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Abstract

As the amount of digital devices suspected of containing digital evidence
increases, case backlogs for digital investigations are also increasing in
many organizations. To ensure timely investigation of requests, this work
proposes the use of signature-based methods for automated action in-
stance approximation to automatically reconstruct past user activities
within a compromised or suspect system. This work specifically explores
how multiple instances of a user action may be detected using signature-
based methods during a post-mortem digital forensic analysis. A system
is formally defined as a set of objects, where a subset of objects may
be altered on the occurrence of an action. A novel action-trace update
time threshold is proposed that enables objects to be categorized by their
respective update patterns over time. By integrating time into event re-
construction, the most recent action instance approximation as well as
limited past instances of the action may be differentiated and their time
values approximated. After the formal theory if signature-based event
reconstruction is defined, a case study is given to evaluate the practicality
of the proposed method.

Keywords: Automatic Event Reconstruction; Digital Forensic Investi-
gations; Automated Inference; Signature Analysis; Action-Trace Update
Pattern Detection

1 Introduction

Since the definition of Digital Forensic Science at the Digital Forensics Research
Workshop in 2001 [1], the field has grown almost as dramatically as technology
itself. As described by Casey [2], Digital Forensic Science is “coming of age”,
which not only brings about a maturation in the principal concepts of the field,
but also an increased scrutiny against these principles and their lack of rigor-
ous scientific backing. Digital forensic investigators are now finding themselves
overwhelmed with the scale and quantity of cases, along with the pressure of
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increasingly restrictive standards [3]. This combination translates into a consis-
tently increasing number of delayed, or even neglected, cases.

Gogolin [4] states that in Michigan, USA, “50% or more of [Law Enforce-
ment’s] cases have a digital component, and most agencies report that this
number is increasing”. This is not surprising given the rapid adoption and evo-
lution of technology worldwide on a business as well as personal level within the
last 10 years alone. As technology becomes more a part of everyone’s life, it is
natural that more evidence in investigations will be found in digital form. The
issue is that many law enforcement agencies are not currently well positioned
to handle an ever-increasing amount of data using traditional digital forensic
techniques. Casey, et al. [5] observes “few [digital forensic laboratories] can
still afford to create a forensic duplicate of every piece of media and perform
an in-depth forensic examination of all data on those media”. Even though the
field of digital forensics has been advancing rapidly, the backlog for digital in-
vestigations has continued to increase. Currently in the United States there are
reports of backlogs from 12 to 18 months [6], and in some cases “approaching
or exceeding 2 years” [4]. In 2004 the United Kingdom digital crime investiga-
tion backlog was 6 to 12 months [7], and rose to 18 to 24 months in 2009 [8]
before being improved through a number of policy, case prioritization and evi-
dence outsourcing initiatives [9]. Since technological advancement for personal
and business use shows little sign of slowing, data and backlog growth will con-
tinue unless law enforcement, and the legal system in general, move towards the
use and acceptance of verifiable, highly-automated solutions during the digital
investigation process.

In an effort to provide faster data to knowledge acquisition for the digital
investigator, this research proposes the use of signature-based methods for the
automated analysis of actions that happened in a given digital system. It shows
that the state of low-level artifacts in a suspect system may be automatically ob-
served and correlated to higher-level actions using signature-based methods that
take into account measured trace update thresholds, rather than the assump-
tion of an immediate trace updates on the occurrence of an action. The result
is a fast and detailed reconstruction of action instances that could be applied
during the triage, preliminary, and in-depth analysis phases of an investigation.

2 Related Work

2.1 State Machine Analysis

Formal analysis is a method to formally represent a system and analyze certain
scenarios based on this formal model. Several works have proposed modeling a
computer system formally as a finite state machine (FSM) [10, 11, 12], which
allows event reconstruction to be reduced to a state-space exploration problem.
FSM models have been applied to model suspect systems in various ways. For
example, Carrier [11] proposed a computer history model that groups the system
into primitive (lowest level) and complex (causing multiple primitive or complex
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events) events. An investigator then formulates hypotheses of events that are
tested against the created computer history model in order to support or refute
the hypothesis. Gladyshev and Patel [10] took a different approach by modeling
the suspect system as an FSM where only the final state is known. The state-
space is then back traced in order to find all possible scenarios that could have
resulted in the final, observed state.

The issue, and benefit, of creating a state machine model of a suspect system
is that all possible states and transitions of the system are considered. However,
in real-world systems the state-space of even the simplest system becomes com-
putationally impractical. Even with efforts to reduce the possible state-space, as
described by James, et al. [13], computational modeling of a real-world system
for analysis currently requires too much abstraction to be practical.

2.2 Computer Profiling

The work on computer profiling presented in Marrington, et al. [14] attempts
to generate a computer usage profile that “. . . allows a human examiner to
make an informed decision regarding the likely value of the computer system to
an investigation before undertaking a detailed manual forensic examination”.
In this work an abstracted object model is used to classify objects observed
in a suspect system. Observed objects are categorized as particular object
types, such as system, principle (people/groups), application or content data.
Relationships between these objects are then determined. These relationships
provide insight into the logic of the system, and allow for the identification
of indirect relationships between objects that were otherwise thought to be
unrelated. By examining an object of interest the relation of other objects may
be found. Times and events – defined as recorded, inferred and unknown types –
are found, and are associated with their corresponding objects, where possible.
The overall computer profile is then represented by these object, relationship
and event connections. Hypotheses about a computer system and its history
can then be formulated and tested based on the derived computer profile.

