
Stack inspection and secure

program transformations ∗

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Italy

{bartolet, degano, giangi}@di.unipi.it

Abstract

The paper focuses on stack inspection, the access control mechanism
implemented in Java and the CLR. We introduce a static analysis which
safely approximates the set of access rights granted to code at run-time.
This analysis provides us with the basis to reduce the run-time overhead of
stack inspection, also in combination with other program transformations.

1 Introduction

The growing use of network technologies in distributed computing has made
security critical in the design, development and distribution of applications.
Indeed, both final users and application designers put special emphasis on se-
curity issues. For final users, the awareness of security mechanisms is crucial
for choosing the best network services that match their requirements. Design-
ers wish to control resource usage and access in order to ensure and maintain
adequate security levels. Designing and implementing security policies at the
programming language level help in handling security [22]. Here, we consider
an authorization-based model where a security policy is enforced by inserting
appropriate checks in a program.

Java is perhaps the most well-known example of a language with a com-
prehensive architecture offering linguistic constructs for security. Java applica-
tions run components with different levels of trust, e.g. components originated
from different, possibly unknown, administration domains. In the Java secu-
rity model, access control decisions are taken by examining the call stack at
run-time. A permission is granted, provided that it belongs to all principals
on the call stack. The so-called privileged operations are an exception. These
are allowed to execute any code granted to their principal, regardless of the
calling sequence. This access control mechanism is known as stack inspection.
Beyond Java, other run-time environments (e.g. the .NET Common Language
Runtime [18]) adopt stack inspection as basic authorization mechanism.

Stack inspection may be expensive. First, the run-time overhead due to the
analysis of stack frames may grow very high. Second, stack inspection deeply
affects standard program transformations, such as method inlining and tail call

∗The first two authors have been partially supported by EU project DEGAS (IST-2001-
32072) and MIUR project MEFISTO. The third author has been partially supported by MIUR
project NAPOLI and FET project PROFUNDIS (IST-2001-33100)

1

elimination. These optimizations may in fact alter the structure of the call
stack. Hence, understanding the semantics of program transformations in a
setting with stack inspection is a research (and technological) challenge.

Our contribution aims at developing semantic-driven mechanisms as an aid
to improve efficiency of architectures for language-based security. The problem
we face is not merely ensuring that certain program transformations preserve
program semantics, but also to guarantee that the optimized code is security

safe, that is, the optimized code will never violate the security constraints.
We build over control flow analysis [19], the main goal of which is to efficiently

obtain computable approximations of the set of values or behaviours that may
arise during the execution of a program. These approximations are then used to
analyze program properties in a safe way: if a property holds at static time, then
it will always hold at run-time. The vice-versa may not be true: the analysis
may “err on the safe side”.

In this paper, we represent Java programs by control flow graphs, an idealized
model not tied to any particular language. Control flow graphs feature primitive
constructs for method invocations, exceptions, and access control based on stack
inspection. These graphs are equipped with a formal operational semantics.

Our first contribution is the definition of a static analysis over control flow
graphs, called Trace Permissions Analysis (TP analysis for short). Intuitively,
this analysis computes, for each program point and each execution reaching that
point, the set of permissions granted at run-time. The TP analysis is sound and
complete with respect to the operational semantics of our idealized language,
i.e. it computes all and only the permissions that are granted at run-time.

However, the execution traces of control flow graphs over-approximate the
traces of the Java code they are extracted from. Therefore, if a permission is
granted to an execution in a control flow graph, then it will also be granted to
the corresponding execution – if any – of the Java code. In this sense we mean
that our analysis is safe.

The ability of identifying statically the set of permissions granted at run-time
offers a support for security-aware code optimizations. As a first application,
we detect and remove the redundant checks in a program, i.e. the checks which
always pass. Dead code elimination is a program optimization which detects and
removes the code unused or unreached in executions. Security restrictions may
cause more fragments of code to become unreachable, e.g. because a security
check protecting it is never passed. Our technique permits to discard such dead
code in the linking phase. We also cope with method inlining, an optimization
that replaces a method invocation with a copy of the called method code. In
presence of stack inspection, method inlining may break security, because the
protection domain of the inlined method is ignored. The TP analysis provides
us with the basis to efficiently construct the set of method invocations which
can be safely inlined. Our analysis also allows for fast implementations of stack
inspection based on an (hyper-) eager strategy.

The paper is organized as follows. The next section surveys the Java security
model. Section 3 introduces our program model and its operational semantics;
the adequacy of our model is discussed in Section 7. Our static analysis is in
Section 4. Section 5 presents the secure program transformations. As an exam-
ple, we analyze in Section 6 a small e-commerce application. All the proofs, the
Java code of our example and the actual algorithm implementing our analysis
are in the Appendixes.

2

2 Background on Java security

The Java language advocates code mobility: bytecode may come from different
places, either trusted (e.g. files on the local disk) or untrusted (e.g. applets
downloaded across the network). Java provides a customizable environment,
called the sandbox, in which code is placed: the sandbox prevents untrusted code
from performing security-critical operations, according to a fine-grained policy.

The class loader architecture brings bytecode from the outside into the JVM,
so it is the first line of defense against security attacks, for the following reasons:

• it enforces name space separation of the loaded classes. Roughly, classes
downloaded by different sources are placed into different name spaces.
This mechanism constitutes a main contribution to the security of the Java
platform. First, since duplicated class names are forbidden within a name
space, a malicious class cannot pretend to be a system class. Second, since
classes belonging to different name spaces cannot even detect each other’s
presence (unless class loaders explicitly allow them to), programmers are
relieved from worries about class name collisions.

• it assigns each loaded class to a protection domain [12], based on the class
signers and location origin. Each protection domain is in turn associated
with a set of permissions, according to a global security policy.

A verification step is performed on each loaded class before linking it to the
rest of the system. This task is accomplished by the bytecode verifier, which
statically analyses the bytecode, to guarantee that it satisfies some safety prop-
erties, e.g. (1) access to classes, methods and variables is done according to their
respective visibility rules (access modifiers); (2) methods are invoked with the
correct number and types of arguments.

While both the class loader and the bytecode verifier are mainly concerned
with the safety facet of security, the security manager more directly addresses
the problem of protecting critical resources from leakage and tampering threats.
This is done by invoking the access controller before the security-critical meth-
ods of the protected resource are called.

The security policy is enforced by the access controller each time the method
checkPermission() is invoked. The access controller decides whether granting
access to the protected resource or not by performing stack inspection [11].

Stack inspection checks the sequence of method invocations. Each method
in the sequence belongs to a class, which in turn belongs to a protection domain.
A resource access is granted if and only if all protection domains in the sequence
have the required permission. This mechanism is slightly complicated by the
presence of privileged actions. Technically speaking, a method M performs a
privileged action A by invoking AccessController.doPrivileged(A); this in-
volves invoking method A.run() with all the permissions of M enabled. This
can be seen as marking the method frame of M as privileged: stack inspection
will then stop as soon as a privileged frame (starting from top) is found.

There are at least two strategies for implementing this algorithm:

• the eager evaluation strategy states that the set of effective permissions is
updated at each method call (and return).

• in the lazy evaluation strategy, the call stack is retrieved and inspected
only when access control is performed.

3

3 The program model

The stack inspection mechanism implements access control by looking solely into
the call stack: then, we base our analyses on an abstraction of object-oriented
languages that only takes into account security checks, method invocations and
returns, and a very basic exception handling mechanism.

More precisely, we model a program as a control flow graph (CFG for short)
whose nodes represent the activities mentioned above (checks, method invoca-
tions and returns) and whose arcs represent the flow of control. We do not define
how CFGs are extracted from an actual program. This construction is well un-
derstood and algorithms and tools exist for it; see for example [13, 19, 26, 27].

By construction, CFGs hide any data flow information, and are therefore ap-
proximated; typically, the conditional construct is rendered as non-deterministic
choice. This approximation is safe, in the sense that any actual execution flow
is represented by a path in the CFG. However, the converse may not be true:
some paths may exist which do not correspond to any actual execution. For
instance, both branches of an “if” statement are represented, even in the cases
when the same branch is always taken at run-time.

There is a further source of approximation, especially for object-oriented lan-
guages with dynamic resolution of method invocations. In Java, for example,
when a program invokes an instance method on an object O, the virtual machine
may have to choose among various implementations of that method. The deci-
sion is not based on the declared type of O, but on the actual class O belongs
to, which is unpredictable at static time. To be safe, CFGs over-approximate
the set of methods that can be invoked at each program point. This is a main
source of approximation for the analyses built over CFGs.

3.1 Syntax

Let D be a finite set of protection domains, and P be a finite set of permissions.
CFGs are defined as follows.

Definition 3.1. A CFG 〈N ∪ {nε}, E, Priv, Dom〉 is an oriented graph, where:

• N is the set of nodes. Each node n ∈ N is associated with a label
`(n), describing the control flow primitive it represents. Labels parti-
tion nodes in three kinds: call nodes, that stand for method invoca-
tion, return nodes, which represent return from a method, and check

nodes, which enforce the access control policy. For each P ∈ P , we
can think of a node labelled check(P) as the abstract representation of
an AccessController.checkPermission(P) instruction in the Java lan-
guage. The distinguished element nε /∈ N plays the technical role of a
single, isolated entry point.

• E ⊆ (N∪{nε})×N is the set of edges. Edges are partitioned into four sets:
entry edges •−→ n, that represent the entry points of a program; call edges

n −→ n′, which model interprocedural flow; transfer edges n 99K n′, which
correspond to sequencing; and catch edges n 99K� n′, which correspond to
exception handling. The last two kinds of edges represent intraprocedural

flow. The set of entry edges contains all pairs (nε, n) where n is a program
entry point. The nε element is the source of entry edges, only.

4

• Priv : N → Bool tells whether a node enables its privileges or not.

• Dom : N → D is a mapping from nodes to protection domains.

When unambiguous, we shall write 〈N, E〉 instead of 〈N∪{nε}, E, Priv, Dom〉.

Each CFG is associated with a security policy Perm : D → 2P , which grants
a set of permissions to each protection domain. Hereafter, we will always ab-
breviate Perm(Dom(n)) with Perm(n).

It is convenient to introduce some terminology and notation.

Definition 3.2. The methods of a CFG 〈N, E〉 are the connected components
of the graph 〈N, E′〉, where E′ is the set of intraprocedural edges in E, with
no orientation. We call µ(n) the method to which node n belongs. The entry

points of µ(n) are defined as:

ε(µ(n)) = {n′ ∈ µ(n) | •−→ n′ ∨ ∃m ∈ N. m −→ n′ }

Definition 3.3. The set ρ(n) of return nodes associated to a node n is:

ρ(n) = {m ∈ N | `(m) = return ∧ n −→ ε(µ(m)) }

Definition 3.4. The set ξ(n) of nodes that may throw an exception catchable
by n is defined as the smallest set satisfying:

ξ(n) =

{

{n} if `(n) = check(P)

{ ξ(n′) | n −→ ε(µ(n′)) ∧ n′ 699K� } otherwise

The set ξ1(n) of nodes that may propagate an exception to n is defined as:

ξ1(n) = {n′ | n −→ ε(µ(n′)) ∧ n′ 699K� ∧ ξ(n′) 6= ∅ }

Our CFGs obey some mild well-formedness constraints to reflect more ap-
propriately some peculiarities of Java-like bytecode, as shown below. Therefore,
in what follows we shall always assume that CFGs are well-formed.

Constraint 1. It makes little sense breaking a check in several parts, or merging
it with other activities, e.g., with a method call. Therefore, all and only the code
of a checkPermission method is represented as a single check node. Formally,
check nodes do not admit outgoing call edges:

`(n) = check(P) =⇒ ¬∃n′ ∈ N. n −→ n′

Constraint 2. Return nodes have no outgoing edges:

`(n) = return =⇒ ¬∃n′ ∈ N. (n, n′) ∈ E

Return nodes model exit points of methods, e.g. the ireturn and areturn in-
structions. They cannot have outgoing call edges, because this kind of flow only
originates from method invocations (e.g. from invokevirtual or invokespecial
instructions). Return nodes cannot have outgoing transfer or catch edges, ei-
ther, as such edges only represent intraprocedural flow. Then, this constraint is
satisfied by any CFG derived from actual Java bytecode.

5

Constraint 3. Each method has a single entry point, i.e. for each n ∈ N :

| ε(µ(n)) | = 1

Upon method invocation, the virtual machine creates a new stack frame for the
called method, and sets the program counter to the first instruction in the new
frame: this instruction is just the entry point of the called method. After this
constraint, we abbreviate n −→ ε(µ(m)) with n −→ µ(m).

Constraint 4. Nodes in the same method are in the same protection domain:

µ(n) = µ(n′) =⇒ Dom(n) = Dom(n′)

Indeed, in Java the granularity of a security policy is the class level: classes in
the same code source are in the same protection domain.

Constraint 5. Only call nodes can be privileged:

Priv(n) =⇒ `(n) = call

In general, also security checks can occur within privileged actions: however,
privileged check nodes make little sense, because it is always possible to deter-
mine whether a privileged check will succeed or not, during the construction
of the CFG. Similarly, there is no point in enabling returns to be privileged,
because a return node will never be on the call stack when inspecting it. As
a matter of fact, constraint 5 can easily be removed, at the price of a slightly
more involved analysis.

A more detailed discussion on the adequacy of our proposal, along with some
hints on possible extensions, is in Section 7.

Example 1. We use the CFG in Fig. 1 as a working example through the
paper. Circled calls are privileged. Solid boxes enclose nodes belonging to the
same methods, and they are labelled with the protection domain to which the
enclosed method belongs. Table 1 displays the methods, their entry points,
the return nodes, the nodes that may throw exceptions and those that may
propagate them, according to definitions 3.2, 3.3 and 3.4.

n µ(n) ε(µ(n)) ρ(n) ξ(n) ξ1(n)

n0 {n0} {n0} {n4} {n3} {n3}
n1 {n1} {n1} {n4} {n3} {n3}
n2 {n2, n3, n4} {n2} {n7} {n6, n8} {n5, n6}
n3 {n2, n3, n4} {n2} ∅ {n3} ∅
n4 {n2, n3, n4} {n2} ∅ ∅ ∅
n5 {n5, n6, n7} {n5} {n9} {n8} {n8}
n6 {n5, n6, n7} {n5} ∅ {n6} ∅
n7 {n5, n6, n7} {n5} ∅ ∅ ∅
n8 {n8, n9} {n8} ∅ {n8} ∅
n9 {n8, n9} {n8} ∅ ∅ ∅

Table 1: Methods, return nodes and exceptions for the CFG in Fig. 1

6

n0: call n1: call

n2: call

n3: check(P2) n6: check(P1)

n4: return n7: return

n5: call
�

n9: return

n8: check(P0)

D0 D1

D2 D0 D3

D Perm(D)

D0 P0, P1

D1 P1, P2

D2 P0, P1, P2

D3 P0

Figure 1: A CFG and its security policy.

•−→ n

[] � [n]
[� entry]

`(n) = call n −→ n′

σ : n � σ : n : n′
[� call]

`(m) = return n ����� n′

σ : n : m � σ : n′
[� ret]

`(n) = check(P) σ : n ` P n ����� n′

σ : n � σ : n′
[� pass]

`(n) = check(P) σ : n 6` P

σ : n � σ : n
� [� fail]

n ������� n′

σ : n
� � σ : n′

[� catch]
n 6 �������

σ : n
� � σ

� [� throw]

[] ` P
[`1]

P ∈ Perm(n) σ ` P

σ : n ` P
[`2]

P ∈ Perm(n) Priv(n)

σ : n ` P
[`3]

Table 2: Operational semantics of CFGs.

3.2 Semantics

The operational semantics of CFGs is defined by a transition system whose
configurations are sequences of nodes, modeling call stacks. Additionally, each
state has a boolean tag which tells whether an exception is active, i.e. thrown
and not caught yet. Formally, we define the set of states as N ∗ × Bool .

If no exception is active, a state is represented as sequence of nodes enclosed
in square brackets: for example, σ = [n0, . . . , nk] is a state whose top node is
nk. If an exception is active, we append the symbol 	 to the sequence of nodes,
i.e. σ 	 abbreviates 〈σ, true〉. Pushing a node n on a stack σ is written as σ : n
(the infix operator : associates to the left).

