A preliminary version of this paper appears in the proceedings of the 1st International Conference on Research in
Security Standardisation (SSR 2014), DOI: 10.1007/978-3-319-14054-4 1. This is the full version.

Unpicking PLAID

A Cryptographic Analysis of an ISO-standards-track Authentication Protocol

Jean Paul Degabriele! Victoria Fehr? Marc Fischlin? Tommaso Gagliardoni?
Felix Giinther? Giorgia Azzurra Marson? Arno Mittelbach? Kenneth G. Paterson'

! Information Security Group, Royal Holloway, University of London, U.K.

2 Cryptoplexity, Technische Universitit Darmstadt, Germany
{j.p.degabriele,kenny.paterson}@rhul.ac.uk,
{victoria.fehr,tommaso.gagliardoni,giorgia.marson,arno.mittelbach}@cased.de,
marc.fischlin@cryptoplexity.de, guenther@cs.tu-darmstadt.de

October 27, 2015

Abstract. The Protocol for Lightweight Authentication of Identity (PLAID) aims at secure and private
authentication between a smart card and a terminal. Originally developed by a unit of the Australian
Department of Human Services for physical and logical access control, PLAID has now been standardized
as an Australian standard AS-5185-2010 and is currently in the fast-track standardization process for
ISO/IEC 25185-1. We present a cryptographic evaluation of PLAID. As well as reporting a number of
undesirable cryptographic features of the protocol, we show that the privacy properties of PLAID are
significantly weaker than claimed: using a variety of techniques we can fingerprint and then later identify
cards. These techniques involve a novel application of standard statistical and data analysis techniques
in cryptography. We discuss potential countermeasures to our attacks and comment on our experiences
with the standardization process of PLAID.

Keywords. Protocol analysis, ISO standard, PLAID, authentication protocol, privacy

http://dx.doi.org/10.1007/978-3-319-14054-4_1

Contents

1

2

Introduction

PLAID Protocol Description

2.1 PLAID Setup o e
2.2 Initial Authenticate e
2.3 Final Authenticate e e

Shill-Key Fingerprinting — Tracing Cards in PLAID

3.1 Tracing Cards via Shill-Key Ciphertexts
3.2 Tracing Cards from a Mixed Set of Shill-Key Ciphertexts
3.3 Tracing Cards During Lunchtime L oo
3.4 Connection to Key Privacy of RSA Encryption
3.5 Countermeasures to Our Attacks

Keyset Fingerprinting — Determining a Card’s Capabilities

4.1 The Attack in a Nutshell e
4.2 The Attack Details e
4.3 Potential Countermeasures Against Our Attack

Further Security Considerations

5.1 Forward (In)security
5.2 Key (In)security in the Bellare-Rogaway Model
5.3 On the Applicability of Bleichenbacher’s Attack
5.4 CBC-mode Encryption e
5.5 Entity Authentication e
5.6 Payload Insecurity e
5.7 On the Impossibility of Key Revocation
5.8 Key Legacy Attack e

Responses of the ISO Authority Regarding Technical Aspects

A Cryptographer’s Perspective on the Standardization Process of PLAID

7.1 The Pre-ISO Phase e
7.2 The ISO Standardization Process
7.3 The Aftermath of Our Work

Conclusion

13
14
16
17

17
18
19
20

20
20
21
22
22
23
23
23
24

24

25
25
25
27

27

1 Introduction

PLAID, the Protocol for Lightweight Authentication of Identity, is a contactless authentication protocol
intended to be run between terminals and smartcards. The protocol was designed by Centrelink, an agency
of the Australian government’s Department of Human Services (DHS). According to the developers it is
supposed to provide a cryptographically strong, fast, and private protocol for physical and logical access
control, without exposing “card or cardholder identifying information or any other information which is
useful to an attacker” [Cen09, Stal0, ISO14].

PLAID was initially proposed for use in the internal ID management of Centrelink [Kli10]. However,
the intended scope of applications has since significantly broadened to include the whole of DHS and the
Australian Department of Defence [Tay12]. Indeed, the protocol’s promoters aspire to broader commercial
and governmental deployment, including on an international level [Depl4]. Strategies that are mentioned to
support these aspirations include freely available intellectual property and outreach to other governmental
organizations. To the latter end, NIST organized a workshop to explore the potential of PLAID for
U.S. Federal Agencies in July 2009 [Nat09].

Another strategy that is being actively pursued is standardization. PLAID was previously registered
as the Australian standard AS-5185-2010 [Stal0] and was then entered into the ISO/IEC standardization
process via the fast-track procedure. At the time of writing, the current ISO/IEC version is draft interna-
tional standard (DIS) 25185-1.2 [ISO14] and is currently in the “Publication stage” 60.00 (International
Standard under publication). Minor changes in the original protocol to match the international standard
have been applied. Reference implementations, based on the Australian standard, are available both from
the Australian Department of Human Services (in Version 8.04) and of the Australian Department of
Defence (in draft version 1.0.0).

The protocol. The main goal of the protocol is to perform mutual authentication and establish a shared
key between the terminal (IFD) and the card (ICC). To this end the terminal and the card exchange
nonces RND1 and RND2 in encrypted form and then derive the session key as part of the hash value of
the two nonces. Encryption here uses both asymmetric RSA-based encryption (when the card transmits
RNDL1 to the terminal) and symmetric AES-based encryption (when the terminal sends RND2 to the card).
Authentication of the partner is presumably guaranteed by the fact that a party should know the secret key
in order to be able to decrypt the other party’s nonce. An overview of the protocol is depicted in Figure 1,
where the encrypted nonces are exchanged with transmissions ®STR1 and “STR2. The card confirms the
receipt of RND2 by sending a string encrypted under the derived key in *STRS3.

The role of the terminal’s initial message KeySetIDs is as follows. Each PLAID deployment involves a
set of key pairs consisting of an RSA key and an AES key. Each terminal and each card stores a certain
subset of these pairs. More precisely, each terminal holds a set of RSA key pairs (both encryption and
decryption key) and corresponding AES master keys, while each card holds a set of RSA public keys and
card-specific AES keys, derived from the corresponding AES master keys using a card identity. The keys
held by a card are intended to control what types of access the card should have, so each key represents
a capability. The actually deployed pair of keys is negotiated during the protocol itself, by having the
terminal send a sequence of supported RSA key identifiers KeySetID in the first message. Even though the
encryption key in RSA is usually public, in PLAID it is kept secret to enhance privacy (since, for example,
the set of RSA keys held by a card could be used to identify the card and track its use in a deployment).

One distinctive feature of the PLAID protocol is that the card switches to using a pair of so-called shill
keys in case of an error. That is, if the card detects some potential error, then it uses its card-specific RSA
shill key and AES shill key to encrypt random data. This mechanism is intended to hide information about
failures from an adversary and thereby prevent leakage about which keys are possessed by a particular card.

IFD I1CC

KeySetIDs choose first matching KeySetID or else

O,

@ retrieve list of KeySetIDs

use ShillKey in @ on random string

compute
@ STR1 = KeySetID || DivData || RND1 || RND1
°STR1 = RSA{AE®Y (STR1)

Encrypt

try all keys to decrypt
¢STR1 and check for RND1 || RND1

”

if unsuccessful “authentication fails

INITIAL AUTHENTICATE

v FINAL AUTHENTICATE

FAKey®") = AESEMS (DivData)
KeysHash = SHA-256(RND1 | RND2)o....,127

STR2 = OpModelD || RND2 || [Payload] || KeysHash
°STR2 = AESEAK ™™ (gTR9)

Encrypt

¢STR2 decrypt and check KeysHash

©

if unsuccessful use ShillKey in @

compute
STR3 = ACSRecord || [Payload] || DivData

°STR3 = AESK®sHash (gPR3)

Encrypt

decrypt and check DivData

if correct “process” data

else “authentication fails”

Figure 1: PLAID protocol overview.

Previous security analyses. Centrelink’s accompanying description of PLAID [Cen09] claims that
PLAID is highly resistant against leakage of card or card holder identifying information, against various
forms of active attacks, and provides mutual authentication. The document states as a goal that the protocol
shall be “evaluated by the most respected cryptographic organisations, and the broader cryptographic
community.” For version 8 the document [Cen09] refers to the input by various agencies like NIST and
of “a number of independent cryptographic experts and consultants, a number of respected commercial
cryptographic teams, as well as the internal Centrelink team.”

However, we are not aware of any publicly available cryptographic evaluation of PLAID. None of the
claimed security properties is backed up by arguments, nor matched against more precise formalizations in
the description [Cen09] or standards [Stal0, ISO14]. Some useful comments about the protocol’s security
have been given by the national representatives on the first DIS version of the ISO standard [ISO12] during
the disposition of comments [[SO13]. These comments refer partly to the points discussed in Section 5,
where we asses them in a cryptographic context.

PLAID has been scrutinized to some extent by using formal methods and automated tools. Watan-
abe [Wat13], using Scyther, and Sakurada [Sak13], using ProVerif, confirmed that PLAID satisfies some
form of mutual authentication and some level of secrecy of the session key, assuming idealized cryptographic
primitives. It remained unclear to us what this assurance means in a cryptographic sense. Neither of the
works considers privacy aspects.

Finally, the Master’s thesis of Kiat and Run [KR12] at the Naval Postgraduate School compares PLAID
with a similar protocol, the ANSI/INCITS 504-1-2013 standard OPACITY. The conclusion is indecisive

and is primarily based on deployment characteristics. The authors evaluate cryptographic properties only
on a superficial level. Indeed, while the thesis does not pinpoint at any major weakness in OPACITY, a
cryptographic analysis [DFG ™ 13] was less positive.

Our results. According to the developers of PLAID, the lack of privacy in previous efforts was one of
the main reasons to introduce a new authentication protocol [Ris09]. Indeed, PLAID is described as highly
resistant against “the leakage of individually identifiable, unique or determinable data or characteristics of
the smart card or the holder during authentication.” [Cen09]. We argue here that PLAID does not achieve
this ambitious goal. More precisely, we describe and evaluate a suite of attacks that break the privacy goals
of PLAID, enabling cards to be efficiently identified in a number of realistic scenarios. We also identify
some countermeasures to our attacks.

In more detail, our first attack (which further divides into three sub-scenarios) exploits PLAID’s use
of shill keys, which, being card-specific, can serve as a proxy for the card identity. While the shill keys
themselves are not transmitted in the protocol, we show how they can be statistically estimated from RSA
ciphertexts observed in protocol runs, enabling cards to be first fingerprinted and then later re-identified.
This “shill-key fingerprinting” attack, presented in Section 3, deploys different techniques to perform the
statistical estimation in three distinct attack scenarios. For two scenarios, our attack uses the standard
solution to what is known as the “German Tank Problem”, which concerns estimating the maximum of a
discrete uniform distribution from a number of samples, while, for the third scenario, it uses clustering
techniques (and in particular the standard k-means clustering algorithm) to perform the estimation of the
shill keys.

Our second attack, targeting the terminal’s initial message KeySetlIDs, is called “keyset fingerprinting’
and is presented in Section 4. It exploits specific properties of the protocol flow to extract information about
the set of keys held by a given card, potentially allowing us to draw conclusions about the card holder (e.g.,
via access authorizations). We show that this information can be efficiently extracted by interacting with a
card a number of times and observing how the protocol proceeds (or fails to proceed). The information
obtained in this attack may already be sufficient to identify individual cards from amongst a population,
depending on the exact characteristics of a given deployment. The attack can also be combined with all
three variants of our first attack to increase their efficiency (by reducing the number of possible keys that
need to be considered in the re-identification phase).

