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Abstract This article proposes an innovative biometric 
technique based on the idea of authenticating a person on 
a mobile device by gesture recognition. To accomplish this 
aim, a user is prompted to be recognized by a gesture he/she 
performs moving his/her hand while holding a mobile device 
with an accelerometer embedded. As users are not able to 
repeat a gesture exactly in the air, an algorithm based on 
sequence alignment is developed to correct slight differences 
between repetitions of the same gesture. The robustness of 
this biometric technique has been studied within 2 different 
tests analyzing a database of 100 users with real falsifications. 
Equal Error Rates of 2.01 and 4.82% have been obtained in 
a zero-effort and an active impostor attack, respectively. A 
permanence evaluation is also presented from the analysis of 
the repetition of the gestures of 25 users in 10 sessions over 
a month. Furthermore, two different gesture databases have 
been developed: one made up of 100 genuine identifying 3-D 
hand gestures and 3 impostors trying to falsify each of them 
and another with 25 volunteers repeating their identifying 3-
D hand gesture in 10 sessions over a month. These databases 
are the most extensive in published studies, to the best of our 
knowledge. 
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1 Introduction 

Identifying and authenticating people is one of the oldest 
problems of humanity. Knowing whether a person is who 
he/she claims to be is one of the most important issues 
involved in security. This question has been solved over time 
in different ways, from first-century seals to middle-age pass
words or manuscript signatures. In the last century, a lot of 
research has been carried out, and a huge improvement in rec
ognition techniques has been achieved. In this context, bio
metrics appeared, becoming today one of the most important 
methods of recognizing people. 

Biometric techniques are usually divided into two groups 
depending on the characteristics used to identify a person, 
namely physical and behavioral [15]. Physical biometric 
techniques are based on a physical characteristic that a user 
possesses and is maintained over time (iris [4], fingerprint 
[2], hand geometry [17], face [29]), whereas behavioral tech
niques are related to something that the user is able to repeat 
in an identifying unique manner (handwriting signature [41], 
keystroke [33], gait [20]). Some methods may be considered 
as a combination of physical and behavioral techniques (e.g., 
voice is based on the shape and size of the lips, nasal cavities 
or mouth as well as the emotional state and the words used 
in the utterance [36]). 

Most of these biometric techniques have been imple
mented and are already in use, improving the security of dif
ferent situations. One of the next steps in the security industry 
is to adapt or create new biometric techniques valid to mobile 
devices. Users are currently able to perform numerous opera
tions from a mobile device. Switching on the device, making 



use of special functions, phoning reserved numbers, read
ing mail and accessing some Internet applications such as 
e-commerce, electronic voting and e-learning are only a few 
examples of possible cases where the mobile device would 
take advantage of biometrics in spite of the use of passwords 
with all of their limitations. Some lines of research connected 
to the idea of authenticating the user in a mobile device using 
biometrics are [3,5,22,34,37]. 

In this article, we propose to authenticate people within a 
biometric technique consisting of recognizing a person per
forming a 3-D gesture with one of his/her hands while holding 
a mobile device that integrates an accelerometer. Within this 
embedded sensor, the acceleration of the movement of the 
gesture in the 3 axes in time is measured. According to this, 
each person has an associated 3-D identifying hand gesture 
(as an in-air signature), created by him/her, so when a gesture 
is identified, so does the person behind it. 

User authentication involves two procedures: user enroll
ment and verification. The former requires the user to per
form several times his/her identifying 3-D hand gesture. A 
biometric gestural template is created as a result of the previ
ous acquisitions, according to his/her identity. The user must 
repeat his/her 3-D gesture prior to entering the system in 
subsequent accesses. This repetition will be compared with 
the template in order to decide whether the user is the one 
registered previously, assuming that no one else is able to 
repeat his/her identifying gesture with high accuracy. This 
assumption is discussed in subsequent sections. 

This proposed 3-D hand gesture technique is similar to a 
traditional handwritten signature [7], as it is based on "some
thing that the user knows" (the aspect of the signature) and 
"something the user knows how to do" (the way the signa
ture is "written"). In spite of the similarities, the approach 
proposed in this article provides some advantages to the tra
ditional one, as it will be much harder for an impostor to copy 
a 3-D hand gesture rather than a signature written on a 2-D 
surface, where references are easily obtained [10]. Besides, 
traditional signature techniques need a special device to write 
the signatures, store the information and analyze it, typically 
a touch screen or a digital-based pen. This approach pro
poses the authentication of the user directly on his/her mobile 
device (phone, PDA...) avoiding the use of an additional wid
get, so this recognition technique will be very convenient for 
users, as they will not need to worry about other gadgets but 
their own mobile device. 

The only requirement for the mobile device to be valid for 
this technique is that it must include a 3-axis accelerometer 
embedded in it, so that the movement involved in the gesture 
can be registered. According to this, when the hand gesture is 
made, three signals are provided by the accelerometer, corre
sponding to the variation in the hand gesture speed along the 
three axis of the space. This demand is not a problem since 
leading mobile phone manufacturers are marketing phones 

capable of carrying out this task with an ever-increasing sales 
volume. It is expected that in several years time, most mobile 
phones will integrate an accelerometer making this proposed 
biometric technique accessible to most of the population. For 
example, Apple sold more than 4 million iPhone mobiles, 
incorporating an embedded an accelerometer, just in the first 
3monthsof2009[35]. 

Accelerometers have been already used in biometrics, as 
in gait applications, embedded in mobile phones to detect the 
movement of people when walking [13] or placed on their 
wrist to identify how they swing their arms when walking [8]. 
It is also very common to find accelerometer applications to 
recognize gestures [12,23], an area in which a lot of research 
has been carried out [11,24,25]. However, the vision of this 
article is absolutely different. Most of these works have tried 
to recognize some gestures made by different people in order 
to identify the gesture not the person [18,19]. 

In this article, we consider a different approach, as the 
goal is to recognize people through gestures instead of rec
ognizing gestures made by different people. The first exper
iments on this approach were introduced in [26,30] where 
the authors present an initial study about the feasibility of 
this kind of authentication with databases of 22 and 12 users, 
respectively. 

Moreover, a crucial point of this approach should con
template that other people may try to forge someone else 
identifying gesture. Therefore, this technique should be able 
to distinguish those gestures belonging to the authentic per
son and those, similar but different, imitation attempts. Initial 
work has been carried out as well in terms of real falsifica
tion attempts in [9,21], where a database of 34 users was 
considered in the former and two databases of 10 users in the 
latter. 

In this article, a complete evaluation of this biometric 
technique is presented by analyzing a much more extensive 
database (100 users) including real attempts at falsification 
carried out by the study of video records of authentic peo
ple making their identifying gesture in order to assure the 
feasibility of the gesture authentication technique in the real 
world. 

This article is divided into the following sections: Sect. 2 
presents the requirements any biometric technique should 
satisfy and to what extent our technique fulfills them. Next, 
Sect. 3 explains the mathematical method used to analyze the 
signals involved in the technique. Moreover, Sect. 4 provides 
an interpretation of how the algorithm works depending on 
the configuration of the parameters involved. The feasibility 
of this technique is evaluated with two different databases of 
3-D hand gestures, as described in Sect. 5. Different exper
iments have been carried out, obtaining the results detailed 
in Sect. 6, including the evaluation of a "zero-effort attack" 
and an "active impostor attack" where the forged trials con
sidered are original gestures of other users or real attempts 



at falsification, respectively. Finally, conclusions and future 
work are specified in Sect. 7. 