The transition relation B between states is the minimal relation induced by
the inference rules in Table 2. A trace of G leading to 〈σk, xk〉 is a derivation
〈σ0, x0〉 B · · · B 〈σk , xk〉 where σ0 = [] and x0 = false . By overloading the

7

notation, we also denote with B the relation:

G B 〈[], false〉

G B 〈σ, x〉 〈σ, x〉 B 〈σ′, x′〉

G B 〈σ′, x′〉

stating when there is a trace of G which can lead to a given state. We say that
a node n is reachable iff 〈σ : n, x〉 is a reachable configuration.

In our formalization, we use a slightly simplified version of the full access
control algorithm presented in [11]. A discussion of the differences between the
two models is in Section 7.

The simplified algorithm scans the call stack top-down. Each frame in the
stack refers to the protection domain containing the class to which the called
method belongs. As soon as a frame is found whose protection domain has not
the required permission, an AccessControlException is raised. The algorithm
succeeds when a privileged frame is found that carries the required permission,
or when all frames have been visited. We formally specify this behavior by the
minimal relation induced by the inference rules for ` in Table 2. We say that a
permission P is granted to a state σ if σ ` P .

Example 2. The following traces illustrate the behaviour of the CFG in Fig. 1.
We also show that a check on a permission P is passed by writing ` P and 6` P
otherwise. The state σ in (b) and (c) can be any sequence of alternating n0 and
n1, ending in n1.

(a) [] � [n1] � [n1, n2] � [n1, n2, n5] � [n1, n2, n5, n8] 6` P0 (because P0 /∈ Perm(n1))

� [n1, n2, n5, n8]
� � [n1, n2, n5]

� � [n1, n2]
� � [n1, n3] ` P2 � [n1, n4]

(b) [] � · · · � σ : n0 � σ : n0 : n2 � σ : n0 : n2 : n5 � σ : n0 : n2 : n5 : n8 ` P0

� σ : n0 : n2 : n5 : n9 � σ : n0 : n2 : n6 ` P1 � σ : n0 : n2 : n7 � σ : n0 : n4

(c) [] � · · · � σ : n0 : n1 � σ : n0 : n1 : n2 � σ : n0 : n1 : n2 : n5

� σ : n0 : n1 : n2 : n5 : n8 6` P0 � σ : n0 : n1 : n2 : n5 : n8
�

� σ : n0 : n1 : n2 : n5
� � σ : n0 : n1 : n2

� � σ : n0 : n1 : n3 6` P2

� σ : n0 : n1 : n3
� � σ : n0 : n1

� � σ : n0
� � σ

� � · · · � []
�

4 The Trace Permissions Analysis

We introduce the Trace Permissions Analysis (TP), a static analysis over CFGs
which computes the access rights granted to each reachable state.

Since the set of permissions granted to a state is the intersection of the per-
missions associated to each protection domain traversed after the last privileged
frame (if any), we can identify the set {P ∈ P | σ ` P } with the security context

Γ(σ), where Γ : N∗ → 2D is defined as follows:

Γ([]) = ∅ Γ(σ : n) =

{

{Dom(n)} if Priv(n)

Γ(σ) ∪ {Dom(n)} otherwise

The set of permissions granted to a security context γ is Π(γ) =
⋂

D∈γ Perm(D).
The permissions granted to the security context of a state σ are exactly the

permissions granted to σ, as established by the following:

8

TPin(n) = �
(m,n)∈E

TPout(m,n)

TPout(m, n) =

����� ���� {{Dom(n)}} if •−→ n

{ γ ∪ {Dom(n)} | γ ∈ TPcall (m) } if m −→ n

TPtrans(m) if m ��� � n

TPcatch(m) if m ��� � � n

TPcall (n) = � {{Dom(n)}} if Priv(n) and TPin(n) 6= ∅

TPin(n) otherwise

TPtrans(n) =

��� �� { γ ∈ TPin(n) | P ∈ Π(γ) } if `(n) = check(P)

{ γ ∈ TPin(n) | Trans(n, {Dom(n)}) } if `(n) = call, Priv(n)

{ γ ∈ TPin(n) | Trans(n, γ) } otherwise

TPcatch(n) =

��� �� { γ ∈ TPin(n) | P /∈ Π(γ) } if `(n) = check(P)

{ γ ∈ TPin(n) | Catch(n, {Dom(n)}) } if `(n) = call, Priv(n)

{ γ ∈ TPin(n) | Catch(n, γ) } otherwise

Trans(n, γ)
def
= ∃m ∈ ρ(n). γ ∪ {Dom(m)} ∈ TPin (m)

Catch(n, γ)
def
= ∃m ∈ ξ1(n). γ ∪ {Dom(m)} ∈ TPcatch(m)

Table 3: Flow equations for the TP analysis.

Theorem 4.1. For all σ ∈ N∗, P ∈ P :

σ ` P ⇐⇒ P ∈ Π(Γ(σ))

Given a CFG G and a security policy Perm, the analysis is specified by the
set of equations TP =(G,Perm) in Table 3. A solution τ |= TP =(G,Perm) is a
5-tuple τ = 〈τin , τcall , τtrans , τcatch , τout 〉 which satisfies all the equations. The
purpose of the analysis is to find, for each node n, the set of security contexts:

{Γ(σ : n) | G B σ : n }

The reason why we ask the TP analysis to compute security contexts – instead
of plain sets of permissions – is that the knowledge on which protection domains
have been visited is needed for some optimizations (e.g. for method inlining).

Technically, TP is a forward, monotone control flow analysis with values in

22D

. Since both G and D are finite, the least solution to the analysis does exist
and is finitely computable, e.g. through the worklist algorithm in Appendix A.

For each node n, edge (n, n′), and reachable state σ : n, the analysis com-
prises the following sets:

• τin (n) contains the context Γ(σ)∪{Dom(n)}, which is equal to the context
of σ : n if n is not privileged, and it is {Dom(n)} otherwise.

• τcall(n) contains the context of σ : n, i.e. τcall (n) ⊇ Γ(σ : n).

9

• if σ : n B σ : n′, i.e. the control of execution flows sequentially from n to
n′, then τtrans(n) contains the context Γ(σ) ∪ {Dom(n)}.

• if σ : n 	 Bσ : n′, i.e. an exception active at n is caught by n′, then τcatch(n)
contains the context Γ(σ) ∪ {Dom(n)}.

• if σ : n B σ : n : n′, then τout (n, n′) contains τcall (n) ∪ {Dom(n′)}.
If σ : n B σ : n′, then τout (n, n′) contains τtrans (n). If σ : n 	 B σ : n′, then
τout(n, n′) contains τcatch(n).

The only equation for TPin says that τin (n) consists of the union of the
contexts τout (m, n) for each edge (m, n). When (m, n) represents interprocedu-
ral flow, then τout (m, n) consists of the context at m, plus the context Dom(n)
(second equation for TPout). Otherwise, τout (m, n) comprises just the contexts
at m. The first equation for TPcall lifts to Dom(n) the context of n when n
is privileged. If n is a check for permission P , then τtrans(n) contains all the
contexts in τin (n) that pass the check (first equation for TPtrans). The pred-
icate Trans(n, γ) is true for all the contexts γ such that an execution starting
from n with context γ can reach a return node in some method called by n.
If n is a privileged call, then τtrans (n) equals to τin (n) if Trans(n, {Dom(n)})
is true, otherwise it is empty (second equation for TPtrans). If n is not privi-
leged, then τtrans (n) contains all the contexts γ ∈ τin (n) such that Trans(n, γ)
is true (third equation for TPtrans). The predicate Catch(n, γ) is true for all
the contexts γ that suffice to reach some node m that can propagate an excep-
tion catchable by n. If n is a privileged call, then τcatch(n) equals to τin (n) if is
Catch(n, {Dom(n)}) is true, otherwise it is empty (second equation for TPcatch).
If n is not privileged, then τcatch(n) contains all the contexts γ ∈ τin (n) such
that Catch(n, γ) is true (third equation for TPcatch).

The following theorem states the correctness of the TP analysis. The first
equation below states that any solution to the analysis is sound w.r.t. the op-
erational semantics. The second equation states that the least solution to the
analysis is also complete. This fact should not seem bizarre: indeed, complete-
ness is only up to the precision of the CFG, which is an approximated model of
the analyzed program.

Theorem 4.2. Let τ |= TP =(G,Perm). Then:

G B σ : n =⇒ ∃γ ∈ τcall (n). γ = Γ(σ : n)

Moreover, the minimal solution w.r.t. the inclusion relation on 22D

is such that:

γ ∈ τcall(n) =⇒ ∃σ. G B σ : n ∧ γ = Γ(σ : n)

The worklist algorithm in Appendix A which actually computes the (unique)
minimal solution to the analysis has computational complexity O(c · |N |) =
O(|N |). The constant c depends on the number of protection domains occur-
ring in G: in the worst case, c = 23·|DG|, where DG =

⋃

n∈N Dom(n). However,
the exponential factor only occurs when the number of protection domains is
proportional to the number of nodes. Actually, the number of protection do-
mains can be considered as a constant, because it depends on the security policy,
rather than on the size of the program (for more details, see Appendix A).

10

Example 3. The least solution to the analysis for the CFG in Fig. 1 comprises:

τin(n1) = τout(nε, n1) ∪ τout(n0, n1)

= {{Dom(n1)}} ∪ { γ ∪ {Dom(n1)} | γ ∈ τcall (n0) }

= {{D1}} ∪ {{Dom(n0), Dom(n1)}} = {{D1}, {D0, D1}}

τin(n0) = τout(nε, n0) ∪ τout(n1, n0)

= {{Dom(n0)}} ∪ { γ ∪ {Dom(n0)} | γ ∈ τin (n1) } = {{D0}, {D0, D1}}

τin(n2) = τout(n0, n2) ∪ τout(n1, n2) = {{D0, D2}, {D1, D2}, {D0, D1, D2}}

τin(n5) = { γ ∪ {Dom(n5)} | γ ∈ τin(n2) } = {{D0, D2}, {D0, D1, D2}}

τin(n8) = { γ ∪ {Dom(n8)} | γ ∈ τin(n5) } = {{D0, D2, D3}, {D0, D1, D2, D3}}

τtrans(n8) = { γ ∈ τin(n8) | P0 ∈ Π(γ) } = {{D0, D2, D3}}

τcatch(n8) = { γ ∈ τin(n8) | P0 /∈ Π(γ) } = {{D0, D1, D2, D3}}

τin(n9) = τtrans(n8) = {{D0, D2, D3}}

τtrans(n5) = { γ ∈ τin(n5) | Trans(n5, γ) } = {{D0, D2}}

τcatch(n5) = { γ ∈ τin(n5) | Catch(n5, γ) } = {{D0, D1, D2}}

τin(n6) = τtrans(n5) = {{D0, D2}}

τtrans(n6) = { γ ∈ τin(n6) | P1 ∈ Π(γ) } = {{D0, D2}}

τin(n7) = τtrans(n6) = {{D0, D2}}

τtrans(n2) = { γ ∈ τin(n2) | Trans(n2, γ) } = {{D0, D2}}

τin(n3) = τcatch(n2) = { γ ∈ τin (n2) | Catch(n2, γ) } = {{D1, D2}, {D0, D1, D2}}

τtrans(n3) = { γ ∈ τin(n3) | P2 ∈ Π(γ) } = {{D1, D2}}

τin(n4) = τtrans(n2) ∪ τtrans(n3) = {{D0, D2}, {D1, D2}}

A feature not discussed above concerns dynamic linking. This mechanism allows
a program to be extended on demand, e.g. with code downloaded from the
network. Our program model does not directly support this feature; however,
the TP analysis (though not in a fully compositional way) supports a form of
incremental computation (see [2] for details).

5 Program transformations

In this section we show that the TP analysis provides us with an effective basis
for several code optimizations. This is not a trivial task, because performing
interprocedural optimizations in presence of stack inspection may break security.
Indeed, stack inspection deeply relies on the structure of the call stack, which
may be altered by such optimizations.

5.1 Elimination of redundant checks

Our first application of the TP analysis is a code optimization which detects and
removes the redundant checks occurring in a program, i.e. those checks which
always pass, regardless of the execution trace.

The following theorem states conditions to recognize redundant checks, so
enabling the compiler to safely remove them from the code:

11

Theorem 5.1. Let τ |= TP =(G,Perm). For each node n, let Π(n) be the set
of permissions (statically) granted to n:

Π(n) =
⋂

{Π(γ) | γ ∈ τcall (n) }

If `(n) = check(P) and P ∈ Π(n), then n is redundant, i.e. for each σ ∈ N ∗:

G B σ : n =⇒ σ : n ` P

Actually, redundant checks can only be disabled in presence of dynamic
linking, because loading a new method may add new traces where the permission
is no longer granted. A similar situation also holds for the other optimizations
of (lazy) stack inspection considered below.

5.2 Dead code elimination

Dead code elimination is a program optimization which prevents the compiler
from generating bytecode for unreachable or useless pieces of code. Dead code
elimination reduces both the size of the generated bytecode and the total appli-
cation running time (e.g. when code has to be downloaded from the network).

The following theorem allows to detect (and remove) those pieces of code
which cannot be reached due to security restrictions:

Theorem 5.2. Let τ |= TP =(G,Perm). Then:

τcall(n) = ∅ =⇒ ¬∃σ. G B σ : n

5.3 Method inlining

Method inlining is a general program optimization that replaces a method in-
vocation with a copy of the called method code. As a side effect, the protection
domain of the inlined method is ignored when performing stack inspection,
which then may become unsafe.

The TP analysis can be exploited to compute the set of method invocations
that can be safely inlined. Intuitively, a method invocation may be inlined if
the outcome of the security checks is not affected by ignoring the protection
domain of the inlined method.

We adopt the so-called original version inlining approach [15], which always
considers the original version of the callee and the current version of the caller
when performing inlinings. This can be obtained by duplicating the original
code of the inlined method.

Let ṅ be the node candidate for inlining, and ṅ −→ n′. We assume that
the method invocation represented by ṅ can be statically dispatched, i.e. it has
exactly one callee, represented by µ(n′).

The decision procedure, which tells whether or not the inlining of ṅ is safe,
is outlined below. We first assign a fresh name to the protection domain of
µ(n′), without modifying its granted permissions. Assume that a solution τ to
the TP analysis is available. We restart the worklist algorithm from ṅ, in order
to isolate the protection domain of µ(n′) in the computed security contexts.
This allows for the definition of a function Inl ṅ which simulates the effect of
method inlining on security contexts: given a context γ, Inl ṅ(γ) is obtained by

12

substituting the protection domain of µ(n′) for that of µ(ṅ). Each time a check
node n is reached, we ensure that for each context γ ∈ τin (n), γ and Inl ṅ(γ)
agree on the permission P checked by n, i.e. P ∈ Π(γ) ⇐⇒ P ∈ Π(Inl ṅ(γ)).

The inlining of ṅ is safe if this holds for each check node reached during this
procedure. Note that it is possible to deal with the general case of virtual calls
with many callees: this only requires some more machinery (all the possible
callees must be inlined).

We formally specify in definition 5.3 when a method invocation can be safely
inlined. The condition (1a) guarantees static dispatching of ṅ, as well as that ṅ
is not a recursive call (otherwise inlining makes little sense). The condition (1b)
rephrases the original version inlining approach. The condition (1c) ensures
that the protection domain of ṅ is isolated. These conditions, apart from ṅ
being not recursive, can easily be satisfied, as noted above. The key condition
is (1d): it guarantees that the security checks passed after inlining are exactly
those passed before inlining.

Definition 5.3. We say that ṅ −→ n′ is inlineable in G iff, for each n ∈ N :

ṅ −→ n =⇒ n = n′ ∧ n /∈ µ(ṅ) (1a)

n −→ n′ =⇒ n = ṅ (1b)

n /∈ µ(n′) =⇒ Dom(n) 6= Dom(n′) (1c)

`(n) = check(P) =⇒ ∀γ ∈ τin (n). P ∈ Π(γ) ⇐⇒ P ∈ Π(Inl ṅ(γ)) (1d)

We say that ṅ is inlineable iff there exists some n′ such that ṅ −→ n′ is inlineable.