By concentrating on an informational rather than a computational finite
state machine model, this method does increase practicality compared to meth-
ods previously described. In general, states are defined at a more abstract
(object) level, and are based on observed evidence. Because of this, creation
of the informational model is less computationally intensive as not all possible
combinations of past states must be considered. The drawback is this model rep-
resents suspect objects and their relations, but makes no conclusion about what
exactly these relations mean. The investigator is still left to manual hypothesis
generation and testing, where some previously mentioned methods attempt to
automatically present possible hypothesis as well as test the hypotheses within
the created models.
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2.3 File System Activity Analysis

One probabilistic method of file system activity analysis has been presented by
Khan and Wakeman [15]. In their work, neural networks are used to learn and
detect application “footprints”. Traces that were created on a disk (usually
file creation and manipulation) by a particular application of interest were fed
into the neural network in the order in which they were accessed to learn the
update time-span relationships and file-system manipulation patterns of the
application.

This method is highly probabilistic, where the neural network is able to
calculate the likelihood of an observation matching a previously derived model
(footprint). Khan, et al. [16] showed that neural networks trained on specific
application trace creation variables show relatively good results in determining
and differentiating one application’s footprint from another. One issue – that
was also discussed by the authors – is that these systems need a very large
amount of training data to be reliable. The training data needed, manual vari-
able selection and separate neural networks per application make this method
less practically feasible. Also, when comparing the application footprint of this
method to the use of signatures that encode multiple object update behaviors
described in James, et al. [17], the differences in models suggest that learned
signatures lack some specificity that could provide more event information for
use in reconstruction.

3 Detection of Action Instances

Unlike previous works, this work focuses on the automated extraction of user
action instance hypotheses. An action is any event external to the system that is
the direct cause of a process. An action is the farthest point at which a happened
event can be inferred. Opening a program by clicking an icon, for example, is an
external activity conducted by a user that manipulates the state of the system.
This work submits the hypothesis that multiple past executions of an action
may be inferred by analyzing sporadically updated artifacts associated with
the given action instance. In this work the detection of past action instances
using signature-based methods that includes artifact update time-spans will be
described, and practically demonstrated in a simple case study.

3.1 Theory of Action Instance Reconstruction

When a user interacts with a system, actions cause changes in the state of
the system. Given the deterministic nature of computer systems, a certain
action will consistently cause the same changes within the system each time
the action takes place if the system is in the exact same starting state. A
user clicking on a program’s icon, for example, will consistently execute the
program. The program must access specific files to load, which in turn updates
files, file metadata, log entries, etc. This work will focus on file meta-data, and
specifically file access, modified and created time stamps.
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Figure 1: Causal chain of an action causing a process that causes trace creation.

Figure 2: Back-tracing the causal chain from the observed trace to determine
the corresponding action that caused the trace.

A causal relation between actions and object updates (trace creation) via
process execution can be determined because of causal chaining, where an action
causes the process and the process causes the update of corresponding objects
(Fig. 1).

Causal links can be traced back from the final observed state to determine
all possible beginning actions that could result in such a final state [18]. In this
case, the observation of a resulting trace may be related back to the process
that caused it, which may in turn be related back to the action that caused the
process (Fig. 2).

A system contains a finite set of objects, O, where each object in O may be
defined in terms of associated access (ta), modified (tm) and created (tc) time
stamps:

o = (ta, tm, tc)

The objects and time stamps in a system can be described as follows:

t = (τ), where t is a time stamp and τ is the time value of the time stamp

O = {o1, o2, o3. . .}

Tm = {tm1, tm2, tm3. . .}

Ta = {ta1, ta2, ta3. . .}

Tc = {tc1, tc2, tc3. . .}

T = Tm ∪ Ta ∪ Tc

An action is defined as:

a = (Ma,Da,Oa, af)

where:

• Ma is an action that modifies timestamps to the current time plus some
random period of time (τ +∆τ)
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• Da is an action that sets timestamps to a default value

� Da = {(t, τ)}, where t is the timestamp, τ is the default value

• Oa is a collection of objects the action creates if they are not present

• af is a function which takes in a set of objects and returns another set of
objects produced from the original

� O′ = af(O)

As defined, an action may update time stamps. Since the time stamp update
period is not instantaneous, the update will happen at some random interval
after the action. This update takes place at a random delta after the time of the
action. The action will also create an object if it does not exist. If objects, and
their corresponding timestamps have been destroyed, these timestamps are not
updated. Created objects may have timestamps set to default values that may
possibly be sometime before the time the action took place. For example, soft-
ware installation and backup recovery actions could produce objects with time
stamps that are before the installation and backup actions occurred. Finally,
an action function exists that accepts a set of objects as an input, and returns
a modified set of objects produced from the original.

The set of all actions is defined as:

A = {a1, a2, a3 . . . }

Actions happen at a particular point in time. An instance of an action is defined
as:

I = {(a, τ)|a ∈ A, τ ∈ R}

where:

• τ is the time of the action instance occurring

In the proposed model, the set of actions is defined such that each timestamp
is a result of some action. This simplified system model is defined as:

∀t ∈ T, ∃i ∈ I, (t.τ = i.τ +∆τ) ∨
(∃d ∈ i.a.Da, (d.t = t) ∧ (t.τ = d.τ))

This model states that for all time stamps there either exists an action
instance where the current time of the time stamp equals the time of the action
instance plus some random period of time, or the time stamp is equal to a
default time stamp.