2 Technique feasibility 

A biometric technique should fulfill the following require
ments to prove its robustness and be considered as a valid 
method of identifying people [14]: 

- Universality: "Everybody should possess the necessary 
characteristic to be identified. The technique proposed in 
this paper is based on the movement of the hand, so the 
method is prepared to identify any person able to carry 
out a gesture involving moving an arm or a hand." 

- Collectively: "The biometric pattern should be obtained 
in a non-intrusive manner". In this case, biometric data 
are effortlessly acquired, as the device used to make the 
3-D hand gestures incorporates an accelerometer able to 
acquire all the information necessary to generate the tem
plate. 

- Acceptability: " Users should accept this method, feeling 
secure and comfortable when the biometric characteris
tics are extracted'. In this study, 3-D hand gestures have 
been made by the movement of a hand holding an iPhone 
with an embedded accelerometer. The users showed no 
resistance nor difficulty in handling the device. Further
more, data acquisition and processings are absolutely 
transparent to the user. 

- Circumvention: "It should not be possible to forge the 
behavioral biometric characteristic". A twofold analysis 
of the precautions against the forgery of the technique has 
been carried out: Firstly, a zero-effort attack has been sim
ulated where users try to forge the signature of someone 
else by performing his/her own identifying 3-D hand ges
ture, resulting in a Equal Error Rate presented in Sect. 6.1. 
Secondly, extensive research into fraud detection has been 
analyzed with real falsification trials from the study of the 
records of people making their original 3-D hand gesture 
in front of a video camera. Results of this experiment are 
shown in Sect. 6.2. 

- Uniqueness: "The identifying characteristic should be 
distinctive among different individuals". The uniqueness 
between different gestures is derived as well from the 
zero-effort test in Sect. 6.1 since the similarities between 
different gestures are compared. 

- Permanence: "The feature should remain invariable or 
with little variation over time". This is a crucial require
ment for this technique; in fact, users have been seen as 
being afraid of not being able to repeat a hand gesture 
over time with enough quality, even though they are. In 
Sect. 6.3, results of permanence evaluation are presented, 
proving that the variation in the 3-D hand gestures in time 
is low enough to make this technique work properly. 

- Performance: "A biometric technique fulfills the perfor
mance characteristic if it is robust, accurate and speedy 
enough". In Sect. 6.4, a comparison between permanence 
and circumvention tests is made to study robustness and 
accuracy. Finally, in Sect. 6.5, an analysis of enrollment 
and verification duration in a personal computer and in 
a mobile device is carried out to attain the speed of the 
technique. 

3 Authentication procedure 

The overall authentication process takes place in two phases. 
Firstly, the user should enroll in the system by making a 
gesture in the air with the hand holding the accelerometer-
embedded device. This 3-D hand gesture should be repeat-
able by the user, as it is used as his/her identifying template. 
Lately, in the access phase, the user should repeat the 3-D 
gesture made in the former step to gain right of entry to the 
system. 

This section describes also the mathematical algorithm 
implemented in order to compare the different repetitions of 
gestures and quantify their differences as a means of deciding 
whether they have been made by the same person or not. The 
best results have been obtained applying the algorithm pre
sented in this Section, which is based on sequence alignment 
[6] and similar to Dynamic Time Warping (DTW) [1]. This 
algorithm consists of aligning signals and the quantifying the 
differences between them using Euclidean distance. All the 
implementation concepts upon which this research is sup
ported are explained in two sections, according to the two 
subsuming steps of the authentication process: enrollment 
and verification. 

3.1 Enrollment phase 

In this initial phase, an unknown user attempting to be regis
tered in the system has to think about a 3-D gesture, repeat-
able by him/her but not so easy that another person glancing 
at him could reproduce it without any effort. 

Actually, the device that integrates an accelerometer offers 
the following instruction to the users trying to be enrolled in 
the system: 

"To be enrolled in this device, take some minutes to think 
about a 3-D hand gesture you desire to be identified by, con
sidering these three factors: 

- You should be able to remember and repeat the gesture 
easily. An easy to remember or natural gesture is highly 
recommended. 

- You should choose a complex enough gesture that does 
not permit anyone reproduce it immediately. 

- It should last less than 6s." 



The chosen and distinctive hand gesture, which the user 
will use to be identified with, should be repeated three times, 
as precisely as possible, by holding a device including an 
accelerometer (i.e., an iPhone). 

The system collects the variation in the speed of the device 
on each axis of the space when the hand gesture is being 
made. Thereafter, a data processing is carried out, obtaining 
some parameters required to create the biometric template 
used for authentication. 

A mathematical detailed explanation of each step required 
to accomplish this phase is presented in the following 
sections. 

3.1.1 Data acquisition 

Each user t/¿ makes a gesture G¿ that produces three different 
signals (Gf, G] and G\) corresponding to the accelerations 
of each gesture on each axis of the space. Each repetition j 
of the same gesture G¿ performed by the user t/¿ is defined 
as Gij. Consequently, as three repetitions of the gesture 
are needed in the enrollment of a user t/¿, nine signals are 
obtained: Gf,, Gj ,, G?•, j = 1, 2, 3. 

Figure 1 shows two repetitions of a gesture G¿ by the user 
Ui on each axis. It is remarkable that the shape of the sig
nals on each axis is very similar, but they are not completely 
aligned. Furthermore, there are some parts of one signal nar
rower in contrast to the other, due to slight changes in speed 
when the user reproduces the movement. The preprocessing 
of the signals attempts to correct these differences. 

The biometric technique has been implemented with a 
sampling rate of 50 Hz, a frequency precise enough to obtain 
representative signals of a hand movement in the air [38]. 
As was explained before, gestures should last less than 6 s, 
so the accelerometer generates a signal on each axis X, Y, 
Z of 300 points. If the gesture lasts less than 6 s, the rest of 
the points of the signal will be filled with 0, whereas if it 
is longer, the signal will be truncated. Signals of each axis 
will be concatenated into a single vector, becoming a signal 
of 900 points, which is the one stored in the device for each 
gesture. Note that in Figs. 1, 2, 3 and 4, only the significant 
part of the signals appears, as the part filled with zeros has 
been truncated to improve its visualization. 

Therefore, the biometric template of each user consists of 
three signals of 900 points corresponding to the accelerations 
of each repetition of the gesture and a parameter obtained 
from the analysis of these three signals, which is explained 
below. 

3.1.2 Signal processing 

When a user repeats his/her gesture, some speed variations 
in the signals may appear as some parts of the same gestures 
may be made slightly faster or slower. This error is compen-
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Fig. 1 Example of two repetitions of the same 3-D hand gesture made 
by the same user 

sated by an alignment processing which corrects those little 
variations, and therefore, when two instances of the same 
gesture by the same user are compared, the alignment of the 
signals will result in two quite similar signals whereas two 
different instances of a gesture will result in very different 
signals in spite of the alignment process. 

In accordance with this, two acceleration signals from two 
gesture repetitions are analyzed through the following steps: 

- Global sequence alignment algorithm. 
- Optional interpolation of aligned signals. 
- Quantification of differences of the aligned signals. 

This whole process is carried out for each axis separately, 
so three signal processings are necessary for each pair of 
samples of gestures. As was explained in Sect. 3.1, the user 
should make three gestures in the enrollment phase. Conse
quently, as these three gestures will be processed in pairs, 
nine signal processings would be necessary at enrollment 
phase. 