Next, we define the effect of the method inlining transformation on CFGs.
Instead of substituting ṅ for µ(n′) and adjusting the edges accordingly, we
equivalently operate on the semantics of the transformed CFG.

The effect of the inlining of ṅ on states is specified by the function inl ṅ in
Table 4. Given a state σ, inl ṅ(σ) is obtained by removing all the occurrences
of ṅ in σ (except when ṅ is in top position).

The operational semantics of a CFG after the inlining of ṅ is defined by the
transition relation B

ṅ in Table 4. For instance, the rules Bicall1 and Bicall2

state, respectively, that method invocation proceeds as usual when the calling
node is not ṅ, otherwise ṅ is removed from the call stack.

Definition 5.4. Let G be the CFG 〈N ∪{nε}, E, PrivG, DomG〉. The ṅ-inlined

version of G is the CFG Ġ = 〈N ∪ {nε}, E, PrivĠ, DomĠ〉, where:

PrivĠ(n) =

{

true if PrivG(ṅ) and ṅ −→ µ(n)

PrivG(n) otherwise

DomĠ(n) =

{

DomG(ṅ) if ṅ −→ µ(n)

DomG(n) otherwise

According to the above definitions, we may end up with privileged checks and
returns. We already pointed out that this would only require a more involved
definition of the TP analysis (see the discussion on constraint 5).

The following theorem states the correctness of method inlining: each trace
in the original CFG corresponds to a trace in the ṅ-inlined version of the CFG.

13

inl ṅ([]) = []
[inl1]

inl ṅ(σ) = σ̇ top(σ) 6= ṅ

inl ṅ(σ : n′) = σ̇ : n′
[inl2]

inl ṅ(σ) = σ̇

inl ṅ(σ : ṅ : n′) = σ̇ : n′
[inl3]

Inl ṅ(∅) = ∅
[Inl1]

Inl ṅ(γ) = γ̇ Inl ṅ(γ′) = γ̇′

Inl ṅ(γ ∪ γ′) = γ̇ ∪ γ̇′
[Inl2]

ṅ 6−→ µ(n′)

Inl ṅ({Dom(n′)}) = {Dom(n′)}
[Inl3]

ṅ −→ µ(n′)

Inl ṅ({Dom(n′)}) = {Dom(ṅ)}
[Inl4]

`(n) = call n −→ n′ n 6= ṅ

σ : n � ṅ
inl σ : n : n′

[� icall1]
`(ṅ) = call ṅ −→ n′

σ : ṅ � ṅ
inl σ : n′

[� icall2]

`(n′) = return
n ��� � m
ṅ 6−→ µ(n′)

σ : n : n′ � ṅ
inl σ : m

[� iret1]

`(n′) = return
ṅ ����� m
ṅ −→ µ(n′)

σ : n′ � ṅ
inl σ : m

[� iret2]

n 6 ��� � � ṅ 6−→ µ(n′)

σ : n
� � ṅ

inl σ
� [� ithrow1]

n 6 ������� ṅ −→ µ(n′)

σ : n
� � ṅ

inl σ : ṅ
� [� ithrow2]

Table 4: Specification of method inlining.

Theorem 5.5. If ṅ is inlineable in G and Ġ is the ṅ-inlined version of G, then:

〈σ0, x0〉 B · · · B 〈σk, xk〉 ⇐⇒ 〈σ̇0, x0〉 B
ṅ
inl · · · B

ṅ
inl 〈σ̇k , xk〉

where σ0 = [], x0 = false , and σ̇i = inl ṅ(σi) for each i ∈ 0..k.

5.4 Eager stack inspection

The eager evaluation strategy for stack inspection allows security checks to be
performed very efficiently; there is however an overhead at each cross-domain
method invocation (and return), because the security context must be keep
updated. Since security checks are statistically less frequent than cross-domain
calls, actual implementations of the JDK adopt the lazy strategy. However,
the eager strategy is still worth of consideration: indeed, in combination with
the security passing style of [29] it allows for interprocedural optimizations,
which are instead prevented by the lazy strategy. Actual implementations of
the eager evaluation strategy [30] have nevertheless showed worse performance
than implementations of the lazy strategy.

Our TP analysis helps in improving the performance of eager stack inspec-
tion. Below, we specify a novel implementation technique for it, which exploits
our analysis to efficiently update the security contexts.

We adopt the security passing style to track the security context as an ad-
ditional parameter of each method invocation. The type of this parameter is

14

assumed to be one of the primitive integral types of the JVM (i.e. byte, short,
int and long); accordingly, its size (in bits) is then k ∈ {8, 16, 32, 64}.

Choose a set D0 = {D1, . . . , Dk−1} ⊆ D of protection domains. If D has not
enough elements, add the needed ones, and assign them arbitrary permissions.

Given a CFG G and a security policy Perm, a solution to TP =(G,Perm) can
be used to enumerate the set {Γ(σ) | GBσ } of the reachable security contexts.
Let γ0, . . . , γp be such an enumeration. Represent now a security context γi as
a k-bits array αi = 〈αi,0, . . . , αi,k−1〉, where:

• if γi ⊆ D0, then αi,0 = 0 and, for each j ∈ 1..k − 1, αi,j = 1 iff Dj ∈ γi.

• otherwise, αi,0 = 1 and 〈αi,1, . . . , αi,k−1〉 is the binary representation of i.

Security contexts are updated at each method invocation and return. The
intuition is that 2D0 contains the contexts that we expect to occur with high
probability in executions, and therefore require very efficient updating. These
contexts are represented as arrays of bits: the i-th bit is set iff the protection
domain Di has been traversed.

The contexts outside 2D0 are represented by their indexes in the enumera-
tion computed by the TP analysis. The transition function h between security
contexts is cached in a hash table; h is computed as a side effect when con-
structing a solution to the TP analysis. Formally, h(i, n, n′) = j whenever γj is
the context of the state obtained when the control flows from n to n′, starting
from a state with context γi. There is no need to store the entries of h where
both γi and γj in 2D0 .

Formally, the context updating operations are implemented as follows:

• on method invocation, let n be a call to µ(n′) and the current security
context be γi. If γi ⊆ D0 and Dom(n′) = Dj , then the new context is
〈0, αi,1, . . . , αi,k−1〉 ∨ 2k−j−1 (bitwise or). That is, αi,j is set to indicate
that Dj has been traversed. Otherwise, the new context is αh(i,n,n′).

• on method return, the context is retrieved from the popped call stack.

Security checks are performed by looking at the current context, instead of
inspecting the call stack. The intuition is that, for the contexts in 2D0 , a check
for permission Pj succeeds iff no protection domain Di with Pj /∈ Perm(Di) has
been traversed.

More formally, let P1, . . . , Pq be the set of permissions checked in G. For
each j ∈ 1..q, we define a k-bits array βj = 〈0, βj,1, . . . , βj,k−1〉 as follows:

βj,i =

{

0 if Pj ∈ Perm(Di)

1 otherwise

Let n be a check for permission Pj , γi be the current context, and let n′

follow n sequentially. If γi ⊆ D0, then the check succeeds iff αi ∧ βj = 0

(bitwise and). Otherwise, the check succeeds iff h(i, n, n′) is defined.
Compared with the lazy evaluation strategy, our technique involves an over-

head at each method invocation: besides the cost of passing an additional pa-
rameter, we have to perform either a “bitwise or” operation (or a hash table
lookup). Security checks require a “bitwise and” (or a hash table lookup), and
are independent of the size of the call stack. As a matter of fact, a good choice of
the set D0 is crucial, and possibly requires a statistical estimate of the frequency
of contexts.

15

6 An e-commerce example

To illustrate our analysis, we consider small e-commerce application written in
Java, and displayed in Appendix B. As a simple optimization we then detect
the redundant checks. Four actors are involved:

• an application server (Bank), with a remote interface to perform queries
and transactions over bank accounts.

• an e-commerce provider (Shop), which interacts with users and the bank
to manage the acquisition and payment of goods.

• a fraudulent entity (Robber), which spoofs for a trusted e-commerce provider.

• a user agent (Client), which exploits the e-commerce facilities offered by
Shop and Robber.

We consider below only the security properties of the code executed on the
client and on the application server.

The user agent runs a Java-enabled Web browser, which has the rights to
access the local filesystem (in both read and write mode), and to open a socket
connection. The client-tier components of the trusted and untrusted e-commerce
providers are implemented as Java applets; so, they are executed by the Java
virtual machine embedded in the browser.

The class Browser provides the applets with some facilities to manage the
user preferences: the getPrefs() method tries to retrieve the preferences (e.g.
payment settings) from a local file, if the applet has the rights to. Otherwise, it
opens a socket connection with the remote server where the applet was down-
loaded. The remote server is then delegated to send back the preferences to the
applet. The changePrefs() method first looks for the old preferences (either
they are in the local disk or on the remote server); then, it asks the user for the
new preferences, which are thereafter saved on the local disk (if the applet has
the rights to) or sent to the remote server.

The Shop applet is basically a two-stage agent. First, the applet regis-
ters the user profile. The user is asked to fill a form, containing e.g. its bank
account number; then, the registration data is stored by the changePrefs()

method. Once the user has been registered, it can start purchasing items from
the provider. When the user orders an item, the applet looks for its registra-
tion data by calling the getPrefs() method. The data is sent back to the
e-commerce server, which performs the transaction on the bank server.

The Robber applet acts similarly. Indeed, the two applets cannot be distin-
guished by looking solely at their control flow. However, this applet may still
perform some fraudulent operations by acting on the data flow. For instance, it
can exploit the user account number to steal the user money. Moreover, the rob-
ber can corrupt some sensitive information on the user local disk by a malicious
use of the changePrefs() method.

The Bank class features a defensive implementation of a simple account man-
ager. Its public interface consists of one boolean query (canpay()) and three
transactions (debit(), credit() and transfer()). Each of these methods is
protected by an appropriate security check. The canpay() method tests if at
least a given amount of money can be withdrawn from a bank account. The
debit() method withdraws a sum from that account, provided there is enough

16

n4: call

n7: return

n5: call n6: call

�
n8: call

�

n9: call

Browser

n10: return

System

Shop.start()

n0: call

Trusted

n1: call

Robber.start()

n2: call

n3: call

Restricted
D Perm(D)

Trusted
Pread

Pwrite

Restricted Pconnect

Browser

Pread

Pwrite

Pconnect

System P

FileOutputStream.<init>()

n15: check(Pconnect)

n16: return

Socket.<init>()FileInputStream.<init>()

n11: check(Pwrite)

n12: return

n13: check(Pread)

n14: return

Browser.changePrefs() Browser.getPrefs()

Figure 2: CFG and security policy for the e-commerce application (client side).

money. The credit() method deposits a sum in an account. The transfer()

method withdraws (if possible) a sum from an account, which it then deposited
into another account. The local file system is always accessed in privileged mode.

Two clients aim at exploiting the services offered by the bank: Shop, which
is trusted, and Robber, which is not granted any permission.

The Shop performs the money transfer from the user account, having first
checked that the user has enough money. This is done by invoking the methods
canpay() and transfer() in sequence.

The Robber acts in the same manner. Again, its behavior cannot be taken
apart from that of Shop by looking at the control flow, only. The Robber tries
to steal money from the user account, but it has not the rights to (even if it has
knowledge of the user account number).

The CFGs and the security policies extracted from the Java programs in
Appendix B are shown in Figures 2 and 3, respectively. Dashed boxes enclose the
methods belonging to the same protection domain. Notice that the conditional
constructs are modeled by non-determinism in the intraprocedural flow.

The results of the iterations of the worklist algorithm for the client-side and
for the server-side are shown respectively in Tables 6 and 7 in Appendix B.
We abbreviate the names of protection domains using their initial letters; for
instance, “UB” stands for the security context {Unknown,Bank}. Notice that,

17

n2: call

n3: call

Robber.run()

Unknown

n0: call

n1: call

Shop.run()

Client

n7: check(Pdebit)

n8: call

n9: call

n10: call

n12: check(Ptransfer)

n18: call

n19: return

n13: call n17: calln5: call

n4: check(Pcanpay)

n6: return

n11: return

n15: return

n14: call

n16: check(Pcredit)

Bank

System

D Perm(D)

Client
Pcanpay , Pcredit

Pdebit , Ptransfer

Unknown ∅

Bank

Pcanpay , Pcredit

Pdebit , Ptransfer

Pread , Pwrite

System P

FileInputStream.<init>() FileOutputStream.<init>()

n22: check(Pwrite)

n23: return

n20: check(Pread)

n21: return

Bank.credit()Bank.transfer()Bank.debit()Bank.canpay()

Figure 3: CFG and security policy for the e-commerce application (server side).

in Table 6, τin (n) = τcall (n), because no call is privileged in the CFG in Fig. 2.
We exploit the TP analysis to detect the redundant checks. Consider the

client-side in Fig. 2 first. By Table 6, we have that, at node n11:

τcall(n11) = {{Trusted ,Browser ,System}}

By definition of Π, we have that Π(n11) = Perm(Trusted). Then, the check at
n11 is redundant, because Pwrite ∈ Perm(Trusted). For node n13, we have:

τcall (n13) = {{Trusted ,Browser ,System}, {Restricted ,Browser ,System}}

Here Π(n13) = Perm(Trusted) ∩ Perm(Restricted) = ∅, so the check at n13 is
indeed necessary. For node n15 we have:

τcall(n15) = {{Restricted ,Browser ,System}}

18

Then, Π(n15) = Perm(Restricted). Since Pconnect ∈ Perm(Restricted), the check
at n15 is redundant.

We now focus on the server-side (Fig. 3). By Table 7, we have that, at n4:

τcall(n4) = {{Client ,Bank}, {Unknown,Bank}}

Therefore, the check at n4 is indeed necessary, because Pcanpay /∈ Π(n4) = ∅.
For nodes n7, n12 and n16, we have:

τcall(n7) = τcall(n12) = τcall(n16) = {{Client ,Bank ,System}}

Then, Π(n7) = Π(n12) = Π(n16) = Perm(Client). Since Pdebit , Ptransfer , Pcredit

are granted to Client , it turns out that all the checks in Bank, except n4, are
redundant. Finally, for nodes n20 and n22, we have:

τcall(n20) = τcall(n22) = {{Bank ,System}}

Then, both the checks are redundant, because Π(n20) = Π(n22) = Perm(Bank)
and Pread , Pwrite ∈ Perm(Bank).

7 Model adequacy and future work

There are some differences between our model and the Java security model [11]:

• our model prevents a permission P to be granted to a state σ : n if P does
not belong to the permissions granted to Dom(n), i.e. P /∈ Perm(n) implies
σ : n 6` P . Instead, in the Java security model, P may be implied by some
permission P ′ ∈ Perm(n). For example, FilePermission("/-","read")
implies the permission to read any file on the local disk. We can easily
extend our program model by introducing a partial order on permissions
to encompass permission implications. The inclusion test P ∈ Perm(n) in
the rules for ` should be replaced by Perm(n) ⇒ P , which tests if P is
implied by some permission P ′ ∈ Perm(n).

• although the Java security model allows for the dynamic instantiation of
permissions (e.g. an application that asks the user for a file name and
then tries to open that file), we only consider the permissions that can be
determined statically. We are investigating an extension of our present ap-
proach to deal with such parametric permissions on the form P (x), where
x ranges over the set of possible targets for the permissions of class P .

• starting from version 1.4.1, the Java SDK has added support for dynamic
security policies. This means that the binding between a class and its
permissions can be deferred until the class protection domain is involved
in an access control test (rather than when the class is loaded). With our
current approach, the whole analysis has to be recomputed from scratch
each time the security policy is changed. A control flow analysis which
is parametrized with respect to the security policy allows for more incre-
mental behaviour. This subject is currently under investigation.

• in the Java security model, a new thread upon creation inherits the access

control context (i.e. the set of protection domains for the classes on the

19

call stack) from its parent. When stack inspection is performed, both the
context of the current thread and the contexts of all its ancestors are exam-
ined. In this way, a child thread cannot obtain a resource access which is
not granted to its ancestors. We do not model threads. To consider them,
we should first single out the program points where new threads can be
created (and started) while constructing the CFG (as done in [16]).