In the model so far defined, a single action deterministically causes modifi-
cation or creation to a set of objects. However, in a real-world system a single
execution of the action can have multiple paths through a program. An action
with multiple paths through a program is defined as:
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aa = {a1, a2, a3, a4}

Each path through a program will cause different modifications. The result
is that not all time stamps may be updated with every execution, depending on
the path.

The event reconstruction approach adopted in this work seeks to recover a
sequence of action instances (i) where:

i = (a, τ)

I = {i1, i2, i3, i4 . . . }

And where multiple action instances may have an effect on a single object.

O′ = in.aa.af(in− 1.aa.af
(. . . i2.aa.af(i1.aa.af(O)) . . . ))

A reconstruction function (ISR) is defined as:

I ′ = ISR(O′)

where:

• I ′ ⊆ I

In this case I ′ = I is impossible. Correctness is such that i in I ′ implies i in
I. However, the opposite is not necessarily always true.

Since the object update delay is random, it cannot be said when the action
occurred. Likewise, different action instances (a1, τ1) and (a2, τ2) may be exe-
cuted at different times but because delta is different for each action, the final
time stamp may be the same. For example, if:

i1 = (a1, τ1)

i2 = (a2, τ2)

τ1 6= τ2

It is possible that O′ = i1.a.af(O) and O′ = i2.a.af(O) if deltas for each
action instance are different. Therefore, a function that uniquely identifies mul-
tiple action instances that acted upon the final observed object is impossible;
however, it is possible to recover a subset of possible action instances.

Provided delta is random, the exact time of an action instance cannot be
found, but the time of an action instance may be statistically approximated.
With a sample of the time intervals in which an action instance takes to update
objects (∆τ) a distribution for the action instance update threshold can be
created. Given a probability distribution of delta, the time of the action instance
can be time-bound, and probabilistically approximated. The threshold for an
action instance execution is defined as:
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θ = Φ(∆τ1, ∆τ2, ∆τ3, ∆τ4. . .)

where:

• θ is the maximum action instance execution threshold

• Φ is a probability density function that accepts the set of ∆τ for a single
action instance

A function that identifies the exact time of the action instance cannot be defined,
but limits on the duration of the action instance are restricted to within θ from
the set of time stamp values.

0 ≤ ∆τ ≤ θ

The definition of an action instance must be updated to account for the exe-
cution threshold:

i = (a, τ, θ)

The aim the proposed algorithm is to recover a subset of action instance
approximations where each approximation consists of an action that happened
and an approximation of the time in which this action happened. An action
instance approximation (ia) is defined as:

ia = (a, λτ)

where:

• λτ is the time interval in which the instance must have occurred in the
form of a double containing two time values [τ1, τ2]

� τ1 is the start time of the interval and τ2 is the end time of the interval

� τ1 and/or τ2 may be null denoting no limit

Ia = {ia1, ia2, ia3. . .}

To recover a subset of action instance approximations (Ia), first the function
AIA is defined that returns a time interval (λτ) from a given time value (τ)
and an action instance execution threshold (θ).

λτ = AIA(τ, θ)

The function AIA returns double [τ1, τ2], where τ1 is calculated by subtract-
ing θ from τ , and τ2 = τ .

The function ISR is defined that returns the set of possible action instance
approximations (Ia) from the final observed state O′, and the set of all action
instances I.
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Ia = ISR(O′, I)

In ISR, for each time stamp (O′.o.t) in the input set O′, and for each update
instance (i.a.Ma) in the input set I that the time stamp is a member of, get the
action path (I.i.aa.a) where the update instance set contained only the single
time stamp (I.i.aa.a.Ma = {O′.o.t}), and the result of AIA(O′.o.t., I.i.θ). The
result is a set of all possibly executed actions that is a subset of I, and a set of
instance approximation intervals per action instance.

3.2 Signatures of Action Instances

This work submits the hypothesis that signature based methods may be used to
automate the trace observation, action inference and action instance approxi-
mation tasks. For the task of observation, object time stamps and their relation
to the action instance must be known. For action instance execution approxi-
mation, the action instance execution threshold is required, where an unknown
(null) value equals any time in the past. And for the inference task, under-
standing of the underlying relation between the observed facts and the inferred
conclusion is required. Knowledge of the system may be encoded as a trace
update consistency-checking function. From this, a signature is defined as:

S = {Ti, θ, cm}

where:

• Ti is the set of all object time stamps associated with the action instance
in the form of an object-trace double [o, t]

� Ti = {t|t ∈ i.a.Ma}

• θ is the maximum action instance execution threshold

• cm is the update consistency checking function particular to the category
of object update patterns

A method for the derivation of time stamps related to a particular action
instance has been described by James [19]. This method allows for the deter-
mination of the set Ti related to a particular action instance. The derivation of
the object update threshold (θ) for a particular action instance, which will be
described. This section, however, will focus on the update consistency check-
ing function (cm), and the definition of three main time stamp related update
patterns.

3.2.1 Core Object Update Consistency

Core object time stamps are defined as a subset of time stamps Score in T that
are updated to the current value of the system clock on the occurrence of each
execution of a single, specific action.
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All of the time stamps in a Core set are said to be in the ‘always updated’
time stamp category. Using this definition, if any trace in a Core set is observed
then it can be inferred that the action instance must have happened since the
artifact relates to one, and only one, action.

