.
(iii) We conduct extensive experiments on benchmark multi-label datasets to demonstrate
that FsPML-SF significantly outperforms the related and competitive PML methods [1, 2, 8,
23, 13], and few-shot MLL methods [15, 16]. Both the label denoising and data augmentation
improve the performance of PML on few-shot data.

The paper is organized as follows. Section 2 reviews related work in the fields of partial
multi-label learning and few-shot multi-label learning. Section 3 explains the technical details
of our proposed approach. Section 4 reports the experimental results and analysis, and
Section 5 presents our conclusions and suggestions for future work.

2. Related Work

Few-shot partial multi-label learning is closely relevant to two popular learning frame-
works: partial multi-label learning [1, 2] and few-shot multi-label learning [15, 16].

2.1. Partial Multi-label Learning

Partial multi-label learning (PML) is a new and more challenging branch of the standard
multi-label learning (MLL) [3], where each sample is assigned with into multiple classes
simultaneously. Besides, PML also differs from the popular partial-label learning (PLL),
which assumes only one label from candidate set of the sample is valid [24, 25]. With
the annotations provided by multiple annotators under the crowdsourcing setting, the PML
problem arises naturally in real world scenarios, where each training sample is not only tagged
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with the ground truth labels, but also with some irrelevant ones [26]. The following gives a
brief review of popular PML solutions.

PML with feature prototype/label correlation (PML-fp/PML-lc) [1] assigns a confidence
value for each candidate label, and then optimizes the confidence values by further exploiting
feature prototypes or label correlations. Feature-induced PML solution (fPML) [2] jointly fac-
torizes the observed sample-label association matrix and the sample-feature data matrix into
low-rank ones to identify irrelevant labels and optimizes a multi-label predictor with respect
to low-rank label matrix. PML-LFC [27] considers the negative correlations between features
and labels and estimates the confidence values of relevant labels for each instance using both
feature and semantic similarities. PML-NI [23] identifies the noisy labels under the observa-
tion that noisy labels are caused by some ambiguous features of the sample. MUSER [28]
jointly considers redundant labels together with noisy features during the training process
using feature similarity and label correlation. PML-LCom [29] utilizes label compression to
improve the performance and efficiency of PML on datasets with large label spaces. PML-
LCom first splits the observed label matrix into a latent relevant label matrix and a noisy one.
Next, it coordinates relevant label matrix learning using the feature data matrix, and trains
a multi-label predictor with respect to the compressed label matrix. HALE [30] formulates
the task of PML as a instance-to-label matching selection problem and introduces a graph
matching algorithm with many-to-many constraint to accommodate to the PML problem.
SSPML [31] tackles the PML problem in semi-supervised setting and uses a latent label vari-
able for each example as the low-dimensional embedding of the feature space. The multi-label
classifier is jointly trained under the supervision of label variables. Sun et al. [32] attempted
to simultaneously remove noisy outliers from the training instances and train robust partial
multi-label classifier for unlabeled instances prediction. FIMAN [33] tackles the multi-view
PML problem. The affinity information conveyed by different views are adaptively fused to
disambiguate candidate label set by enforcing manifold structure preservation in the label
space. MILI-PML [34] is derived from a clear probabilistic formulation and it naturally incor-
porates the feature/label relevancy considerations. Sun et al. [35] proposed a Global-Local
Label Correlation approach for PML. The global structure information of labels is explicitly
exploited via a label coefficient matrix and the local label correlations are captured with a
new label manifold regularizer. PML-SALC [36] presents PML based on sparse asymmetric
label correlations, which utilizes the sparse asymmetric label correlation matrix to alleviate
the negative influence of noisy labels to obtain label confidence. PML-LMNNE [37] conducts
disambiguation by projecting labels and features into a lower-dimension embedding space
and reorganizes the underlying structure by LMNN in the embedding space simultaneously.
Besides relying on extra assumptions on the data structures, PML-GAN [38] defines a dis-
ambiguation network to identify irrelevant labels and induces a multi-label predictor to map
the training samples to their disambiguated label vectors. PML-MT [39] iteratively refines
the label confidence matrix through a couple of selfensemble teacher networks and trains
two prediction networks simultaneously in a mutual teaching manner. PML-MD [14] tries to
disambiguate in a meta-learning fashion. The multi-label classifier is trained by minimizing
a confidence-weighted ranking loss while the confidence for each candidate label is adaptively
estimated by its performance on a small validation set. A recent work NATAL [13] assumes
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the labeling information is precise while the feature information is partially corrupted. NA-
TAL models the PML task as a feature completion problem, and induces the prediction
model from completed features using candidate labels.

There are also some methods follow a two-stage strategy [8, 9, 12] that firstly attempt to
obtain credible labels and then take the elicited labels to induce a multi-label classifier. To
name a few, PARTICLE [8] firstly estimates the confidence of candidate label for each PML
training example via iterative label propagation, and then induces a multi-label predictor
using credible labels with high label confidence. DRAMA [9] firstly optimizes the confidence
value for each label by the feature manifold, and then induces a gradient boosting model to fit
the learnt label confidences. PML-LD [12] recovers the label distribution by the topological
information of feature space and label correlations, and then trains a multi-label predictive
model by fitting a regularized multi-output regressor with the recovered label distributions.

These aforementioned PML solutions assume that a large amount of training samples are
available to train the predictor, and they are incapable to deal with a new task with limited
samples. Recently, Zhao et al. [19] proposed an approach called FsPML to address PML in the
few-shot scenario. FsPML learns an embedding network to rectify the positive and negative
prototypes of each label. An unseen sample can then be classified via its distance to positive
and negative prototypes of each label. However, the representation capability of prototypes
restricts its performance, and it disregards the label correlations and the relevance of different
neighbourhood samples. In comparison, FsPML-SF updates the credibility scores of samples
using both the label and feature similarity values, as well as the label co-occurrence. It
introduces a synthetic feature network to generate new samples with label confidence values
utilizing pairing samples. Thus, FsPML-SF turns the few-shot problem into a many-shot one
by data augmentation for inducing the noise-robust multi-label classifier.

2.2. Few-shot Multi-label Learning

Few-shot multi-label learning (FsMLL) aims to learn a multi-label predictor based on a
handful samples for the target task, and it has been recently explored in many areas. For
example, ZAGCNN [40] is a few- and zero-shot methods for multi-label text classification by
matching discharge summaries in electronic medical records using feature vectors. Alfassy et

al. [15] leveraged LaSO (Label Set Operations networks) to manipulate the ‘semantic con-
tent’ of the samples in feature space and produce samples containing the intersection, union
or set-difference of labels present in input samples and sythesize new samples for multi-label
few-shot classification. Hou et al. [41] studied the few-shot multi-label classification for user
intent detection. They firstly learnt universal thresholding experience on data-rich domains,
and then adapted the thresholds to certain few-shot domains with a calibration based on non-
parametric learning. Simon et al. [42] aimed to extend some off-the-shelf few-shot single-label
learning solutions to work in the multi-label regime and introduced a neural module to esti-
mate the label count of a given sample by exploiting the relational inference. DESIRENet [43]
maps the features into the semantic embedding space via label word vectors to exploit the
label correlation and introduces a novel semantic inference mechanism for leveraging prior
knowledge learned from historical labels. LARN [44] tackles the problem of semi-supervised
few-shot multi-label node classification by taking advantage of the semantic knowledge of la-
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bels to characterize nodes and their neighbors. A label correlation scanner is then proposed
to adaptively capture the label correlation and extract the useful information to generate
the final node representation. KGGR [16] is a knowledge-guided graph routing framework,
it unifies prior knowledge of statistical label correlations with deep neural networks for the
target novel task.