• here, we consider a “skeletal” exception handling mechanism, where excep-
tions are all of the same type, and neither nested try blocks nor finally
clauses are featured. A full treatment of exceptions requires a tailored
construction of the CFG, e.g. by the techniques presented in [6, 24], that
also suggest how to adjust interprocedural analyses to exceptions.

• in our model, only code-centric security policies are allowed: permissions
are granted to code according to its code source, regardless of who is run-
ning it. The Java Authentication and Authorization Service [17], extends
the Java security model by enabling user-centric access control policies,
based on the principal who actually runs the code. Permissions can be
granted to principals, and the doAs method allows a piece of code to be
executed on behalf of a given subject. This is done by associating the
(authenticated) subject running the code with the current access control
context. Stack inspection ensures that subjects are taken into account
when access control is performed (see e.g. [14] for a formal specification).

There are some features of the Java security architecture we think difficult
to cope with: they are reflection, native methods, and some “dangerous” per-
missions implications (e.g. AllPermission may even breach the whole security
system by replacing the JVM system binaries). Besides deeply affecting security,
these features reduce the effectiveness of any analysis which aims at determining
statically the permissions granted to running code.

8 Conclusions and related work

We have developed a technique to perform program transformations in presence
of stack inspection. The technique relies on the definition of our Trace Permis-
sions Analysis. It is a control flow analysis, and computes a safe approximation
to the set of permissions which are always granted to bytecode at run-time.
The analysis is sound and complete w.r.t. the control flow graphs derived from
the bytecode (however, these graphs only approximate the actual behaviour).
Our analysis makes various optimizations possible. We focussed here on elimi-
nation of redundant checks and of dead code, on method inlining, and on eager
stack inspection. A similar approach also applies to general tail call elimina-
tion. Although we restricted our attention to Java, the same techniques work as
well with other programming languages whose authorization mechanisms rely
on stack inspection (e.g. C] [31]). It is worthwhile noting that our analysis can
take advantage of the control flow graphs generated by the HotSpot optimizers
embedded in the latest JVMs [25]. This would also make our technique directly
exploitable by these tools, e.g. to produce larger methods by inlining, so allowing
for further optimizations.

Many authors advocated the use of static techniques in order to understand
and optimize stack inspection.

20

Besson, Jensen, Le Mètayer and Thorn [5] were among the first to apply
static techniques to the verification of global security properties. They formalize
classes of security properties through a linear-time temporal logic. They show
that a large class of policies (including stack inspection) can be expressed in this
formalism, while more sophisticated ones (like the Chinese Wall policy) are not.
Model checking is then used to prove that local security checks enforce a given
global security policy. Their verification method is based on the translation
from linear-time temporal formulae to deterministic finite-state automata, and
it can be used to optimize stack inspection. For each node n, the analysis in [5]
can compute the set {P ∈ Pcheck | G B σ : n ∧ σ : n ` P }, where Pcheck is the
set of permissions checked in G. The computational complexity of the method
is O(c · |N |), where the constant c depends on the cardinality of Pcheck (in the
worst case, c = 2|Pcheck|). Therefore, our Trace Permissions analysis performs
better when there are few protection domains, while [5] is more efficient when
there are few security checks. Note that our analysis is at least as precise
as [5], because Pcheck ⊆ P . Also, the analysis in [5] does not seem to scale up
smoothly to handle dynamic linking, because it must be recomputed each time
a new permission is discovered.

Based on the same program model of [5], Besson, de Grenier de Latour and
Jensen [4] develop a static analysis that computes, for each method, the set
of its secure calling contexts with respect to a given global security property.
When a method is invoked from a secure calling context, it is guaranteed that its
execution will not violate the global property. For some optimizations, e.g. for
method inlining, this technique is even too powerful, as the information about
calling contexts is unnecessary.

Esparza, Kučera and Schwoon [9] tackle stack inspection in terms of model
checking pushdown systems (PDSs). Obdržálek [20] uses the same technique to
accurately model Java exception handling. A suitable combination of the two
will then be an alternative approach to ours. Since our model is specifically
tailored on stack inspection, we think that our analysis may be implemented
and exploited more efficiently than a general method such as model checking
PDSs. Like in [5], the latter approach seem to suffer from dynamic linking, in
particular when some program transformations (e.g. method inlinings) have to
be revalidated at run-time.

Walker [28] explores an alternative approach. When a security-unaware
program is compiled, a centralized security policy dictates where to insert run-
time checks, in order to obtain provably-secure compiled code. An optimization
phase follows: whenever a security check is removed, it is replaced by a proof
that the optimized code is still safe. Before executing a piece of code, a certi-
fied verification software ensures that it respects the centralized security policy.
Security properties are specified by security automata [23, 3]. This mechanism
is rather powerful (it subsumes linear temporal logic), but it does not handle
some interesting properties, e.g. information flow, resource availability, liveness,
performance. Actually, security automata can only express a proper subset of
the class of safety properties. The policies specified by security automata can be
enforced by inlined reference monitors, which control the execution steps of tar-
get applications, terminating those about to violate the security policy in force.
Inlined reference monitors have been used to enforce Java stack inspection [8].

One of the main drawbacks of [5, 28] is the difficulty of mechanically de-
termining a “suitable” global security property for an arbitrary program, i.e. a

21

property that, if enforced, guarantees safe execution.
Wallach, Appel and Felten [30] formalize stack inspection by exploiting the

access control logic of [1]. The authors show that their decision procedure is
equivalent to Java stack inspection, according to an informal operational seman-
tics. Moreover, they propose an alternative semantics of eager stack inspection,
called security-passing style. This technique consists of tracking the security
state of an execution as an additional parameter of each method invocation.
This allows for interprocedural compiler optimizations that do not interfere
with stack inspection. The security-passing style allows each security operation
to be performed in constant time, but it involves an overhead, because the se-
curity state must be computed at each method invocation. Dynamic caching
techniques are adopted to reduce this overhead: therefore, in the optimal case,
the additional cost of each method invocation is that of a hash lookup. The
same technique allows for an implementation of security checks which requires
a hash lookup in the optimal case. Instead, in our approach, each security op-
eration costs as a hash lookup in the worst case, while, in the optimal case, it
is as cheap as a bitwise operation. A further difference w.r.t. our approach is
that [30] assumes that the whole program is available at compilation time.

Pottier, Skalka and Smith [21] address the problem of stack inspection in
λsec, a typed lambda calculus enriched with primitive constructs for enforcing
security checks and managing permissions. They have polymorphic types on
the form τ1 → ς → τ2, where τ1, τ2 are types and ς is a set of permissions.
Intuitively, the type τ1 → ς → τ2 details the security context necessary to
execute a function of type τ1 → τ2. Stack inspection never fails on a well typed
program, because the set of permissions granted at run-time always includes
the security context. These types are very powerful and can deal with several
issues (e.g. security policy overriding and dependencies from untrusted code).
Moreover, they can be smoothly extended to deal with objects by standard
type-theoretic techniques. This analysis supports all-or-nothing optimizations
that remove the security manager when all the checks are redundant. Instead,
we can single out and remove individual redundant checks.

The problem of establishing the correctness of program transformations in
presence of stack inspection is investigated by Fournet and Gordon in [10]. They
present an equational theory, together with a coinductive proof technique, for
the λsec calculus. They study how stack inspection affects program behavior,
proving that certain function inlinings and tail-call eliminations are correct. The
equational theory is used to reason about the (somewhat limited) security prop-
erties actually guaranteed by stack inspection. Here, we are more concerned with
efficient (semantically-based) optimization procedures to be used on the field,
rather than with a general reasoning framework. Indeed, it is unclear how to
(mechanically) derive a procedure (e.g. a confluent terminating rewriting system)
to ensure correctness of program transformations under security constraints.

Clemens and Felleisen [7] present a different semantics of (eager) stack in-
spection on continuation CESK machines, which allows for tail-call optimizing
implementations.

Compared with our approach, [7, 10, 21] consider more basic programming
primitives (e.g. there is no exception mechanisms). Also, static typing appears
to be more difficult than control flow analysis when permissions can be dy-
namically instantiated. Indeed, we argue that typing and control flow analysis
are complementary static techniques. Approaches based on types focus more

22

on defining safe programming disciplines; control flow analysis, instead, seems
more accurate in efficiently determining effective program optimizations.

Koved, Pistoia and Kershenbaum [16] address the problem of computing the
set of permissions a class needs in order to execute without throwing security
exceptions. Also this analysis suffers from allowing only all-or-nothing optimiza-
tions, as in [21]. The analysis is built over access rights invocation graphs. These
flow graphs are context-sensitive: each node is associated also with its calling

context, i.e. with its target method, receiver and parameters values. In this way,
the analysis in [16] can deal with parametric permissions and multi-threading.
Our approach can gain precision through the exploitation of these graphs. We
plan to study this issue in future work.

Acknowledgements

We thank anonymous referees for their valuable comments.

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access con-
trol in distributed systems. ACM Transactions on Programming Languages and
Systems, 4(15):706–734, Sept. 1993.

[2] M. Bartoletti, P. Degano, and G. Ferrari. Security-aware program transforma-
tions. In Proc. 8th Italian Conference on Theoretical Computer Science, 2003.

[3] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In Foun-
dations of Computer Security (FCS ’02), July 2002.

[4] F. Besson, T. de Grenier de Latour, and T. Jensen. Secure calling contexts for
stack inspection. In Proc. 4th Conference on Principles and Practice of Declara-
tive Programming. ACM Press, 2002.

[5] F. Besson, T. Jensen, D. Le Métayer, and T. Thorn. Model checking security
properties of control flow graphs. Journal of computer security, 9:217–250, 2001.

[6] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar. Efficient and precise modeling of
exceptions for the analysis of Java programs. In Workshop on Program Analysis
For Software Tools and Engineering, 1999.

[7] J. Clemens and M. Felleisen. A tail-recursive semantics for stack inspections.
In P. Degano, editor, Proc. 12th European Symposium on Programming, volume
2618 of LNCS. Springer-Verlag, 2003.

[8] U. Erlingsson and F. B. Schneider. IRM enforcement of Java stack inspection. In
IEEE Symposium on Security and Privacy, 2000.

[9] J. Esparza, A. Kučera, and S. Schwoon. Model-checking LTL with regular valua-
tions for pushdown systems. In Proc. 4th International Symposium on Theoretical
Aspects of Computer Software, 2001.

[10] C. Fournet and A. D. Gordon. Stack inspection: theory and variants. ACM
Transactions on Programming Languages and Systems, 25(3):360–399, 2003.

[11] L. Gong. Inside Java 2 platform security: architecture, API design, and imple-
mentation. Addison-Wesley, 1999.

[12] L. Gong and R. Schemers. Implementing protection domains in the Java Devel-
opment Kit 1.2. In Proc. Internet Society Symposium on Network and Distributed
System Security, Mar. 1998.

23

[13] D. Grove and C. Chambers. A framework for call graph construction algorithms.
ACM Transactions on Programming Languages and Systems, 23(6), 2001.

[14] G. Karjoth. An operational semantics for Java 2 access control. In Proc. 13th
Computer Security Foundations Workshop. IEEE Computer Society Press, 2000.

[15] O. Kaser and C. R. Ramakrishnan. Evaluating inlining techniques. Computer
Languages, 24(2):55–72, 1998.

[16] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights analysis for Java.
In Proc. 17th ACM conference on Object-oriented Programming, Systems, Lan-
guages, and Applications. ACM Press, 2002.

[17] C. Lai, L. Gong, L. Koved, A. Nadalin, and R. Schemers. User authentication
and authorization in the Java platform. In Proc. 15th Annual Computer Security
Application Reference. IEEE Computer Society Press, 1999.

[18] Microsoft Corp. .NET Framework Developer’s Guide: Securing Applications.

[19] F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

[20] J. Obdržálek. Model checking java using pushdown systems. In Workshop on
Formal Techniques for Java-like Programs, 2002.

[21] F. Pottier, C. Skalka, and S. Smith. A systematic approach to static access
control. In D. Sands, editor, Proc. 10th European Symposium on Programming,
volume 2028 of LNCS. Springer-Verlag, Apr. 2001.

[22] F. Schneider, G. Morrisett, and R. Harper. A language-based approach to security.
In Informatics: 10 Years Back, 10 Years Ahead. Springer-Verlag, 2001.

[23] F. B. Schneider. Enforceable security policies. Technical Report TR98-1664,
Cornell University, Jan. 1998.

[24] S. Sinha and M. J. Harrold. Analysis and testing of programs with exception
handling constructs. Software Engineering, 26(9):849–871, 2000.

[25] Sun Microsystems. The Java HotSpot Virtual Machine (Technical White Paper).

[26] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon,
and C. Godin. Practical virtual method call resolution for Java. In Proc.
15th ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages & Applications, volume 35(10). ACM Press, Oct. 2000.

[27] F. Tip and J. Palsberg. Scalable propagation-based call graph construction algo-
rithms. In Proc. 15th ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages & Applications, 2000.

[28] D. Walker. A type system for expressive security policies. In Conference record
of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM Press, 2000.

[29] D. S. Wallach. A New Approach to Mobile Code Security. PhD thesis, Princeton
University, Jan. 1999.

[30] D. S. Wallach, A. W. Appel, and E. W. Felten. SAFKASI: a security mechanism
for language-based systems. ACM TOSEM, 9(4):341–378, Oct. 2001.

[31] C. Wille. Presenting C]. SAMS Publishing, 2000.

24

A Proofs

A.1 Properties of CFGs

Lemma A.1. Let:
〈σ0, x0〉 B · · · B 〈σk, xk〉

be a trace on G, where σk = σ : n : m. Then:

n −→ µ(m) (1a)

∃i ∈ 1..k − 1. 〈σi, xi〉 = 〈σ : n, false〉 (1b)

Proof. We proceed by induction on the length of the trace. The base case k = 0 holds
trivially, because σ0 = [].

For the inductive case, assume (1a) and (1b) are true for all traces of length lower
than k. By case analysis on the rule used to deduce 〈σk−1, xk−1〉 � 〈σk, xk〉, we have:

• case [call]:
`(n) = call n −→ m

σ : n � σ : n : m

Here (1a) follows by the fact that n −→ m, and the index i which satisfies (1b)
is just k − 1. Notice that it must be k − 1 > 0, because any derivation for σ : n
requires at least one step.

• case [ret]:
`(n′) = return m′ � ��� m

σ : n : m′ : n′ � σ : n : m

By the induction hypothesis, we have that:

∃j ∈ 1..k − 2. 〈σj , xj〉 = 〈σ : n : m′, false〉 (2)

Since any derivation for σ : n : m′ requires at least two steps, it must be j > 1.
Then, the induction hypothesis on j − 1 gives n −→ µ(m′), and:

∃i ∈ 1..j − 1. 〈σi, xi〉 = 〈σ : n, false〉 (3)

Since m′ � ��� m, we have µ(m′) = µ(m): then, n −→ µ(m′) implies n −→ µ(m),
and this proves (1a). Moreover, (1b) is satisfied with the index i given by (3).

• case [pass]:
`(m′) = check(P) σ : n : m′ ` P m′ ����� m

σ : n : m′ � σ : n : m

By the induction hypothesis, n −→ µ(m′), and:

∃i ∈ 1..k − 2. 〈σi, xi〉 = 〈σ : n, false〉 (4)

Since m′ � ��� m, we have µ(m′) = µ(m): then, n −→ µ(m′) implies n −→ µ(m),
and this proves (1a). Moreover, (1b) is satisfied with the index i given by (4).

• case [fail]:
`(m) = check(P) σ : n : m 6` P

σ : n : m � σ : n : m
�

Here (1a) and (1b) follow directly by the induction hypothesis.

25

• case [catch]:
m′ � ��� � m

σ : n : m′
� � σ : n : m

By the induction hypothesis, we have n −→ µ(m′), and:

∃i ∈ 1..k − 2. 〈σi, xi〉 = 〈σ : n, false〉 (5)

Since m′ � ��� � m, we have µ(m′) = µ(m): then, n −→ µ(m′) implies n −→ µ(m),
and this proves (1a). Moreover, (1b) is satisfied with the index i given by (5).