In Section 5, we make a number of other observations on cryptographic aspects of the PLAID protocol,
focusing in particular on its lack of forward security, the use of weak RSA encryption, the lack of integrity
protection for the symmetric encryption and a number of imprecisions in its specification. Some of the
issues have already been briefly touched upon in the national body comments [ISO13] on the previous ISO
standard version [ISO12]; some aspects, like the lack of forward security, are new.

i

Interaction with the responsible authorities. We promptly communicated our findings to the ISO
25185-1 project editor and a contact person at the Department of Human Services. We report and comment
on their responses to our technical results in Section 6. In Section 7, we then take a step back and look at
the standardization process to which PLAID was subjected, which we find interesting in its own right, and
offer our own views and reflections on it.

Note. A preliminary version of this paper appears in the proceedings of the 1st International Conference
on Research in Security Standardisation (SSR 2014), December 2014 [DFF"14b]. This is an extended
version. In particular, more simulation results for our original shill-key fingerprinting attacks, a statistical
analysis in Section 3.1, the lunchtime attack of Section 3.3, the report on our interaction with the ISO

Table 1: Most important fields and identifiers of PLAID.

Variable | Description

ACSRecord An access-control system record for each operation mode required for authentication.
DivData A “random or unique” 16-byte ICC identifier.

FAKey A 16-byte AES key which can be seen as master key to compute the diversified key used in
the protocol (only known to the IFD).

FAKey(Piv) A 16-byte AES key derived from the FAKey and used in the FA phase.

TAKey A 2048-bit pre-shared RSA key pair used in the IA phase. The ICC only knows the public
key part.
KeySetID A 2-byte index value identifying an IAKey and FAKey or FAKey(DiV>, respectively.

OpModelID A 2-byte index value identifying the operation mode. This value indicates which ACSRecord
and payload the ICC needs to provide for authentication.

RND:q A 16-byte random string for ¢ = 1, 2.
KeysHash® A 16-byte session key computed by IFD and ICC used in the FA phase.
ShillKey A pair of 2048-bit RSA public key and 16-byte AES key of the ICC (randomly chosen per

ICC during setup). These keys are to be used instead of error messages to simulate the next
step of the protocol camouflaging that something went wrong.

representatives of Section 6, and our reflections on the standardization process of PLAID of Section 7 are
new to this version of the paper.

2 PLAID Protocol Description

In this section we give a detailed description of PLAID according to the specification of the draft ISO/IEC
DIS 25185-1.2 [ISO14]. A more concise overview of the protocol flow is depicted in Figure 1. To make our
description as close as possible to the original specification [ISO14] we denote terminal and card by IFD
(Interface Device) and ICC (Integrated Circuit Card) respectively. Table 1 provides a summary of the most
important fields and objects occurring in the protocol.

2.1 PLAID Setup

In the setup phase PLAID initializes both terminals (IFDs) and cards (ICCs). PLAID supports up to 26
key sets, each consisting of an RSA key pair IAKey, and an AES key FAKey,. Each terminal and each
card hold a subset of these overall possible key pairs, according to some access-control policy. However,
the card only holds the public key part of the IAKey as well as a processed version of the original FAKey.
More concretely, the card does not keep the FAKeys directly, but only a diversified version FAKey(DiV) =
AESEﬁg%t(DiVDa‘ca), where DivData is a 128-bit card identifier. The standard [ISO14] highlights that
these diversification data should be “random or unique”. Using the diversified key instead of FAKey should
retain security for other cards, in the case of a card being compromised and hence some of the (diversified)
keys are disclosed. In addition to the RSA keys, FAKey(DiV) and the value DivData, each card receives a
pair of individual distress-keys (called ShillKey): a random RSA encryption key and a random AES key.
These “shill keys” should be used to encrypt random data in case an error is detected, thus camouflaging
errors or de-facto aborts on the card.

2.2 Initial Authenticate

The IA phase aims at exchanging the necessary information to compute the symmetric keys used in the FA
phase as well as transferring DivData, the card-specific data later needed to guarante authenticity of the
final message, securely to the terminal.

Step 1 (IFD) — IA Command: The interaction is initiated by the IFD, which transmits the complete
sequence of supported KeySetIDs (in order of preference) to the ICC.

Step 2 (ICC) — IA Command Evalution: Upon receiving a set of KeySetIDs, the ICC traverses the
entire list of indices to find the first KeySetID it supports, which determines the [AKey for RSA
encryption. To prevent timing attacks it does not abort the search, even if a match has occurred. If
no match is found, in Step 3 the ICC will encrypt a randomly generated string using its shill key.'

Step 3 (ICC) — IA Response: The ICC generates RND1, retrieves its DivData and derives string STR1,
together with an encryption of it under [AKey, as follows:

STR1 = KeySetID || DivData || RND1[|RND1, °STRI = RSAn" (STRL).

The encrypted string *STR1 is sent to the IFD. Here PKCS#1 v1.5 padding [Kal98] is used.

Step 4 (IFD) — IA Response Evaluation: The IFD trial-decrypts “STR1 with all possible private
[AKeys indexed by its KeySetID list and, for each valid decryption, it checks if the last two 16-byte
blocks are equal. Again, to prevent timing attacks the IFD will continue the search even if a matching
string has already been found. The (first) match is then used to extract KeySetID?, DivData, and
RND1. If no plaintext is of the anticipated format, authentication fails.?

2.3 Final Authenticate

The FA phase permits to specify the operation mode and to exchange data, like a PIN or biometrics,
needed to complete the authentication. Here the diversified key FAKey(DiV) (stored on the card and
previously computed by the terminal during the IA phase) and a derived session key are used to secure the
communication. The card authenticates by proving its ability to decrypt ®STR2 as well as to include the
correct DivData (transmitted in the previous IA phase) in the final message *STR3.

Step 5 (IFD) — FA Command: The IFD generates the 16-byte nonce RND2 and computes the unique
session key KeysHash® as the first 128 bits of

SHA-256(RND1 || RND2).
Next, using the master FAKey indexed by KeySetID, it computes the diversified AES key

FAKey®™™ = AESEAS® (DivData),

which corresponds to the AES key stored on the ICC under index KeySetID. The latter is used to
encrypt
STR2 = OpModelD || RND2 || [Payload] || KeysHash,

using AES in CBC mode with the all-zero string as initialization vector, where Payload is an optional,
variable-size field that depends on the operation mode. Concerning padding, the standard refers to
the ISO/IEC 9797-1 method 2, where one byte 0x80 is appended, followed by blocks of 0x00 bytes
until the length is a multiple of the block length.* The resulting string

(Div)

FAK
°STR2 = AESp ey,

(STR2),

is then transmitted to the ICC.

!The standard neither specifies the exact format nor the length of this randomly generated string.

2The standard is ambiguous in whether the trial KeySetID of the IFD or the value contained in “STRI is stored.

3The standard does not specify what is meant by “authentication fails” We assume the protocol aborts in this case.

“Though referring to ISO/TEC 9797-1 method 2, the PLAID draft standard explicitly describes a different padding method
and thus makes unambiguous decoding impossible (cf. Section 5.4).

Step 6 (ICC) — FA Command Evaluation: The ICC decrypts *STR2 with FAKey(P™) and retrieves
RND2. It computes the session key as described above as first half of the hash value SHA-256(RND1 ||
RND2) and compares the result to the value KeysHash extracted from the decrypted “STR2. If they
do not match the ICC encrypts a random byte string® using its AES ShillKey in the FA Response.
Else Payload, if given, should be processed as specified by the implementation.

Step 7 (ICC) — FA Response: The ICC retrieves the Payload data specified by the operation mode (if
necessary) and encrypts
STR3 = ACSRecord || [Payload] || DivData,

using AES in CBC mode with the all-zero string as initialization vector. Again, Payload is an optional,
variable-size field which may (and usually will) differ from the Payload in Step 5. The resulting
ciphertext

°STR3 = AESLYsHash gR3)y.

Encrypt

is transmitted as final message to the IFD.

Step 8 (IFD) — FA Response Evaluation: The IFD decrypts the value “STR3 and checks whether the
recovered DivData matches the one received in the IA phase: if so, then the other data is considered
authenticated and processed according to the implementation, otherwise authentication fails.

3 Shill-Key Fingerprinting — Tracing Cards in PLAID

According to the developers of PLAID, privacy was one of the main reasons to introduce a new authentication
protocol. In this and the next section we present two attacks on the privacy of PLAID contradicting the
claims that no static information is available to be exploited.

In this section we focus on the traceability of cards, that is, we consider an adversary who learns some
information about one or more cards and then tries to identify these cards at a later time. We consider
three distinct attack scenarios, each consisting of a fingerprinting phase and then an identification phase.
The difference is roughly that in the first scenario the fingerprinting is a supervised learning phase in the
sense that we can attribute execution traces to several cards, whereas the second setting corresponds to
unsupervised learning where we get a set of random traces. In the third scenario, we focus on tracing
a specific card throughout a system independent of the overall number cards. More precisely, the three
settings are as follows.

e In the first scenario we allow the adversary to first interact in turn with each and every card in the
system in a number of protocol runs (the fingerprinting phase). We then draw a card at random and
let the adversary interact with this specific card a number of times, with the adversary’s goal being
to identify which of the cards was selected. The adversary’s ability to interact with each card in the
system in turn in the fingerprinting phase (first phase) is not wholly realistic. However, given the
high success rates of this attack that we will report below, we believe that good success rates would
still be achieved in the more realistic scenario where the adversary does not have the guarantee of
being able to interact with each distinct card in turn in a first phase, but instead must build up its
picture of the system as it goes along.

® Again, the standard does neither specify the exact format nor the length (note that STR3 in Step 7 contains a variable
sized field Payload) of this random byte string.

SNote that in the original draft KeysHash refers to the entire 32 byte output of SHA-256(RND1 || RND2) and the term
session key is used to refer to the first 16 bytes which are used as secret key in the final message. For simplicity we refer to the
session key as KeysHash in this paper.

e In the second scenario, which is much more challenging for the adversary, we do not allow the
adversary to interact in turn with every card in a number of protocol runs, but simply present it
with a sequence of transcripts of individual protocol executions, each execution involving a randomly
chosen card. The identification phase and the adversary’s goal are the same as before. This much
more demanding attack scenario models a situation where the adversary cannot interact many times
with each distinct card during fingerprinting, but only in one protocol run at a time with a random
card.

e The third scenario focuses the attention on tracing a specific card without any knowledge of the other
cards in the system or even their number. Here, the adversary is given a sequence of transcripts of
protocol executions by a certain card in the fingerprinting phase. In the identification phase, the
adversary is presented a second sequence of transcripts which was either produced by the same card
or a randomly generated one, and has to decide which is the case. This attack scenario captures an
adversary that is interested in tracing a specific user throughout a system after being able to interact
with this card initially for a certain amount of time and without knowing the total number of cards
in the system.

In Section 4, we will consider a different type of attack and show how an adversary can learn the
capabilities of a card (that is, it learns which keys are stored on a card). Besides being a serious breach
of privacy on its own, this attack can also be combined with the attack (in all variants) described in this
section to gain better performance.