These FsMLL methods [15, 16, 40, 41, 42, 43, 44] adopt the ideal assumption that the
samples are annotated with precise labels. However, in actual fact, it takes more energy and
expense to meet this precise annotations premise. It is more common that a set of candidate
labels are roughly assigned by annotators, on which FsMLL methods fail to perform well
and suffer a greatly compromised performance. Our FsPML-SF aims to achieve FsMLL in a
more robust setting. Different from LaSO, which generates feature vectors by manipulating
a pair of label sets, FsPML-SF firstly extracts each sample’s label-informative features and
recombine them utilizing their label confidence values to synthesize new samples. Thus,
the synthetic vectors can resist with the negative impact of noisy labels, and FsPML-SF
outperforms those FsMLL solutions.

3. Proposed Method

3.1. Problem Formulation and Notation

Let X ∈ R
d denote the d-dimensional feature space, and Y ∈ {0|1}mc=1 be the label space

with m distinct labels. Given an N -way K-shot training dataset D = {(xi,yi)|1 ≤ i ≤ n},
where N stands for the number of labels, K is the number of samples tagged with each
label, xi ∈ X is the feature vector of the i-th sample, and yi is the multi-hot label vector
of xi, which encodes the set of candidate labels Yi ⊂ Y annotated to xi. PML holds the
assumption that the ground-truth labels Ỹi ⊂ Yi. Thus, Ỹi cannot be directly used for
inducing the predictor. The task of FsPML-SF is to train a multi-label classifier fθc : X → 2Y

from D, which can precisely predict the ground-truth label set of an unseen sample. Table 1
summarizes the frequently-used symbols.

3.2. Few-shot Partial Multi-label Learning with Synthetic Features Network

To handle the lack of ground-truth labels of training samples, we let Q = [q1, · · · ,qn]
T

be the latent label confidence matrix, where qik denotes the confidence value of the k-th label
being the ground-truth of xi. Different from existing two-stage approaches [8, 9, 12] that
firstly obtain the credible labels and then utilize these credible labels to train the multi-label
classification model, FsPML-SF operates the three procedures in a unified framework. We
perform the label disambiguation by updating Q, generate new samples by the synthetic
feature network fθs and induce the multi-label predictor fθc in a reciprocal reinforcement
manner, which we will discuss in the following subsections.

3.2.1. Label Disambiguation

In this phase, FsPML-SF targets to eliciting the label credibility values for each sample
via collaboratively leveraging the label and feature similarity values, label co-occurrence and
labels of other samples. Many existing PML methods operate in the feature space based on
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Table 1: Notation table
Notation Description

Networks
fθs The synthetic features network
fθc The multi-label classifier

Indices and Trade-off parameters
n The number of samples within D
m The number of labels within D
ng The number of generated samples
nkh The number of samples whose candidate set includes label k and h
∗(τ) The * in τ -th iteration for alternative optimization

α/β/λ The trade-off parameters

Parameters in the label disambiguation stage
xi The feature vector of the i-th sample
yi The label vector of the i-th sample

Q = [q1, · · · ,qn]
T The label confidence matrix of samples

S = [sij]n×n The feature similarity matrix
T = [tij]n×n The semantic similarity matrix
P = [pkh]m×m The label co-occurrences statistics matrix

Parameters in the data augmentation stage
Xi The feature map of the i-th sample

C = [C1,C2, · · · ,Cm] The label-specific activation maps in fθs
[li1, l

i
2, · · · , l

i
m] The content-aware label-specific features of the i-th sample

x̃i The label-confidence aware vector of the i-th sample
zij The synthetic vector generated from the i-th and the j-th sample

the smooth assumption that similar samples have similar label assignments, either to elicit
credible labels [8] or perform label enhancement [12]. However, most of them only utilize
neighborhood samples while ignore the less similar ones. Here, limited by the number of
training samples, we need to use the PML samples in a more rational way, instead of only
considering neighborhood ones.

To make a better label disambiguation, FsPML-SF updates the label confidence value by
calculating the similarity between samples from both the feature and label space as well as
referring to other sample-label credibility. In addition, some labels tend to more often co-
annotate to the same samples. We design a label co-occurrence statistics matrix P based on
the co-occurrence patterns. For this purpose, we update Q by minimizing the disambiguation

8



loss as:

Ω1(Q) =
∑

xi∈D

∑

k∈Yi

(qik −
∑

xj∈D,j ̸=i

Jqjk ̸= 0Ksijtijqjk)
2

+λ
∑

xi∈D

∑

k∈Yi

∑

h∈Yi,h ̸=k

Jqikqih ̸= 0K(qikqih − pkh)
2

s.t. Q ≥ 0,
∑

k∈Yi

qik = 1

(1)

where sij is the feature similarity between xi and xj, tij is the semantic similarity derived
from label confidence vectors qi and qj, pkh is the label co-occurrence statistics of label k and
h, λ is the trade-off parameter. Jqjk ̸= 0K (Jqikqih ̸= 0K) returns 1 if the condition holds, and
0 otherwise. The first constraint guarantees that each candidate label has a non-negative
confidence value, and the second restricts the confidence value is within [0, 1], and the sum
of them equals to 1.

The first term of Ω1(Q) collaboratively takes the feature similarity, semantic similarity
and sample-label credibility into account. When disambiguating a specific label (e.g. label
k) of sample i, we generally refer to all the other samples in D which also annotated with
label k to compute the label confidence. For simplicity, we define the to-be disambiguated
xi as a needy sample, while the other samples annotated with the same label k as assistant
samples. The label-credibility of the assistant samples can provide some reference helpful
for the label disambiguation of qik. While different assistant samples have different relevance
for updating the label confidence of xi. If an assistant sample is more similar with xi in
feature and label space, its label-confidence should exert greater influence on disambiguating
xi. To evaluate the influence of an assistant sample towards disambiguating the label of xi,
we compute the product of feature and semantic similarity (sij and tij) between them as the
weight to quantify this effect. The first term of Ω1(Q) commendably accounts for different
cases, as discussed below and illustrated in Fig. 2.
Case a: If xj is highly similar with xi in both feature and label space (high values of sij and
tij), then label k ∈ Yi shared by xj is more credible for xi, which means a high confidence
value qik and label k is a highly probable ground-truth for xi.
Case b: If xj has high feature and semantic similarities with xi, but a low qjk, which means
that label k is less related with xj. This also drags down qik and dislodges label k from Yi.
Case c: If xj is dissimilar with xi in both the feature and label space with a low qjk, then
xj provides little information for disambiguating label k of xi. Note that FsPML-SF pairs
all other assistant samples with xi, the dissimilar samples has tiny impact on the overall
disambiguation effect on xi.
Case d: If the product of two similarities is low but qjk is high, it is less likely for xi to tag
label k. In other words, xj has little influence on qik.

It’s worth to note that that these above four cases are discussed just for better under-
standing the model of the first term of Ω1(Q). We want to showcase that different assistant
samples help the disambiguation of needy sample with different effect. We do not explicitly
distinguish the “high” and “low” in semantic and feature similarities in our function. Be-
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sides, if the product of feature and semantic similarity is moderate, it means this pair have
an intermediate influence towards the disambiguation.

person cat dog flower bird

0.53 0.05 0 0.42 0

needy

sample i

assistant

sample j

𝐪𝑙 : confidence vector  of 𝐱𝑙
Update the label confidence ‘person’/ ‘cat’ for 𝐱𝑖 (i.e. update 𝑞𝑖1, 𝑞𝑖2) 

𝒴i = {person, cat, dog }

the product of s𝑖𝑗 and 𝑡𝑖𝑗 is high𝐪𝑗 has more impact on 𝐪𝑖 (a) 𝑞𝑗1 is high

𝐪𝑗 : confidence vector  of 𝐱𝑗

assistant

sample l

(b) 𝑞𝑗2 is low

the product of s𝑖𝑙 and 𝑡𝑖𝑙 is low𝐪𝑙 has less impact on 𝐪𝑖 (c) 𝑞𝑙1 is low

(d) 𝑞𝑙2 is high

increase 𝑞𝑖1
decrease 𝑞𝑖2
decrease 𝑞𝑖1
(tiny impact)

decrease 𝑞𝑖2

person cat dog flower bird

0.04 0.45 0 0 0.51

Figure 2: A toy example for illustrating the first term of Ω1(Q). When disambiguating the labels of xi,
FsPML-SF generally considers the feature and semantic similarities (sij and tij) with other samples as well
as their label confidences (red labels are irrelevant ones). In the above cases, FsPML-SF tends to raise the
confidence value of ‘person’ and decrease the value of ‘cat’ for xi.