• case [throw]:
m′ 6 � �����

σ : n : m : m′
� � σ : n : m

�
By the induction hypothesis, we have that:

∃j ∈ 1..k − 2. 〈σj , xj〉 = 〈σ : n : m, false〉 (6)

Since any derivation for σ : n : m requires at least two steps, it must be j > 1.
Then, the induction hypothesis on j − 1 gives n −→ µ(m), and:

∃i ∈ 1..j − 1. 〈σi, xi〉 = 〈σ : n, false〉

Lemma A.2.

G B σ : n : m ∧ `(m) = return =⇒ m ∈ ρ(n)

Proof. By lemma A.1, G � σ : n : m implies that n −→ µ(m). Since `(m) = return,
by definition 3.3 it follows that m ∈ ρ(n).

Lemma A.3.

G B σ : n 	 =⇒ ξ(n) 6= ∅

Proof. Let 〈σ0, x0〉 � · · · � 〈σk, xk〉 be a trace leading to σ : n
�
, and define:

i? = max { i ∈ 0..k − 1 | xi = false }

Since the only rule that raises an exception is � fail , the transition σi? � σi?+1
�

must
be on the form:

`(n′) = check(P) σ′ : n′ 6` P

σ′ : n′ � σ′ : n′
�

where σi? = σi?+1 = σ′ : n′. By definition 3.4, we have ξ(n′) = {n′} 6= ∅. Now,
let i ∈ i? + 1..k − 1. Since the only rule that propagates an exception is � throw , the
transition σi

� � σi+1
�

must be on the form:

m 6 � �����
σ′′ : n′′ : m

� � σ′′ : n′′
�

where σi = σ′′ : n′′ : m and σi+1 = σ′′ : n′′. By an inductive argument, it follows
that ξ(m) 6= ∅. Moreover, m 6 � ��� � holds, and n′′ −→ µ(m) follows by lemma A.1: by
definition 3.4, we then have ξ(n′′) ⊇ ξ(m). Since ξ(m) 6= ∅, this implies ξ(n′′) 6= ∅.

26

A.2 Soundness of the TP analysis

Theorem A.4. For all σ ∈ N∗, P ∈ P :

σ ` P ⇐⇒ P ∈ Π(Γ(σ))

Proof. We proceed by induction on the number of nodes in σ. For the base case
σ = [], we have Π(Γ([])) = Π(∅) = P (the last equality holds by convention), and
[] ` P by [`1]. For the inductive case, let σ = σ′ : n. There two subcases, according
n being privileged or not.

If Priv(n), then Π(Γ(σ′ : n)) = Π({Dom(n)}) = Perm(n). Thus, if P ∈ Perm(n)
then σ′ : n ` P by [`3]. On the other hand, σ′ : n ` P implies that P ∈ Perm(n),
regardless of n being privileged or not.

If ¬Priv(n), then Π(Γ(σ′ : n)) = Π(Γ(σ′) ∪ {Dom(n)}) = Π(Γ(σ′)) ∩ Perm(n).
By definition of Π and Γ, P ∈ Π(Γ(σ)) implies P ∈ Π(Γ(σ′)) and P ∈ Perm(n). Then,
σ′ ` P follows by the induction hypothesis, and σ′ : n ` P by [`2]. On the other hand,
σ′ : n ` P requires that σ′ ` P and P ∈ Perm(n). The induction hypothesis implies
P ∈ Π(Γ(σ′)), and P ∈ Π(Γ(σ′ : n)) follows by definition of Π and Γ.

Theorem A.5. Let τ |= TP =(G,Perm). Then:

G B σ : n =⇒ ∃γ ∈ τcall (n). γ = Γ(σ : n) (7)

Proof. We prove the following, stronger, result:

G � σ : n =⇒ ∃γ ∈ τin (n). γ = Γ(σ) ∪ {Dom(n)} (8a)

G � σ : n
�

=⇒ ∃γ ∈ τcatch (n). γ = Γ(σ) ∪ {Dom(n)} (8b)

Equation (7) follows by (8a) by noticing that:

• if ¬Priv(n), then τcall (n) = τin (n), and Γ(σ : n) = Γ(σ) ∪ {Dom(n)};

• if Priv(n), then τcall (n) = {{Dom(n)}} (because τin(n) 6= ∅ when (8a) is true),
and Γ(σ : n) = {Dom(n)}.

We prove (8a) and (8b) simultaneously by induction on the length of the derivation
[] � · · · � 〈σ : n, x〉. The base case corresponds to our single axiom:

•−→ n

[] � [n]

We show that γ = {Dom(n)} satisfies (8a). Since •−→ n, we have that {Dom(n)} ∈
τout(nε, n) ⊆ τin (n). Then, Γ([]) ∪ {Dom(n)} = ∅ ∪ {Dom(n)} = γ.

For the inductive case, we proceed by case analysis on rule used to deduce the last
step of the derivation for 〈σ : n, x〉.

• case [call]:
`(n′) = call n′ −→ n

σ′ : n′ � σ′ : n′ : n
where σ = σ′ : n′

By the induction hypothesis (8a), we have:

∃γ′ ∈ τin(n′). γ′ = Γ(σ′) ∪ {Dom(n′)} (9)

If ¬Priv(n′), we show that γ = γ′ ∪ {Dom(n)} satisfies (8a). Since:

τin (n) ⊇ τout(n
′, n) = { γ ∪ {Dom(n)} | γ ∈ τin(n′) }

27

and γ′ ∈ τin (n′) by (9), it follows that γ ∈ τin(n). Moreover:

γ = γ′ ∪ {Dom(n)} by def. γ

= Γ(σ′) ∪ {Dom(n′)} ∪ {Dom(n)} by (9)

= Γ(σ′ : n′) ∪ {Dom(n)} as ¬Priv(n)

If Priv(n′), we show that γ = {Dom(n′)} ∪ {Dom(n)} satisfies (8a). Since:

τin (n) ⊇ τout(n
′, n) = {{Dom(n′)} ∪ {Dom(n)}}

then γ ∈ τin (n), and:

γ = {Dom(n′)} ∪ {Dom(n)} = Γ(σ′ : n′) ∪ {Dom(n)}

• case [ret]:
`(m) = return n′ ����� n

σ : n′ : m � σ : n

By lemma A.1, any trace leading to σ : n′ : m is on the form:

[] � · · · � σ : n′ � · · · � σ : n′ : m

where `(n′) = call, n′ −→ µ(m), and m ∈ ρ(n′) by lemma A.2. Therefore, we
can apply the induction hypothesis on σ : n′ as well as on σ : n′ : m, obtaining:

∃γ′ ∈ τin (n′). γ′ = Γ(σ) ∪ {Dom(n′)} (10a)

∃γ′′ ∈ τin (m). γ′′ = Γ(σ : n′) ∪ {Dom(m)} (10b)

We show that γ = γ′ satisfies (8a). First, notice that γ = Γ(σ) ∪ {Dom(n)},
because Dom(n) = Dom(n′) by constraint 4. Second, we prove that γ ∈ τin (n).
If ¬Priv(n′), then:

τin(n) ⊇ τtrans(n
′) = { γ ∈ τin(n′) | Trans(n′, γ) }

To show that Trans(n′, γ′), i.e.:

∃m ∈ ρ(n′), γ′′ ∈ τin (m). γ′′ = γ′ ∪ {Dom(m)}

observe that:

γ′′ = Γ(σ : n′) ∪ {Dom(m)} by (10b)

= Γ(σ) ∪ {Dom(n′)} ∪ {Dom(m)} as ¬Priv(n′)

= γ′ ∪ {Dom(m)} by (10a)

In the case Priv(n′), we have:

τin(n) ⊇ τtrans(n
′) = { γ ∈ τin(n′) | Trans(n′, {Dom(n′)}) }

To show that Trans(n′, {Dom(n′)}), i.e.:

∃m ∈ ρ(n′), γ′′ ∈ τin (m). γ′′ = {Dom(n′)} ∪ {Dom(m)}

observe that:

γ′′ = Γ(σ : n′) ∪ {Dom(m)} by (10b)

= {Dom(n′)} ∪ {Dom(m)} as Priv(n′)

28

• case [pass]:
`(n′) = check(P) σ : n′ ` P n′ ��� � n

σ : n′ � σ : n

By the induction hypothesis (8a), we have:

∃γ′ ∈ τin(n′). γ′ = Γ(σ) ∪ {Dom(n′)} (11)

We show that γ = γ′ satisfies (8a). First, notice that γ = Γ(σ) ∪ {Dom(n)} by
constraint 4. Second, we prove that γ ∈ τin(n). Since n′ ����� n, we have:

τin(n) ⊇ τtrans(n
′) = { γ ∈ τin (n′) | P ∈ Π(γ) }

Since γ = γ′, by (11) it follows that γ ∈ τin (n′). By constraint 5, we have
γ = Γ(σ)∪ {Dom(n′)} = Γ(σ : n′). Since σ : n′ ` P (premise of the � pass rule),
theorem A.4 implies that P ∈ Π(γ). Then, γ ∈ τin (n).

• case [fail]:
`(n) = check(P) σ : n 6` P

σ : n � σ : n
�

By the induction hypothesis (8a), we have:

∃γ′ ∈ τin (n). γ′ = Γ(σ) ∪ {Dom(n)} (12)

We show that γ = γ′ satisfies (8b). By definition of TPcatch , we have:

τcatch(n) = { γ ∈ τin (n) | P /∈ Π(γ) }

By (12) and constraint 5, it follows that γ = Γ(σ : n) ∈ τin(n). Since σ : n 6` P
(premise of the � fail rule), theorem A.4 implies P /∈ Π(γ). Then, γ ∈ τcatch (n).

• case [catch]:
n′ � ��� � n

σ : n′
� � σ : n

By the induction hypothesis (8b), we have:

∃γ′ ∈ τcatch(n′). γ′ = Γ(σ) ∪ {Dom(n′)} (13)

We show that γ = γ′ satisfies (8a). Since n′ ��� � � n, we have:

τin(n) ⊇ τout(n
′, n) = τcatch (n′)

Then, γ ∈ τin (n) follows by (13), and γ = Γ(σ) ∪ {Dom(n)} by constraint 4.

• case [throw]:
m 6 � �����

σ : n : m
� � σ : n

�
By lemma A.1, any derivation of σ : n : m

�
is on the form:

[] � · · · � σ : n � · · · � σ : n : m
�

We apply the induction hypothesis on σ : n as well as on σ : n : m
�
, obtaining:

∃γ′ ∈ τin (n). γ′ = Γ(σ) ∪ {Dom(n)} (14a)

∃γ′′ ∈ τcatch(m). γ′′ = Γ(σ : n) ∪ {Dom(m)} (14b)

By definition 3.4, m ∈ ξ1(n): indeed, n −→ µ(m) follows by lemma A.1, m 6 � ��� �
is a premise of the � throw rule, and ξ(m) 6= ∅ by lemma A.3. We show that
γ = γ′ satisfies (8b). There two subcases, according n being privileged or not.

29

If ¬Priv(n), then:

τcatch (n) = { γ ∈ τin (n) | Catch(n, γ) }

where Catch(n, γ) holds if:

∃m ∈ ξ1(n), γ′′ ∈ τcatch (m). γ′′ = γ′ ∪ {Dom(m)}

Since m ∈ ξ1(n), we have:

γ′′ = Γ(σ : n) ∪ {Dom(m)} by (14b)

= Γ(σ) ∪ {Dom(n)} ∪ {Dom(m)} as ¬Priv(n)

= γ′ ∪ {Dom(m)} by (14a)

Then, γ ∈ τcatch (n). If Priv(n), then:

τcatch (n) = { γ ∈ τin (n) | Catch(n, {Dom(n)}) }

To show Catch(n, {Dom(n)}), observe that:

γ′′ = Γ(σ : n) ∪ {Dom(m)} by (14b)

= {Dom(n)} ∪ {Dom(m)} as Priv(n)

A.3 Completeness of the TP analysis

Theorem A.6. Let v be the following partial order:

τ v τ ′ def
= ∀n ∈ N. τin (n) ⊆ τ ′

in (n) (15)

Then, there exists a unique τ |= TP =(G,Perm) minimal w.r.t. v, and:

γ ∈ τcall(n) =⇒ ∃σ. G B σ : n ∧ γ = Γ(σ : n) (16)

Proof. The proof is split in four parts:

1. lemma A.7 formalizes the intuitive concept that, in our model, reachability is
only a matter of access control. This enables us to prove the following item.

2. lemma A.8, showing that:

γ ∈ call[n] =⇒ ∃σ. G � σ : n ∧ γ = Γ(σ : n) (17)

is indeed an invariant for the worklist-iteration algorithm.

3. lemma A.9 shows that, whenever the algorithm terminates, it computes a solu-
tion to the TP analysis. Moreover, the solution is minimal w.r.t. (15).

4. finally, lemma A.10 shows that the algorithm always terminates.

Lemma A.7. Let G B σ : n, G B 〈σ′ : m, x〉, and n = ε(µ(m)). Then:

Γ(σ) ∪ {Dom(n)} = Γ(σ′) ∪ {Dom(m)} =⇒ G B 〈σ : m, x〉

Proof. Since n = ε(µ(m)), by constraint 3 and lemma A.1, it follows that any trace
leading to 〈σ′ : m, x〉 is on the form:

[] = 〈σ0, x0〉 � · · · � 〈σh, xh〉 = σ′ : n � · · · � 〈σk, xk〉 = 〈σ
′ : m, x〉

We can always determine h in such a way that, for each i ∈ h..k:

30

TP-Analysis(G)
1 W← Cons(nil, nε)
2 for each n in N do

3 in[n]← call[n]← trans[n]← catch[n]← ∅
4 for each (n, n′) in E do

5 out[n,n′]← ∅
6 while W 6= nil do

7 n ← Head(W)
8 W← Tail(W)
9 old-catch[n]← catch[n]

10 switch

11 case `(n) = call :
12 if Priv(n)
13 then call[n] ← {{Dom(n)}}
14 trans[n] ← {γ ∈ in[n] | ∃m ∈ ρ(n). {Dom(n)}∪{Dom(m)} ∈ in[m]}
15 catch[n]← {γ ∈ in[n] | ∃m ∈ ξ1(n).{Dom(n)}∪{Dom(m)} ∈ catch[m]}
16 else call[n] ← in[n]
17 trans[n] ← {γ ∈ in[n] | ∃m ∈ ρ(n). γ ∪{Dom(m)} ∈ in[m]}
18 catch[n]← {γ ∈ in[n] | ∃m ∈ ξ1(n).γ ∪{Dom(m)} ∈ catch[m]}
19 case `(n) = check(P) :
20 trans[n] ← {γ ∈ in[n] | P ∈ Π(γ)}
21 catch[n]← {γ ∈ in[n] | P /∈ Π(γ)}
22 for each (n, n′) in E do

23 switch

24 case •−→ n′ :
25 out[n,n′]← {{Dom(n)}}
26 case n −→ n′ :
27 out[n,n′]← {γ ∪{Dom(n′)}| γ ∈ call[n]}
28 case n ��� � n′ :
29 out[n,n′]← trans[n]
30 case n ��� � � n′ :
31 out[n,n′]← catch[n]
32 if out[n,n′]

�
in[n′]

33 then in[n′]← in[n′] ∪ out[n,n′]
34 W← Cons(W, n′)
35 for each m such that n ∈ ρ(m) do

36 if in[m] 6= ∅
37 then W← Cons(W,m)
38 for each m such that n ∈ ξ1(m) do

39 if in[m] 6= ∅ and catch[n]
�

old-catch[n]
40 then W← Cons(W,m)

Table 5: Worklist-Iteration for the Trace Permissions Analysis

(a) σi = σ′ : σ′

i for some σ′

i 6= [], and

(b) the bottommost node of σ′

i belongs to µ(m).