Our attack in this section specifically targets the shill key values used by PLAID. A shill-key pair,
generated for every card, contains an RSA public key and an AES key that are to be used in the TA and in
the FA phases respectively in place of the actual keys should an error in the terminal message be detected.
Intended as a security measure—to prevent attackers from exploiting potential information leaked by error
messages—the use of the shill key turns out to drastically weaken the anonymity properties of PLAID.

Before explaining the details of the different attack variants, we note that in order to run the attack in
this section, we need to be able to force cards into replying with RSA ciphertexts generated using their shill
key in the first phase of the protocol. This is easily arranged by sending the card a first message containing
an empty sequence of KeySetIDs, or a set of KeySetIDs containing a single and particularly high index
that is not in use in any card on the system. Thus we may assume that the adversary is able to gather
samples of shill-key ciphertexts from cards at will.

3.1 Tracing Cards via Shill-Key Ciphertexts

We consider the following situation: we assume the system has t cards with corresponding shill-key
moduli Ny, ..., N;, where each N; is an n-bit RSA modulus (the current draft version gives n = 2048 [ISO14]).
We start with our basic attack, tailored to the first scenario. In a first phase the adversary learns, for
every card in the system, ki encryptions of a random message under the card’s shill key (N, e;); then, in a
challenge phase the adversary is given ks fresh ciphertexts (again for random messages) computed under
shill key (Nj«,ej«), for j* chosen uniformly at random from {1,...,t}. The adversary’s goal is to identify
from which card the challenge ciphertexts come, that is, to output the correct index j*. We define the
adversary’s advantage as its success probability bounded away from the guessing probability %

The idea of our basic attack is that, although the shill keys are meant to be kept private, each of the k;
ciphertexts X; ; computed using (N}, e;) leaks some information about the modulus N;. Specifically, we
learn that X;; < Nj for each ¢. Similarly, in the challenge phase, where we have ko ciphertexts computed
using (N, e;«), each ciphertext leaks some information about the challenge shill-key modulus. Starting
from this observation, we now seek a procedure to obtain a good estimate of the shill-key moduli given
only a certain number of corresponding ciphertexts for each modulus.

The problem can be reposed as follows. Notice that each ciphertext X; ; can be regarded as a uniformly
random integer in the range [1, N; — 1]. We are then faced with the task of estimating NN;, which is one
more than the size of the interval from which the sample comes. This is essentially an instance of a classical
statistical problem that is known as the German Tank Problem”. A naive approach would be to use twice
the mean value of the samples X; ; as an estimate for N;. A statistically strictly better approach is to use
as an estimator for N; the value

. M.
Nj = Mj + 7],
k1
where M; is the maximum value of the observed samples X; ; for i = 1,..., k1, and k; is the number of

samples for each shill key. It basically corresponds to the maximum plus the average distance of observed
samples. This estimator arises from a frequentist interpretation of the problem, and has the benefit of
providing what is known as a Minimum-Variance Unbiased Estimator (MVUE). It can be replaced by a
more appropriate Bayesian estimator, but the estimator above is sufficient for our purposes.

Our basic attack proceeds using this estimator as follows. In the first phase, we use it to produce
estimates Nj for each of the shill-key moduli N;. In the challenge phase, we again use it to produce
an estimate N* for the challenge shill-key modulus (now with parameter ks, representing the number of
samples available in that phase). We finally output as our guess for the challenge index j* the index j for
which N* is closest in absolute value to N j, that is,

arg min ‘N* — Nj|.
J
This concludes the description of our basic attack tackling the first scenario.

Simulation results. We have conducted extensive simulations of the basic attack detailed above for
various values of ¢ (the number of cards) up to ¢ = 10000, k1 (the number of ciphertext samples per card
available in the first phase), and ks (the number of ciphertext samples in the challenge phase). Figure 2
depicts the results of our simulations for k; = 100 first-phase samples on the left and k1 = 1000 samples on
the right side.

It can be seen that, independently of the number of cards in the system, our attack significantly
outperforms the basic probability for guessing the card’s identity. To be precise, for any fixed value of &
and ko, the attack’s success probability exceeds the guessing probability by a constant factor. For k1 = 100
samples in the fingerprinting phase, shown in the left plot of Figure 2, k3 = 10 challenge samples already
suffice to surpass the baseline by a factor of three. This advantage increases to 15 times and 30 times the
guessing probability for ks = 50 (resp. k2 = 100) challenge samples, which can be obtained from a card
within approximately 15s (resp. 30s) given the target execution time of the PLAID protocol of 300 ms.
Our analysis also indicates that the maximal achievable success probability is bounded by the number of
fingerprinting samples k; as values for ks higher than &y do not increase the attack’s success probability
further.

Unsurprisingly, increasing the number k; of samples available in the first phase of the attack improves
the attack performance, as exemplified for k1 = 1000 in the right plot of Figure 2. While the success rates
for ko values of 10, 50, and 100 are very close to those for the same ko values with k; = 100 fingerprinting
samples, higher values of k2 make the attack perform significantly better. Given k; = 1000 for fingerprinting,
the attack exceeds the guessing probability by factors of over 100 or even 300 for k3 = 500 resp. ko = 1000
challenge samples and large numbers of cards t.

In terms of concrete success probabilities of our simulation, our attack can with ks = 1000 challenge
samples (collectable within 5 min) identify a card among 10000 cards with approx. 3% probability (compared

"See [Joh94] for a good introduction. The name stems from the problem initially being posed as that of estimating the
total number of tanks in the German army from observing a subset of their serial numbers.

10

ky = 100 k1 = 1000

* ko =1000 -8 ky =500 2 kg =100 -*- kg =50 —4— ky=10 - baseline
100%?” T T AR 100%; T AR
T S = N]
E i 1 E i 1
£ 10%| {1 % 10%} .
80 OF 1 e OF B
S | & z
= 1% 4 3 1% E
< B i < B i
[oo] [i o] N]
Q [i < [i

2 2
201% E 201% E
n F 4 n -]
8 r]) I]
@.01% 1 BD01% £
Lol Lol Lol Lol 1 Lol Lol Lol Lol 1
10 100 1,000 10,000 10 100 1,000 10,000
number of cards ¢ number of cards t

Figure 2: Simulations of the basic shill-key attack for ki1 (the number of samples during the fingerprinting phase)
equal to 100 on the left and 1000 on the right, and varying values of ks for each. The simulation was done with
t = 10,15, 20, 25, 50, 100, 250, 500, 1000, 10000 cards and the success probability is averaged over four runs with ¢* repe-
titions of the identification phase for all values except ¢ = 10000, which was averaged over four runs with 100000 repetitions
only due to computational complexity reasons. The baseline indicates the success probability of an adversary that tries to win
the game by pure guessing. Both axes are in logarithmic scale and error bars show the standard deviation.

to 0.01% with guessing), among 1000 cards with approx. 25% probability (guessing: 0.1%), and among 100
cards with approx. 75% probability (guessing: 1%).

Statistical analysis. In the following we derive theoretical predictions for the success probability of
our basic attack. For a variable X, we denote by E[X] its expected value, and by Var[X] its variance.
In the following analysis we will assume that the moduli Ny, ..., Ny are uniformly distributed over the
(integer) interval [2"~1 + 1,2" — 1] which, with abuse of notation, we denote henceforth by [£, A] to ease
readability. We assume, without loss of generality, that N; < --- < N;. Similarly, for all j € {1,...,t}
we assume that the sample ciphertexts {Xj;}i=1,. , are uniformly distributed over [0, N; — 1], as are the
ciphertexts {Y;};=1,. k, over the interval [0, N;+ — 1]. To ease the analysis, we further assume that the
estimated moduli in the first phase are exact, i.e., Nj = Nj for all j. We note that the latter assumption is
equivalent to allowing for an infinite number of observations in the first phase (i.e., k1 = 00).

Let Nj be such that ¢ := |[Nj« — Ny| is minimum amongst the distances |Nj« — Nj| for j # j*, as
illustrated below.

-- = - -

Figure 4: A pictorial explanation of equation (1): if Nj, is the target modulus, N;/ its closest modulus, and N* our estimate
of Nj., then our attack succeeds whenever N™ is at most |N;j. — N;/|/2-close to Nj..

11

° simulation for k1 = 1000, ko = 1000 —— simulation for k1 = 1000, ke = 100
---- German-Tank prediction for ko = 1000 - - German-Tank prediction for ke = 100
........ baseline

100% \\H\\; T \\‘FT‘*\\\\\ T T TTTT] T T T TTTT] 100% ?—rﬂ,,'—".A.‘T_!_.\HH iU RRR T T T TTTT] E
IR AR) g ANy 1
\ “ '_‘g - -
. 80% | \ | ?0 10%E =
= ! A]
8 \ ~— I .. i
< 60% - \‘ - > r B
e \ 2 1% E
2, 9 g |
2 40% |- 103 i]
g 80.1% £
2 . 2 g |
20% |- A i 1

N O
e #.01% |- R
0% | ...'\."\"1'v-n-\.\......A domadealol ol \T“Z_ Eroil Lol Ll Lol =
10 100 1,000 10,000 10 10 1,000 10,000

number of cards ¢ number of cards t

Figure 3: Results of the statistical analysis for the basic shill-key fingerprinting scenario: the predicted success probability of
the attack refers to k1 = 1000, k2 = 100 (loosely dashed) and k2 = 1000 (densely dashed). The baseline indicates the success
probability of an adversary that tries to win the game by pure guessing. The number of cards ¢ on both sides and the success
probability on the right side are displayed in logarithmic scale; error bars show the standard deviation.

In other words, if in our attack we would predict the wrong index then that index will most likely be ;.
This observation allows us to deduce (a lower bound for) the success probability of our attack:

-)
Psuce := Prlattack succeeds] > Pr | [N* — Nj«| < 2| (1)

We consider the German Tank estimator N* for the targeted modulus Njs:

M
N*:M+k—, where M = max Yj,

2 i=1,....k2

Equation (1) yields in this case:

5 | 5
psuCC>Pr|:Nj*—2<M(1—|—)SNJ*+§

ko
=Pr [z— <M< z+] = Fu(z%) — Far(z7)

where 2% = kf}rl - (Nj» £ %) and Fyy is the cumulative distribution function of the maximum sample M.
More explicitly,
0 itz <0
Fy(z) =Pr[M <zx] = (””)kQ if 0 <z < Nj-
1 otherwise

A good approximation of § is given by the average distance between any two adjacent moduli. Since
they are uniformly distributed in [%, Al], we have E[N;«] = 3A/4, and for all j =1,...,t — 1 we have

12

E[|Nj+1 — Nj|] = A/2t. So, in particular, we use the approximations 6 ~ A/2t, and N;» ~ 3A/4. A direct
calculation using these values produces:

b\ (o) e, < g

- 3t kol 3t kat1
Psucec =~ k 31 ko . (2)
1-— (3% . k2+1) otherwise

A graphical representation of the estimated probability functions pgyec, for fixed ko = 100, 1000 and
variable t, is given in Figure 3. In the same figure we compare the theoretical predictions with the
corresponding simulation results. Notice that the observed success rates and their theoretical predictions
are close and coincide asymptotically. Also note that pgu.. provides a lower bound for the attack’s
success probability under the assumption that the moduli Ny,..., N; are known, or equivalently that
k1 = oo. In fact, within our simulations—and in any realistic scenario—the attack relies on the first-phase
estimates Ny, ..., Ny rather than on the exact moduli Ni,..., N;. We thus expect the actual success
probabilities to be smaller than the respective predictions. This behavior is indeed visible in Figure 3.