The second term targets at accounting for the label correlation of all training samples. It’s
set up follow the observation that some labels (such as ’ocean’ and ’ship’) usually have high co-
occurrence frequency, while other pairs (e.g. ’sunny’ and ’fog’) may never annotate together
to the same sample. Therefore, it’s significant to incorporate the label correlations for better
disambiguation. For this purpose, we define a label correlation matrix P = [pkh]m×m, where
pkh denotes the co-occurrence statistics of label k and h. For every label pair k and h of
one sample, Ω1(Q) encourages the product of their label confidence values as close to pkh
as possible. Thus effectively increases the confidence values of frequently co-occurring label
pairs and reduces the credibility scores of rarely co-annotated label pairs. Specifically, we
first setup P by the number of samples whose candidate label set contains both label k and
h and then normalize it by dividing the number of samples with k or h. In the follow-up
iterations, P is updated based on the latest label confidence matrix Q, thus the negative
impact of noisy labels is greedily diminished, while the label co-occurrence (correlation) is
explored and exploited to disambiguate labels. In this way, Ω1(Q) can obtain credible label
confidence matrix Q by mining PML samples in a sensible way. The incorporation and
computation of label co-occurrence matrix P will be mentioned in detail in the optimization
section.
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3.2.2. Data Augmentation

Different from usual PML problem setting, which allows multiple samples utilized to train
a noise-robust multi-label predictor, in FsPML scenario, we only have a handful of few-shot
training PML samples. Despite Ω1(Q) attempts to use all the PML samples to disambiguate
the labels of the target sample, we still expects more PML samples to better induce the
classifier. The existing FsPML [19] borrows the idea of meta learning in a prototype network
manner to learn the prototypes of each label and disambiguate the labels in the prototype
space, but it neglects the label correlations, and maybe biased toward several labels in the
target task. Given two training samples xi and xj, and their label confidence vectors qi

and qj, we introduce the synthetic features network fθs to generate a new feature vector
whose corresponding soft labels are made up of qi and qj. Then we can incorporate the
generated samples along with the soft labels to augment the original few-shot samples and
to induce the multi-label predictor. This is motivated by the intuition that if a human
observe a hypothetical image synthesised from xi and xj, he/she will more likely to attain
semantics labels in qi and qj to this generated samples. For example, given two animal
images, the synthesised image should be more relevant to the high confidence label ’zoo’
shared by these two samples. The generated samples highlight the label-informative features
with high confidence values, which is more conducive to the training of classification networks.

There also exist some prior works to generate new examples based on the available few-
shot ones [45, 46, 47]. Simple image transformations (horizontal flips, scaling, shifts), have
been exploited from the beginning. In other works, some methods perform example synthesis
using additional semantic information[16]. Specifically, a strong recent trend is to generate
examples using Generative Adversarial Networks (GANs) [48], while these methods are prone
to mode collapse due to the limited training samples quantity. PML-GAN operates in the
GAN framework, but it disambiguates noisy labels in an adversarial learning manner, instead
of generating new samples for inducing multi-label classifier. LaSO [15] aims to generate new
multi-label samples by combining few-shot samples and thus turns the few-shot multi-label
learning problem into a many-shot one. However, LaSO performs data augmentation with
certain label set operations and precise annotations. Due to the irrelevant labels of few-
shot PML samples, the samples generated by LaSO are with low quality and will seriously
compromise its performance.

FsPML-SF proposes the idea of generating samples with corresponding label confidence
scores. Thus, we should give different labels with different attentions considering the input
samples’ confidence scores. We follow the work of Semantic Attention Module (SAM) in
ADD-GCN [49] and decouple different label contents of given feature vectors. Next, we
recombine these features into a label-confidence aware representation according to their label
confidence values. The architecture of synthetic features network fθs is sketched in Fig3.

Specifically, in synthetic features network fθs , we use feature maps Xi ∈ R
h×w×d in

the h-height, w-width and d-dimensional feature space without average pooling instead
of taking InceptionV3 [50] pre-processed feature vectors xi ∈ R

d as the input to get bet-
ter pattern position information. FsPML-SF computes a label-specific activation maps
C = [C1,C2, · · · ,Cm] ∈ R

h×w×m to convert the i-th sample’s feature map Xi into a set
of content-aware label-specific features [li1, l

i
2, · · · , l

i
m] ∈ R

d×m, each of which describes the
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Figure 3: The architecture of synthetic features network fθs .

contents related to a specific label from input features. Then, we perform Global Average
Pooling (GAP) on the feature map and classify these pooled features with a two-dimensional
convolution layer as the classifier. Next, the classifier is used to identify the label-specific
activation maps by convolving the weights of classifier with feature map. Each label feature
vector lik is formulated as a weighted sum on Xi as follows:

lik = CT
kXi =

h
∑

l=1

w
∑

r=1

C
(l,r)
k X

(l,r)
i (2)

where C
(l,r)
k and X

(l,r)
i are the weight of k-th activation map Ck and the feature vector of

the feature map Xi at (l, r), respectively. By doing so, lik can selectively aggregate features
related to label k. We want to remark that here we just showcase FsPML-SF on the typical
image datasets, other non-image datasets can be also applied by replacing this convolution
layer with other domain-specific networks (i.e., fully-connected layers for text datasets, or a
three-dimensional convolution layer for audio datasets).

The learnt features are associated with different labels with varying confidence values,
and we expect the synthetic feature vector with high label credibility to account for the
principal parts, while features with low label confidence appear less. For this purpose, we
define a label-confidence aware vector x̃i ∈ R

d as follows:

x̃i =
∑m

k=1
qikl

i
k (3)

Here x̃i is the transformed label-confidence aware representation of xi.
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To generate label-confidence aware new samples, fθs concatenates xi and xj together and
send them into two blocks of fully-connected layer followed by batch-normalization, leaky-
RELU, and dropout. Then, fθs adds the output of two layers, x̃i and x̃j together and send
them into the last fully-connected layer followed by leaky-RELU. Thus, we get the synthetic
feature vector zij = fθs(xi,xj,qi,qj) ∈ R

d, here fθs(·) corresponds to the synthetic network
with the label-specific activation maps C as part of it. Next, we can train the multi-label
predictor fθc by minimizing the following loss:

Ω2(fθs , fθc) =
1

ng

n
∑

i=1

n
∑

j=1,j ̸=i

||fθc(zij)−N(qi,qj)||
2
2 (4)

where ng is the number of generated samples, fθc(·) is the multi-label predictor network,
N(qi,qj) is the label confidence vector of zij, which is the normalization of the sum of qi and
qj. We use the mean squared error as the classification loss. Unlike previous classification
networks that take a batch of individual samples to optimize the network parameters, our
FsPML-SF uses a batch of generated samples induced from pairwise samples and original
samples to optimize the classifiers, due to the pairwise generation, the number of training
samples can be largely enlarged, which greatly improve the performance, as our experiments
will show.

3.2.3. Unified Framework and Optimization

We integrate the optimization of label confidence matrix Q, synthetic network fθs for
generating new samples with associated label confidence vectors and multi-label classifier fθc
into a unified manner as follows:

min fθc(X,Q) + αΩ1(Q) + βΩ2(fθs , fθc) (5)

where the first term denotes the loss of the prediction on the original data, α and β are the
trade-off parameters for the last two terms to keep the balance of the model.