The following subsections describe in detail each step 
of the signal processing for two signals of two different 
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Fig. 2 Example of the alignment of two repetitions of the same 3-D 
hand gesture 

repetitions of the same gesture made on the same axis (i.e., 

G ^ a n d G ^ ) . 

1. Global sequence alignment algorithm 
The soft adaptation algorithm implemented in this work 
is a global sequence alignment algorithm, similar to 
Dynamic Time Warping, used to obtain the best align
ment result based on a defined metric. 
As has been previously introduced, the global sequence 
alignment developed tries to correct little deviations 
between very similar repetitions of gestures. This algo
rithm provides by itself a metric to compare two signals 
depending on the optimized value of the score presented 
in Eq. 1 and explained below. However, better results 
have been obtained when applying this algorithm only to 
align the signals and quantifying the differences between 
these aligned signals using other techniques presented 
later. 

The proposed algorithm to find the best global align
ment between two sequences A = {a\, Ü2, • • •, am} and 
B = {b\, b2, • • • ,bm} of equal length starts by the cre-
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Fig. 3 Example of preprocessing two repetitions of the same 3-D hand 
gesture made by the same user 

ation of a matrix of scores Mmyan. The objective of the 
algorithm is to find the optimal path from M i j to Mm^m 

that maximizes the score in Mm^m. This matrix of scores 
is filled according to the expression defined in Eq. 1: 

Mi j = max 
Mij-i+h 
Mi-hj-i+& 
Mi-hj +h 

(1) 

where 5 is a fuzzy decision function that represents the 
similarity between two points in each sequence: 

e 2a2 (2) 

where ¡x = a¡-i and x = bi-\ are the values of the pre
vious points in base to whom the score of the new points 
M(i, j) is calculated. 
According to the expression selected in Eq. 1 to calculate 
M(i, j), three possible movements are defined. A hori
zontal, diagonal, or vertical movement is made whenever 
the first, second, or third expression is selected. 
Once matrix M is filled, a backtracking algorithm is 
carried out to obtain the optimal path from M\^ to 
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Fig. 4 Example of preprocessing a pair of samples of two different 
3-D hand gestures corresponding to different users 

Mm_i !m_i. This algorithm includes a zero value between 
a; and flj+i (or ¿?;- and bj+i) whenever a horizontal 
(or vertical) movement in Matrix M(i, j) is required to 
obtain the optimal path. 
Consequently, from this algorithm, two sequences A' and 
B' are obtained, made up of the initial signals A and B, 
and filled by a number of zero values at certain points 
in order to find an optimal alignment between them. The 
length of A' and B' fulfills m < L' < 2m depending on 
the number of zeros introduced into them. 
Furthermore, in Eqs. 1 and 2, there are two parameters 
that should be configured: 

- h is a constant (gap) representing when the algorithm 
considers two very similar values of the signals [27]. 

- a is a constant used to normalize the differences 
between the values of the points of these signals. 

The optimal configuration of the algorithm in terms ofh 
and a will be selected according to the results obtained 
in Sects. 6.1 and 6.2. Furthermore, the number of correc
tions of the algorithm depends on the values ofh and a. 
When a large number of zero values are included in two 
signals (very little differences are corrected), the rhythm 

of correction is high and vice versa. The interpretation of 
the different configurations of the algorithm is discussed 
in Sect. 4. 
Besides, by definition of this algorithm, M i j = 0 and 
Mij = M ; , i =hx j . 
Figure 2 illustrates an example of the result of applying 
this algorithm to the signals on each axis of the two ges
tures in Fig. 1, where the inclusion of zero values to align 
both signals can be seen. 

2. Interpolation of aligned signals 
This is an optional phase consisting of correcting the zero 
values from the aligned signals introduced by the previ
ously described algorithm. It works by substituting any 
zero value found by the average value of its neighbors 
(not being zero). This may be a good strategy when the 
alignment algorithm has included too many zero values 
even though the points of the signals were quite similar 
(high correction rhythm). 
Let / ( / , j) be an interval of zero values in the sequence 
A', so a¡ = a'i+l = • • • = a', = 0 , obviously, a'i_l ^ 0 
and a':+l ^ 0. Then, interpolation is implemented as 
follows: 

a'k =
 ak-1+

2
aj+1, Vk = i,...,j (3) 

The result of the interpolation of signals of Fig. 2 is 
shown in Fig. 3. It can be seen that the signals have been 
aligned accurately by implementing the alignment algo
rithm and the interpolation of the zero values included 
to maximize the alignment process. This high degree of 
accuracy is a consequence of the huge similarity between 
the signals analyzed. Moreover, as we assume that only 
one person is able to repeat his/her gesture so accurately, 
it can be concluded that the same person made both 
gestures. 

If the same process of alignment and interpolation is 
applied to signals from different gestures, the result is not 
so good (Fig. 4), since these algorithms correct only little 
variations between signals. Consequently, if the original 
signals are not very similar, there is an appreciable dif
ference between the sequences despite the processing 
algorithm. 
The inclusion of this interpolation phase obtains good 
performance results when the rhythm of correcting is 
very high, and a high amount of zero values have been 
included when comparing two signals. 
This behavior may be expected since, when the correct
ing rhythm of the algorithm is very high, lots of zero 
values were introduced even though two points of the sig
nal were quite similar. Consequently, interpolating these 
zero values may provide a reliable representation of the 
differences between the two signals compared. However, 



when the rhythm of correcting is low and a small amount 
of zero values are introduced, the algorithm works better 
without interpolation since when only the greater differ
ences between points of the signals are corrected, it is 
better to maintain or enlarge those differences by includ
ing zero values, without compensating them with inter
polation. 
According to this, including an interpolation phase in the 
analysis of two acceleration gesture signals may improve 
the results obtained depending on the configuration of the 
alignment algorithm in terms of h and a. This assumption 
is demonstrated through the results of the experiments in 
Sects. 6.1 and 6.2. 

3. Quantification of the differences of the aligned signals 
A metric to quantify the similarities between two ges
tures has been defined in order to make possible an accu
rate decision on the authorship of both gestures. In this 
context, Euclidean distance is proposed to quantify the 
difference between the aligned and optionally interpo
lated signals A' and B', where L' is the length of the 
aligned signals. 
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3.1.3 Biometric hand gesture template obtention 

At the beginning of enrollment phase, a specific user 
Uj repeated the same enrolling gesture Gj three times 
(GT,I, GT,2, GT,3), and their respective signals of accelera
tion in each axis were obtained. 

Analyzing all the signals of the enrollment phase implies 
9 repetitions of the processing algorithm to obtain the differ
ences in every gesture with the other two. The reader must 
note that this operation involves the execution of an algorithm 
for each axis. Consequently, the following distance values are 
obtained: Sx

 k, Sy, k, Sz, k for ;', k = 1, 2, 3 and j ^ k where, 
for instance, Sx

 k represents the distance between aligned sig
nals GTJ and Gj^, only in the x-direction. 

The difference between two samples GTJ and Gj,k of a 
gesture Gj is finally calculated by the following equation: 

y,k 
Jj,k *l •*u 

3 
(5) 

According to Eq. 5, the differences between each sample 
of the enrollment gesture (5^2, ¿1,3 and ¿2,3) are computed. 
The average difference in the template, namely \xj, is defined 
as the average of the differences between the three gestures 
made to enroll in the system (Eq. 6). 