3.2 Tracing Cards from a Mixed Set of Shill-Key Ciphertexts

k1 = 100 k1 = 1000
o ko =1000 -2 ko =100 —— kg =10 - baseline

T T T T T T T T T T

> >
= =
Z10% Z 10%
Q Q
o o
— —
(o (o
wn wn
wn wn
o] O
Q Q
[\ [\
=} =}
wn wn

1% 1%

number of cards ¢ number of cards ¢

Figure 5: Simulations of the clustering attack for k1 (the number of samples during the fingerprinting phase) equal to 100 on
the left and 1000 on the right, and varying values of ks for each. The success probability, shown in log-scale, is averaged over
fifty runs, and the simulation was done with ¢ = 10, 15, 20, 25, 50, 100 cards. The baseline indicates the success probability of
an adversary that tries to win the game by pure guessing.

For the first scenario and our basic attack in Section 3.1, we assumed that during the initial phase the
attacker was able to identify ciphertexts computed from the same key. In our second scenario we relax this
assumption: we now give the attacker a large mixed set of k1 x t ciphertext samples, each sample coming
from a randomly selected card. The challenge phase of the attack proceeds as before where the attacker
obtains a small sample of ko ciphertexts computed by the same card, and the attacker’s goal is to identify
this card.

The challenge now is to somehow process this mixed set of samples in order to extract reasonable
estimates of the individual RSA moduli. We accomplish this by means of a heuristic clustering technique.

13

Assuming that we know the number of cards ¢ used to produce the mixed sample set, let Ny, ..., N; represent
their shill-key moduli in increasing order. From the mixed sample of ciphertexts we ignore all samples
smaller than 22%47. We then use a standard clustering technique based on the k-means algorithm to group
the remaining ciphertext samples into ¢ clusters approximating the intervals [N;, Njy1), for j € {0,1,...,t}
and Ny = 22%47, Once we have this set of clusters, we then obtain an estimate for the shill-key modulus
Ni11 by using the German Tank estimator on the cluster corresponding to the interval [IV;, N;1).

We now describe this clustering attack for the second scenario in more detail. We initially assign to
each of the ¢ clusters a uniformly random value in the range (22947,22048), This value is called the centroid
of the cluster. For each ciphertext sample greater than 22%47 we calculate its distance from each of the
cluster centroids, and assign that ciphertext to the cluster to whose centroid it is closest. The distance
metric is merely the absolute value of the arithmetic difference. Once that every ciphertext sample has
been assigned to a cluster we ensure that no cluster is empty. If an empty cluster is found, we pick another
cluster at random whose size is greater than one and move its largest element to the empty cluster. We
then set the centroid of each cluster to be the mean of the ciphertext samples contained in that cluster, as
per the standard k-means algorithm. We iterate this process of assigning ciphertext samples to clusters
and recalculating their centroids until the centroids converge to stable values, or the maximum number of
iterations is exceeded.

In the challenge phase, the attacker is given ko ciphertexts which are all computed by the same card.
Here, our clustering attack proceeds identically to the previous one: the attacker uses the estimator to
produce an estimate N* for the challenge shill-key modulus and outputs as its guess the index of the
modulus from the first phase that is closest to N*.

Simulation results. We ran simulations of the above clustering attack for a mixed sample set of size
t x ky for various values of ¢ (the number of cards) up to ¢ = 100, values of k; first-phase samples equal
to 100 and 1000, and different numbers ks of second-phase samples. Figure 5 depicts the results of our
simulations for k1 = 100 on the left and k1 = 1000 samples on the right side.

Working in a more ambitious scenario, the success probabilities for the clustering attack are considerably
lower than for the basic attack in the first scenario. In particular, it does not significantly benefit from
higher numbers ke of challenge-phase samples like the previous attack. Even for ke = 1000 challenge
ciphertexts the success rate for ¢ = 100 cards stays around 5% (independent of k1), while the basic attack
(cf. Figure 2) successfully identified the challenge card with probability 20% (for k1 = 100) or even 74%
(for k1 = 1000). Nonetheless we see that our clustering approach is able to correctly identify a card with a
significant advantage over the guessing probability, i.e., with a success probability approximately 4 times
higher than the latter.

Notably, as we increase the number k; of first-phase samples to 1000 we do not get a corresponding
increase in performance as in the previous attack but rather obtain roughly the same success probabilities as
for k1 = 100. On the other hand, for low parameter values ko the clustering attack in both cases performs
comparable to the basic attack. In fact, if we compare Figures 2 and 5 we see that for k3 = 10 the two
attacks achieve almost identical success rates. Therefore, if the attacker is limited to a small number of
samples (~ 10) during the identification phase, he can trace cards as effectively using the clustering attack
without requiring a sorted set of ciphertext samples during fingerprinting.

3.3 Tracing Cards During Lunchtime

We now turn to the third scenario which models an attacker that tries to trace a single card throughout
a system with an unknown total number of cards, after being able to interact with the target card for a
certain (short) amount of time (e.g., during lunch) at the beginning of the experiment. In contrast to the
previous two scenarios involving many keys to be re-identified and where the attacker was able to sample

14

100 %

90 % 1 .
>
=
£ 80% |
Q
o
2.
2 70% y
S
g <o by = 2000
2 - %= ki = 1000
60 % —— k1 =100 | |
........ baseline
50 % s A S -]

| | | | | | | | | |
0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
number of identification-phase samples ko

Figure 6: Simulations of the lunchtime attack for different numbers k1 of samples during the fingerprinting phase and varying
numbers of identification-phase samples k2. The success probability is averaged over 100 runs with 100 challenge phases each.
The baseline indicates the success probability of an adversary that tries to win the game by pure guessing. Error bars show the
standard deviation.

ciphertexts from all cards in the experiment’s first phase, this third scenario now poses a distinguishing
challenge between a target card from which the attacker is able to sample ciphertexts up front and a second,
random card (which it did not have access to before).

More precisely, in the fingerprinting phase the attacker is given a set of k; ciphertext samples under
a fixed, but randomly generated shill key. The challenge phase proceeds by providing the attacker with
a sample of ko ciphertexts generated either by the same shill key as in the first phase, or by a second,
randomly generated shill key. The attacker’s goal is to decide whether it is interacting with the same card
as before or a new card, and we define its advantage to be its success probability in doing so, suitably
adjusted by subtracting the guessing probability %

While this third scenario might at first glance seem strictly weaker than our first scenario, it is actually
not, since the first scenario allows the attacker to sample ciphertexts from all cards while the third scenario
is about distinguishing a “known” card from an “unknown” one. This setting is indeed quite realistic.
First of all, it does not make the assumption that all cards, as in the previous scenarios, can be sampled
up-front—which might indeed be a hard task for many types of attackers. Secondly, tracing a single card
and thereby, e.g., the movements of a particular person within a certain area where the attacker is able to
set up fake PLAID terminals, constitutes a realistic threat scenario for a PLAID deployment.

Coming to our lunchtime attack tailored to this third scenario, the strategy to decide in the second
phase whether the attack faces the previously sampled card or a new one is based on the simple idea that
if the ciphertexts in the second phase come from the same card, then an estimate for the modulus in the
second phase should be close to the estimate in the first phase. The question then becomes how to define
“close” so as to produce an effective attack. For this we note that the variance of the MVUE estimator,

1 (N k)N +1)
k- k+ 2 ’

Var | N| =

only depends on the estimate of the target card’s modulus N and the number of samples k. We then define
“close” according to the “3-sigma rule of thumb?”, i.e., we say that the samples come from the original card

15

if the absolute difference between the two estimates falls within three times the standard deviation,

30 =3-/Var | N]

where the variance is computed relative to k = min(k1, k2) and the estimated modulus N of the target card.
This means that the probability that an estimate produced using ciphertexts sampled from the original
card lies within the confidence interval is about 98%. While giving us a False Reject Rate (FRR) of 2%
choosing 3o as the confidence interval also provides us with an estimate for the False Accept Rate (FAR),
i.e., the likelihood of a random card being classified as the actual target card. False positives occur with
large probability if the modulus of the random card is within distance of the confidence interval (30) from
the modulus of the target card. For k = 100 the confidence interval ranges over about 5% of the modulus
space:

30 ~ 5% for the mean modulus N = 22048 _

22047 1 — 226 and k = 100
Hence, for k = 100 we should expect an FAR increase of about 5%. This value drops linearly with higher
values of k, that is for &k = 1000 we only get an increase of the FAR of about 0.5%.

Simulation results. We ran simulations of the lunchtime attack described above for various values of kq
(the number of first-phase samples) and ks (the number of second-phase samples)®; Figure 6 depicts the
results.

As expected, the success rates of our lunchtime attack are quite high. (But note that they are formally
incomparable to the simulation results in previous attack scenarios as the attacker here is only challenged
with making a binary decision.) Notably, even with small numbers of fingerprinting and identification
samples such as k; = 100 and ko = 50 (which can be obtained from a card within approximately 30s for
fingerprinting and 15s for identification given the target execution time of the PLAID protocol of 300 ms),
our lunchtime attack already shows a success rate of 90% (the guessing probability is 50%). If the attacker
is given more time in the second phase, the probability of correctly distinguishing the initial from a random
card stabilizes above 90% for values ko > 100.

We moreover observe the same pattern seen already in the basic attack (cf. Figure 2) with respect to
the ratio between k; and ky: obtaining more identification-phase samples (k2) than fingerprinting-phase
samples (k1) seems not to help the lunchtime attack to further increase its success probability. In more
detail, the success probabilities for ki = 100, k1 = 1000, and k1 = 2000 settle at approx. 94%, 97%,
resp. 98% from k2 = k1 on. The seen success rates thus nicely fit into our theoretical predictions of having
an overall error between 2% and 7% stemming from our choice of fixing the confidence interval to a size of
3o giving us an FRR of about 2% and depending on the value of k an FAR of between 0.25% (for k& = 2000)
and 5% (for k = 100). The upper bound for the achievable success probability of 1 — FAR — FRR for our
lunchtime attack is also reflected in the standard deviation (shown by the error bars in Figure 6) of our
experimental results. In order to further increase the success rate, one should thus aim for minimizing the
overall error rate FAR + FRR noting that an increase in the confidence interval (e.g., to 60) decreases the
false reject rate (FRR) while increasing the FAR, and an increase in the number of samples k decreases
both the FAR and the FRR but, of course, comes at the price of needing extra time to mount the attack.

3.4 Connection to Key Privacy of RSA Encryption

We remark that our shill-key fingerprinting attack only considers properties of RSA moduli and is, thus,
of independent interest in the study of key privacy (or key anonymity) of RSA encryption, a security

8Note that, in contrast to the first two scenarios, the third scenario and our according lunchtime attack is independent of
the overall number of cards in the system.

16

notion introduced by Bellare et al. in [BBDPO1]. In the key privacy security model of [BBDPO1], an
adversary plays against two key pairs and is given both the public keys. Security is modelled in terms of key
indistinguishability, requiring that it is infeasible for any efficient adversary, that can request encryptions
of messages of its choice under one of the two public keys, to tell which key was chosen with probability
higher than guessing. As already pointed out in [BBDPO01], the RSA cryptosystem does not provide key
privacy. Security is trivially broken when the two key lengths are different. However, RSA keys of the same
bit length are easy to tell apart, too: let Ny < Nj be two RSA moduli: independently of the underlying
plaintext, a ciphertext ¢ computed under one of the two corresponding keys satisfies ¢ < Np. A single-query
attack which succeeds with non-negligible advantage simply requests to encrypt an arbitrary message and
then compares the resulting ciphertext ¢ with the smaller modulus: if ¢ < Ny then it returns 0 and else
guesses 1.