The alternative optimization procedure is employed to jointly optimize Q, fθs and fθc .
For simplicity, we define the optimized label confidence matrix as Qτ in τ -th iteration and
initialize the label confidence matrix Q1 as follows:

q1ik =

{

1
|Yi|

, if k ∈ Yi

0, otherwise
(6)

We firstly perform label discrimination by viewing fθs and fθc as fixed, then Eq. (5) with
respect to Qτ is reduced to:

min
1

|D|

∑

xi∈D

||f
(τ−1)
θc

(xi)− qτ
i ||

2
2

+ α(
∑

xi∈D

∑

k∈Yi

(qτik −
∑

xj∈D,j ̸=i

Jqjk ̸= 0Ksτijt
τ
ijq

τ
jk)

2

+ λ
∑

xi∈D

∑

k∈Yi

∑

h∈Yi,h ̸=k

Jqikqih ̸= 0K(qτikq
τ
ih − pτkh)

2)

(7)
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Algorithm 1 FsPML-SF: Few-shot Partial Multi-label Learning with Synthetic Features
Network
Input: the N -way K-shot training dataset D; the max iteration T1; the trade-off parameters
α, β and λ
Output: confidence matrix Q; the synthetic features network fθs ; multi-label classifier fθc
Process:

1: Initialize the label confidence matrix Q via Eq. (6)
2: Setup feature similarity matrix S via Eq. (8)
3: for τ = 1 → T1 do
4: Update the semantic similarity T and the label co-occurrence matrix P via Eqs. (9

-10)
5: Update Qτ via Eq. (7)
6: Fix Qτ , generate synthetic samples via fθs and compute the loss of via Eq. (4)
7: Compute the loss via Eq. (5) and update the net parameters of f τ

θs
, f τ

θc
via Adam.

8: end for

where D denotes the set of training samples. f
(τ−1)
θc

(xi) is the predicted label vector of xi in
the last iteration, which is a constant for Qτ . To quantify the feature and semantic similar-
ities between samples, we adopt the widely-used cosine similarity. The feature similarity is
computed as follows:

sτij =
xT
i xj

||xi||2 · ||xj||2
(8)

Since Q embodies more credible label information than the original candidate label space Y,
the semantic similarity is calculated based on Q(τ−1) as follows:

tτij =
q
(τ−1)T
i q

(τ−1)
j

||q
(τ−1)
i ||2 · ||q

(τ−1)
j ||2

(9)

We want to remark that other similarity metrics can also be adopted here, and our choice of
cosine similarity is for its simplicity and wide application.

To capture the label co-occurrence as well as consider their credibility, P is updated based
on Q(τ−1) in last iteration as:

pτkh =
1

nkh

∑

xi∈D

q
(τ−1)
ik q

(τ−1)
ih (10)

where nkh is the number of samples whose candidate label set simultaneously contains both
label k and h. Based on the above definitions, we apply Quasi-Newton method to update
Qτ .

With the fixed Qτ , our synthetic network fθs and multi-label classifier f τ
θc

are updated
together by the canonically-used Adam optimizer [51].

Algorithm 1 summarizes the overall procedure of FsPML-SF.
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4. Experiments

4.1. Experimental Setup

4.1.1. Datasets

To date, there are no off-the-shelf FsPML datasets for experiments. Following [15, 16, 19],
we conduct experiments on two MML dataset benchmarks (MS-COCO [52] and NUS-
WIDE [53]) with the following controlling ways. Specifically, we divide the multi-label
dataset into two subsets Dbase and Dnovel, each with a large number of base labels and a
small number (N) of novel labels, respectively. We randomly sampled a number of few-shot
partial multi-label sets with N classes from Dbase to train the synthetic features networks fθs
and multi-label classifier fθc . While in the evaluation phase, the few-shot partial multi-label
sets are selected at random from Dnovel.

MS-COCO is constructed for image recognition, segmentation, and caption and it has
recently been employed to evaluate multi-label image classification. The dataset consists of
123000 images with 80 common labels. We adopt the COCO 2014 train and validation sets.
Following the previous works [15, 19], the 80 labels are split into 64 base and 16 novel labels.
Specifically, the novel labels are bicycle, boat, stop sign, bird, backpack, frisbee, snowboard,

surfboard, cup, fork, spoon, broccoli, chair, keyboard, microwave and vase.
NUS-WIDE is a public multi-label image dataset which contains 269,648 images and

these images are further manually annotated with 81 categories by human annotators. The
81 labels are split into 61 base ones and 20 novel ones following the previous work [19].
Specially, the novel labels are airport, boats, bridge, cars, dog, garden, horses, house, lake,

mountain, person, plane, plants, snow, street, train, tree, vehicle, wedding and window.
Each few-shot PML dataset consists of samples containing only one or more of the N

target labels. During the Dbase training phase, we randomly chose N target labels from base
labels with the guarantee of every label appearing K1 times. When it comes to evaluation,
the N target labels are selected from the novel ones and the dataset ensures K2 examples per
label. Due to the random selection when composing few-shot PML dataset, this balance is
not always possible, and hence in some tasks, the number of samples per label could exceed
by one at most. With the selected FsPML datasets, following the widely-used protocol for
introducing irrelevant labels [1, 9, 19], we utilize use parameter p to control the proportion of
samples with irrelevant labels, and parameter r to denote there are r noisy labels per PML
sample, which are randomly selected from the label space of corresponding task.

4.1.2. Comparing Methods

To validate the effectiveness of FsPML-SF, we compare it against with FsPML [19],
seven representative PML algorithms (PML-fp [1], fPML [2], PML-MAP [8], PML-NI [23],
HALE [30], PML-LCom [11] and NATAL [13]) and two representative FsMLL solutions
(LaSO[15] and KGGR [16]). Each comparison method is configured with the suggested
parameters in the corresponding papers or codes.

• FsPML [19] first performs adaptive distance metric learning via an embedding net-
work using both sample features and label semantics in the embedding space. Next it
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rectifies the positive and negative prototypes of each new label of the target task in
the embedding space. Suggested configuration: learning rate lr = 0.000001, trade-off
parameters λ1 = 0.6, λ2 = 0.1, the number of nearest neighbors in label semantics k2
= 1, the number of iterations for rectifying prototype iter = 5.

• PML-fp [1] mainly minimizes a rank loss weighted by the confidences and exploits
structure information in feature space to optimize the ground-truth condidence of can-
didate labels. Suggested configuration: trade-off parameters C1 = 1 and C3 = 10.

• fPML [2] builds on low-rank assumption of the label matrix and utilizes the coherence
between the label and feature data matrix to estimate the label confidence. Suggested
configuration: trade-off parameters λ1 = 0.1, λ2 = 1 and λ3 = 0.1.

• PML-MAP [8] is a two-stage method that estimates credible labels via label propa-
gation first and then induces multi-label classifier. Suggested configuration: trade-off
parameters α = 0.95 and credible label elicitation threshold thr = 0.9.

• PML-NI [23] is based on the relationships between noisy labels and feature contents.
It simultaneously recover the ground-truth information and identify the noisy labels.
Suggested configuration: trade-off parameters λ = 1, β = 1 and δ = 0.5.

• HALE [30] interprets label disambiguation as instance-to-label matchings and formu-
lates the task of PML as a matching selection problem. The problem is solved by
utilizing Graph Matching scheme with many-to-many constraint. Suggested configura-
tion: the number of nearest neighbors in prediction k = 10.

• PML-LCom [11] factorizes the relevant label matrix into two low-rank matrices. Then
it optimizes the coefficient matrix of the multi-label predictor with respect to the com-
pressed label matrix. Suggested configuration: trade-off parameters λ1 = 5, λ2 = 10
and λ3=0.1.

• NATAL [13] introduces a ”missing” feature matrix and constrains both the ”missing”
feature matrix and the prediction parameter matrix to be low-rank. Then it optimizes
them in an alternative manner. Suggested configuration: trade-off parameters α = 1,
β = 10−6 and λ = 10−2.

• LaSO[15] mainly tackles the few-shot problem via data augmentation in feature space
and generates new multi-label samples by combining other samples. Suggested con-
figuration: learning rate lr = 0.001, training epochs epoch = 40, and union-based
augmentation model as the best performance model among union, subtraction and
intersection, is used to perform data augmentation.