¡1.T 
<$1,2 + ¿1,3 + ¿2,3 

3 

Finally, the biometric template of the user, which is stored 
in the mobile device to authenticate the user, is made up of: 

- Signals GT,I, GT,2 and GT,3, which include the acceler
ations on each axis of each gesture repetition. 

- Parameter \xj, obtained in Eq. 6, representing the simi
larity between the three repetitions of a gesture made by 
the user. 

The lower the \xj, the safer the biometric template, \x? 
represents the facility of a user to repeat his/her gesture 
closely. In other words, when ¡xT is low, an imposter trying to 
forge the gesture should do it as precise as the authentic user 
does. On the other hand, a high value of ¡xj means that the 
authentic user is not able to repeat his/her own gesture accu
rately, so the access threshold should be higher, facilitating an 
attacker to fake the original gesture. In fact, from this value, 
a 3-D gesture strength measurement may be implemented 
easily in order to avoid people enrolling in the system with 
easily forgeable gestures. An important and complementary 
study of other characteristics of the gestures that make them 
difficult imitate should be studied in future works. 

3.2 Verification phase 

Once a user has been enrolled in the system by repeating a 
certain gesture three times, he/she is able to access the system 
by performing his/her identifying gesture again. The mobile 
device will record the accelerations of the access gesture Gv 
on each axis, obtaining Gx

v, Gy
v and G\ signals. 

Next, a preprocessing between access and template signals 
(GT,I,GT,2,GT,3) is carried out, providing the differences 
between the access gesture and template ones 8y, 1, &v,2, &v,3 
(Eq. 5). From these three values, Sy is calculated as the aver
age of all of them. 

This distance lacks interest if it is not compared to other 
equivalent distances. Therefore, an indicator is proposed to 
compare the two averages of differences defined in this expo
sition: ¡xj obtained from the enrollment and Sy from the 
access phase. This function must provide a high score if 
both parameters are similar enough, and otherwise a low one. 
Since both averages of differences are real numbers, a sim
ple fraction 8V/I¿T meets the goal of comparing these two 
values: the closer to 1, the more similar the numbers. 

Consequently, a threshold 6 has been defined, so any 
access gesture can gain access to the system if the following 
equation is fulfilled: 

&y/[¿T < & (7) 

(6) 

Parameter 6 indicates to what extent the access gesture is 
similar to stored template gestures. Obviously, the closer to 
1, the more similar the access gesture and the template are. 
In this article, we will try to find the optimal threshold that 



minimizes the overall error of impostor access and genuine 
rejecting. An evaluation of this threshold value is discussed 
in Sect. 6.4. 

4 Interpretation of the global sequence alignment 
algorithm in terms of h and a 

The previously described global sequence alignment algo
rithm includes two parameters (h and a) denning the behav
ior of the algorithm when two signals are compared. 

It is remarkable that the algorithm does not work properly 
unless the condition in Eq. 8 is accomplished: 

h < 0.5 (8) 

This requirement is demonstrated as follows: 
According to Eq. 1, M¿j_i and M¿_ij are calculated as 

in Eqs. 9 and 10, respectively: 

Mij-2+h 
Mij-i = max \ Mi-ij-2 + 8 

Mi-ij-i+h 

Mi-ij-i+h 
Mi-ij = max \ Mi-2j-i + 8 

Mi-2j +h 

Therefore, expressions in Eq. 11 are deducted: 

M ¡ ! ;_i > M¿_ l i 7 _! 

(9) 

(10) 

(11) 

Consequently, by applying those results to the first and the 
third expressions in Eq. 1, expressions in Eq. 12 are inferred 
by adding h to each term: 

Mij-i + h >= Mi-ij-i + 2h 
Mi-ij +h>= Mi-ij-i + 2h 

(12) 

Within both expressions in Eq. 12, a minimal value of 
the first and the third expressions in Eq. 1 has been found. 
According to this, the second expression in Eq. 1 would be 
never selected when 2h > 8. Besides, considering the fact 
that 0 < 5 < 1 is equivalent to h > 0.5, demonstrating the 
requirement in Eq. 8. 

Moreover, according to the preceding demonstration, 
when two points of the signals are compared, the algorithm in 
Eq. 1 would admit that both points are the same when Eq. 13 
is fulfilled: 

5 > Ih (13) 

Whenever the algorithm in Eq. 1 finds two points that do 
not comply with Eq. 13, it introduces a zero value in order 
to correct it. 

Consequently, the parameters h and a would define the 
rhythm, and the algorithm corrects differences between sig
nals, according to the following behaviors: 

- The lower the value of h, the lower 5 should be, to con
sider the two points as the same, meaning that corrections 
would appear only when great differences between points 
of the signals are found. Therefore, the algorithm with a 
low h introduces a low quantity of zero values to find 
the optimal alignment between two signals. On the other 
hand, when h is high and close to h = 0.5, little devia
tions between the signals would be corrected, introducing 
a high amount of zero values. 

- The lower the a, the higher the denominator in the expo
nent in Eq. 2 is, and obviously, the lower 5 is as well. In 
this case, as specified by Eq. 13, the more difficult two 
points are considered the same, and consequently, the 
more corrections would be introduced. Evidently, with 
higher a values, the behavior of the algorithm would be 
the reverse, including a low amount of zero values. 

By joining the behaviors of the two parameters, it can be 
concluded that the algorithm would correct at a high speed, 
including a large amount of zero values, when h is high and 
a is low, whereas when h is low and a is high, the algorithm 
would correct at a low speed by introducing a low number of 
zero values. In the other two cases (h high and a high, h low 
and a low), both behaviors tend to compensate each other, 
correcting signals at an intermediate speed. 

Sections 6.1 and 6.2 provide a study of the optimal con
figuration of the parameters h and a of the algorithm within 
a database of real gestures. 

5 Databases 

To the knowledge of the authors, there are no public dat
abases of identifying 3-D hand gestures made in the air with 
a mobile with an embedded accelerometer. Therefore, two 
different databases have been created in order to evaluate 
the requirements of the biometric technique, introduced in 
Sect. 2. 

The first database (GB2SGestureDBl) has been created 
to verify the robustness of the technique against different 
attacks. In particular, two complementary tests have been 
carried out: A zero-effort attack (an impostor attempts to 
authenticate into the system with a false identity but using 
his/her own identifying 3-D hand gesture) and an Impostor 
attack (an impostor studying and trying to repeat the original 
hand gesture of a authentic user). 

GB2SGestureDB 1 contains identifying 3-D hand gestures 
of 100 different users made using a mobile device with an 
embedded accelerometer. Each user repeated his own gesture 
8 times, while being recorded on video. From the study of 
these records, 3 different people have attempted attempts to 
forge each gesture (7 trials each). Accelerations of 3-D hand 



gestures on axis x-y-z have been obtained at a sampling rate 
of 100Hz (10ms.). 

The second database (GB2SGestureDB2) has been gen
erated in order to study the permanence of the performance 
of the hand gestures over time. According to this, GB2SGes-
tureDB2 is a database of 25 people repeating their 3-D hand 
gestures at 10 sessions within a month. At each session, each 
user made his/her 3-D hand gesture 5 times. Accelerations 
of 3-D gestures have been extracted, as well, at a sampling 
rate of 100Hz (10ms.). 