This attack is not directly applicable to the PLAID setting because there the RSA encryption keys are
kept secret. Still, our shill-key fingerprinting attack variants on PLAID can be seen as similar in spirit
to, but obviously harder to perform than, the above single-query attack. In particular, the third scenario
(lunchtime attack) explicitly poses a distinguishing challenge (though, of course, without providing the
adversary with the RSA moduli) and hence can be considered to be closest to the security notion of key
privacy. Moreover, if the encryption scheme used within PLAID were to enjoy key privacy, then the attacks
presented would be completely thwarted (and the public keys would no longer need to be kept secret).

3.5 Countermeasures to Our Attacks

A very simple countermeasure to our attacks is for every card to use the same RSA shill key. This does not
seem to have any negative security consequences and renders ineffective any tracing attacks based on the
analysis of RSA shill-key ciphertexts.

A second countermeasure to our attacks is to modify the RSA encryption scheme so that it is key
private. This can be done in two ways: padding by adding multiples of the modulus to the ciphertext, and
selection of RSA moduli that all lie in a small interval.

The first approach for the second countermeasure simply adds a random multiple £N; of the modulus to
the RSA ciphertext. Here, the range from which k is selected is chosen to make all the resulting ciphertexts
for the different RSA moduli (approximately) uniformly distributed in the same interval. The larger k is,
the better the key privacy is attained, but the larger is the bandwidth needed to transmit ciphertexts.

The second approach is to choose the RSA moduli for shill keys to lie in a much smaller interval
than [2”_1, 2" —1]. For example, one could generate the prime factors of the moduli N; in such a way
that each N; begins with an MSB of 1 followed by 256 0-bits, i.e. so that the moduli lie in the range
[2n—1 2n=1 4 9n=256] " This would ensure that the distributions of RSA ciphertexts are much harder to
distinguish using our methods and, heuristically, does not affect the security of the RSA encryption scheme
(since there are still many RSA moduli that can be generated in this range, and there are no known
speed-ups for factoring algorithms for RSA moduli in such a range).

Detailed analysis of the specifics of these countermeasures is beyond the scope of the current work.

4 Keyset Fingerprinting — Determining a Card’s Capabilities

In this section we present another type of attack on PLAID’s privacy, which we call keyset fingerprinting.
This attack reveals the exact set of keys a card knows’, thereby determining its capabilities in terms of
which keyset it can use, i.e., which specific terminal it is able to talk to. In order to mount the attack,

9Recall that terminals announce their supported keysets by sending corresponding KeySetIDs in the clear. As a consequence,
any observer can see which keys are related to which resource/terminal.

17

we exploit the following observations: (i) the KeySetIDs list sent by the terminal (in the clear) in the
TA Command contains all keys known by the terminal [ISO14, Section 6.1], and is not authenticated'’, (ii)
in its TA Response, the card is required to use the first key of the received KeySetIDs list it knows [[SO14,
Section 6.2], and (iii) if the card uses its ShillKey, in the TA Response, then the terminal aborts [[SO14,
Section 6.4].

4.1 The Attack in a Nutshell

We first explain the core idea of our attack by describing a concrete attack scenario. Assume an adversary
observes a successful protocol run between a card and a terminal where the latter had sent (in the
clear) KeySetIDs = (2,5,8). From this, the attacker not only learns that the ICC holds at least one of the
keys with IDs {2, 5,8}, but it can also determine all of the keys the ICC supports, independently of the
identifiers announced in KeySetIDs. To this end, the adversary can trigger a protocol run and mount a
man-in-the-middle attack as described below.

In a first phase, the attacker sequentially replaces the IFD’s original initial message by one containing
only a single identifier from the original list of KeySetIDs, that is, 2, 5 or 8 in our example; by observing
the subsequent protocol run, the attacker deduces that the ICC supports the selected key if and only if the
protocol execution reaches the third step, i.e., if the terminal responds with a third message. In a second
phase, the attacker sequentially prepends to the IFD’s original initial message all key identifiers that were
not contained in KeySetIDs, e.g., (1,2,5,8), (3,2,5,8), ..., (65536,2,5,8) in our example. Then, from
each of the subsequent protocol runs, the attacker learns that the ICC knows the inserted key if and only if
the IFD does not respond with a third message. This is because of observation (ii) above about the first
matching key in the list to be used. At the end of the two phases, the attacker knows the identifiers of all
keys supported by the ICC.

We stress the attack above can be performed in a remote fashion (in the sense that the card and
the reader can be far from each other) where two attackers, placed in physical proximity to the terminal
respectively the card relay the exchanged messages between each other, playing the role of a card resp. a
terminal. Moreover, this attack can be mounted independently of the values announced in KeySetIDs, as
long as the attacker observes a single, successful protocol execution.

Note that knowledge of all the keys supported by a card also reveals its capabilities (e.g., access
authorizations), thereby potentially disclosing highly sensitive information. While this is not, in general,
sufficient to identify a card uniquely, it effectively allows to derive capability classes, containing cards with
the same capabilities. Moreover, in certain scenarios, capabilities like access authorizations might even leak
the identity of a card’s owner, hence breaking its anonymity, as some keys might be used exclusively to
access security-critical infrastructure [[SO14, Annex C] such as, e.g., server rooms or the CEO’s office. The
impact of keyset fingerprinting is furthermore increased by the remote nature and the low cost of the attack
(in terms of the number of interactions between terminal and card). Even in large-scale, realistic scenarios,
the attack requires only few seconds (and no physical proximity of card and terminal) to determine a card’s
capabilities. See Section 4.2 for a more detailed discussion.

We remark that keyset fingerprinting can, in addition, be used as a prefilter for (all variants of) our
ShillKey fingerprinting attack discussed in Section 3. Recall that the performance of these attacks heavily
depends on the number of cards in the system that have to be distinguished. By first performing keyset
fingerprinting on the card(s) in question, this number can potentially be reduced substantially (thereby
improving the overall efficiency), as the ShillKey fingerprinting in a second step only has to discriminate
amongst the smaller number of cards belonging to the same capability class. Finally, we note that there are

10We note that the unauthenticated nature of the PLAID protocol messages has already been criticized in the national
body comments on an earlier ISO draft [[SO12]. In our attack we exploit this weakness, refuting the claim of the current ISO
draft [ISO14, Annex H.1.1] that sending KeySetIDs in clear is “of no use to an attacker.”

18

cases where the cheaper keyset fingerprinting attack on its own is actually already sufficient for a tracing
attack: whenever a traced card has a unique set of supported keys (i.e., is the only member in its capability
class), this attack is able to uniquely (re)identify that card. Furthermore, keyset fingerprinting suffices to
distinguish two cards as long as there is a key supported by only one of the cards.

4.2 The Attack Details

Suppose that we observe a successful authentication between an honest terminal (IFD) and an honest
card (ICC). In the course of the protocol execution, the IFD starts by sending the list KeySetIDs =
(KeySetID; , ..., KeySetID,,) containing (all) KeySetIDs it supports. The keyset fingerprinting attack

proceeds in two phases, focusing first on the keys supported by the IFD and then on the remaining keys.

Phase 1. In the first phase, we replace the initial KeySetIDs list with a list containing only one of the keys
supported by the IFD at a time, i.e., we replace the first message by (KeySetIDi],) forj=1,...,¢in
¢ sequential interactions. We relay the response of the ICC unmodified to the IFD. If the IFD replies
with a third message in the jth interaction, we can infer that the ICC knows the key with KeySetIDij.
Otherwise, the ICC did not support this key and hence used its ShillKey, leading the IFD to abort.

Phase 2. In the second phase, we prepend the initial KeySetIDs list with one (or multiple, see below)
values KeySetID; ¢ {KeySetID; ,...,KeySetID; } at a time. We relay the response of the ICC
unmodified to the IFD. If the IFD replies with a third message, we can infer that the ICC knows
none of the prepended keys. Otherwise, the ICC did know at least one of these keys (which the IFD

does not support), leading the IFD to abort. This relies on observations (ii) and (iii) above.

We measure the attack costs in terms of the number of interactions between IFD and ICC needed to
extract the keys supported by the ICC. In the first phase, which requires ¢ interactions between the IFD and
the ICC, we are able to determine exactly which of the keys {KeySetID; ,...,KeySetID,,} supported by
the IFD the ICC knows. The second phase aims at determining which of the remaining 2'¢ — ¢ KeySetIDs
are known by the ICC. There are different strategies to proceed in Phase 2:

1. The basic approach is to simply prepend each one of the 2'® — ¢ KeySetIDs not supported by the IFD
one at a time, resulting in 2'6 — ¢ interactions in order to determine exactly which of the keys the ICC
knows. Together with the first phase, this approach leads to 2'¢ interactions to fingerprint a card.

2. In the binary search approach, the set of KeySetIDs is partitioned along a binary tree with the full set
of all 216 — ¢ KeySetIDs at the root, the first half of them as the left child, the second half of them as
the right child, etc. In the second phase, first the root (i.e., all 216 — ¢ KeySetIDs) is prepended. If the
IFD replies, the ICC knows none of these keys and we have thus completed the keyset fingerprinting
for the card. Otherwise, both the left half and the right half are prepended (sequentially) and, again,
if the IFD replies then the ICC knows none of the prepended keys. This process can be repeated
recursively until the IFD replies for each branch.

Using this approach, we can quickly rule out those parts of the KeySetID space where the ICC does
not know any key. More precisely, denote by n the number of keys the ICC knows in total and by ¢
the number of keys the ICC knows amongst the ¢ keys supported by the IFD. Then we can upper
bound the number of interactions needed to fingerprint a card by (n—¢')-log(2'6) +¢ = (n—¢')- 16+,
since a traversal of the binary search tree in order to pinpoint a single key requires at most log(2'6)
(i.e., height of the tree) additional interactions.

3. The binary search with known maximum approach is a further optimization which is applicable in
scenarios where the highest KeySetID in the system, MaxID, is known in advance. In this case, the

19

binary tree can be reduced to the tree having only the MaxID — ¢ remaining unknown KeySetIDs
(instead of all 216 — ¢) as leaves. The number of interactions to fingerprint a card therefore is reduced
to (n —) - [log(MaxID)]| + £.

When comparing the strategies for the second phase, in the (unlikely) worst case where the card knows all
216 possible keys, the basic approach requires 26 interactions whereas the binary search approach takes
approximately 22° interactions. We observe however that the binary search is more efficient as long as the
card holds less than 2!2 keys (which we assume to be the case in any real scenario).

A practical example. For the sake of providing the reader with some estimates on a more realistic, but
still large-scale example, consider a scenario where MaxID = 5000 keys are deployed (enough for, e.g., a
large building or a small campus) and the considered terminal and card both hold ¢ = n = 10 keys, from
which ¢/ =1 key is known by both.