• KGGR[16] mainly exploits prior knowledge to guide adaptive information propagation
among different categories to facilitate multi-label analysis and reduce the dependency
of training samples. Suggested configuration: in stage 1, learning rate lr = 0.00001
and training epochs epoch = 20, while in stage 2, learning rate lr = 0.0001, training
iterations iteration = 500 and trade-off parameters δ = 0.001.
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As to our FsPML-SF, the trade-off parameters α = 10, β = 1, λ = 0.1, the number of
iterations T1 during the Dbase training phase is fixed to 50, and the number of iterations T2

during the Dnovel training phase is fixed to 5. To better train the networks, for the few-shot
PML dataset from Dbase, we generate

(

n

2

)

synthetic samples. While for the few-shot PML

dataset from Dnovel, to maintain efficacy, we generate ⌊
(

n2

2

)

/2K̇2⌋ synthetic samples, where
n2 is the number of original few-shot samples within a task of Dnovel . In addition, the
InceptionV3 [50] pretrained on the ImageNet [54] is utilized as feature extractor backbone
and Adam [51] optimizer is applied to optimize network parameters. For fair comparison,
FsPML, LaSO and KGGR also use the InceptionV3 pretrained on ImageNet as the initial
backbone network. For many-shot PML methods, they use the image features extracted by
InceptionV3 pretrained on ImageNet and Dnovel for training.

4.1.3. Evaluation Metrics

To make a comprehensive performance evaluation and comparison, we employ six canon-
ically used multi label evaluation metrics [3] to estimate each compared method, including
Ranking Loss, One-Error, Coverage, Mean Average Precision (MAP), Macro-F1, and Micro-

F1. For Ranking Loss, One-Error and Coverage, the smaller the value, the better the per-
formance is; while for MAP Macro-F1 and Micro-F1, the larger the value, the better the
performance is. These metrics quantify the performance from different perspectives, and it
is difficult for an approach consistently outperforming the others across all the metrics.

4.2. Results Analysis

4.2.1. Results on MS COCO

The detailed experiments results (10 independent runs) of each compared method on MS
COCO with p = 0.8, r ∈ {1, 2, 3}, K2 ∈ {5, 10} are reported in Table 2 and Tabel 3. From
this Table, we have the following observations:
(i) For each experiment setting and evaluation metric, FsPML-SF achieves a better perfor-
mance than other compared methods in almost all cases. These superior results prove the
effectiveness of FsPML-SF on few-shot PML samples.
(ii) Compared methods vs. {K2,r}: We observe that under a fixed r, nearly all the meth-
ods’ performance improves when K2 increases from 5 to 10. This is because more training
samples are available to induce the classifier and this phenomena justifies that few-shot train-
ing samples indeed degenerate the performance. On the other hand, with the increase of r
under a fixed K2, it’s inevitable that all the methods have a reduced performance due to
more irrelevant labels of PML samples. This observation indicates the importance of han-
dling few-shot and PML samples and again demonstrates the effectiveness of FsPML-SF.
(iii)FsPML-SF vs. FsPML: These two methods both target to tackle the few-shot PML
problem, FsPML mainly borrows the idea of prototype network in a meta learning manner to
combat with scarce few-shot data, and FsPML-SF resorts to data augmentation by synthetic
network with label confidence induced features. On the whole, our FsPML-SF achieves a
better performance than FsPML, which is potentially limited by the projected prototypes
that fails to mine the feature and label information in a sensible way. While FsPML-SF
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Table 2: Results (mean±std) of each method in terms of Ranking Loss, One Error and Coverage on MS

COCO. K2: The number of training samples per class in the FsPML dataset; r: the number of irrelevant
labels per PML sample; The proportion of noisy samples p in support set is set to be 80%. ◦/• indicates
that FsPML-SF is statistically worse/better than the compared method, and the statistical significance is
assessed by student pairwise t-test at 95% confident level.

Ranking Loss↓ One Error↓ Coverage↓
K2 = 5 K2 = 10 K2 = 5 K2 = 10 K2 = 5 K2 = 10

r = 1
FsPML-SF .147±.003 .114±.007 .314±.033 .282±.046 .251±.014 .211±.011
FsPML .220±.019• .179±.020• .462±.052• .433±.051• .326±.027• .273±.027•
PML-fp .283±.062• .252±.033• .562±.089• .495±.038• .411±.057• .370±.037•
fPML .161±.003• .128±.029 .388±.050• .333±.045• .268±.038 .226±.041

PML-MAP .316±.059• .188±.049• .528±.062• .436±.052• .459±.038• .316±.057•
PML-NI .167±.018• .159±.044• .369±.065• .372±.076• .283±.022• .267±.051•
HALE .312±.051• .311±.034• .436±.057• .367±.051• .432±.037• .376±.024•

PML-LCom .262±.025• .251±.026• .601±.071• .576±.029• .378±.028• .371±.034•
NATAL .155±.002• .119±.023 .353±.036• .327±.067 .271±.023• .217±.028
LaSO .217±.018• .183±.017• .533±.046• .500±.031• .322±.020• .276±.018•
KGGR .212±.016• .174±.019• .517±.064• .495±.038• .353±.023• .304±.052•

r = 2
FsPML-SF .180±.017 .171±.019 .405±.042 .392±.068 .294±.030 .275±.021
FsPML .237±.037• .191±.024• .501±.076• .463±.048• .342±.043• .285±.029
PML-fp .322±.058• .309±.040• .589±.112• .544±.078• .442±.043• .419±.031•
fPML .185±.026 .175±.018 .459±.061• .401±.046 .299±.029 .284±.025

PML-MAP .348±.036• .286±.023• .591±.084• .408±.063 .463±.049• .326±.038•
PML-NI .194±.020 .172±.013 .483±.081• .398±.043 .307±.023 .291±.019•
HALE .358±.049• .351±.052• .507±.059• .454±.055• .467±.030• .395±.028•

PML-LCom .316±.032• .270±.025• .627±.058• .619±.047• .437±.032• .386±.027•
NATAL .190±.019 .182±.018• .432±.061 .393±.066 .306±.022 .275±.023
LaSO .238±.017• .224±.014• .573±.032• .527±.052• .346±.016• .327±.016•
KGGR .227±.046• .195±.017• .542±.060• .513±.031• .365±.019• .304±.015•

r = 3
FsPML-SF .210±.035 .181±.019 .452±.098 .439±.066 .332±.045 .294±.029
FsPML .263±.040• .186±.021 .536±.058• .492±.041• .375±.042• .287±.022
PML-fp .369±.042• .315±.015• .665±.091• .640±.057• .479±.041• .424±.019•
fPML .214±.029 .194±.018 .549±.084• .462±.046 .320±.034 .298±.028

PML-MAP .341±.042• .274±.023• .616±.077• .514±.065• .492±.048• .332±.039•
PML-NI .220±.038 .224±.023• .530±.086• .489±.055• .336±.039 .346±.019•
HALE .443±.021• .429±.033• .532±.082• .493±.047• .486±.041• .415±.022•

PML-LCom .331±.019• .323±.041• .674±.045• .653±.044• .428±.023• .416±.026•
NATAL .216±.031 .203±.011• .501±.087 .465±.046 .328±.035 .288±.019
LaSO .274±.021• .229±.017• .638±.017• .545±.027• .381±.022• .336±.020•
KGGR .265±.042• .211±.031• .626±.007• .523±.045• .402±.033• .334±.014•
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Table 3: Performance (mean±std) of comparing methods in terms of MAP, Macro F1 and Micro F1 on MS

COCO. K2: The number of training samples per class in the FsPML dataset; r: the number of irrelevant
labels per PML sample; The proportion of noisy samples p in support set is set to be 80%. ◦/• indicates
that FsPML-SF is statistically worse/better than the compared method, and the statistical significance is
assessed by student pairwise t-test at 95% confident level.