In summary, GB2SGestureDB 1 consists of 800 (100 
users, 8 times) samples of original 3-D hand gestures and 
2100 (100 gestures, 3 impostors, 7 trials) attempts of falsi
fication, whereas GB2SGestureDB2 is made up of 1250 (25 
users, 10 sessions, 5 times) repetitions of 3-D hand gestures 
over time. 

6 Experimental results 

The following tests have been carried out to evaluate the fea
sibility of the novel biometric technique proposed and verify 
the characteristics described in Sect. 2: 

- Zero-effort impostor detection test: This test studies to 
what extent the biometric technique proposed is vulner
able to an attack where an impostor attempts to access 
the system with his/her identifying 3-D hand gesture as 
if he/she where someone else. To accomplish this task, 
GB2SGestureDB 1 has been analyzed, following the oper
ations to access the system explained in Sect. 3.2. The 
metric to evaluate the robustness of the system in this kind 
of attack will be the standard in the field of biometrics, the 
Equal Error Rate (EER), obtained from False Rejection 
Rates (FRR), and False Acceptance Rates (FAR) [31]. 
The lower the EER, the better the circumvention the tech
nique provides. This test will be carried out for different 
values of the parameters of the algorithm explained in 
Sect. 3.1.2, in order to find a configuration of the algo
rithm with optimal error rates. In addition to this, all the 
configurations have been evaluated with and without the 
interpolation phase, as a means of assessing the bene
fit of interpolating and confirming the behavior of the 
algorithm described in Sect. 3.1.2. Obviously, alow EER 
value implies also a high level of unicity between differ
ent hand gestures. 

- Active impostor detection test: This study aims to assess 
whether anybody is able to forge the system, accessing 
without being the legitimate user but trying to falsify 
his/her identifying 3-D hand gesture. Also, in the pre
vious test, the EER has been obtained in order to evaluate 
the results of the test, by using the original 3-D hand ges
ture and their attempts of falsifying of GB2SGestureDB 1. 

This test evaluates the fraud resistance of the technique 
and completes the study of circumvention, as covered by 
the study of attempting to forge the system by imitating 
the own hand gesture of the real person. Different con
figurations of the parameters of the algorithms have been 
tested as well as applying interpolation phase or not in 
order to find the lowest possible EER. 

- Permanence evaluation: This experiment attempts to 
assess to what extent a user is able to reproduce a hand 
gesture over time, verifying the persistence of the biomet
ric technique when users repeat their identifying gesture 
often. To achieve this aim, GB2SGestureDB2 has been 
examined obtaining the trend of the repeatability of the 3-
D hand gestures by the users in different sessions spread 
over a month. Furthermore, an updating strategy has been 
tested, so user templates are constantly adapted to the var
iation on the way of making their 3-D hand gestures. This 
test is carried out with the optimal configuration of the 
algorithm for the two previous tests. 

- Feasibility evaluation: This essay intends to join together 
the impostor detection and permanence test to study 
whether a legitimate user is able to repeat a 3-D hand 
gesture in spite of the passage of time with much more 
quality than an impostor does. To accomplish this task, 
a global evaluation of the results of the previous tests is 
described. 

- Time Analysis: Finally, the results of the duration of 
enrollment and verification phases in a mobile device and 
a personal computer are presented. 

6.1 Zero-effort impostor detection test 

This test examines the robustness of the system when other 
users attempt to forge the identity of another user by per
forming their own 3-D hand gesture. In this test, the analysis 
is carried out exactly in the same manner as the verification 
phase explained in Sect. 3.2. Consequently, for each user, 
at first, three of his/her original samples are considered as 
the enrollment repetitions of his/her identifying 3-D hand 
gesture by calculating ¡xj following the mathematical oper
ations previously described. The rest of the original samples 
of the user the template is calculated are regarded as authentic 
accesses, whereas the samples of 3-D hand gestures not made 
by the user represent impostor attempts of forging the iden
tity. This test has been carried out by analyzing GB2SGes-
tureDB 1. In these conditions, the Equal Error Rate has been 
calculated from FRR (False Rejection Rate) and FAR (False 
Acceptance Rate) as follows [39]: 

- Template Creation: Three samples of each hand gesture 
are considered as the template of the user. Then, the ¡xj 
for each user is calculated as explained in Sect. 3.1.3. 



Table 1 EER (%) zero-effort 
impostor detection test results 
with different configurations of 
h, a and applying the 
interpolating phase 

a 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

h 

0.05 

8.68 

3.19 

2.26 

2.09 

2.05 

2.22 

2.23 

2.31 

2.17 

2.17 

2.30 

2.43 

2.59 

2.85 

2.98 

3.02 

3.26 

3.14 

3.22 

0.10 

9.65 

4.35 

3.04 

2.57 

2.45 

2.31 

2.21 

2.39 

2.45 

2.31 

2.31 

2.25 

2.42 

2.57 

2.73 

2.99 

2.99 

3.15 

3.12 

0.15 

10.96 

4.97 

3.30 

2.50 

2.41 

2.38 

2.38 

2.23 

2.56 

2.26 

2.38 

2.39 

2.41 

2.52 

2.73 

3.06 

3.30 

3.42 

3.49 

0.20 

10.60 

5.47 

3.21 

2.74 

2.48 

2.19 

2.17 

2.19 

2.22 

2.34 

2.09 

2.19 

2.04 

2.04 

2.11 

2.17 

2.38 

2.58 

2.66 

0.25 

11.21 

6.37 

3.54 

2.91 

2.54 

2.17 

2.17 

2.14 

2.11 

2.31 

2.31 

2.21 

2.17 

2.22 

2.28 

2.13 

2.17 

2.46 

2.53 

0.30 

11.51 

9.52 

5.31 

3.43 

2.93 

2.61 

2.20 

2.38 

2.35 

2.20 

2.41 

2.41 

2.73 

2.56 

2.61 

2.28 

2.42 

2.38 

2.38 

0.35 

19.71 

11.28 

7.26 

4.19 

3.36 

3.09 

2.71 

2.27 

2.37 

2.32 

2.38 

2.45 

2.58 

2.64 

2.50 

2.56 

2.38 

2.52 

2.38 

0.40 

22.60 

14.26 

9.16 

6.16 

4.18 

3.48 

3.38 

2.75 

2.56 

2.41 

2.38 

2.42 

2.45 

2.38 

2.38 

2.56 

2.56 

2.75 

2.75 

0.45 

24.29 

19.35 

15.26 

10.29 

7.40 

5.86 

4.95 

4.48 

3.73 

3.11 

3.11 

2.67 

2.39 

2.38 

2.22 

2.12 

2.01 

2.06 

2.20 

0.50 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

44.26 

Analysis of original samples: The remaining five 
original samples of each gesture are used to calculate 
the False Rejection Rate, since they are truthful attempts 
at accessing the system. For each original trial, the 
&V/I¿T is obtained when comparing the accessing 
gesture with the three gestures of the original user 
template. 
Analysis of falsified samples: All the impostor attempts at 
trying to access the system are used to evaluate the False 
Acceptance Rate. For each falsification trial, ay/Mr is 
also obtained. 
Obtaining of False Acceptance Rate (FAR) and False 
Rejection Rate (FRR): The FAR and FRR are obtained 
in terms of 0 as the % of original samples that are over 0 
in the case of False Rejection Rate and the % of falsified 
samples that are under 0 in the case of False Rejection 
Rate. It has been showed that when 0 is very low, most fal
sifications are rejected but so are some authentic attempts. 
However, the higher the 0, the more original access are 
justifiably allowed but so to are the more falsifications 
granted. 