We chose these parameters in the light of the targeted execution time for PLAID and the resource
restrictions imposed by the terminal and card hardware. Most notably, in every execution of the PLAID
protocol, the terminal has to perform ¢ RSA decryptions, which is an expensive cryptographic operation
for a computationally constrained embedded device.'' But since the previous ISO draft aims at an overall
protocol execution time of less than 300 ms [[SO12, p. 27], this means that ¢ cannot be too large.

With these parameters, the binary search approach would require (10 — 1) - 16 + 10 = 154 interactions
to fingerprint the card. Knowing the highest KeySetID MaxID, this can be further optimized to (10 — 1) -
log(5000) + 10 = 121 interactions using the binary search with known maximum.

4.3 Potential Countermeasures Against Our Attack

As the keyset fingerprinting attack relies heavily on the malleability of the initial KeySetIDs message sent
by the terminal, tamper-protecting this message is the obvious way to prevent this attack. One potential
and immediate remedy to detect and to prevent tampering with the initial message would be to let the
ICC include a hash value of the KeySetIDs value in the plaintext of STR1. The terminal could then check
whether the ICC obtained the unmodified initial message by comparing the hash value that it receives with
the hash of the original KeySetIDs value. However, a rigorous analysis would be required to put this idea
on a profound foundation. More importantly, this modification would also essentially rely on STR1 being
integrity-protected, which is not the case in PLAID as we discuss in the next section.

5 Further Security Considerations

Here we discuss further security considerations and mainly the secrecy of the established keys which,
according to the standard, can be optionally used “as a secure messaging, session or encryption key in
subsequent sessions.” We also point out that the design of PLAID deviates in several ways from good
cryptographic practice. We observe that some of these issues have already been pointed out in the
comments [[SO13] on the previous ISO draft version [I[SO12].

5.1 Forward (In)security

Forward security [BPR0O0] demands that one cannot recover session keys generated in the past, even if the
long-term secrets of a party become known. In the case of PLAID, the long-term secrets correspond to
the secret RSA keys and the FAKey on the terminal side, and to the public RSA keys, DivData, and the

HFor 2048-bit RSA decryptions or signatures, [RPHJ11] reports times of over 100 ms for mobile devices (without cryptographic
co-processor), while our simulations on an Intel Core i7 2.4 GHz are around 10 ms.

20

diversified keys FAKey(DiV) on the card side. The loss of keys of either party immediately reveals all past
session keys, and also of future sessions, even if they are executed honestly between the parties and the
adversary merely observes these execution traces. Furthermore, revealing a card’s secrets also allows the
identification, a-posteriori, of traces belonging to that card and so breaches privacy in this sense.

Assume first that a terminal’s long-term secrets become known to the adversary and consider the
trace of an execution between this terminal with an arbitrary card: the adversary can, analogously to the
genuine server, try to decrypt the ciphertext encrypting string *STR1 under all possible RSA private keys
of the terminal, until it succeeds with one key. It then obtains DivData, hence can compute FAKey(DiV) by
executing AESEﬁg%t (DivData) and then decrypt *“STR2 sent by the honest terminal to recover the session
key KeysHash.

Next, suppose that the adversary gets hold of the diversification data DivData and the diversified key
FAKey(DiV) of a card. It can then try to decrypt ®STR2 with this key to obtain some candidate KeysHash
for the session key. The adversary can verify the validity of this candidate by checking that *STR3 decrypts
under the candidate key to the given DivData. This way, the adversary is able to identify traces belonging
to the specific card and to determine correct session keys of the card.

Most importantly, any such breach would lead to the disclosure of the payload data which may be
highly sensitive (for example, a user’s biometric data).

5.2 Key (In)security in the Bellare-Rogaway Model

The PLAID protocol specifies the option of reusing the negotiated session key KeysHash for subsequent
secure communication. We comment on possible consequences of doing so. Our starting point is the
widely-used Bellare-Rogaway (BR) security model [BR94] for key exchange protocols. This model demands
that all session keys should look random to the adversary. Neglecting technical details, this is formalized by
presenting the adversary either the genuine session key or an independent random key and challenging it to
decide which is the case. This immediately requires of a protocol that its session keys are not themselves
used in a trivial way in the key exchange steps, otherwise the adversary can try to test the given key against
a protocol execution trace. In the specific case of PLAID, the adversary can try to decrypt ®STR3 with the
given key, and will recover a meaningful plaintext with overwhelming probability if and only if this key
equals the genuine key KeysHash. Thus PLAID cannot achieve security in the BR model.

Note that the lack of security in the BR sense does not necessarily imply that a protocol is insecure. It
merely means that other models must be used to assess its security. PLAID is not unique in this respect: a
prominent example of a protocol not achieving BR security is TLS up to version 1.2, leading researchers
to investigate various alternative security evaluations [JKSS12, KPW13, BFST13, GKS13, BFK"14]. The
usage of the session key in the exchange step is often alleviated by the fact that messages in this part
and in the channel protocol differ in format, e.g., if a counter value is used and incremented with each
application. This form of “domain separation”, however, is not necessarily given in case of PLAID, because
the subsequent channel message format has not been specified.

Interestingly, PLAID could easily avoid the problems with the session key being used in the key exchange
phase. Recall that the session key KeysHash for AES (with 128 bits) is derived as the first 128 bits of the
value SHA-256(RND1 || RND2). Since the hash value has 256 bits one could easily use the remaining 128
bits as the AES-128 key for the final message in the key exchange step, and then switch to KeysHash as
before in the channel protocol. In the original protocol the card in some sense demonstrates knowledge of
FAKey(DiV) by being able to decrypt the terminal’s message and answer under the derived key. This would
still be true with the proposed modification. Note however that this modification still requires a formal
security treatment.

21

5.3 On the Applicability of Bleichenbacher’s Attack

Recall that PLAID uses PKCS#1 v1.5 padding for RSA encryption. The accompanying protocol description
[Cen09] argues that there is no need to use OAEP padding, because “PLAID doesn’t expose the modulus
or any other RSA primitive” and that “there is a significant performance advantage in using PKCS#1 v1.5
padding.” While we do not feel inclined to comment on the performance-related issue, the first part of
the argument is debatable in light of the fact that exposure of a card’s secrets does reveal the public keys.
Further, our attacks in the previous sections show that some information about the moduli is revealed, and
the exponent e may be fixed. We note that the comments section in the previous ISO version of PLAID
[ISO12] also asks for investigations of the possibility of mounting Bleichenbacher’s attack.

Once the RSA public key is known one can in principle mount Bleichenbacher’s attack [Ble98] on
PKCS# v1.5 padding. In this attack the adversary takes a ciphertext ¢ € Z} of some unknown padded
message m and “shifts” the message by multiplying ¢ with a random s® mod N. With sufficiently high
probability the derived “message” sm mod N is PKCS#1 v1.5 padding compliant. The adversary could
thus potentially deduce information about m in case of an error message'? indicating correct or incorrect
padding, and given sufficiently many error messages, recover m. The attack has been significantly improved
in a series of papers, e.g., [JSS12, MSWS14].

For PLAID, the message format carries some redundancy in terms of repeating RND1. Therefore, the
shifted message sm mod N may not be accepted by the terminal, independently of the padding. However,
the detailed behaviour in the end is implementation-specific. For example, the current implementation
is based on the JavaCard framework and the decryption procedure of PKCS#1 v1.5 merely throws an
exception in case of incorrect padding and leaves it up to the higher level program to treat this exception.

5.4 CBC-mode Encryption

PLAID proposes to use CBC-mode encryption based on AES. The standard explicitly demands that the
initialization vector IV is set to the all-zero string for both “STR2 (from the terminal to the card) and
°STR3 (from the card to the terminal). This usage does not conform with standard practice, which demands
the use of random IVs to achieve security against chosen plaintext attacks. As remarked before, the PLAID
specification states that padding is only applied “if necessary” and is thus not compliant with ISO/IEC
9797-1 padding method 2, where padding is always applied. Indeed, this imprecision makes the standard
unimplementable as currently specified, since there will be cases arising during decryption where it is not
possible to discern whether padding should be removed or not. It is well-known that CBC-mode encryption
is especially vulnerable to padding oracle attacks [Vau02], and that careful implementation is needed to
avoid them. The lack of precision in this aspect of the PLAID specification does not bode well.

It is also now well-understood in the cryptographic community that CBC-mode encryption does not
offer sufficient integrity guarantees on its own to provide adequate security against active attacks. The
usual solution is to add explicit integrity protection through the application of a MAC algorithm to the
CBC-mode ciphertext. PLAID does not do so, and a justification for why this lack of integrity does not
endanger security was requested in the comments of the previous ISO standard draft [ISO13], but was not
addressed in the latest version [ISO14].

PLAID does offer mild forms of plaintext integrity. For example, STR2 contains the session key
KeysHash computed as the hash of RND1 || RND2 while STR3 contains DivData. These elements can be
checked for after decryption by the relevant party, and this would detect some forms of adversarial plaintext
manipulation through simple bit-flipping in the corresponding ciphertexts *STR2 and ¢*STR3. However, it is
easy to see that an attacker can still manipulate other fields in STR2 and STRS3 by bit-flipping in ciphertexts

12The protocol explicitly notes that no error messages should be issued, but wrong implementations or side-channel attacks
may reveal such information.

22

(even with a fixed IV). While this lack of integrity has not led us to the discovery of specific attacks
on PLAID, it is a worrying feature that could be easily avoided through the application of mainstream
cryptographic design principles.

5.5 Entity Authentication

Note that both parties, IFD (reader) and ICC (card), basically authenticate one another by proving
knowledge of a secret key. For the terminal this is done via the secret RSA key, whereas the card uses its
unique DivData and therefore unique key FAKey(P™V) = AESEﬁg%t(DivData). The standard mechanism
to do so would be either to compute a signature or a message authentication code for a random challenge,
or to return, in clear, a nonce encrypted under the party’s key.

PLAID follows the encryption-based approach. Yet the usual security argument for this type of
authentication requires chosen-ciphertext security for the deployed encryption scheme. PLAID, on the
other hand, uses two encryption schemes which are known not to provide this level of security, i.e., RSA-
PKCS#1 v1.5 and plain AES-CBC-encryption. This does not mean that the protocol is insecure and does
not provide any form of entity authentication. However one cannot infer security from known results but
would instead need carefully constructed de novo arguments.

5.6 Payload Insecurity

During the ISO standardization process the PLAID protocol was changed to introduce an optional
payload field in the third protocol message, the second message from the IFD to the card (see Step 5 in
Figure 1) [ISO12]. The standard motivates the purpose of this payload field—this field should not be
confused with the payload field in the last message by the card in Step 7 (Figure 1)—for scenarios where,
for example, a user enters a PIN and the verification should be done on the card. In this case, the PIN is to
be sent to the card within the payload field [ISO14, Annex G|. The problem is that sensitive information
send by the IFD can always be intercepted via a simple man-in-the-middle attack, assuming an adversary
has corrupted an arbitrary card. Breaking a card allows the attacker to learn the diversified FAKey(DiV) of
the card, the card’s DivData field as well as the public part of one (or more) IAKeys. Thus, an adversary
can simply replace the second message during an honest execution with one corresponding to the broken
card. This will lead to the IFD encrypting the third message under the FAKey(DiV) of the broken card
and hence, if a PIN (or any other payload) is included, the adversary can trivially learn it by a simple
decryption operation. Note that this problem is not due to the payload being sent in the third message,
but that a user, when entering a PIN, cannot tell whether or not the terminal is actually communicating
with his/her card. Therefore, PIN comparison on the card as proposed [ISO14, Annex G] is generically
insecure due to the given attack scenario.