MAP↑ Macro F1↑ Micro F1↑
K2 = 5 K2 = 10 K2 = 5 K2 = 10 K2 = 5 K2 = 10

r = 1
FsPML-SF .601±.026 .629±.031 .458±.019 .453±.057 .451±.023 .447±.051
FsPML .557±.032• .588±.037• .384±.025• .428±.021 .387±.025• .425±.018•
PML-fp .382±.049• .422±.040• .322±.067• .352±.045• .326±.068• .354±.034•
fPML .530±.033• .569±.039• .439±.027• .450±.045 .425±.021• .442±.029

PML-MAP .461±.035• .548±.047• .202±.034• .234±.007• .189±.016• .199±.007•
PML-NI .501±.036• .552±.058• .352±.037• .388±.059• .369±.034• .401±.027•
HALE .449±.046• .508±.038• .328±.035• .408±.029• .375±.027• .409±.043•

PML-LCom .482±.034• .510±.049• .341±.013• .360±.031• .301±.031• .326±.033•
NATAL .466±.036• .511±.075• .437±.021• .446±.037 .421±.029• .441±.016
LaSO .414±.027• .460±.023• .209±.037• .242±.016• .215±.031• .237±.027•
KGGR .418±.008• .441±.020• .207±.026• .254±.031• .201±.019• .241±.032•

r = 2
FsPML-SF .557±.028 .589±.017 .379±.039 .440±.057 .381±.032 .421±.015
FsPML .519±.053• .571±.031 .376±.039 .412±.013 .364±.019 .402±.028
PML-fp .378±.057• .392±.053• .276±.083• .299±.056• .283±.040• .307±.035•
fPML .488±.025• .557±.032• .375±.028• .407±.039• .370±.028 .397±.021•

PML-MAP .426±.068• .535±.045• .198±.045• .203±.007• .198±.033• .206±.011•
PML-NI .449±.024• .499±.023• .297±.049• .375±.042• .313±.035• .384±.024•
HALE .425±.035• .472±.033• .252±.043• .382±.031• .354±.012• .377±.027•

PML-LCom .419±.045• .474±.031• .276±.038• .291±.041• .289±.011• .295±.025•
NATAL .461±.041• .477±.092• .377±.022 .414±.027• .380±.011 .409±.012
LaSO .368±.021• .408±.020• .193±.024• .224±.033• .211±.013• .227±.023•
KGGR .398±.027• .409±.020• .203±.016• .236±.052• .193±.021• .228±.019•

r = 3
FsPML-SF .534±.043 .572±.027 .377±.069 .417±.037 .373±.016 .405±.023
FsPML .481±.044• .565±.024 .338±.029• .409±.021 .351±.020• .397±.029
PML-fp .374±.038• .411±.038• .237±.048• .302±.016• .199±.045• .246±.030•
fPML .438±.043• .508±.023• .368±.030 .405±.029 .367±.019• .402±.027

PML-MAP .418±.052• .548±.023• .231±.067• .200±.006• .236±.017• .203±.010•
PML-NI .407±.056• .425±.024• .265±.054• .311±.021• .263±.027• .324±.025•
HALE .368±.043• .443±.041• .227±.044• .368±.028• .334±.042• .364±.034•

PML-LCom .399±.031• .418±.058• .254±.029• .271±.039• .249±.026• .265±.021•
NATAL .446±.053• .470±.046• .371±.019 .383±.025• .372±.014 .379±.016•
LaSO .324±.027• .373±.022• .183±.020• .180±.037• .191±.034• .201±.015•
KGGR .279±.029• .365±.040• .179±.065• .201±.017• .175±.033• .206±.023•
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Table 4: Results (mean±std) of each method in terms of Ranking Loss, One Error and Coverage on NUS-

WIDE. K2: The number of training samples per class in the FsPML dataset; r: the number of irrelevant
labels per PML sample; The proportion of noisy samples p in support set is set to be 80%. ◦/• indicates
that FsPML-SF is statistically worse/better than the compared method, and the statistical significance is
assessed by student pairwise t-test at 95% confident level.

Ranking Loss↓ One Error↓ Coverage↓
K2 = 5 K2 = 10 K2 = 5 K2 = 10 K2 = 5 K2 = 10

r = 1
FsPML-SF .170±.041 .152±.017 .465±.094 .448±.048 .252±.045 .222±.019
FsPML .291±.011• .203±.018• .602±.037• .570±.013• .362±.015• .275±.021•
PML-fp .341±.037• .296±.003• .609±.076• .576±.067• .470±.029• .422±.026•
fPML .212±.033• .158±.018 .545±.048• .457±.044 .310±.033• .229±.012

PML-MAP .354±.051• .248±.024• .713±.069• .640±.051• .437±.034• .362±.018•
PML-NI .208±.047• .171±.018• .549±.075• .489±.071• .302±.045• .251±.016•
HALE .392±.049• .322±.047• .612±.020• .511±.025• .439±.033• .376±.028•

PML-LCom .316±.039• .269±.037• .741±.074• .694±.040• .406±.045• .346±.048•
NATAL .226±.038• .199±.028• .563±.068• .499±.047• .313±.034• .264±.033•
LaSO .304±.028• .250±.031• .745±.060• .670±.033• .392±.026• .320±.038•
KGGR .284±.012• .236±.016• .732±.027• .669±.034• .359±.023• .279±.021•

r = 2
FsPML-SF .189±.028 .176±.033 .505±.056 .503±.042 .260±.035 .254±.035
FsPML .282±.021• .225±.013• .613±.129• .601±.102• .371±.029• .301±.017•
PML-fp .375±.022• .342±.017• .682±.066• .658±.007• .502±.015• .447±.022•
fPML .238±.024• .187±.018 .613±.034• .538±.027• .331±.032• .262±.026

PML-MAP .367±.037• .343±.038• .714±.055• .646±.029• .461±.032• .418±.037•
PML-NI .220±.019• .188±.025 .570±.012• .544±.047• .314±.025• .273±.029
HALE .408±.059• .345±.046• .647±.010• .556±.057• .480±.042• .382±.032•

PML-LCom .337±.029• .333±.045• .798±.052• .777±.054• .435±.030• .429±.047•
NATAL .221±.017• .223±.028• .556±.031• .520±.014 .318±.019• .288±.028•
LaSO .316±.034• .284±.035• .753±.040• .732±.067• .409±.046• .370±.034•
KGGR .289±.050• .254±.034• .747±.016• .701±.046• .373±.018• .297±.035•

r = 3
FsPML-SF .223±.027 .215±.051 .619±.038 .606±.057 .307±.036 .271±.044
FsPML .279±.024• .253±.012• .670±.093• .630±.081 .377±.029• .324±.018•
PML-fp .404±.027• .303±.021• .713±.094• .662±.012• .525±.029• .481±.026•
fPML .249±.029• .219±.015 .687±.041• .612±.066 .338±.032• .277±.019

PML-MAP .405±.012• .371±.011• .704±.038• .639±.039 .499±.074• .429±.054•
PML-NI .239±.018• .216±.017 .660±.033• .605±.056 .327±.032• .295±.022
HALE .417±.038• .388±.021• .683±.023• .627±.030 .491±.031• .422±.009•

PML-LCom .356±.035• .339±.036• .804±.064• .790±.032• .449±.041• .419±.031•
NATAL .231±.009 .218±.025 .629±.033 .545±.062 .314±.015 .272±.028
LaSO .323±.027• .315±.032• .766±.024• .761±.033• .414±.033• .397±.034•
KGGR .315±.011• .298±.041• .753±.046• .724±.040• .409±.032• .362±.017•
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Table 5: Performance (mean±std) of comparing methods in terms ofMAP,Macro F1 andMicro F1 onNUS-

WIDE. K2: The number of training samples per class in the FsPML dataset; r: the number of irrelevant
labels per PML sample; The proportion of noisy samples p in support set is set to be 80%. ◦/• indicates
that FsPML-SF is statistically worse/better than the compared method, and the statistical significance is
assessed by student pairwise t-test at 95% confident level.