Also, since Core time stamps are ‘always updated’, it is expected that each
time stamp will be within a certain time range of each other depending on the
particular object update threshold of the action.

An example of a Core trace would be a configuration file that is always
modified when its related program, Program X, is closed. If the configuration
file were only modified when Program X is closed, the modification time stamp
of the configuration file would be a Core trace for the action “Close Program
X”.

From this definition, an object time stamp update consistency function
(CoreTest) can be derived to test whether each object update conforms to
the Core signature category. In the case of Core, if each trace has been updated
within θ, then the execution time for the action instance can be time-bound
before the oldest time in the array.

First, a function getTraceStates is defined to return the state of time stamps
of all objects defined in S. For each object specified in the signature, add the
object, time stamp and time stamp value to the array TraceStates.

function getTraceStates(O′, S)

array TraceStates

foreach S.T i.o ∈ O′

letTraceStates = TraceStates+ [S.T i[o, t], O′.o.t.τ ]

return TraceStates

Next, the function CoreTest may be defined that accepts an object update
threshold and the TraceStates array. First the TraceStates array is sorted
based on the time stamp values, where element 0 is the oldest and n − 1 is
the newest (most recent) time stamp value. If the oldest time stamp value in
TraceStates plus the object update threshold is less than the most recent time
stamp value in TraceStates, then the Core traces are not consistent. If the
oldest time stamp value plus the object update threshold is greater than the
most recent object update value, then the Core traces are considered consis-
tent. The function CoreTraces return the array detected, which is a single
element array containing a double with the oldest and most recent time stamps
in TraceStates.

function CoreTest(θ, TraceStates)

sort TraceStates

if (TraceStates[0, 0] + θ < TraceStates[n− 1])
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return null

else

return detected[TraceStates[0, 0], T raceStates[n− 1]]

3.2.2 Supporting Object Update Consistency

Supporting object time stamps are defined as a subset of time stamps Ssupport

in T that may or may not be updated to the current value of the system clock
on the occurrence of each execution of a single, particular action instance, but
that will only be updated by a single, particular action.

Supporting object time stamps are in the ‘irregularly updated’ time stamp
category. However, similar to Core signatures, if any trace in a supporting
signature is detected, then it can be inferred that the action instance must have
happened since the trace also relates to one, and only one, action.

A time stamp can be irregularly updated if, for example, a file is cached in
memory after the first execution of an action. If the file data cached in memory,
rather than the file on disk, is accessed on the next execution of the action
instance then the trace update will not be observable on the disk. In this case
the original file’s meta-data on disk would not be updated on the execution of
the second action instance.

From this definition, an object time stamp update consistency function
(SupportTest) can be derived to test whether each trace conforms to the sup-
porting signature category. In the case of supporting, if each trace has been
updated within θ, then the execution time for the action instance can be ap-
proximated to be at, or shortly before the oldest time in the array; however,
depending on the action path, objects may not always be updated. If any ob-
ject time stamp is updated outside of θ from another related object time stamp,
then it can be inferred that a separate instance of the same action must have
happened.

The function SupportTest is defined that accepts an object update threshold
and the TraceStates array. First, the TraceStates array is sorted based on
the time stamp values, where element 0 is the oldest and n − 1 is the newest
(most recent) time stamp value. Each object time stamp value is compared to
the oldest time stamp value in the TraceStates array. The comparison takes
place until the time stamp value plus the object update threshold is less than
the newest compared time stamp value in the array. When this happens, all
time stamp values are assigned to the action instance that must have occurred
between the oldest time stamp value and the most recent time stamp that is still
less than the threshold. The oldest time stamp is then replaced with the most
recent time stamp that is greater than the threshold, and the process starts
again.

function SupportTest(θ, TraceStates)

sort TraceStates
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timeV alue = TraceStates[0]

foreach i in TraceStates; do

if(timeV alue+ θ > TraceStates[i− 1, i− 1])

next

else

arraydetected = detected[] + [timeV alue,
TraceStates[i− 2]]

let timeV alue = TraceStates[i− 1]

done

return detected[]

3.2.3 Shared Object Update Consistency

Shared object time stamps are defined as a subset of time stamps Sshared in T
that may or may not be updated to the current value of the system clock on the
occurrence of each execution of multiple actions.

Shared object time stamps may be either ‘always updated’ or ‘irregularly
updated’ category types depending on the action. Since the particular trace may
be associated with more than one action, it is possible that any associated action
instance could have updated the trace. Thus, without additional information,
the only information that can be inferred from the detection of a shared object
time stamps is that at least one of the associated actions must have happened.

An example of a shared object time stamp would be the access time stamp of
a .dll file. Multiple actions can cause the .dll file to be accessed, so when exam-
ining the system in a post-mortem environment with no additional information,
each action that causes the .dll file to be accessed has the same probability to
have updated the accessed time stamp.