5.7 On the Impossibility of Key Revocation

Although PLAID uses a public-key encryption system (i.e. RSA) during the initial authentication phase,
the overall setup resembles more a symmetric setting where all static keys used by parties are exchanged
during system setup (abstracting away the diversification procedure of PLAID). As a consequence, it is not
possible to revoke any compromised keys within PLAID. In order to exemplify the resulting consequences,
assume that an attacker is able to break into an IFD (terminal). The IFD contains a list of I[AKeys and a
list of FAKeys which thereby are revealed to the attacker. With this information, the attacker can generate
arbitrary new cards with the capabilities of any of the KeySetIDs known by the broken IFD. Furthermore,
there is no way to revoke the compromised keys in the system without issuing new cards, as the keys known
by IFDs are hardcoded into the cards. Thus, even the break of a single IFD can lead to an entire PLAID
setup becoming insecure.

23

5.8 Key Legacy Attack

A key legacy attack is related to the same issues allowing for the keyset fingerprinting attack, namely,
the lack of authentication in the list of keys used by a card and a terminal to establish a connection.
Recall that the protocol specifies that the first commonly shared key in the list has to be used, even if
there are other shared keys. This means that an adversary could force the card to use one particular key
(among those supported by both card and terminal) by reordering the list of keys sent by the terminal
in a man-in-the-middle fashion. This could be dangerous in case one or more of the keys in the system
are compromised, or turn out to provide inferior security for any reason, even if the use of these keys is
de-prioritized (e.g., by having the terminals set them always last in order of preference). We note that this
type of attack was already mentioned in the national body comments to the first ISO draft [[SO13], but
remained unconsidered in the current version [[SO14].

6 Responses of the ISO Authority Regarding Technical Aspects

We communicated our results to both the ISO 25185-1 project editor and to a contact person at the
Department of Human Services. Aspects of the e-mail discussion that followed this communication can
be found in a public, written response from the ISO project editor [Frel4a]. We stress, however, that we
disagree with many points in this response, leading us to produce a statement concerning this response,
which is also publicly available [DFF " 14a]. Here we report on technical aspects of the authority’s response
and leave discussion of other aspects to the next section, where we focus on our experience of the ISO
standardization process.

The ISO project editor Graeme Freedman pointed out to us [Frel4b] (see also [Frel4a]) that card-
identifying information may also be available to an adversary by other means, such as through the so-called
Card Production Life Cycle (CPLC) data. The CPLC data contain information like serial numbers and
manufacturers, uniquely identifying cards on a global scale. For privacy reasons access to the CPLC data
must therefore be restricted for PLAID. Indeed, the ISO draft standard itself already mentions this issue:
“Consider switching off access to administrative applications from contactless interfaces, particularly ones
which store unique card identification information such as the GlobalPlatform Card Production Life Cycle
(CPLC) data.” [ISO14] Our results show, however, that even if one restricts access to such administrative
data, then PLAID still leaks card- and cardholder-identifying information.

The editor’s response in [Frel4a] concerning the ShillKey fingerprinting attack was to persist in
insisting that the standard leaves open the implementation details about the ShillKey deployment. The
report [Frelda] states that “any change required to eliminate the attack (if desired) is solely up to the
implementer /developer, since any implementation of ShillKey is interoperable with any other and the
Standards are actually mute on how ShillKey is implemented and consequently how it is implemented is
not an issue.” We believe that a security-related standard should not introduce potential attack vectors by
being ambiguous and leaving such important issues to developers. Otherwise, an implementation could be
correct according to the ISO standard, but vulnerable to the ShillKey fingerprinting attack from our paper,
allowing an attacker to identify cards.

We could not identify any comment in [Frel4a] concerning our keyset fingerprinting attack.

Most of our concerns presented in Section 5 were dismissed in [Frel4a] by stating that they are not
supported by concrete attacks. For example, the lack of forward security of PLAID was countered in
[Frelda] by stating that “the Researchers have not described a method to obtain the keys in the first place,’
ignoring the fact that forward security exactly deals with the question of what security guarantees still hold
if keys are leaked. However, the state-of-the-art in cryptographic protocol design is now well beyond the
approach of assuming that the absence of attacks is sufficient for judging a protocol to be sound. Instead,
what is expected is rigorous formal analysis, using one or more of a variety of approaches (typically based

i

24

on formal methods or the methodology of “provable security”).

7 A Cryptographer’s Perspective on the Standardization Process of
PLAID

In this section, we consider our technical results in the context of PLAID’s standardization in ISO. While
some may argue that the main purpose of standardization is to provide interoperability and to increase
productivity, ISO itself lists safety, reliability, and good quality as additional goals [I[SO15, San72]. We
view this as a clear indication that cryptographic protocols considered for ISO standardization should be
also assessed according to their security guarantees.

Assuming one adopts the viewpoint that quality assurance should be an essential part of standardization,
the question then arises of how this can be best accomplished. Below we review this question in light of the
ISO standardization of PLAID, from our perspective as cryptographers who first became interested in the
protocol out of scientific curiosity.

7.1 The Pre-ISO Phase

As already laid out in Section 1, the development of PLAID began in 2006 and was conducted by Centrelink,
an agency of the Australian government’s Department of Human Services (DHS). According to the report
of PLAID’s ISO project editor [Frel4a] on a preliminary version of this work, PLAID was in the following
years subject to several private reviews, including by the Australian Defence Signals Directorate (now
Australian Signals Directorate), the U.S. National Institute of Standards and Technology (NIST), as well
as by commercial vendors and workshops (hosted by the Australian DHS, NIST, Microsoft’s security team,
and the Asia Pacific Smart Card Association (APSCA)). To the best of our knowledge, there are no publicly
available results on the security of PLAID originating from these events.

Notwithstanding the above, we do think that a cryptographic protocol like PLAID which is supposed to
become a national, or even an international standard, should receive thorough review by experts and that
the results should be made public. Indeed, Centrelink’s smart card architect in an interview in 2009 [Ris09]
agreed that “any cryptographic algorithm [...] which is supposed to be used for high security applications
needs to be open and needs to be reviewed by the wider cryptographic community.” Much to our surprise
he continued by saying

“PLAID isn’t a cryptographic algorithm, it’s a protocol. PLAID [...] uses two cryptographic
algorithms [RSA and AES]. [...] So, the actual cryptographic exchange [...] is based on two
well established, well reviewed and considered secure algorithms [...].”

While indeed PLAID is a protocol and not an algorithm, this does not obviate the need for a thorough
(public) review. Indeed, our analysis here shows that equal care has to be taken when combining well
studied cryptographic algorithms (like RSA or AES) into a higher-level protocol. PLAID is not alone in
this respect. For example, the long history of attacks on the most prominent cryptographic protocol to
date, the Transport Layer Security (TLS) protocol [DR08], shows how delicate the process of combining
well-understood cryptographic primitives into a larger-scale protocol can be.

In 2010, PLAID was standardized as Australian standard AS 5185-2010 [Stal0].

7.2 The ISO Standardization Process

In 2012, PLAID entered the ISO/IEC standardization process via the fast-track procedure as draft
international standard (DIS) 25185-1 [ISO12]. Inside ISO, working group WG 4 (Integrated circuit card

25

with contacts) of subcommittee SC 17 (Cards and personal identification) within the joint technical
committee JTC 1 (Information technology) was entrusted with handling the standardization process. Given
the necessary focus on the specification of a cryptographic protocol, we would suggest that cryptographic
protocols like PLAID be assigned to cryptography-related working groups too, e.g., WG2 (Cryptography
and security mechanisms) of SC27 (IT security techniques), in order to ensure a thorough examination of
their cryptographic mechanisms.

The current ISO/IEC draft international standard version 25185-1.2 [ISO14] was put forth in 2014 and
incorporated minor changes to the original protocol for the purpose of alignment with other ISO standards.
More important, in our opinion, were the changes and improvements requested in various formal comments
made by several national bodies on the initial DIS that, as already mentioned in Section 5, were not resolved
in version 25185-1.2.

For example, concerns that not authenticating the first message could lead to undetected manipulation
of the KeySetIDs sent in that message were dismissed as an implementation issue. Our keyset fingerprinting
attack (cf. Section 4) in contrast shows how to exploit this unauthenticated message to generically determine
a card’s capabilities, severely damaging the privacy properties of PLAID. In another case, CBC-mode
encryption was wrongly claimed to provide message integrity, despite being otherwise noted and criticized
in national body comments. Furthermore, remarks that there are no results indicating that RSA public
keys cannot be recovered from RSA ciphertexts were written off with the irrelevant argument that, despite
that concern, RSA is in use in most public-key infrastructures and also in TLS—ignoring that in the latter
cases the public keys used are indeed made public and do not have to be kept secret for privacy reasons as
is the case in PLAID. It turns out that these concerns were justified: RSA public keys can be accurately
estimated from ciphertexts, and this directly allows our ShillKey fingerprinting attack (cf. Section 3) to
trace cards and break their privacy. Finally, one editor comment challenged the usefulness of security
proofs—demanded by some national bodies as a security guarantee—merely because RSA itself has no such
security proof. We feel that such reasoning disregards the cryptographic community’s substantial progress
in establishing reliable frameworks for the analysis of security protocols over the last two decades.

Conducting this work as outsiders to the ISO standardization process, we received the impression that
current procedures at ISO are not very amenable to encouraging public comments, e.g., from the academic
community. Indeed, we took notice of the PLAID protocol and its status in the standards track by mere
coincidence and had to first purchase the current DIS version in order to be able to begin investigating the
protocol. After the completion of our analysis, we again struggled to find a formal mechanism to report
our results back into the ISO process. Eventually, the kind facilitation of, in particular, German and UK
national standardization body members enabled our findings to be taken into account in follow-up ISO
discussions. Despite this co-operation, we still found it difficult to stay abreast of ongoing developments in
PLAID’s standardization, since the results of those discussions again remained inaccessible to the public.

We believe that a process that is more open towards public comment, especially by the academic
community, would have the potential to result in a broader and more thorough examination of standards-
track cryptographic algorithms and protocols. Prime examples of such processes are those followed by the
Internet Engineering Task Force (IETF) in the development of widely-deployed security protocols such as
TLS and IPsec, and those adopted by NIST when developing the Advanced Encryption Standard (AES)
and the new hash function standard SHA-3. Emphasizing this point, NIST recently announced its intention
to open up its cryptography standardization processes even further and plans to handle public comments in
a consistent, public, and accountable manner, seeking an even more extensive exchange with the academic
community [Kell5, Nat15].

26

7.3 The Aftermath of Our Work

At the time of writing, the ISO/IEC DIS [ISO14] of PLAID is still in the “Enquiry stage” 40.60 (close
of voting), as it was when we initially began our analysis. A preliminary version of this work, made
public in September 2014 [DFF " 14c], has in the meantime been considered in discussions at several ISO
JTC 1/SC 17/WG 4 meetings. We are, however, at this point in time unaware of any final decision having
been taken on the ISO/IEC DIS of PLAID and, hence, its future as an ISO standard.

Besides gaining some attention at ISO and in the wider public arena, our work was in particular
commented on by the Australian and ISO/IEC standard project editor for PLAID. The report produced
by the project editor [Frel4a] claims to reveal errors in our work that render the described attacks both
“mute” and “easily preventable”. It also claims to identify mis-definitions and made-up privacy notions.
We do not wish to reiterate our view on that report here beyond the technical comments already made in
Section 6, but instead refer the interested reader to our official response [DFF*14a] in which we clarify
why our concerns remain unchanged.