MAP↑ Macro F1↑ Micro F1↑
K2 = 5 K2 = 10 K2 = 5 K2 = 10 K2 = 5 K2 = 10

r = 1
FsPML-SF .557±.081 .606±.031 .327±.075 .371±.020 .325±.043 .366±.017
FsPML .433±.007• .508±.011• .217±.017• .359±.019 .225±.023• .363±.019
PML-fp .275±.047• .316±.019• .255±.028• .276±.018• .261±.029• .277±.026•
fPML .423±.038• .475±.026• .326±.025 .348±.041• .323±.027 .346±.040

PML-MAP .287±.023• .371±.019• .137±.007• .144±.006• .136±.011• .144±.005•
PML-NI .413±.068• .484±.037• .199±.041• .304±.037• .206±.027• .335±.013•
HALE .337±.042• .386±.036• .231±.034• .290±.041• .299±.021 .337±.034•

PML-LCom .348±.046• .430±.035• .212±.039• .254±.043• .242±.037• .301±.024•
NATAL .246±.059• .274±.067• .271±.033• .271±.023• .266±.030• .274±.023•
LaSO .351±.055• .407±.049• .163±.027• .209±.026• .205±.034• .228±.029•
KGGR .365±.031• .412±.038• .162±.044• .220±.028• .246±.011• .303±.019•

r = 2
FsPML-SF .549±.061 .579±.038 .313±.044 .351±.032 .317±.035 .363±.027
FsPML .413±.017• .479±.031• .216±.025• .350±.023 .303±.043 .336±.025•
PML-fp .253±.035• .267±.003• .184±.044• .178±.011• .193±.043• .207±.009•
fPML .375±.054• .465±.031• .311±.029 .388±.023◦ .302±.027 .371±.018◦

PML-MAP .321±.013• .371±.037• .147±.021• .142±.005• .148±.021• .143±.005•
PML-NI .382±.043• .423±.041• .195±.029• .262±.036• .194±.013• .291±.043•
HALE .306±.032• .371±.041• .180±.033• .258±.037• .225±.039• .327±.035•

PML-LCom .337±.046• .356±.022• .203±.043• .243±.043• .234±.032• .257±.037•
NATAL .230±.072• .271±.049• .268±.027• .274±.013• .264±.034• .276±.009•
LaSO .325±.051• .352±.045• .147±.030• .197±.030• .201±.018• .223±.023•
KGGR .335±.031• .399±.020• .162±.007• .206±.019• .243±.021• .279±.017•

r = 3
FsPML-SF .494±.053 .512±.035 .257±.040 .341±.031 .271±.034 .335±.028
FsPML .387±.022• .432±.015• .239±.017 .308±.018• .255±.021 .313±.017
PML-fp .246±.038• .252±.028• .154±.014• .241±.017• .179±.026• .257±.032•
fPML .328±.031• .423±.015• .301±.038◦ .331±.012 .285±.023◦ .326±.017

PML-MAP .303±.031• .346±.038• .136±.023• .213±.004• .137±.013• .216±.021•
PML-NI .331±.022• .367±.029• .149±.022• .253±.038• .163±.021• .257±.026•
HALE .282±.046• .333±.036• .172±.034• .227±.019• .250±.024 .309±.021•

PML-LCom .310±.025• .337±.048• .201±.025• .229±.033• .223±.035• .231±.024•
NATAL .223±.060• .256±.059• .228±.012• .249±.013• .245±.014• .231±.009•
LaSO .296±.033• .312±.025• .142±.028• .153±.013• .157±.031• .193±.023•
KGGR .328±.023• .356±.024• .143±.065• .194±.009• .231±.018• .264±.032•
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utilizes PML samples from diverse aspects for disambiguating labels and to generate high-
quality samples to remedy the lack of PML samples in a sensible way, thus it gives a better
performance.
(iv) Few-shot vs. many-shot PML: FsPML-SF and FsPML are superior to the other PML
methods in most cases and the performance gap is more prominent when K2 = 5. Despite no
explicit requirement for the number of training samples is claimed in these compared PML
methods, they still fail to generalize well with few-shot data. This commendably proves that
existing many-shot PML methods are heavily limited by the number of training sample and
signifies the importance to tackle PML in few-shot scenarios. We note NATAL often have
the best performance among the many-shot solutions. This pattern suggests the noisy labels
of images may be caused by corrupted features. Even though, FsPML-SF still improves
NATAL by 30% in MAP and 33.3% in MacroF1.
(v) With vs. Without modelling noisy labels: The FsMLL methods (LaSO and KGGR)
target for few-shot multi-label data, but they do not explicitly take the irrelevant labels
of training data into consideration. Thus, they are clearly outperformed by FsPML-SF and
FsPML, which concretely model the incorrect labels of multi-label data. Alike LaSO, FsPML-
SF also augments the multi-label samples to enlarge the training data, but it considers the
irrelevant labels of training samples and augment training samples in a more credible way by
extracting label informative features using updated label confidences. As a result, FsPML-SF
on average improves LaSO by 57.2% in terms of these six evaluation metrics. These results
prove the necessity to account for irrelevant labels and show the vulnerability of FsMLL
methods when dealing with noisy few-shot PML samples.

4.2.2. Results on NUS-WIDE

To better demonstrate the experimental phenomenon, we also conduct experiments on
another dataset NUS-WIDE with teh same control setting. Table 4 and Table 5 report the
results of each compared method on NUS-WIDE with p = 0.8, r ∈ {1, 2, 3}, K2 = {5, 10}.
FsPML-SF again clearly outperforms other compared methods across all evaluation metrics,
and the conclusions are similar as those on MS COCO. Each method has a lower performance
on NUS-WIDE than on MS COCO, that is because each image of NUS-WIDE on average
is annotated with more labels than that of MS COCO and there are more novel labels in
the target tasks, which increases the task difficulty. However, our FsPML-SF is much less
impacted than other compared methods, for its leverage of feature similarity, label similarity,
updated label confidence vectors and label co-occurrence in a principle way. FsPML-SF gives
significantly better results than the most related LaSO and FsPML, which again confirm the
advantage of our label disambiguation and data augmentation strategy.

In addition, we used the signed-rank test to check the statistical difference between
FsPML-SF and other compared methods across these metrics and datasets, all the p-value
are smaller than 0.001.
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(a) Ranking Loss↓ on MS COCO (b) MAP↑ on MS COCO

Figure 4: Performance of comparison methods in terms of Ranking Loss and MAP on MS COCO with
different proportion PML samples (K2 = 5 and r = 1).

4.3. Further Analysis

4.3.1. Negative Impacts of PML Samples

We conduct experiments on each compared methods with different proportions of PML
samples to demonstrate the negative impact of PML samples. Specifically, we change the
proportion of PML samples p from 0 to 1 with an interval of 0.2 on MS COCO with r = 1
and K2 = 5. The results of each compared approach in terms of Ranking Loss and MAP are
revealed in Figure 4.

Form the figure, we have the following observations:
(i) Under p = 0: When p = 0, each sample is precisely annotated and thus turn the problem
into a few-shot multi-label classification task. Compared with other methods, our FsPML-SF
still indicates a better or equal performance, which demonstrates that our proposed FsPML-
SF effectively performs data augmentation and is capable of tackling the standard few-shot
multi-label classification problem.
(ii) Varying p: With the increase proportion of PML samples, all the compared methods
achieve a lower performance for the increased difficulty of label de-noising. Moreover, the
degenerated performance of compared method is more notable as p gets higher. However,
our FsPML-SF is much less impacted than other compared methods, for its proper leverage
of feature similarity, label similarity and label co-occurrence in label disambiguation. These
better results justify that our FsPML-SF is more noise-robust than those methods.
(iii) Under p = 1: When p = 1, which implies that all the samples are assigned with noisy
annotations. Thus, it’s more difficult to handle classification task in this scenario. Even
though, our FsPML-SF still achieve a better performance than other compared methods,
which again proves that the effectiveness and noise-robustness of our method..
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4.3.2. Ablation Study

To further analyze the contribution factors of FsPML-SF, we conduct ablation exper-
iments. For this purpose, we introduce four variants of FsPML-SF: FsPML-SF(nS),
FsPML-SF(nT), FsPML-SF(nP), FsPML-SF(nF). The first three variants separately
exclude the feature similarity, semantic similarity, label co-occurrences in Eq. (1) when updat-
ing the label confidence matrix Q; while FsPML-SF(nF) does not utilize the label-confidence
aware vectors in the synthetic network but the original feature vectors. Fig. 5 reveals the
results of four variants and the full model on MS COCO and NUS-WIDE with p=0.8, K2=5
and r=1.