From this definition, an object time stamp update consistency function
(SharedTest) can be derived to test whether each trace conforms to the shared
object update category, and determine what action the trace is associated with.
In the case of shared, if each trace has been updated within θ, then the exe-
cution time for the action can be approximated to be at, or shortly before the
oldest time in the array; however, objects may not always be updated. If any
object is updated outside of θ from another object, then a separate execution of
the same action may be inferred. Traces may also be associated with multiple
actions. Because of this, additional context is needed to determine which action
caused the trace. Some methods, such as probabilistic association, can be used
to attempt to determine which action the trace is associated with, but there are
limitations to these methods. However, action-to-trace association methods,
and their weaknesses, are beyond the scope of this work.
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Keeping with the currently defined signature creation model, at best what
can be said when observing a shared trace is that all actions associated with
the trace could have happened within their respective update thresholds. For
this reason, the consistency checking of a group of shared objects is much like
supporting objects. Each object time stamp value is compared from oldest to
most recent. Each time stamp is considered to be associated with one action
instance if the value is within the update threshold. The result is an array with
multiple instances of the action. In the case of shared, the objects may be tested
more than once, since they will be present in multiple signatures. This means
that a trace may be associated with multiple actions, and all actions associated
with the shared trace are assumed to have happened.

function SharedTest(θ, TraceStates)

sort TraceStates

timeV alue = TraceStates[0]

foreach i in TraceStates; do

if(timeV alue+ θ > TraceStates[i− 1, i− 1])

next

else

arraydetected = detected[] + [timeV alue,
TraceStates[i− 2]]

lettimeV alue = TraceStates[i− 1]

done

return detected[]

3.3 Object Update Threshold

The object update process is not instantaneous. In order to accurately differ-
entiate between multiple instances of an action, object update duration must
be defined for the particular action. The object update threshold, in seconds,
of the actions “Open Internet Explorer 8” (IE8) and “Open Firefox 3.6” (FF3)
were surveyed on 25 computer systems running Windows XP or Windows 7,
and modeled as a normal distribution. To attempt to reduce noise, a limiter of
2σ will be used.

For the action “Open Internet Explorer 8”, the average execution update
duration was 27.4 seconds, with a standard deviation (σ) of 16.76 seconds. The
threshold chosen was 2σ, or from 0 to 61 seconds. Fig. 3 shows the results
modeled as a normal distribution, with a histogram of the data shown in Fig.
4.
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Figure 3: Normal distribution of IE8 execution times in seconds to two standard
deviations.

Figure 4: Histogram of IE8 execution times where X is time in seconds and Y
is the number of occurrences within the update duration.
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Figure 5: Normal distribution of FF3 execution times in seconds to two standard
deviations.

For the action “Open Firefox 3.6”, the average execution object update
duration was 24.5 seconds, with a standard deviation of 12.96 seconds. The
threshold chosen was 2σ, or from 0 to 50 seconds (Fig. 5, 6).

Objects will be associated to the same action instance if each has been
updated within the given threshold. To handle the situation of an overlap of
two action instances where an object could be in a position to be associated with
either instance of the action, a search for the first and last time stamp in the
set will be conducted, starting from the known point. If the update duration
between the oldest object and the newest object is greater than the defined
action’s object update threshold, then at least two instances of the action must
have happened. For example, an artifact t2 is observed. t2 is associated to an
action whose signature consists of the set {t1, t2, t3}, and whose threshold (θ) is
60 seconds. If t1 = 12:59:30, t2 = 13:00:00, and t3 = 13:00:58 then t2−t1 < θ and
t3−t2 < θ. In this case t1 and t3 could be associated to the same action instance
since θ < 60 when compared to t2, even though θ < t3− t1 = 88. To handle this
situation, when an object is found, all existing time stamps associated to the
action instance are observed and sorted. The oldest time stamp is then used as
the base from where all other returned time stamps are compared. If any time
stamp is greater than θ from the oldest time stamp, then multiple instances of
the action must have happened.
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Figure 6: Histogram of FF3 execution times where X is time in seconds and Y
is the number of occurrences within the update duration.

3.4 Signature Analysis Model

The proposed signature analysis model for detecting actions uses the previously
defined classes of signatures in a layered approach to build up knowledge of
actions that have happened in a system. To illustrate, a fictional example of
this approach is given:

An action, ActionX, has a Core signature (SXCore) consisting of two time
stamps, and a Supporting signature (SXSupport) that has three associated time
stamps. All object update thresholds are defined as 30 seconds.

SXCore = {[(o1, t1), (o2, t2)], 30sec., Core}

SXSupport = {[(o3, t3), (o4, t4), (o5, t5)], 30sec.,
Supporting}

The Shared signature (SXShared) forActionX has two associated time stamps.
Both of these time stamps are also associated with another action, ActionY .
The Shared signature for ActionY is denoted as SYShared.

SXShared = {[(o6, t6), (o7, t7)], 30sec., Shared}

SYShared = {[(o6, t6), (o7, t7)], 30sec., Shared}

The function SignatureMatch(O′, S) takes the system and signature as in-
put, and returns the value of the observed action instance update time-span.

SignatureMatch(O′, SXCore) returns
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ActionX ActionY
Core 4/14/2010 19.28:25
Core 4/14/2010 19:28:32
Support 4/14/2010 15:13:25
Support 4/14/2010 19:28:18
Support 4/14/2010 19:28:34
Shared 4/14/2010 19:28:25 4/14/2010 19:28:25
Shared 05/02/2010 09:45 05/02/2010 09:45

Table 1: Summary of example time stamps related to ActionX.