Obtaining the Equal Error Rate (EER): The EER is 
defined as the value of the error when the False Accep
tance Rate is equal to the False Rejection Rate, and it is the 
most commonly used metric to measure the performance 
of biometric techniques. 

Therefore, the FRR has been obtained from 500 samples 
(100 users, 5 accessing attempts) and FAR from 79200 sam
ples (100 original 3-D hand gestures, 99 impostor gestures, 
8 samples). 

In this approach, the EER has been evaluated for differ
ent values of h and a, according to the condition of Eq. 8. 
Besides, the EER has been obtained when applying interpola
tion phase or not, originating the results presented in Tables 1 
and 2, when interpolation was applied in the former and not 
applied in the latter. 

The lowest EER result for each configuration of h and a 
of both tables is symbolized in bold, in order to represent in 
which configurations interpolating reduces or increases the 
EER result. In addition to this, the optimal value of each table 
is highlighted in bold italics. 

The lowest Equal Error Rates obtained reach a value of 
2.01% with a configuration of h = 0.45, a = 0.85 with inter
polation (highlighted in Table 1) and h = 0.05, a = 0.55 
without interpolation (highlighted in Table 2). There are sev
eral configurations with higher but close rates in respect to 
the optimal, since the variations in h and a are very small 
between configurations. 

Moreover, there are some expected behaviors of the dif
ferent configurations of the algorithm explained in Sect. 4, 
which are concluded by examining the results of Tables 1 
and 2: 



Table 2 EER (%) zero-effort 
impostor detection test results 
with different configurations of 
h, a and without applying the 
interpolating phase 0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

0.05 

15.30 

8.23 

4.87 

3.90 

3.28 

2.97 

2.69 

2.45 

2.33 

2.10 

2.01 

2.31 

2.34 

2.59 

2.70 

2.88 

2.92 

2.92 

2.95 

0.10 

16.80 

9.41 

6.10 

4.31 

3.69 

3.19 

2.93 

2.67 

2.45 

2.33 

2.14 

2.08 

2.25 

2.41 

2.57 

2.71 

2.79 

2.99 

2.85 

0.15 

17.04 

10.96 

6.92 

5.09 

3.99 

3.58 

3.25 

2.93 

2.61 

2.50 

2.33 

2.09 

2.07 

2.14 

2.31 

2.58 

2.76 

2.75 

2.89 

0.20 

18.94 

12.19 

7.71 

5.94 

4.35 

3.89 

3.53 

3.19 

2.90 

2.63 

2.46 

2.40 

2.14 

2.16 

2.16 

2.23 

2.41 

2.58 

2.77 

0.25 

19.43 

13.42 

9.27 

6.71 

5.31 

4.07 

3.92 

3.43 

3.13 

2.81 

2.70 

2.60 

2.49 

2.23 

2.14 

2.17 

2.13 

2.21 

2.45 

0.30 

21.51 

14.81 

10.57 

7.69 

6.16 

5.33 

4.05 

3.99 

3.63 

3.33 

3.03 

2.67 

2.75 

2.62 

2.44 

2.18 

2.16 

2.20 

2.17 

0.35 

21.65 

16.67 

12.97 

9.20 

7.62 

6.20 

5.21 

4.25 

4.01 

3.83 

3.61 

3.29 

3.02 

2.66 

2.78 

2.67 

2.67 

2.45 

2.18 

0.40 

24.48 

18.77 

14.70 

11.97 

9.38 

7.55 

6.62 

5.86 

5.09 

4.23 

4.12 

3.85 

3.72 

3.67 

3.32 

3.07 

2.81 

2.62 

2.88 

0.45 

24.83 

21.48 

18.67 

15.10 

13.30 

11.80 

10.19 

8.60 

7.48 

6.73 

6.22 

5.39 

5.17 

4.71 

4.36 

4.08 

3.98 

3.85 

3.61 

0.50 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

45.60 

- As was expected, when h does not satisfy Eq. 8 (h < 0.5), 
the algorithm does not work. Actually, the EER results 
when h = 0.5 are very high and do not depend on the a 
value, since the algorithm does not align at all. 

- When a configuration of the parameters implies a high 
speed correction (h high and a low) and a large number 
of zero values are included, it is shown that by including 
the interpolating phase, the EER results improve (Top-
right values in bold in Table 1). 

- On the other hand, when the configuration of the param
eters involves a low speed correction (h low and a high) 
and only a low number of zero values are introduced, the 
algorithm works better without interpolation (Bottom-left 
values in bold in Table 2). 

Furthermore, the results of the zero-effort detection test 
have been also obtained by using the maximized score 
directly, according to Eq. 1. This is a dynamic-programming-
like quantification in order to compare the metric to quantify 
the similarity between two sequences. In this approach, a high 
value of the score means a great similarity of the sequences 
(as opposed to the method proposed based on aligning, inter
polating (or not) and calculating Euclidean distance). This 
difference is solved by modifying the sign in Eq. 7 in order 
to consider an authentic access to any attempt whose 8V/I¿T 

value is over the threshold 0. The EER results for each con
figuration of h and a are presented in Table 3. 

It is remarkable that the lowest EER obtained according 
to the score approach is 3.14% significantly higher (1.13% 

higher) than aligning, interpolating (or not) and quantifying 
by the Euclidean distance. 

In summary, an optimal Equal Error Rate of 2.01% has 
been obtained by evaluating the different values oih,a and 
interpolating or not, for 100 users in a zero-effort attack sce
nario. This result is very competitive, improving the EER 
results in [30], where an EER of 5% was obtained from 22 
testers grasping and shaking their phone, and also better than 
in [26], where the EER of 8% (4% if updating) was achieved 
from 12 users making a star shape. 

6.2 Active impostor detection test 

Following the scope of the biometric technique proposed and 
its applications, it might be possible for users to make their 
identifying 3-D hand gesture in places where there are other 
people who may see them. According to this, the biometric 
technique should be robust enough to assure that even though 
someone else may look at the making of the gesture, he/she 
is not able to reproduce it accurately. 

In trying to illustrate this scenario, this test studies the 
strength of the biometric technique proposed when other peo
ple study the making of the 3-D hand gestures recorded on 
video. To accomplish this task, forgeries in GB2SgestureDB 1 
have been analyzed. 

From this database of gestures, the Equal Error Rate has 
been obtained as in previous test, with the only difference 
being that the False Acceptance Rate is calculated with real 



Table 3 EER (%) zero-effort 
detection test results using the 
score obtained when aligning 
according to Eq. 1 with different 
configurations of h, o 0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

h 

0.05 

5.16 

3.90 

3.41 

3.22 

3.23 

3.21 

3.26 

3.38 

3.54 

3.41 

3.76 

4.03 

4.08 

4.26 

4.35 

4.48 

4.73 

4.89 

5.05 

0.10 

5.23 

4.08 

3.53 

3.16 

3.22 

3.20 

3.23 

3.31 

3.42 

3.53 

3.67 

3.80 

3.98 

4.08 

4.21 

4.35 

4.48 

4.53 

4.87 

0.15 

5.30 

4.23 

3.53 

3.26 

3.18 

3.14 

3.20 

3.27 

3.36 

3.53 

3.60 

3.67 

3.79 

3.90 

4.04 

4.06 

4.35 

4.35 

4.49 

0.20 

5.45 

4.21 

3.67 

3.52 

3.20 

3.26 

3.20 

3.21 

3.29 

3.67 

3.46 

3.58 

3.64 

3.67 

3.81 

3.94 

4.03 

4.12 

4.31 

0.25 

5.86 

4.26 

3.96 

3.56 

3.33 

3.22 

3.24 

3.22 

3.24 

3.96 

3.40 

3.43 

3.52 

3.53 

3.68 

3.69 

3.82 

3.94 
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0.30 
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3.25 

4.13 
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3.49 
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3.65 

3.76 

0.35 
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4.27 

4.05 
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4.27 

3.24 

3.27 

3.30 

3.41 

3.35 

3.41 

3.45 

3.53 

3.58 

0.40 

6.93 

5.28 
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4.16 

4.12 

3.70 

3.54 

3.46 

3.35 

4.56 

3.23 
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0.45 

7.92 
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attempts of forging instead of with the original signature 
of someone else. Therefore, the FRR is obtained from 500 
samples (100 users, 5 accessing trials), whereas the FAR 
is calculated from 2100 samples (100 original signatures, 3 
impostors, 7 samples). 