This is because there always exists a trace leading to 〈σ′ : m, x〉 that never returns
from µ(m). Therefore, if we prove that, for any i ∈ h..k − 1:

〈σ′ : σ′

i, xi〉 � 〈σ′ : σ′

i+1, xi+1〉 ⇐⇒ 〈σ : σ′

i, xi〉 � 〈σ : σ′

i+1, xi+1〉

then we can conclude G � 〈σ : m, x〉. The proof is by cases on the rule applied to
deduce the transition 〈σ′ : σ′

i, xi〉 � 〈σ′ : σ′

i+1, xi+1〉. We work out only the most
relevant cases. First, consider the � pass rule, which instances to:

`(n′) = check(P) σ′ : σ′′

i : n′ ` P n′ ��� � m′

σ′ : σ′′

i : n′ � σ′ : σ′′

i : m′

31

where σ′

i = σ′′

i : n′ and σ′

i+1 = σ′′

i : m′. Note that σ : σ′

i � σ : σ′

i+1 holds if σ : σ′

i ` P .
Let σ′

i = [n0, . . . , nh], where nh = n′ and n0 ∈ µ(m) by the hypotheses (a) and (b).
Assume first there are no privileged nodes in σ′

i. Then, using the facts that n0, n, m
are in the same method (so they are in the same protection domain by constraint 4),
and by hypothesis Γ(σ) ∪ {Dom(n)} = Γ(σ′) ∪ {Dom(m)}, we obtain:

Γ(σ′ : σ′

i) = Γ(σ′ : σ′

i) ∪ {Dom(m)} = Γ(σ′) ∪ {Dom(m)} ∪ Γ(σ′

i)

= Γ(σ) ∪ {Dom(n)} ∪ Γ(σ′

i) = Γ(σ : σ′

i) ∪ {Dom(n)}

Otherwise, let i? be the index of the topmost privileged node in σ′

i. Then:

Γ(σ′ : σ′

i) = �
j∈i?..h

Dom(nj) = Γ(σ : σ′

i)

In both cases, we have shown Γ(σ′ : σ′

i) = Γ(σ : σ′

i). Since σ′ : σ′

i ` P , by theorem A.4
it follows that σ : σ′

i ` P . So, the � pass rule gives 〈σ′ : σ′

i, xi〉 � 〈σ′ : σ′

i+1, xi+1〉.
Consider now the � fail rule, which instances to:

`(n′) = check(P) σ′ : σ′′

i : n′ 6` P

σ′ : σ′′

i : n′ � σ′ : σ′′

i : n′
�

where σ′

i = σ′

i+1 = σ′′

i : n′. As in the previous case, Γ(σ′ : σ′

i) = Γ(σ : σ′

i). It follows
that σ : σ′

i 6` P , and the � fail rule gives σ : σ′

i � σ : σ′

i+1

�
.

For the remaining rules, the transition σ′ : σ′

i � σ′ : σ′

i+1 depends only on the edges
of G and on the topmost node of σ′

i (for rule � ret , also on the next-topmost node).
Therefore, if 〈σ′ : σ′

i, xi〉 � 〈σ′ : σ′

i+1, xi+1〉, then also 〈σ : σ′

i, xi〉 � 〈σ : σ′

i+1, xi+1〉.

Lemma A.8. For each node n ∈ N , the statements:

γ ∈ in[n] =⇒ ∃σ. G B σ : n ∧ γ = Γ(σ) ∪ {Dom(n)} (18a)

γ ∈ catch[n] =⇒ ∃σ. G B σ : n 	 ∧ γ = Γ(σ) ∪ {Dom(n)} (18b)

are invariant for the worklist-iteration algorithm.

Proof. We first prove that (17) follows by (18a). Let γ ∈ call[n]. Then:

• if ¬Priv(n), then γ ∈ in[n] by the assignment at line 16. By (18a), there exists
some σ such that G � σ : n and γ = Γ(σ) ∪ {Dom(n)} = Γ(σ : n).

• if Priv(n), then γ = {Dom(n)} by the assignment at line 13. By (18a), there
exists some σ such that G � σ : n and γ = {Dom(n)} = Γ(σ : n).

The invariants hold when the while loop at lines 6-40 is entered: indeed, after the
initialization loop at lines 2-3, in[n] = catch[n] = ∅ for each n ∈ N .

Next, assume (18a) and (18b) are satisfied for all iterations up to the i-th. We
show that the invariants are preserved after the (i + 1)-th iteration.

Consider (18b) first: inside the switch statement at lines 10-21, catch[n] is updated
when n is a call or a check.

If `(n) = check(P) then, by the assignment at line 21:

catch[n] = { γ ∈ in[n] | P /∈ Π(γ) }

Let γ ∈ catch[n]. Since γ ∈ in[n] and (18a) holds at the i-th iteration, then:

∃σ. G � σ : n ∧ γ = Γ(σ) ∪ {Dom(n)}

32

Since check nodes cannot be privileged (constraint 5), γ = Γ(σ : n), and σ : n 6` P
follows by theorem A.4. Then, by the � fail rule:

`(n) = check(P) σ : n 6` P

σ : n � σ : n
�

In conclusion, we have shown that G � σ : n
�

and γ = Γ(σ)∪ {Dom(n)}. So, (18b) is
preserved by the assignment at line 21.

If `(n) = call, we have two subcases, depending on n being privileged or not.
If ¬Priv(n), then, by the assignment at line 18:

catch[n] = { γ ∈ in[n] | ∃m ∈ ξ1(n). γ ∪ {Dom(m)} ∈ catch[m] }

Let γ ∈ catch[n]: then, there is an m ∈ ξ1(n) and a γ′ ∈ catch[m] such that
γ′ = γ ∪ {Dom(m)}. Since γ ∈ in[n], then γ′ ∈ catch[m]; moreover, since both
the invariants (18a) and (18b) hold at the i-th iteration, we have:

∃σ. G � σ : n ∧ γ = Γ(σ) ∪ {Dom(n)} (19a)

∃σ′. G � σ′ : m
�
∧ γ′ = Γ(σ′) ∪ {Dom(m)} (19b)

Let n′ = ε(µ(m)). Since m ∈ ξ1(n), by definition 3.4 it follows that n −→ µ(m) and
m 6 � ��� . Then, by the � call rule, we have:

`(n) = call n −→ n′

σ : n � σ : n : n′

Moreover, we have that:

Γ(σ : n) ∪ {Dom(n′)} = Γ(σ : n) ∪ {Dom(m)} as µ(n′) = µ(m)

= Γ(σ) ∪ {Dom(n)} ∪ {Dom(m)} as ¬Priv(n)

= γ ∪ {Dom(m)} by (19a)

= γ′ by def. γ′

= Γ(σ′) ∪ {Dom(m)} by (19b)

This enables us to apply lemma A.7 to deduce G � σ : n : m
�
. Then, by � throw :

m 6 � �����
σ : n : m

� � σ : n
�

If Priv(n), then, by the assignment at line 15:

catch[n] = { γ ∈ in[n] | ∃m ∈ ξ1(n). {Dom(n)} ∪ {Dom(m)} ∈ catch[m] }

Let γ ∈ catch[n]. Then, there exist m ∈ ξ1(n) and γ′ ∈ catch[m] such that γ′ =
{Dom(n)}∪ {Dom(m)}. Similarly to the case ¬Priv(n), we have G � σ : n : n′. Then:

Γ(σ : n) ∪ {Dom(n′)} = {Dom(n)} ∪ {Dom(n′)} = γ′

and G � σ : n
�

follows by � throw . This concludes the proof of (18b).
To prove that also the invariant (18a) holds, consider the for loop at lines 22-34.

At each iteration, out[n, n′] is computed for some (n, n′) ∈ E. When the condition of
the if statement at line 32 is false, the array in is left unchanged. Otherwise, only the
value of in[n′] is updated, and we have:

in[n′] ← in[n′] ∪ out[n, n′]

Then, it suffices to show that (18a) holds for γ ∈ out[n, n′]. There are only the
following cases, according to the kind of the edge (n, n′):

33

• case [entry]: if •−→ n′, then, after the assignment at line 25:

out[n, n′] = {{Dom(n′)}}

Let γ = {Dom(n′)} and σ = []. Then, G � σ : n′ follows by rule � entry , and
γ = Γ(σ) ∪ {Dom(n′)}.

• case [call]: if n −→ n′, then, by constraints 1 and 2, it must be `(n) = call.
Being n privileged or not, since it has been extracted from the worklist, the
guards at lines 32, 36, 39 make sure that in[n] 6= ∅. Since (18a) holds at the i-th
iteration of the while loop, it follows that G � σ′ : n for some σ′. Let σ = σ′ : n.
Then, G � σ : n′ follows by:

`(n) = call n −→ n′

σ′ : n � σ′ : n : n′

By the assignment at line 27, we have:

out[n, n′] = { γ ∪ {Dom(n′)} | γ ∈ call[n] }

If ¬Priv(n), then call[n] = in[n] by the assignment at line 16. Then, each
γ ∈ call[n] in on the form γ = γ′ ∪ {Dom(n′)}, for some γ′ ∈ in[n]. Since (18a)
did hold when γ′ was inserted in in[n], we have:

G � σ′ : n ∧ γ′ = Γ(σ′) ∪ {Dom(n)} (20)

Then, (18a) is preserved, because:

γ = γ′ ∪ {Dom(n′)} by def. γ

= Γ(σ′) ∪ {Dom(n)} ∪ {Dom(n′)} by (20)

= Γ(σ′ : n) ∪ {Dom(n′)} as ¬Priv(n)

= Γ(σ) ∪ {Dom(n′)} by def. σ

If Priv(n), then, by the assignment at line 13, call[n] = {{Dom(n)}}. Let
γ = {Dom(n)} ∪ {Dom(n′)}. Then:

Γ(σ′ : n) ∪ {Dom(n′)} = {Dom(n)} ∪ {Dom(n′)} = γ

• case [transfer]: if n ��� � n′, then, by the assignment at line 29:

out[n, n′] = trans[n]

By constraint 2, n cannot be a return node, so we have to consider two subcases,
i.e. that n is a check or a call node. If `(n) = check(P), then, by the assignment
at line 20, we have:

trans[n] = { γ ∈ in[n] | P ∈ Π(γ) }

Take γ ∈ in[n] such that P ∈ Π(γ). By (18a) and by constraint 5, we have:

∃σ. G � σ : n ∧ γ = Γ(σ : n) (21)

Theorem A.4 implies that σ : n ` P . Therefore, G � σ : n′ follows by the rule:

`(n) = check(P) σ : n ` P n � ��� n′

σ : n � σ : n′

Since µ(n) = µ(n′), constraint 4 implies that γ = Γ(σ) ∪ {Dom(n′)}.

34

If `(n) = call, we must consider two subcases, depending on n being privileged
or not. If ¬Priv(n), by the assignment at line 17:

trans[n] = { γ ∈ in[n] | ∃m ∈ ρ(n). γ ∪ {Dom(m)} ∈ in[m] }

Let γ ∈ trans[n]: then, there exist m ∈ ρ(n) and γ′ ∈ in[m] such that γ′ =
γ ∪ {Dom(m)}. By applying (18a) for n as well as for m:

∃σ. G � σ : n ∧ γ = Γ(σ) ∪ {Dom(n)} (22a)

∃σ′. G � σ′ : m ∧ γ′ = Γ(σ′) ∪ {Dom(m)} (22b)

Observe that, since m ∈ ρ(n), it must be n −→ m′ for m′ = ε(µ(m)). Then,
G � σ : n : m′ follows by the rule:

`(n) = call n −→ m′

σ : n � σ : n : m′

Moreover, we have that:

Γ(σ : n) ∪ {Dom(m′)} = Γ(σ : n) ∪ {Dom(m)} as µ(m′) = µ(m)

= Γ(σ) ∪ {Dom(n)} ∪ {Dom(m)} as ¬Priv(n)

= γ ∪ {Dom(m)} by (22a)

= γ′ by def. γ′

= Γ(σ′) ∪ {Dom(m)} by (22b)

This enables us to apply lemma A.7 to deduce G � σ : n : m. Then:

`(m) = return n ����� n′

σ : n : m � σ : n′

Again, γ = Γ(σ) ∪ {Dom(n′)} follows because µ(n) = µ(n′).

If Priv(n), then out[n, n′] = in[n] and {Dom(n)} ∪ {Dom(m)} ∈ in[m] for some
m ∈ ρ(n), because line 32 ensures that out[n, n′] 6= ∅. Let γ ∈ in[n] and γ′ =
{Dom(n)} ∪ {Dom(m)}. Then, (22a) and (22b) are still valid, and lemma A.7
can be applied by noticing that:

Γ(σ : n) ∪ {Dom(m′)} = Γ(σ : n) ∪ {Dom(m)} as µ(m′) = µ(m)

= {Dom(n)} ∪ {Dom(m)} as Priv(n)

= γ′ by def. γ′

= Γ(σ′) ∪ {Dom(m)} by (22b)

Therefore, by arguments similar to those used for the case ¬Priv(n), we find
that G � σ : n′ and that γ = Γ(σ) ∪ {Dom(n′)}.

• case [catch]: if n � ����� n′, then, by the assignment at line 31:

out[n, n′] = catch[n]

Let γ ∈ catch[n]. Since we have already proved that (18b) is valid at the (i+1)-th
iteration of the while loop, we have:

∃σ. G � σ : n
�
∧ γ = Γ(σ) ∪ {Dom(n)}

Then, G � σ : n′ follows by the rule:

n � ��� � n′

σ : n
� � σ : n′

and γ = Γ(σ) ∪ {Dom(n′)} immediately follows from µ(n′) = µ(n).

35

Lemma A.9. If the worklist-iteration algorithm terminates, then it computes
the least solution to the TP analysis. More formally, if we define:

TP = 〈in, out, trans, call, catch〉

then TP |=TP=(G), and TP is minimal w.r.t. the partial order (15), that is:

τ |= TP=(G) =⇒ ∀n ∈ N. in[n] ⊆ τin (n)

Proof. We start by showing the minimality of TP w.r.t. (15). Consider an arbitrary
solution τ |= TP=(G). We prove that:

in[n] ⊆ τin(n) (23a)

out[m, n] ⊆ τout(m,n) (23b)

call[n] ⊆ τcall (n) (23c)

trans[n] ⊆ τtrans(n) (23d)

catch[n] ⊆ τcatch(n) (23e)

is invariant for the while loop, for each n ∈ N and (m,n) ∈ E. Define in
0 as the value

of the array in at the entry of the while loop, and in
i as the value of the array after

the assignment at line 33 of the i-th iteration. Similarly for the arrays out, call, trans,
catch and for the the worklist W.

After the initialization for loops at lines 2-3 and 4-5, we have:

in
0[n] = ∅ ⊆ τin(n)

out
0[m, n] = ∅ ⊆ τout(m,n)
call

0[n] = ∅ ⊆ τcall (n)
trans

0[n] = ∅ ⊆ τtrans(n)
catch

0[n] = ∅ ⊆ τcatch(n)

for each n ∈ N and (m, n) ∈ E, so all equations (23) are trivially satisfied.
Next, we show that the inclusion relations are preserved after each iteration of the

while loop. Let i > 0, and assume the equations (23) are satisfied for all iterations
up to the i-th, for each n ∈ N and (m, n) ∈ E.

We first prove the invariants (23c)-(23e). At the (i+1)-th iteration of the while, a
node n is extracted from the worklist (lines 7-8), and the values call

i+1[n], trans
i+1[n]

and catch
i+1[n] can be updated, according to one of the following cases:

• case [call]: if `(n) = call, we have two cases, depending on m being privileged
or not. If ¬Priv(n), then, by the assignments at lines 16-18:

call
i+1[n] ← in

i[n]
⊆ τin(n)
= τcall (n)

trans
i+1[n] ← { γ ∈ in

i[n] | ∃m ∈ ρ(n). γ ∪ {Dom(m)} ∈ in
i[m] }

⊆ { γ ∈ τin(n) | ∃m ∈ ρ(n). γ ∪ {Dom(m)} ∈ τin (m) }
= τtrans(n)

catch
i+1[n] ← { γ ∈ in

i[n] | ∃m ∈ ξ1(n). γ ∪ {Dom(m)} ∈ catch
i[m] }

⊆ { γ ∈ τin(n) | ∃m ∈ ξ1(n). γ ∪ {Dom(m)} ∈ τcatch(m) }
= τcatch(n)

36

If Priv(n), the assignment at line 13 reads as:

call
i+1[n] ← {{Dom(n)}}

Indeed, the if statements at lines 32, 36 and 39 ensure that an assignment to
in[n] took place before n was inserted in the worklist, say at the j-th iteration
of the while, with j < i. Therefore, in

j [n] 6= ∅, and in
j [n] ⊆ in

i[n] because of
monotonicity. By hypothesis in

i[n] ⊆ τin(n), it follows τin (n) 6= ∅, and thus:

call
i+1[n] = {{Dom(n)}} = τcall (n)

By arguments similar to those used for the case ¬Priv(n), trans
i+1[n] ⊆ τtrans(n)

and catch
i+1[n] ⊆ τcatch (n).