Figure 5: FsPML-SF vs. its degenerated variants on MS COCO and NUS-WIDE (p = 0.8, K2 = 5 and
r = 1). The smaller the value of the first three metrics is, the better the performance is, while the opposite
holds for the last three (MAP, MacroF1 and MicroF1 )

(i) The full model FsPML-SF achieves a superior performance than its degenerated variants,
which proves the rationality of FsPML-SF on disambiguating labels and generating samples
with credible labels.
(ii) FsPML-SF(nS), FsPML-SF(nT) and FsPML-SF(nP) mainly quantify the contribution
of feature similarity, semantic similarity and label co-occurrence for label discrimination,
respectively. Following Fig. 5, we observe that any two of the three components can not
lead to a comparable performance as the full model FsPML-SF. These results demonstrate
the significance to proper utilize both the feature similarity, semantic similarity and label
co-occurrence in label disambiguation.
(iii) FsPML-SF(nS) and FsPML-SF(nT) across the similar and lowest performance across
the evaluation metrics, which corroborates that both the feature and label information more
contribute to label disambiguation.
(iv) FsPML-SF(nP) outperforms other variants across most metrics, this indicates that label
co-occurrence statistics have the least contribution in label disambiguation than other factors.
The possible reason is that the overcomplete noisy annotations containing in the the candidate
label set make it hard to effectively explore the label correlation. However, the performance
gap between the full model FsPML-SF and FsPML-SF(nP) proves that the contribution of
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label co-occurrence statistics is also non-trivial.
(v) There is a notable performance disparity between FsPML-SF and FsPML-SF(nF), which
indicates the synthetic vectors of FsPML-SF can highlight the label-informative features with
high confidence values and the generated samples are beneficial to induce the multi-label
predictor.

4.3.3. Parameter Sensitivity Analysis

We study the parameter sensitivity of FsPML-SF w.r.t. the trade-off parameters α, β and
λ, T2 (the max number of iterations for training on Dnovel). We vary one trade-off parameter
in the range of {0.001, 0.01, · · · , 100} while fixing the other two. We change T2 from 1 to 10
with an interval of 1 and conduct experiments on MS COCO dataset with p = 0.8, K2 = 5
and r = 2. The results in terms of MAP are shown in Fig. 6(a) and Fig. 6(b), respectively.

(a) MAP vs. α β, λ (b) MAP vs. T2

Figure 6: Results of FsPML-SF under different input values of parameters vs. α, β and λ, T2 in terms of
MAP on MS COCO (p = 0.8, K2 = 5 and r = 2)

(i) Sensitivity to α: From Fig. 6(a), when α ≈ 10, FsPML-SF achieves the best performance.
This fact proves the necessity to use the refined labels of training samples, instead of the
original ones, to generate new samples and to train the multi-label predictor. When α is too
large or too small, the label discrimination is under-weighted or over-weighted, thus FsPML-
SF has a reduced performance.
(ii) Sensitivity to β: As Fig. 6(a) shows, FsPML-SF achieves the best performance when
β ≈ 1. When β is too small, the loss of generated samples is not well accounted, which
leads to a poor performance. When β is too large (i.e., ≥ 100), FsPML-SF also achieves a
poor performance, as it excessively over-weights the synthetic features networks, but under-
weights the prediction model and label disambiguation model.
(iii) Sensitivity to λ: λ balances the usage of label co-occurrence in label discrimination
stage. As shown in Fig. 6(a), FsPML-SF manifests a degraded performance when λ is
too small/large. This is because a too small λ nearly disregard the label co-occurrence in
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Figure 7: Performance MAP between disambiguated labels elicited by each PML methods and corresponding
ground-truth labels on MS COCO and NUS-WIDE (p = 0.8 and r = 2)

denoising while a too large λ over-weights the approximated label correlation, both extreme
cases give a negative impact on the optimization of Q.
(iv)Sensitivity to T2: In Fig. 6(b), the MAP value of FsPML-SF gradually increases and
reaches to the maximum when T2 ≈ 5, and it maintains relatively stable when T2 ≥ 5.
This pattern proves the efficacy of FsPML-SF for fast adapting to novel labels with few-shot
samples.

4.3.4. Label Disambiguation Ability Analysis

To further analyze the label disambiguation ability of our FsPML-SF. We conduct exper-
iments to verify the correlation between the disambiguated labels with their corresponding
ground-truth ones. To provide a comparison, we compare FsPML-SF against eight repre-
sentative PML methods. Specifically, we calculate the evaluation metric MAP between the
disambiguated labels obtained by each PML methods with their valid annotations on MS
COCO and NUS-WIDE dataset with p = 0.8, K2 = 5 and r = 2. Fig.7 reveal the results.

We can obeserve that our FsPML-SF achieves a most successful performance compared
with other PML methods. These superior results manifest our disambiguation ability to the
candidate label set in few-shot setting. With only a handful of PML samples, our FsPML-SF
makes a collaborative use of feature similarity, semantic similarity and label correlations and
thus obtains label confidence values with high quality. FsPML-SF can effectively perform
label disambiguation with limited samples and dislodge the irrelevant labels in a rational
way.

4.3.5. Impact of Generated Samples

FsPML-SF introduces the synthetic feature network fθs to generate new samples with
label credibility scores and extract the label-informative features. To validate the effectiveness
of fθs , we conduct experiments on Dnovel of NUS-WIDE by varying the number of generated
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} (n2 is the number of original samples in each task). The results on NUS-WIDE with p
= 0.8 and r = 1 are shown in Fig. 8.
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Figure 8: Performance Ranking Loss↓, One Error↓, Coverage↓, MAP↑, MacroF1↑ and MicroF1↑ under
different number of generated samples on NUS-WIDE (p = 0.8 and r = 1)

Based on Fig. 8, we can observe the following:
(i) When K2 = 5, MAP, MacroF1 and MicroF1 gradually increase and reach to the maximum
when the number of generated samples is about ⌊

(

n2

2

)

/10⌋ and they maintain relatively stable
with more generated samples. While Ranking Loss, One Error and Coverage also reach their
minimum value when utilizing ⌊

(

n2

2

)

/10⌋ generated samples.
(ii) When K2=10, FsPML-SF achieves the best performance when the number of generated
samples approximates to ⌊

(

n2

2

)

/20⌋ and also maintains a stable performance with more gen-
erated samples. This is because more few-shot samples are used for training in the latter
case and fewer augmented samples are needed.
These observations again prove the necessity of generating training samples to combat with
learning from few-shot samples with noisy labels and suggest the effectiveness of FsPML-
SF on generating credible training samples. Based on these results, we set the number of
generated samples from Dnovel as ⌊

(

n2

2

)

/2K̇2⌋.

5. Conclusion

In this paper, we focus on the problem of few-shot multi-label classification using scarce
samples with over-annotated labels. Our proposed FsPML-SF conducts label disambiguation
to dislodge noisy labels by jointly mining the feature and semantic similarity, label credibility
of other samples and label correlations in a principle way, and introduces a synthetic network
to extract label-specific features for generating new samples with credible labels. Extensive
empirical studies on benchmark datasets demonstrate the advantages of FsPML-SF to com-
petitive methods, and both the label disambiguation and data augmentation improve the
performance of FsPML-SF.
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Our problem is closely related to the crowdsourced task in practical scenario, where the
collected data tends to be over-annotated and with small quantity. Thus, how to adopt our
method into the real-world crowdsourced data is the future pursue.
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