This test has been carried out with different configurations 
of the parameters h and a of the algorithm, originating the 
EER results presented in Tables 4 and 5, when the interpo
lating phase was included or not, respectively. As well as in 
the previous Section, the lowest EER value of each configu
ration between both tables is presented in bold, representing 
the best performance between interpolating or not. In addi
tion to this, the lowest value of each table is also highlighted 
in bold italics. 

Therefore, an optimal Equal Error Rate of 4.82% has been 
obtained (zoom in Fig. 5) within the analysis of gestures 
in GB2SGestureDB 1 database and the configuration of the 
algorithm of h = 0.45, a = 0.8 and including the inter
polating phase (highlighted in Table 4). On the other hand, 
when no interpolation is carried out, the optimal EER result 
is 4.87%, which corresponds to h = 0.10, a = 0.6 (high
lighted in Table 5). 

By analyzing the results in Tables 4 and 5, the same 
expected behaviors as in the previous test are found: When 
h = 0.5, the algorithm does not work, and depending on the 
rhythm of introducing zero values, interpolation improves or 
worsens the performance, as explained in Sect. 4. 

These EER results are higher than in the previous test 
because in this Section, False Acceptance Rate has been cal
culated through real falsification attempts. 

Besides, the active impostor detection test has also been 
made by using the score when aligning two sequences 
according to Eq. 1 as the metric to quantify the similarity 
between the sequences in comparison. The resulting EER 
for each configuration of h and a is presented in Table 6. 

It is noticeable that following the score approach, as well 
as in the previous test, the lowest EER found is 7.63%, signif
icantly higher than when applying alignment, interpolation 
(or not) and quantification of the differences with Euclidean 
distance. 

In summary, an optimal Equal Error Rate of 4.82% has 
been achieved by analyzing a database of 100 users includ
ing real falsification trials. 

This error rate is competitive with the results obtained 
in [21], where a lowest EER of 10% was obtained with a 
database of 10 gestures obtained with falsifications when 
the attacker knows the gesture but does not see the authen
tic user performing their gesture, and an estimated EER of 
3% when the movement is able to be studied. Furthermore, 
these results are also competitive with [9], where an initial 
work was carried out with 34 users obtaining a 2.5% of EER. 
It is remarkable that the results presented in this article are 
obtained from a database of gestures of 100 users, ten times 
higher than in [21] and three times than in [9], evaluating the 



Table 4 EER (%) of active 
impostor detection test results 
with different configurations of 
h, a and applying the 
interpolating phase 

Table 5 EER (%) of active 
impostor detection test results 
with different configurations of 
h, a and without applying the 
interpolating phase 
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possible feasibility of developing this biometric technique in Moreover, these results are also close to online handwrit-
the real world where a huge amount of different identifying ten signature technique error rates. The best results of online 
gestures could be made. signature analysis in some of the most important works on 
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Fig. 5 Resulting EER (%) of active impostor test 

this subject are EER of 3.6% [28], FAR of 1.6% and FRR of 
2.8% [16] and EER of 2.84% [40]. 

As this test is carried out with real falsification trials, the 
threshold where the EER is achieved provides a significant 
information as to which value should be chosen at the point to 
accept or reject in a real application. In this test, the threshold 
value where the EER was reached is 1.35, so when access

ing the system, any value of Sy/f^r lower than 1.35 will be 
accepted whereas any higher will be rejected. 

Joining the results of zero-effort and active impostor tests, 
it is concluded that the optimal configurations for the param
eters of the algorithm when including the interpolation phase 
are h = 0.45 and a = 0.85 or a = 0.88. Table 7 provides 
the average results of the EER of the two forgeries tests when 
applying interpolation. The average EER obtained in the opti
mal configuration is 3.47%. 

Moreover, Table 8 presents the average of the zero-effort 
and active impostor tests when not applying interpolation. 
The lowest EER in this table is 3.48%, reached with the con
figuration oía = 0.55 andh = 0.05. 

Therefore, when including interpolation, a slight improve
ment in the EER is obtained. However, the approach 
presented in this article based on aligning, interpolating 
(or not) and Euclidean distance provides a significantly 
better performance than obtaining the score directly from 
Eq. 1. 

6.3 Permanence evaluation 

This test aims to study whether a user is able to repeat his/her 
gesture over time accurately. The results of this test have been 
obtained from GB2SGestureDB2, where 25 volunteers have 
had 10 sessions of 5 repetitions of their identifying gesture. 
These sessions have been spread over a month, without any 

Tableó EER (%) of active 
impostor detection test results 
using the score obtained when 
aligning according to Eq. 1 with 
different configurations of h, o 
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Table 7 Average of EER (%) 
results in the zero-effort 
impostor detection test and the 
active impostor detection test 
results with different 
configurations of h, a and 
applying the interpolating phase 

Table 8 Average of EER (%) 
results in the zero-effort 
impostor detection test and the 
active impostor detection test 
results with different 
configurations of h, a and 
without applying the 
interpolating phase 
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additional help except what they remembered. Each session 
of each user has been separated by a minimum of 1 day and 
a maximum of 5. 

For this test, the first session of each user has been consid
ered as the enrollment phase, so the template of the gesture 

corresponding to each person is made up of three of the sam
ples of this first session. The value \xj for each identifying 
3-D gesture has been obtained from these samples of the tem
plate, as it was described in Sect. 3.1. The rest of samples of 
the first session were discarded. 
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Fig. 6 Evolution of identifying 3-D hand gestures repetition along the 
time 

Each sample of the following 9 sessions has been con
sidered as the accessing trials of the original user. For each 
sample, 5y is calculated as in Sect. 3.2, measuring the differ
ence between each sample and the template. In this analysis, 
the parameters of the algorithm are set to the optimal values 
obtained in Sects. 6.1 and 6.2, so h = 0.45 and a = 0.85. 

Finally, the average of By /¡xj is calculated for all the sam
ples of each session and each user, obtaining a value that the 
higher it is the more different the sample of the 3-D hand 
gesture of the session was respect to the template, and vice 
versa. 

Figure 6 represents the average of 5y/¡xj on each session 
of the experiment for all of the users in the database. In this 
figure, the trend of the ability of users of repeating over time 
their identifying 3-D hand gesture is symbolized by the linear 
regression of the values on each session [32]. 