• case [check]: if `(n) = check(P), by the assignments at lines 20-21:

trans
i+1[n] ← { γ ∈ in

i[n] | P ∈ Π(γ) }
⊆ { γ ∈ τin (n) | P ∈ Π(γ) }
= τtrans(n)

catch
i+1[n] ← { γ ∈ in

i[n] | P /∈ Π(γ) }
⊆ { γ ∈ τin (n) | P /∈ Π(γ) }
= τcatch(n)

Now we prove that (23b) is an invariant, as well, using what we have just established
above. Inside the switch statement at lines 23-31, out

i+1[n, n′] is updated for each
edge (n, n′) ∈ E, according to one of the following cases:

• case [entry]: if •−→ n′, then, by the assignment at line 25:

out
i+1[n, n′] ← {{Dom(n′)}} = τout(n, n′)

• case [call]: if n −→ n′, then, by the assignment at line 27:

out
i+1[n, n′] ← { γ ∪ {Dom(n′)} | γ ∈ call

i+1[n] }

⊆ { γ ∪ {Dom(n′)} | γ ∈ τcall (n) }

= τout(n, n′)

• case [transfer]: if n ��� � n′, then, by the assignment at line 29:

out
i+1[n, n′] ← trans

i+1[n] ⊆ τtrans(n) = τout(n, n′)

• case [catch]: if n � ����� n′, then, by the assignment at line 31:

out
i+1[n, n′] ← catch

i+1[n] ⊆ τcatch (n) = τout(n, n′)

To prove (23a) is an invariant, observe that, by the assignment at line 33, and using
the fact that τ |= TP =(G):

in
i+1[n′] ← in

i[n′] ∪ out
i+1[n, n′]

⊆ τin(n′) ∪ τout(n, n′)

= τin(n′)

So we conclude that, if we eventually obtain a solution, then is is minimal. Now, we
show that the arrays in, out, call, trans and catch satisfy the equations of Table 3. Note
first that, for each n ∈ N , by construction of the arrays in and out:

in[n] = �
(m,n)∈E

out[m, n]

37

is invariant in the worklist-iteration algorithm. This is ensured by the assignment
at line 33, because, for each (m, n) ∈ E, the value out[m, n] grows monotonically.
Therefore, the array in satisfies the equation for TPin .

To show that call satisfies the equation for TPcall , consider a call node n. Two
cases arise, depending on n being privileged or not.
If ¬Priv(n), consider first the case that in[n] is never assigned at line 33. As in[n] = ∅,
neither the assignment at line 34 nor those at lines 37 and 40 can take place: indeed,
the first assignment is always executed after a non-empty assignment to in[n], while
the others are prevented by the if statements at lines 36 and 39, respectively. Thus,
n is never inserted into W, and:

call[n] = ∅ = in[n]

If in[n] 6= ∅, let call[n] bet assigned for the last time at the i-th iteration of the while

loop (recall that we assume the algorithm to terminate). In this case, in[n] never
changes its value after the i-th iteration; otherwise, n would be inserted into W again
at line 34, and call[n] would be updated in a subsequent iteration. Therefore, by the
assignment at line 16:

call[n] = call
i[n] = in

i[n] = in[n]

If Priv(n), consider first the case that in[n] is never assigned inside the while loop.
By the same arguments used above, we have:

call[n] = ∅

Otherwise, if in[n] 6= ∅, then, by the assignment at line 13, we have:

call[n] = {{Dom(n)}}

and the value call[n] is no longer changed inside the while loop. This concludes the
proof that call satisfies the equation for TPcall .

To show that trans satisfies the equation for TPtrans , take a node n. There are
two cases, depending on n being a check or a call node. Consider first the case
`(n) = check(P). As seen above, if in[n] is never assigned, then:

trans[n] = ∅ = { γ ∈ in[n] | P ∈ Π(γ) }

Otherwise, if trans[n] is lastly updated at the i-th iteration of the while loop, then
in[n] cannot change its value after that iteration, and we have:

trans[n] = trans
i[n] = { γ ∈ in

i[n] | P ∈ Π(γ) } = { γ ∈ in[n] | P ∈ Π(γ) }

If `(n) = call, consider first the case that n is never inserted in the worklist, that is
in[n] = ∅. If ¬Priv(n), this implies:

trans[n] = ∅ = { γ ∈ in[n] | Trans(n, γ) }

Similarly, if Priv(n):

trans[n] = ∅ = { γ ∈ in[n] | Trans(n, {Dom(n)}) }

Otherwise, say n is extracted for the last time from W at the i-th iteration. Then, it
cannot happen that in[n] changes its value after that iteration (as seen above), nor it
can in[m] for any m ∈ ρ(n). The latter statement is proved by contradiction. Assume
that, for some m ∈ ρ(n) and j > i:

in[m] = in
j [m] ⊃ in

j−1[m]

38

Then, by the assignment at line 34, m ∈ W
j . Since W is empty at the exit of the

algorithm, there is an index h > j such that m = Head(Wh). Thus, m is extracted
from the worklist at the h-th iteration, and, after the for loop at lines 35-37, n ∈ W

h.
Since h > j > i, this contradicts our assumption that n is extracted for the last time
from W at the i-th iteration.

If ¬Priv(n), then, by the assignment at line 17 of the i-th iteration:

trans[n] = trans
i[n]

= { γ ∈ in
i[n] | ∃m ∈ ρ(n). γ ∪ {Dom(m)} ∈ in

i[m] }

= { γ ∈ in[n] | ∃m ∈ ρ(n). γ ∪ {Dom(m)} ∈ in[m] }

= { γ ∈ in[n] | Trans(n, γ) }

Similarly, if Priv(n), at the exit of the while:

trans[n] = { γ ∈ in[n] | Trans(n, {Dom(n)}) }

This concludes the proof that trans satisfies the equation for TPtrans .
To show that catch satisfies the equation for TPcatch , take a node n. There are

two cases, depending on n being a check or a call node. Consider first the case
`(n) = check(P). Just as above, if in[n] is never assigned:

catch[n] = ∅ = { γ ∈ in[n] | P /∈ Π(γ) }

Otherwise, if catch[n] is lastly updated at the i-th iteration of the while loop, then
in[n] cannot change its value after that iteration, and we have:

catch[n] = catch
i[n] = { γ ∈ in

i[n] | P /∈ Π(γ) } = { γ ∈ in[n] | P /∈ Π(γ) }

If `(n) = call, consider first the case that n is never inserted in the worklist, that is
in[n] = ∅. If ¬Priv(n), this implies:

catch[n] = ∅ = { γ ∈ in[n] | Catch(n, γ) }

Similarly, if Priv(n):

catch[n] = ∅ = { γ ∈ in[n] | Catch(n, {Dom(n)}) }

If in[n] 6= ∅, let n be extracted for the last time from W at the i-th iteration. Then,
it cannot happen that in[n] changes its value after that iteration (as seen above), nor
it can catch[m] for any m ∈ ξ1(n). The latter statement is proved by contradiction.
Assume that, for some m ∈ ξ1(n) and j > i:

catch[m] = catch
j [m] ⊃ old-catch

j [m] = catch
j−1[m]

Then, after the for loop at lines 38-40, n would be inserted into W again, i.e. n ∈ W
j .

Since j > i, this contradicts our assumption that n is extracted for the last time from
W at the i-th iteration.
If ¬Priv(n), then, by the assignment at line 18 of the i-th iteration:

catch[n] = catch
i[n]

= { γ ∈ in
i[n] | ∃m ∈ ξ1(n). γ ∪ {Dom(m)} ∈ catch

i[m] }

= { γ ∈ in[n] | ∃m ∈ ξ1(n). γ ∪ {Dom(m)} ∈ catch[m] }

= { γ ∈ in[n] | Catch(n, γ) }

Similarly, if Priv(n), at the exit of the while:

catch[n] = { γ ∈ in[n] | Catch(n, {Dom(n)}) }

39

We conclude the proof by showing that out satisfies the equation for TPout in Table 3.
Consider the switch statement at lines 23-31.

First, let •−→ n′. Since, by the assignment at line 1, nε is present in W when
the while loop is entered, and W is empty at the exit of the algorithm, it follows
that nε must be extracted from W during an iteration of the loop. According to the
assignment at line 25, we have:

out[nε, n
′] = {{Dom(n′)}}

For the remaining cases, notice that the assignments made to out at lines 27, 29 and 31
correspond literally to the cases in Table 3. The fact that call, trans and catch satisfy
the corresponding equations therefore suffices.

In the end, we have shown that, whenever the worklist-iteration algorithm termi-
nates, then it computes the least solution to the TP analysis.

Lemma A.10. The worklist-iteration algorithm always terminates.

Proof. The bounded for loops at lines 2-3 and 4-5 trivially terminate. The worklist
contains just the entry point nε when the while loop starts. Each iteration of the
loop removes one node n from the worklist, and may add a finite number of nodes by
the assignments at lines 34, 37 and 40. Consider the following cases:

• if `(n) = return or `(n) = check(P), then n can be inserted into W only at
line 34. Indeed, by definition of ξ1 and ρ, it follows:

n′ ∈ ξ1(n) ∨ n′ ∈ ρ(n) =⇒ n −→ µ(n′) =⇒ `(n) = call

so neither n can be appended to W at line 37 nor it can at line 40. Therefore,
n can be added to the worklist only if, for some (m, n) ∈ E:

∃γ ∈ out[m, n]. γ /∈ in[n]

which corresponds to the condition in the if statement at line 32. Thus, the new
value assigned to in[n] at line 33 strictly contains the old one. Since D is finite,
also its subsets are such, and the condition of the if statement will eventually
become false. Therefore, n cannot be inserted into W infinitely often.

• if `(n) = call, then n can be inserted into W both at lines 34, 37 and 40.
As above, line 34 cannot contribute infinitely often, so we are left to consider
lines 37 and 40 only.

Consider line 37 first. By contradiction, assume that it endlessly inserts n into
W: then, there is a return node n′ such that n′ ∈ ρ(n) and n′ appears in W an
infinite number of times. Contradiction: this cannot happen for return nodes.

Next, consider line 40. By contradiction, assume that it endlessly inserts n into
W: then, there is a node n′ such that n′ ∈ ξ1(n) and n′ appears in W infinitely
often. Moreover, the inequality:

catch
i[n′] ⊃ old-catch

i[n′] = catch
i−1[n′]

holds for an infinite number of iterations. SinceD is finite, this is a contradiction.

• finally, if n = nε, then n is never inserted in the worklist after line 1. Actually,
neither nε can be inserted into W by lines 37 or 40 (it is not a call node), nor it
can by line 34 (it is never a target node in edges).

Therefore, each node can be inserted into the worklist only a finite number of times:
this causes the worklist to be eventually exhausted, and the algorithm to terminate.

40

A.4 Computational Complexity

The bounded for loops at lines 2-3 and 4-5 are executed |N | and |E| times,
respectively. Each iteration of the while loop at lines 6-40 extracts a node
from the worklist, and may add new nodes to it because of the assignments at
lines 34, 37 and 40. The if statement at line 32 ensures that, for each node n,
the new value assigned to in[n] strictly contains the old one. Moreover, we can
safely modify our algorithm so that it no longer inserts a node n into W once
in[n] reaches its maximal value 2|DG|, where DG is the set of protection domains
actually occurring in G. Therefore, the body of while loop may be executed at
most |N | · 2|DG| times.

The most expensive instructions inside the loop are the assignments at
lines 17 and 18. Consider line 17 first. To compute trans[n], we have to check,
for each γ ∈ in[n] and m ∈ ρ(n), whether γ ∪ {Dom(m)} ∈ in[m] or not.
In the case that n has O(|N |) returns, and |in[m]| = O(2|DG|) for each m ∈ ρ(n),
this instruction requires O(|N | · 22 |DG|) comparisons. The linear factor can be
discarded if we assume that, for each call node n, the set

⋃

{ in[m] | m ∈ ρ(n) } is
maintained, e.g. inside the for loop at lines 35-37. Similar arguments apply for
line 18, so each iteration of the while loop can be executed in time proportional
to 22 |DG|. Therefore, the worst-case complexity of the algorithm is:

O(|N | · 23 |DG|)

However, this upper bound is too pessimistic indeed. The exponential factor
only occurs when the number of protection domains is proportional to the num-
ber of nodes, as the pathological case in Example 4 shows.

Actually, each protection domain corresponds to a grant entry in the policy
file that defines the authorization state of the program: thus, the number of
protection domains depends on the security policy associated with the program,
rather than on the program size.

Thus, the worst-case complexity of the algorithm can be rewritten as:

O(c · |N |) = O(|N |)

where the constant c depends on the number of protection domains in G. An
upper bound to the space complexity of the algorithm is:

O(max{|N |, |E|} · 2|DG|) = O(max{|N |, |E|})

where the exponential factor has been discarded by the arguments above.

Example 4. For any k > 0, let Dk = {D0, . . . , Dk}, and let Gk be the CFG:

N = {m1, . . . , mk, n1, . . . , nk}
E = {mi � ni | i ∈ 1..k } ∪ {mi � mi+1 | i ∈ 1..k − 1 } ∪ {•−→ m1}

Priv(n) = false for each n ∈ N
Dom(mi) = D0 for each i ∈ 1..k
Dom(ni) = Di for each i ∈ 1..k

where `(mi) = `(ni) = call for i ∈ 1..k, and n � m abbreviates n −→ m and
m −→ n. As an example, the CFG G3 is depicted in Fig. 4.

For each i ∈ 1..k and context γ ⊆ Dk containing D0, we have:

∃σ. Gk B σ : mi ∧ γ = Γ(σ : mi)

41

n2: call n3: call

m3: callm2: callm1: call

D0

n1: call

D0 D0

D1 D2 D3

Figure 4: CFG for Example 4 (k = 3).

Let τ |= TP=(Gk ,Perm) for an arbitrary security policy Perm. By theorem A.5,
it follows that γ ∈ τin (mi). Then, |τin (mi)| = 2|Dk|−1 = 2k = 2|N |/2.

A.5 Program transformations

Lemma A.11. Let ṅ be inlineable in G. Then, for each state σ,

ΓĠ(inl ṅ(σ)) = Inl ṅ(ΓG(σ))

Proof. Let γ = ΓG(σ), σ̇ = inl ṅ(σ) and γ̇ = ΓĠ(σ̇). We proceed by induction on
the size (number of nodes) of σ. The base case is σ = []. Then, σ̇ = [] by rule inl1 ,
γ = γ̇ = ∅, and ∅ = Inl ṅ(∅) by rule Inl1 .

For the inductive case, case analysis on the rule used to deduce σ̇ = inl ṅ(σ) gives:

• case [inl2]: if σ = σ′ : n′, top(σ′) 6= ṅ and σ̇′ = inl ṅ(σ′), then inl ṅ(σ) = σ̇′ : n′.
Moreover, by condition (1b), it follows that ṅ 6−→ µ(n′). Let γ′ = ΓG(σ′), and
γ̇′ = ΓĠ(σ̇′). There are two subcases, according n′ being privileged or not.