{[“4/14/2010 19 : 28 : 25′′, “4/14/2010 19 : 28 : 32′′]}

SignatureMatch(O′, SXSupport) returns

{[“4/14/2010 15 : 13 : 25′′], [“4/14/2010 19 : 28 : 18′′, “4/14/2010 19 : 28 :
34′′]}

SignatureMatch(O′, SXShared) returns

{[“4/14/2010 19 : 28 : 25′′], [“5/2/2010 9 : 45 : 02′′]}

SignatureMatch(O′, SYShared) returns

{[“4/14/2010 19 : 28 : 25′′], [“5/2/2010 9 : 45 : 02′′]}

The result of this detection process is summarized in Table 1.
Since Core signature traces are always updated and relate only to ActionX,

it can be inferred that ActionX last happened approximately at 4/14/2010
19:28:25. Both ActionX Core timestamps are within θ, so the traces are con-
sistent.

With the knowledge of the last execution time of ActionX, the Supporting
signature may now provide more information. In this case, two supporting
traces confirm the last execution time (t3 and t4). Traces in the Supporting
signature may not always be updated, as is shown by the supporting trace (t5)
with a time stamp of 4/14/2010 15:13:25. This trace is consistent since the time
is before the identified last execution time (t1). Also, since Supporting traces
are associated only with one action, a previous execution of ActionX must have
happened at this time.

Finally, Shared traces are examined. Each trace is associated with both
ActionX and ActionY . The first shared trace (t6) has a time stamp that is
within the last execution time of ActionX; however, ActionY could have also
happened at this time. Calculating the probability of one trace belonging to a
particular action has been discussed in [20, 21], but is beyond the scope of this
work. Because of this, no conclusion can be made. The next trace, however,
has a time that is after the detected last execution time (t1) of ActionX. Since
this trace is associated only with ActionX or ActionY , it can be inferred that
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ActionX ActionY
Last Execution 4/14/2010

19.28:18
Previous Execution 4/14/2010

15:13:25
05/02/2010
09:45

Table 2: Known action instance approximation times after signature analysis.

Figure 7: Graph of objects in T related to ActionX grouped by θ, that shows
two distinct instances of ActionX.

the trace (t7) must belong to ActionY since it is not consistent with the infor-
mation known about ActionX. An instance of ActionY must have happened
at approximately 5/2/2010 9:45:02, to be consistent with ActionX.

After this analysis, action instance approximations may be given as shown
in Table 2.

The time stamps that are known to relate only to ActionX are shown in
Fig. 7. The times are grouped, where θ = 30 seconds. In the case of Core and
Supporting signatures, where the traces are related only to ActionX, the most
recent, as well as past executions of the action can be inferred.

This example illustrates that by layering multiple observations more infor-
mation about previous executions of actions can be automatically inferred. Also,
by building on already detected information, inferences about other non-related
actions may be made. Evaluation of this method will be presented in a case
study, where the process is applied to detect actions in a real environment.

4 Case Study

To test the proposed method, example signatures were created for the actions
“Open Internet Explorer 8” and “Open Firefox 3.6” on Windows XP. Windows
XP was chosen since, at the time of data collection, it was still the most fre-
quently encountered operating system of surveyed law enforcement [17]. For
brevity, only Core and Supporting objects will be analyzed. The tested signa-
tures are defined as regular expressions1 to support portability, and are listed
in Table 3 and Table 4. As previously shown, θ for FF3 is 50 seconds, and θ for
IE8 is 61 seconds.

1For more information on Regular Expressions, see http://www.bsd.org/regexintro.html
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Category Time
Stamp

Objects related to ‘Opening
FF3’

Core Modified .*/Firefox/Profiles/.*default/
urlclassifierkey.\.txt

Core Modified .*/Prefetch/Firefox\.EXE-
.*\.pf

Support Created .*/Prefetch/Firefox\.EXE-
.*\.pf

Support Created .*/Firefox/Profiles/
.*default/cookies.sqlite-
journal

Support Created .*/Firefox/Profiles/
.*\default/urlclassifierkey.\.txt

Support Created .*/Firefox/Profiles/ .*de-
fault/startupCache$

Support Created .*/Firefox/Profiles/ .*de-
fault/pluginreg.dat

Table 3: FF3 objects, categories and corresponding time stamp of interest.

Category Time
Stamp

Objects related to ‘Opening
IE8’

Core Modified .*/Prefetch/
IEXPLORE\.EXE-.*\.pf

Support Created .*/Prefetch/
IEXPLORE\.EXE-.*\.pf

Support Created .*/Cookies/.*@ATDMT\[[0-
9]\]\.TXT

Support Created .*/Cookies/.*@BING\[[0-
9]\]\.TXT

Support Created .*/Cookies/.*@live\[[0-
9]\]\.TXT

Table 4: IE8 objects, categories and corresponding time stamp of interest.
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The case consists of two computers running Windows XP with both IE8 and
FF3 installed. Each computer was used daily for entertainment, work and study
tasks. Both users identified that they used Firefox as their primary browser. To
accurately determine when IE8 and FF3 have been opened and closed, a Win-
dows Security auditing policy was implemented on both computers to monitor
process creation and executable access. Each computer was monitored for a
number of days, after which the Windows security event log was exported and
the computer’s file system meta-data was collected with tools from The Sleuth
Kit version 3.2.2. The resulting Windows Security Logs and meta-data outputs
are available as a downloadable dataset [22].