From this behavior, it is inferred that users are not able to 
repeat their 3-D hand gesture accurately over time. More
over, a particular behavior of the evolution of the ability 
to repeat their 3-D hand gesture can be deducted: Users 
need a period of time to get used to their performance of 
their hand gestures and modify continuously but slightly 
the way they make their gesture from one session to the 
next. 

Actually, on the first sessions, when the users have just 
made their 3-D hand gesture for the first times, the variabil
ity is high. After some sessions, when the users get used to 
the way they make their identifying hand gesture, it is much 
easier for them to repeat it. 

This behavior is represented in Fig. 7, where the rela
tive average of access punctuations between sessions is pre
sented. Each point in this figure symbolizes the difference 

between the average of 5 y /¡i-j of one session and the previ
ous one. It is remarkable that this trend is stable and slightly 
negative. 

In conclusion, although the repetition of the hand gesture 
in different sessions over time is not fully precise, the vari
ance of the performance of the identifying 3-D hand gestures 
varies slightly between sessions. This characteristic opens up 
a new research line in this field in order to study different tem
plate updating strategies that minimize the variation of the 
user performance over time. 

An evaluation of the permanence evaluation results in 
comparison with the previous two tests is introduced in the 
next subsection. 

6.4 Analysis of results 

The goal of this subsection is to compare the results of the 
two previous tests to verify that the hand gesture is eas
ily repeatable by the user (Permanence evaluation) and, at 
the same time, forgeable with difficulty by the other users 
(active impostor detection test). The compromise of these 
two parameters is a crucial point regarding this technique. 

In active impostor detection test, the final threshold 9 was 
set to 1.35 (zoomed in Fig. 5) since it was where the EER 
was achieved representing the point of minimal global error 
of impostor accessing and authentic rejecting samples in the 
system. The resulting figure of the permanence test (Fig. 6) 
shows the evolution on average of the repetition of the iden
tifying a 3-D hand gesture over time. From this figure, it is 
shown that in spite of the passage of time, users, on aver
age, still repeat their identifying hand gesture below 1.35, 
although very close to it. Consequently, users over short time 
are able to repeat their original 3-D hand gestures with greater 
accuracy than impostors do. 

The resulting trend of the permanence test implies that 
in long terms, the variation of the performance of the 3-D 
hand gestures will get higher and above 1.35, so it is essen
tial a continuous updating of the template that lets the system 
work only in short-term conditions. A valid updating strategy 
would be at each granted access to the system, change the 
oldest sample of the template by the accessing sample. 

Furthermore, by examining Fig. 7, it is deducted that after 
some sessions, users make their identifying 3-D hand ges
ture in a much more similar way over time and with insig
nificant higher punctuation in comparison with the value of 
the threshold. As a consequence, introducing an enrollment 
process where users make their three repetitions of the 3-D 
hand gestures over several days would improve permanence 
results and the feasibility of the technique, as well as imple
menting an updating method to adapt the template of users 
to the manner in which they modify the performance of their 
gestures. 
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Table 9 Time analysis results 

Time (ms) 1 preprocessing algorithm Enrollment Verification 

Mac 0.26 2.45 2.46 

iPhone 107 992 987 

6.5 Time analysis 

The algorithm of this technique has been carried out on two 
devices: Firstly, the algorithm has been developed and eval
uated on a Mac Computer at 2.4 GHz Intel Core 2 Duo with 
1 GB RAM. Finally, the algorithm has been integrated on an 
Iphone 3G and tested with real people enrolling and access
ing the system. Time results for one implementation of the 
preprocessing algorithm, one enrollment phase and one veri
fication phase for each device are shown in Table 9. All these 
values have been obtained as the average of 1000 operations. 

It is notable that an operation of enrollment or verification 
needs less than a second on a mobile, which is a very reason
able amount of time for a user who needs authentication on 
his/her mobile. 

All the experiments included in this article have been 
developed with a sampling rate of 50 Hz, although initially 3-
D hand gestures in databases were extracted at 100 Hz. The 
results when analyzing signals at 100 Hz were not signifi
cantly better than those presented in this article; however, 
the consumption time was multiplied by 3. 

7 Conclusion and future work 

In this article, a novel biometric technique based on hand 
gesture recognition has been proposed. To accomplish this 

aim, a user is identified by a 3-D gesture he/she makes mov
ing one of his/her hands holding an accelerometer-embedded 
mobile device. A user is enrolled in the system by repeating 
his/her identifying 3-D hand gesture three time, and he/she 
is able to enter the system by doing it again. 

By correcting slightly the differences in accelerations 
when a user repeats his/her hand gesture over time is the main 
point in this article. This task has been solved by developing 
a signal preprocessing algorithm, based on sequence align
ment, able to find the best alignment between two samples. 

Universality, collectively, acceptability, uniqueness, cir
cumvention and permanence of the biometric technique pro
posed have been evaluated in this paper with three different 
tests. 

For this task, two different databases of 3-D hand ges
tures have been analyzed: GB2SDatabaseDBl, made up of 
100 genuine identifying 3-D hand gestures and 3 impostors 
trying to falsify each of them by studying video records, and 
GB2SDatabaseDB2 where 25 volunteers have participated 
repeating their identifying 3-D hand gesture in 10 sessions 
over a month. 

From the analysis of GB2SDatabaseDBl, two attacks 
have been simulated obtaining different optimal values of 
EER: 2.01 and 4.82% in a zero-effort and active impos
tor test. From the results of these experiments, an optimal 
configuration of the algorithm proposed to analyze the sig
nals has been determined, as well as the threshold to access 
the system. These results are obtained in a fixed-parameter 
approach, where h and a are parameters of the algorithm, the 
same values for all the users. The generality of the optimal 
configuration of the algorithm should be evaluated in future 
works to determine to what extent h and a are optimal for 
each signature or for different sets of signature enrollment 
samples. In spite of this, the optimal value of EER in this 
article represents how efficient signatures in the air can be 
separable through this fixed-parameter approach (between 
them and in respect to falsification attempts). 

In addition to this, a different approach will be also studied 
in the future, where h and a will depend on the user signature. 
In this case, for each user signature, the h and a values will 
be obtained at enrollment and will belong to the template of 
the user template. This future approach will include different 
training techniques in order to find the most appropriate h and 
a values for each user signature. The future work objective 
based on user-dependent parameters should try to improve 
the optimal EER value obtained in this article, where the 
optimal h and a values are fixed for all the signatures. 

Besides, two more conclusions have been derived as a 
consequence of these tests: 

- An approach based on aligning the acceleration signals, 
interpolating them (or not) and calculating the Euclid-



ean distance provides a significantly better performance 
in terms of EER than quantifying the difference of the 
signals by the value of the score of the global alignment 
process. 

- The interpolating phase introduces slight improvement 
than no interpolating, since a lower optimal EER has 
been obtained. However, it has been demonstrated that 
the interpolation phase is significantly useful when the 
alignment speed is high so a lot of zero values are included 
to align the signals (configurations of high h and low a). 
On the other hand, it has also been proved that it is signif
icantly better not to include the interpolation phase when 
the alignment speed is low (configurations of low h and 
high a). 

Finally, from the study of the hand gestures in the database 
GB2SDatabaseDB2, it can be concluded that users vary their 
performance of the 3-D hand gesture over time slightly after 
a period of getting accustomed to it, so in the short term, an 
original user is able to repeat his/her hand gesture more accu
rately than an impostor. However, an optimal updating phase 
of the templates should be investigated to correct the devi
ation in the long term, in addition to a process to habituate 
users to their gestures at the enrollment phase. 
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