If PrivG(n′), then γ = {DomG(n′)}. By definition 5.4, we have that PrivĠ(n′)
and DomĠ(n′) = DomG(n′). Since ṅ 6−→ µ(n′), by rule Inl3 it follows that:

Inl ṅ(γ) = Inl ṅ({DomG(n′)}) = {DomG(n′)} = {DomĠ(n′)} = γ̇

Otherwise, if ¬PrivG(n′), then:

Inl ṅ(γ) = Inl ṅ(γ′ ∪ {DomG(n′)}) as ¬PrivG(n′)

= Inl ṅ(γ′) ∪ inl ṅ({DomG(n′)}) by rule Inl2

= γ̇′ ∪ Inl ṅ({DomG(n′)}) by the ind. hyp.

= γ̇′ ∪ Inl ṅ({DomĠ(n′)}) by def. 5.4

= γ̇′ ∪ {DomĠ(n′)} by rule Inl3

= γ̇ as ¬PrivĠ(n′)

• case [inl3]: if σ = σ′ : ṅ : n′, then inl ṅ(σ) = σ̇′ : n′, where σ̇′ = inl ṅ(σ′).
Note that, by lemma A.1 and condition (1a), ṅ −→ µ(n′). Let γ′ = ΓG(σ′) and
γ̇′ = ΓĠ(σ̇′). We have to consider the following cases.

If PrivG(n′), by definition 5.4, it follows that PrivĠ(n′) and DomĠ(n′) = DomG(ṅ).
Then, γ = {DomG(n′)} and γ̇ = {DomĠ(n′)}, and, by rule Inl4 :

Inl ṅ(γ) = Inl ṅ({DomG(n′)}) = {DomG(ṅ)} = {DomĠ(n′)} = γ̇

42

Otherwise, if ¬PrivG(n′), there are two further subcases, according ṅ being
privileged or not.

If PrivG(ṅ), then PrivĠ(n′) follows by definition 5.4, and:

Inl ṅ(γ) = Inl ṅ({DomG(ṅ)} ∪ {DomG(n′)}) as PrivG(ṅ), ¬PrivG(n′)

= Inl ṅ({DomG(ṅ)}) ∪ Inl ṅ({DomG(n′)}) by rule Inl2

= {DomG(ṅ)} ∪ {DomG(ṅ)} by rules Inl3 and Inl4

= {DomĠ(n′)} by def. 5.4

= γ̇ as PrivĠ(n′)

Otherwise, if ¬PrivG(ṅ), then:

Inl ṅ(γ) = Inl ṅ(γ′ ∪ {DomG(ṅ)} ∪ {DomG(n′)}) as ¬PrivG(ṅ), ¬PrivG(n′)

= Inl ṅ(γ′) ∪ Inl ṅ({DomG(ṅ)}) ∪ Inl ṅ({DomG(n′)}) by rule Inl2

= Inl ṅ(γ′) ∪ {DomG(ṅ)} by rule Inl4

= γ̇′ ∪ {DomG(ṅ)} by the ind. hyp.

= γ̇′ ∪ {DomĠ(n′)} by def. 5.4

= γ̇ as ¬PrivĠ(n′)

Theorem A.12. Let ṅ be inlineable in G, and Ġ be the ṅ-inlined version of
G. Then, each trace of G corresponds to a trace of Ġ, i.e.:

〈σ0, x0〉 B · · · B 〈σk, xk〉 ⇐⇒ 〈σ̇0, x0〉 B
ṅ
inl · · · B

ṅ
inl 〈σ̇k , xk〉

where σ0 = [], x0 = false , and σ̇i = inl ṅ(σi) for each i ∈ 0..k.

Proof. Consider the forward implication first. We proceed by case analysis on the rule
used to deduce 〈σi, xi〉 � 〈σi+1, xi+1〉. We omit a detailed discussion of the cases � fail

and � catch , because they are treated similarly to the cases � fail and � ret , respectively.

• case [call]:
`(n) = call n −→ n′

σ : n � σ : n : n′

Here σi = σ : n and σi+1 = σ : n : n′. Let σ′ : n = inl ṅ(σ : n) = σ̇i.

If n 6= ṅ, then rule � icall1 yields:

`(n) = call n −→ n′ n 6= ṅ

σ′ : n � ṅ
inl σ′ : n : n′

To show that σ̇i+i = σ′ : n : n′ = inl ṅ(σ : n : n′) = inl ṅ(σi+1), it suffices to
note that rule inl2 instances to:

inl ṅ(σ : n) = σ′ : n top(σ : n) 6= ṅ

inl ṅ(σ : n : n′) = σ′ : n : n′

Otherwise, if n = ṅ, then rules � icall2 and inl3 give:

`(ṅ) = call ṅ −→ n′

σ′ : ṅ � ṅ
inl σ′ : n′

inl ṅ(σ) = σ̇

inl ṅ(σ : ṅ : n′) = σ̇ : n′

To prove that σ′ = σ̇, assume first that σ = []. Then, σ′ : ṅ = inl ṅ([ṅ]) = [ṅ]
implies that σ′ = [], and σ̇ = inl ṅ([]) = [],

43

Second, assume σ = σ′′ : n′′. Condition (1a), ensures that n′′ 6= ṅ, because,
otherwise, it would be ṅ −→ µ(ṅ). Then, rule inl2 gives:

inl ṅ(σ′′ : n′′) = σ̇ top(σ′′ : n′′) 6= ṅ

inl ṅ(σ′′ : n′′ : ṅ) = σ̇ : ṅ

On the other hand, it is also σ′ : ṅ = inl ṅ(σ : ṅ). Therefore, σ′ = σ̇.

• case [ret]:
`(n′) = return n ����� m

σ : n : n′ � σ : m

Let σ′ : n′ = inl ṅ(σ : n : n′). We have to consider two subcases.

If ṅ 6−→ µ(n′), let σ̇ : n = inl ṅ(σ : n). Then, lemma A.1 ensures that n 6= ṅ,
hence rules inl2 and � iret1 give:

inl ṅ(σ : n) = σ̇ : n top(σ : n) 6= ṅ

inl ṅ(σ : n : n′) = σ̇ : n : n′

`(n′) = return n ����� m ṅ 6−→ µ(n′)

σ̇ : n : n′ � ṅ
inl σ̇ : m

Then, σ̇ : m = inl ṅ(σ : m) immediately follows by the fact that σ̇ : n = inl ṅ(σ : n).

Otherwise, if ṅ −→ µ(n′), let σ̇ = inl ṅ(σ). Lemma A.1 and condition (1b)
ensure that n = ṅ. Then, rules inl3 and � iret2 give:

inl ṅ(σ) = σ̇

inl ṅ(σ : ṅ : n′) = σ̇ : n′

`(n′) = return ṅ � ��� m ṅ −→ µ(n′)

σ̇ : n′ � ṅ
inl σ̇ : m

To prove σ̇ : m = inl ṅ(σ : m), observe that, since top(σ) 6= ṅ is ensured by
condition (1a), then rule inl2 instances to:

inl ṅ(σ) = σ̇ top(σ) 6= ṅ

inl ṅ(σ : m) = σ̇ : m

• case [pass]:
`(n) = check(P) σ : n ` P n ��� � m

σ : n � σ : m

Let σ̇ : n = inl ṅ(σ : n), and let τ |= TP =(G, Perm). By theorem A.5 and
constraint 5, there exist a context γ ∈ τin (n) such that γ = ΓG(σ : n). Then:

σ : n `G,Perm P ⇐⇒ P ∈ Π(ΓG(σ : n)) by theorem A.4

⇐⇒ P ∈ Π(Inl ṅ(ΓG(σ : n))) by condition (1d)

⇐⇒ P ∈ Π(ΓĠ(inl ṅ(σ : n))) by lemma A.11

⇐⇒ P ∈ Π(ΓĠ(σ̇ : n)) by def. σ̇ : n

⇐⇒ σ̇ : n `Ġ,Perm P by theorem A.4

where σ : n `G,Perm P emphasises the fact that the relation ` depends on a
given CFG G and security policy Perm. Then, rule � check gives:

`(n) = check(P) σ̇ : n ` P n ��� � m

σ̇ : n � ṅ
inl σ̇ : m

and σ̇ : m = inl ṅ(σ : m) immediately follows by the fact that σ̇ : n = inl ṅ(σ : n).

44

• case [throw]:
n′ 6 � ��� �

σ : n′
� � σ

�

If ṅ 6−→ µ(n′), let σ̇ = inl ṅ(σ). The condition (1a) ensures that top(σ) 6= ṅ.
Then, rules inl2 and � icatch1 give:

inl ṅ(σ) = σ̇ top(σ) 6= ṅ

inl ṅ(σ : n′) = σ̇ : n′

n′ 6 � ����� ṅ 6−→ µ(n′)

σ̇ : n′
� � ṅ

inl σ̇
�

Otherwise, if ṅ −→ µ(n′), then by condition (1b) and lemma A.1 it follows that
σ = σ′ : ṅ for some σ′. Let σ̇ = inl ṅ(σ′). Then, rules inl3 and � icatch2 give:

inl ṅ(σ′) = σ̇

inl ṅ(σ′ : ṅ : n′) = σ̇ : n′

n′ 6 ����� � ṅ −→ µ(n′)

σ̇ : n′
� � ṅ

inl σ̇ : ṅ
�

To prove that σ̇ : ṅ = inl ṅ(σ), observe that, since top(σ′) 6= ṅ is ensured by
condition (1a), then rule inl2 instances to:

inl ṅ(σ′) = σ̇ top(σ′) 6= ṅ

inl ṅ(σ′ : ṅ) = σ̇ : ṅ

For the backward implication, we proceed by case analysis on the rule used to
deduce 〈σ̇i, xi〉 � 〈σ̇i+1, xi+1〉. The function inl is bijective: given an inlined state
σ̇, the original state can be recovered by inserting ṅ before each n′ occurring in σ̇
whenever ṅ −→ µ(n′).

• case [icall1]:
`(n) = call n −→ n′ n 6= ṅ

σ′ : n � ṅ
inl σ′ : n : n′

Since inl is bijective, let σ : n be such that inl ṅ(σ : n) = σ′ : n. Then:

`(n) = call n −→ n′

σ : n � σ : n : n′

inl ṅ(σ : n) = σ′ : n top(σ : n) 6= ṅ

inl ṅ(σ : n : n′) = σ′ : n : n′

follow by rules � call and inl2 , respectively.

• case [icall2]:
`(ṅ) = call ṅ −→ n′

σ′ : ṅ � ṅ
inl σ′ : n′

Let σ : ṅ be such that inl ṅ(σ : ṅ) = σ′ : ṅ. Then:

`(ṅ) = call ṅ −→ n′

σ : ṅ � σ : ṅ : n′

inl ṅ(σ) = σ′

inl ṅ(σ : ṅ : n′) = σ′ : n′

follow by rules � call and inl3 , respectively.

• case [iret1]:
`(n′) = return n � ��� m ṅ 6−→ µ(n′)

σ̇ : n : n′ � ṅ
inl σ̇ : m

Since ṅ 6−→ µ(n′), by condition (1a) it follows that n 6= ṅ. So, let σ : n : n′ be
such that inl ṅ(σ : n : n′) = σ̇ : n : n′. Then:

`(n′) = return n ����� m

σ : n : n′ � σ : m

inl ṅ(σ : n) = σ̇ : n top(σ : n) 6= ṅ

inl ṅ(σ : n : n′) = σ̇ : n : n′

follow by rules � ret and inl2 , respectively, while σ̇ : m = inl ṅ(σ : m) immediately
follows by the fact that σ̇ : n = inl ṅ(σ : n).

45

• case [iret2]:
`(n′) = return ṅ � ��� m ṅ −→ µ(n′)

σ̇ : n′ � ṅ
inl σ̇ : m

Let σ : n′ be such that inl ṅ(σ : n′) = σ̇ : n′. Since ṅ −→ µ(n′), by lemma A.1
and condition (1b) it follows that top(σ) = ṅ, i.e. σ = σ′ : ṅ for some σ′. Then:

`(n′) = return ṅ � ��� m

σ′ : ṅ : n′ � σ′ : m

inl ṅ(σ) = σ̇

inl ṅ(σ : ṅ : n′) = σ̇ : n′

follow by rules � ret and inl3 , respectively, while σ̇ : m = inl ṅ(σ : m) immediately
follows by the fact that σ̇ = inl ṅ(σ).

• case [ithrow1]:
n′ 6 ����� � ṅ 6−→ µ(n′)

σ̇ : n′
� � ṅ

inl σ̇
�

Let σ : n′ be such that inl ṅ(σ : n′) = σ̇ : n′.

n′ 6 �������
σ : n′

� � σ
�

inl ṅ(σ) = σ̇ top(σ) 6= ṅ

inl ṅ(σ : n′) = σ̇ : n′

follow by rules � throw and inl2 , respectively.

• case [ithrow2]:
n′ 6 ������� ṅ −→ µ(n′)

σ̇ : n′
� � ṅ

inl σ̇ : ṅ
�

Let σ : n′ be such that inl ṅ(σ : n′) = σ̇ : n′. Since ṅ −→ µ(n′), by lemma A.1
and condition (1b) there exists a σ′ such that σ = σ′ : ṅ. Then:

n′ 6 � ��� �
σ : n′

� � σ
�

inl ṅ(σ′) = σ̇

inl ṅ(σ′ : ṅ : n′) = σ̇ : n′

follow by rules � throw and inl3 , respectively, while σ̇ : ṅ = inl ṅ(σ) immediately
follows by the fact that inl ṅ(σ′) = σ̇.

46

B Java code for the e-commerce example

public class Browser {

public String[] getPrefs(String filename) {

try {

InputStream in = new FileInputStream(filename);

... // read prefs from in

} catch (Exception ex) {

Socket s = new Socket(...);

InputStream in = s.getInputStream();

... // read prefs from in

}

return prefs;

}

public void changePrefs(String filename) {

try {

InputStream in = new FileInputStream(filename);

... // read prefs from in, then asks the user for the new prefs

OutputStream out = new FileOutputStream(filename);

... // write prefs to out

} catch (Exception ex) {

Socket s = new Socket(...);

InputStream in = s.getInputStream();

... // read prefs from in, then asks the user for the new prefs

OutputStream out = s.getOutputStream();

... // write prefs to out

}

}

}

Figure 5: Java program for the client browser.

47

public class Bank {

private int balance;

...

public boolean canpay(int account, int amount) {

AccessController.checkPermission(canpay);

Object res = AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

return new Boolean(readBalance(account) > amount);

}

});

return ((Boolean) res).booleanValue();

}

public boolean debit(int account, int amount) {

AccessController.checkPermission(debit);

boolean res = false;

if (canpay(account, amount)) {

AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

writeBalance(account, readBalance(account) - amount);

res = true;

return null;

}

});

}

return res;

}

public boolean transfer(int srcAccount, int dstAccount, int amount) {

AccessController.checkPermission(transfer);

boolean res = debit(srcAccount, amount);

if (res) credit(dstAccount, amount);

return res;

}

public void credit(int account, int amount) {

AccessController.checkPermission(credit);

AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

writeBalance(account, readBalance(account) + amount);

return null;

}

});

}

}

Figure 6: Java program for the bank server.

48

W in[n] (= call[n]) trans[n] catch[n]
0,2 T
2,4 U
4 TB,UB
13 TBS,UBS TBS UBS
14 TBS
4 TB,UB TB UB

5,6 TB
6,11 UB
11,15 TBS TBS
15,12 UBS UBS
12,16 TBS
16,7 UBS
7 TB,UB

1,3 T
3,8 U
8 TB,UB TB UB

9,10 UB UB
10 TB,UB
1,3 T T
3 U U

Table 6: Iterations of the worklist algorithm (client side).

W in[n] call[n] trans[n] catch[n]
0,2 C C
2,4 U U
4 CB,UB CB UB
5 CB B
20 BS BS
21 BS
5 CB B CB
6 CB

0,2 C C C
2,1 U U U
1 C C
12 CB CB
13 CB CB
7 CB CB
8 CB CB CB

9,11 CB B CB
11,10 CB
10,13 CB B
13,22 CB CB CB

22,14,15 BS BS
14,15,23 CB CB
15,23,16 CB
23,16,1,3 BS
16,1,3,10 CB CB
1,3,10,17 C C C
3,10,17 U U U
10,17 CB B CB
17 CB B CB
18 CB B CB
19 CB
14 CB CB CB

Table 7: Iterations of the worklist algorithm (server side).

49