On ‘Computer 1’, 12 instances of opening FF3 from the 19th to the 24th
were identified from the Windows event log, and 6 instances of opening IE8 were
identified. The meta-data from Computer 1 was scanned using the previously
defined signature for opening FF3. The identified objects and associated time
stamps are shown in Table 5.

In this case, all Core objects were discovered. However, one Core object had
a time stamp that was different than another Core object. This unexpected
behavior can be explained by looking at the Open and Close times from the
Windows event log. The Firefox open event with the process ID 4284 occurred
at 13:23, and was never followed by a process close event. While process 4284
was still open, another instance of Firefox was started, process 5480, at 15:02.
If process 4284 had locked the object in question, then the time stamp may not
be updated upon another instance of the action. However, T2 was not locked
by the first event, and was updated. Since both objects must be updated when
the action happens, this must mean that two instances of the same action must
be running in parallel, otherwise both artifacts would be updated.

Next, the meta-data from Computer 1 was scanned using the previously
defined signature for opening IE8. The identified objects and associated time
stamps are shown in Table 6. In this case, all Core objects were detected,
identifying the most recent execution of IE8 as happening at approximately
14:56 on 07/23/2011. All other associated objects had timestamps before this
time.

On Computer 2, 14 instances of opening FF3 from the 13th to the 17th was
identified from the Windows event log, and two instances of opening IE8 were
identified. The meta-data from Computer 2 was scanned using the previously
defined signature for opening FF3. The identified objects and associated time
stamps are shown in Table 7. In this case all Core artifacts were detected, iden-
tifying the most recent execution of FF3 as approximately 20:24 on 07/17/2011.
All other associated objects had time stamps before this time.

Next, the meta-data from Computer 2 was scanned using the previously
defined signature for opening IE8. The identified objects and associated time
stamps are shown in Table 8. In this case, all Core artifacts were detected,
setting the most recent execution of IE8 at approximately 15:15 on 07/17/2011.
All other associated objects had time stamps before this time.
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Category Time Returned Object
Core 07/24/2011

13:24:14
C:/Documents and Set-
tings/User1/ Application
Data/Mozilla/Firefox/
Profiles/94370b5u.default/
urlclassifierkey3.txt

Core 07/24/2011
15:02:31

C:/Windows/Prefetch/
Firefox.exe-28641590.pf

Support 12:26/2010
04:26:24

C:/Windows/Prefetch/
Firefox.exe-28641590.pf

Support 07/24/2011
13:24:10

C:/Documents and Set-
tings/User1/ Application
Data/Mozilla/Firefox/
Profiles/94370b5u.default/
cookies.sqlite-journal

Support 01/05/2011
23:15:34

C:/Documents and Set-
tings/User1/ Application
Data/Mozilla/Firefox/
Profiles/94370b5u.default/
urlclassifierkey3.txt

Support N/A .*/Firefox/Profiles/ .*de-
fault/startupCache$

Support 12/26/2010
03:04:55

C:/Documents and Set-
tings/User1/ Application
Data/Mozilla/Firefox/
Profiles/94370b5u.default/
pluginreg.dat

Table 5: FF3 objects and associated timestamps found using signature detection
on Computer 1.
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Category Time Returned Object
Core 07/23/2011

14:56:53
C:/Windows/Prefetch/
Iexplore.exe-27122324.pf

Support 07/19/2011
00:57:22

C:/Windows/Prefetch/
Iexplore.exe-27122324.pf

Support 06/14/2011
10:47:26

C:/Documents and
Settings/User1/ Cook-
ies/user1@atdmt[2].txt

Support 01/11/2011
19:40:26

C:/Documents and
Settings/User1/ Cook-
ies/user1@bing[2].txt

Support 06/14/2011
10:47:26

C:/Documents and
Settings/User1/ Cook-
ies/user1@live[1].txt

Table 6: IE8 objects and associated time stamps found using signature detection
on Computer 1.

4.1 Evaluation

In this case study signatures were used to detect Core and Supporting objects.
After, objects within the action’s object update threshold were grouped and
considered related to the same action instance. The result is a list of object
timestamps related to a particular action of a particular computer. The results
of the previous signature detection, where the Windows Event log confirms all
detected timestamps, are given in Table 9.

Table 9 shows that the most recent execution, as well as at least one past
instance of Firefox was detected on both computers. Further, at least the most
recent execution of Internet Explorer was detected on both computers.

Detecting more previous instances of Firefox than Internet Explorer may be a
result of both users using Firefox as their primary browsers, meaning that there
may have been fewer instances of Internet Explorer during the experiment. In
all cases, however, the most recent instance of the action was always accurately
detected.

4.1.1 Further Implementation

This case study was meant to illustrate the described theory. The researchers
are currently implementing the proposed model in a tool designed for digital in-
vestigators, and are applying it to anti-forensic action detection2. For signature
creation, specific actions of interest are chosen, and a sandbox is used to extract
object updates in a target system. Object update ‘traces’ are categorized based
on the given model, and relevant traces are added as signatures for actions of
interest. The tool then accepts a suspect disk image (or live computer), and

2The open source tool implementing the proposed theory can be found at
http://github.com/hvva/IoAF
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Category Time Returned Object
Core 07/17/2011

20:24:26
C:/Documents and Set-
tings/user/ Application
Data/Mozilla/Firefox/
Profiles/c2yzki95.default/
urlclassifierkey3.txt

Core 07/17/2011
20:24:18

C:/Windows/Prefetch/
Firefox.exe-28641590.pf

Support 05/21/2010
16:15:23

C:/Windows/Prefetch/
Firefox.exe-28641590.pf

Support 05/14/2010
16:44:22

C:/Documents and Set-
tings/user/ Application
Data/Mozilla/Firefox/
Profiles/c2yzki95.default/
cookies.sqlite-journal

Support 10/23/2010
11:26:02

C:/Documents and Set-
tings/user/ Application
Data/Mozilla/Firefox/ Pro-
files/c2yzki95.default/
cookies.sqlite-journal
(deleted)

Support 04/13/2011
00:33:49

C:/Documents and Set-
tings/user/ Application
Data/Mozilla/Firefox/
Profiles/c2yzki95.default/
urlclassifierkey3.txt

Support 07/17/2011
15:23:05

C:/Documents and Set-
tings/user/ Application
Data/Mozilla/Firefox/
Profiles/c2yzki95.default/
startupCache

Support 07/17/2011
00:46:36

C:/Documents and Set-
tings/user/ Application
Data/Mozilla/Firefox/
Profiles/c2yzki95.default/
pluginreg.dat

Table 7: FF3 objects and associated time stamps found using signature detec-
tion on Computer 2.

23



Category Time Returned Object
Core 07/17/2011

15:15:13
C:/Windows/Prefetch/
Iexplore.exe-27122324.pf

Support 07/17/2011
15:15:09

C:/Windows/Prefetch/
Iexplore.exe-27122324.pf

Support 03/10/2011
15:01:01

C:/Documents and
Settings/User1/ Cook-
ies/user1@atdmt[1].txt

Support 03/10/2011
15:38:37

C:/Documents and
Settings/User1/ Cook-
ies/user1@bing[2].txt

Support 03/10/2011
15:38:37

C:/Documents and
Settings/User1/ Cook-
ies/user1@live[2].txt

Table 8: IE8 objects and associated time stamps found using signature detection
on Computer 2.

Computer Action Logged
Time

Detected
Time

Computer 1 Open
FF3

07/24/2011
15:02:30

07/24/2011
15:02:31

Computer 1 Open
FF3

07/24/2011
13:23:58

07/24/2011
13:24:14

Computer 2 Open
FF3

07/17/2011
20:24:14

07/17/2011
20:24:18

Computer 2 Open
FF3

07/17/2011
15:23:01

07/17/2011
15:23:05

Computer 2 Open
FF3

07/17/2011
00:46:14

07/17/2011
00:46:36

Computer 1 Open
IE8

07/23/2011
14:56:46

07/23/2011
14:56:53

Computer 2 Open
IE8

07/17/2011
15:15:06

07/17/2011
15:15:09

Table 9: Detected executions of an action based on signature matching over
meta-data separated by a measured object update threshold, where the Win-
dows Security Log confirms each detected time.
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matches generated signatures with extracted suspect meta-data to reconstruct
action instances in the suspect system.

4.1.2 Weaknesses

The greatest weakness with this method is the same weakness in all signature-
based detection methods. Not all possible actions can be known, and unknown
actions will not be considered. This lack of complete knowledge is especially
relevant in the case of action instance signature generation. If not all possible
actions are known, then it is impossible definitely determine a trace’s category.
The answer to this weakness comes from the investigator. Human knowledge
is also incomplete, yet human investigators are able to state that actions in a
system must have happened based on their knowledge of how the system works.
Human investigators also update their knowledge based on new experiences.
Signature-based action instance detection methods must be able to be updated
when new information that leads to changing a trace’s category is found. Even
if action signatures are being updated, it is still not possible to account for
every piece of custom-made software. For this reason, this method is more
suitable as a pre-analysis inference guide for the human investigator or for post-
examination human inference verification rather than for completely automated
investigations.

Another consideration is when an incident has multiple relevant actions.
While some actions can be differentiated by using Core, Supporting and Shared
objects, if relevant actions happen within a very short time of each other – as
the formal model shows – relating the object to the specific action is impossible.
The final state of the system simply does not contain enough information to
differentiate two similar action instances happening at approximately the same
time. Further, this method can help detect action instances, but in most cases
it will not help with the problem of attribution, unless a specific, attributable
pattern is detectable. For example if malicious software creates detectable object
update patterns in the system.

5 Conclusions

In this work, the concept of signature detection of actions was discussed. Three
categories of signatures were formally defined that, based on their unique update
patterns, allow for the detection of the most recent as well as past action instance
approximations. A method for differentiating between two instances of the
same action within a very short time range was also given. After, the signature
analysis method was illustrated with an example. Finally, a case study using the
proposed signature analysis method on two real-world computers was examined.
The case study showed good results in detecting the most recent instance of the
action, and did give more information about past action instances. However,
the method did not detect every past instance of the action, but it also did not
give false positives. Overall, by using the proposed method to automatically
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approximate action instances and display them in a timeline, an investigator
can very quickly get an idea of how, and when, the system has been used
regardless of their knowledge of the system or specific data being analyzed.

Future work will look at improving the action instance extraction by in-
tegrating more objects/content into the signature, such as Windows Registry
and system log entries. Further, much like intrusion detection systems, a hy-
brid statistical and signature-based approach may help reduce signature-based
weaknesses while still maintaining a high level of accuracy. And finally, future
work will attempt to monitor a system for a longer period of time to determine
if detected times very far in the past correspond with actual action instances.
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