8 Conclusion

Our results show that PLAID has significant privacy weaknesses. The shill key attack and the keyset
fingerprinting attack reveal card identifying information and, via access authorizations, information about the
card holder. As for entity authentication and the secrecy of established keys for subsequent communication,
in several places the design of PLAID follows some uncommon strategies and reveals potential attack
vectors, such as the lack of forward security. The case of PLAID also shows that standards should specify
details thoroughly, in order to avoid vulnerable implementations. An example here is the ISO/IEC 9797-1
non-compliant CBC padding in PLAID, which potentially enables padding attacks (see our remark in
Section 5).

We do not recommend the indiscriminate usage of PLAID in its current form, especially not for
privacy-critical scenarios. While our proposed countermeasures seem to thwart our attacks on privacy, a
more comprehensive analysis of the protocol in light of clearly stated security goals would be necessary. The
PLAID description promises that the protocol should be scrutinized by “the most respected cryptographic
organisations, as well as the broader cryptographic community” [Cen09]. Unfortunately, we are not aware
of any available documents in this regard. Indeed, standardization processes in general would benefit if
supporting material, arguing the security of a proposal, were to be available at the time of evaluation.

As is, PLAID provides no privacy against active attacks, is not forward secure, and is ultimately based
on symmetric-key cryptography (setting aside the use of public-key cryptography on top). One might expect
that there should be easier approaches to obtaining secure authentication and key exchange protocols.
Indeed, it seems that this problem, and even approaches offering enhanced privacy, have been discussed for
a long time in the RFID community—see, for example, [Jue06] for an early survey and [CM13] for a more
recent one. Identifying specific protocol solutions from that area and discussing their security and efficiency
features, however, is beyond the scope of our analysis of PLAID here.

Acknowledgments

We thank Pooya Farshim for his contributions during the early stages of this paper, Andrew Waterhouse for
providing insights on the ISO standardization process, and the anonymous reviewers for valuable comments.
Marc Fischlin is supported by the Heisenberg grants Fi 940/3-1 and Fi 940/3-2 of the German Research
Foundation (DFG). Tommaso Gagliardoni and Felix Giinther are supported by the German Federal Ministry
of Education and Research (BMBF) within EC SPRIDE. Felix Giinther and Giorgia Azzurra Marson are

27

supported by the DFG as part of the CRC 1119 CROSSING. Giorgia Azzurra Marson and Arno Mittelbach
are supported by the Hessian LOEWE excellence initiative within CASED. Kenneth G. Paterson and

Jean Paul Degabriele are supported by the Engineering and Physical Sciences Research Council (EPSRC)
Leadership Fellowship EP/H005455/1.

References

[BBDPOI]

[BFK™*14]

[BFS*13]

[Ble9g)]

[BPROO]

[BR94]

[Cen09]

[CM13]

[Depl14]

[DFF14a

[DFF+14b)]

[DFF*14c|

Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in
public-key encryption. pages 566-582, 2001. (Cited on page 17.)

Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub,
and Santiago Zanella Béguelin. Proving the TLS handshake secure (as it is). pages 235-255,
2014. (Cited on page 21.)

Christina Brzuska, Marc Fischlin, Nigel P. Smart, Bogdan Warinschi, and Stephen C. Williams.
Less is more: relaxed yet composable security notions for key exchange. Int. J. Inf. Sec.,
12(4):267-297, 2013. (Cited on page 21.)

Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS #1. pages 1-12, 1998. (Cited on page 22.)

Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. pages 139-155, 2000. (Cited on page 20.)

Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. pages 232-249,
1994. (Cited on page 21.)

Centrelink. Protocol for Lightweight Authentication of Identity (PLAID) — Logical Smartcard
Implementation Specification PLAID Version 8.0 - Final, December 2009. (Cited on pages 3, 4, 5,
22, and 27.)

Iwen Coisel and Tania Martin. Untangling RFID privacy models. Journal of Computer
Networks and Commaunication, 2013(Article ID 710257):26, 2013. (Cited on page 27.)

Department of Human Services. Protocol for Lightweight Authentication of Identity (PLAID),
2014. (Cited on page 3.)

Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso Gagliardoni, Felix Giinther,
Giorgia Azzurra Marson, Arno Mittelbach, and Kenneth G. Paterson. Response to “Nit-Picking
PLAID AS & ISO Project Editors Report into ‘Unpicking Plaid’ ”. Cryptology ePrint Archive
Forum, December 2014. http://www.cryptoplexity.informatik.tu-darmstadt.de/media/
crypt/pdf/plaid-editorreport-response.pdf. (Cited on pages 24 and 27.)

Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso Gagliardoni, Felix Giinther,
Giorgia Azzurra Marson, Arno Mittelbach, and Kenneth G. Paterson. Unpicking PLAID — A
Cryptographic Analysis of an ISO-standards-track Authentication Protocol. In 1st International
Conference on Research in Security Standardisation (SSR 2014), volume 8893 of Lecture Notes
in Computer Science, pages 1-25. Springer, December 2014. (Cited on page 5.)

Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso Gagliardoni, Felix Giinther,
Giorgia Azzurra Marson, Arno Mittelbach, and Kenneth G. Paterson. Unpicking PLAID — A

28

http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/pdf/plaid-editorreport-response.pdf
http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/pdf/plaid-editorreport-response.pdf

[DFGT13]

[DROS]|

[Freldal

[Frel4b)

[GKS13]

[1SO12]

[1SO13]

[1SO14]

[1SO15]

[JKSS12]

[Joh94]

[JSS12]

[Jue06]

[Kalog]
[Kell5]

Cryptographic Analysis of an [SO-standards-track Authentication Protocol. Cryptology ePrint
Archive, Report 2014/728, 2014. http://eprint.iacr.org/. (Cited on page 27.)

Ozgiir Dagdelen, Marc Fischlin, Tommaso Gagliardoni, Giorgia Azzurra Marson, Arno Mittel-
bach, and Cristina Onete. A cryptographic analysis of OPACITY - (extended abstract). pages
345-362, 2013. (Cited on page 5.)

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176. (Cited on page 25.)

Graeme Freedman. Nit-Picking PLAID: AS & ISO Project Editors Report into “Unpicking
Plaid”. Cryptology ePrint Archive Forum, November 2014. https://dl.dropboxusercontent.
com/u/41736374/UnpickingReport%20V1.pdf. (Cited on pages 24, 25, and 27.)

Graeme Freedman. Personal communication by e-mail, July 2014. (Cited on page 24.)

Florian Giesen, Florian Kohlar, and Douglas Stebila. On the security of TLS renegotiation.
pages 387-398, 2013. (Cited on page 21.)

ISO. DRAFT INTERNATIONAL STANDARD ISO/IEC DIS 25185-1 Identification cards —
Integrated circuit card authentication protocols — Part 1: Protocol for Lightweight Authentica-
tion of Identity. International Organization for Standardization, Geneva, Switzerland, 2012.
(Cited on pages 4, 5, 18, 20, 22, 23, and 25.)

ISO 25185-1 Editor. Disposition of comments on ISO/TEC 25185-1 Protocol for a lightweight
authentication of devices, September 2013. (Cited on pages 4, 5, 20, 22, and 24.)

ISO. DRAFT INTERNATIONAL STANDARD ISO/IEC DIS 25185-1.2 Identification cards —
Integrated circuit card authentication protocols — Part 1: Protocol for Lightweight Authentica-
tion of Identity. International Organization for Standardization, Geneva, Switzerland, 2014.
(Cited on pages 3, 4, 6, 9, 18, 22, 23, 24, 26, and 27.)

ISO. Benefits of international standards, March 2015. http://www.iso.org/iso/home/
standards/benefitsofstandards.htm. (Cited on page 25.)

Tibor Jager, Florian Kohlar, Sven Schége, and Jorg Schwenk. On the security of TLS-DHE in
the standard model. pages 273-293, 2012. (Cited on page 21.)

Roger Johnson. Estimating the size of a population. Teaching Statistics, 16(2):50-52, 1994.
(Cited on page 10.)

Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. Bleichenbacher’s attack strikes again:
Breaking PKCS#1 v1.5 in XML encryption. pages 752-769, 2012. (Cited on page 22.)

Ari Juels. RFID security and privacy: a research survey. IEEE Journal on Selected Areas in
Communications, 24(2):381-394, 2006. (Cited on page 27.)

Burt Kaliski. PKCS#1: RSA Encryption Version 1.5. RFC 2313, 1998. (Cited on page 7.)

John Kelsey. Dual EC DRBG and NIST Crypto Process Review. Invited talk at the Real
World Cryptography Workshop 2015, January 7-9, 2015, London, UK, 2015. (Cited on page 26.)

29

http://eprint.iacr.org/
https://dl.dropboxusercontent.com/u/41736374/UnpickingReport%20V1.pdf
https://dl.dropboxusercontent.com/u/41736374/UnpickingReport%20V1.pdf
http://www.iso.org/iso/home/standards/benefitsofstandards.htm
http://www.iso.org/iso/home/standards/benefitsofstandards.htm

[K1i10]

[KPW13]

[KR12]

[MSWS14]

[Nat09]

[Nat15]

[Ris09)]

[RPHJ11]

[Sak13]

[SanT72]

[Stal0]

[Tay12]

[Vau02]

[Wat13]

Ryan Kline. Improving contactless security is goal of emerging PLAID project.
http://secureidnews.com/news-item/improving-contactless-security-is-goal-
of-emerging-plaid-project/, January 2010. SecureIDNews. (Cited on page 3.)

Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the TLS protocol:
A systematic analysis. pages 429-448, 2013. (Cited on page 21.)

Koh Ho Kiat and Lee Yong Run. An analysis of OPACITY and PLAID protocols for contactless
smart cards. Master’s thesis, Naval Postgraduate School, Monterey, CA, USA, September 2012.
(Cited on page 4.)

Christopher Meyer, Juraj Somorovsky, Eugen Weiss, and Joerg Schwenk. Revisiting SSL/TLS
Implementations: New Bleichenbacher Side Channels and Attacks. In 28rd USENIX Security

Symposium (USENIX Security 14), San Diego, CA, August 2014. USENIX Association. (Cited
on page 22.)

National Institute of Standards and Technology. Protocol for Lightweight Authentication of
Identity (PLAID) Workshop, July 2009. (Cited on page 3.)

National Institute of Standards and Technology. Cryptographic Standards and Guidelines
Development Process (Second Draft). National Institute of Standards and Technology Intera-
gency Report 7977, January 2015. http://csrc.nist.gov/publications/drafts/nistir-
7977/nistir_7977_second_draft.pdf. (Cited on page 26.)

Risky.biz. Risky Business 106 — Centrelink’s new PLAID auth protocol. http:
//risky.biz/netcasts/risky-business/risky-business-106-centrelinks-new-plaid-
auth-protocol, May 2009. (Cited on pages 5 and 25.)

Helena Rifa-Pous and Jordi Herrera-Joancomarti. Computational and energy costs of crypto-
graphic algorithms on handheld devices. Future Internet, 3(1):31-48, 2011. (Cited on page 20.)

Hideki Sakurada. Security evaluation of the PLAID protocol using the ProVerif tool.
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-
1_ProVerif.pdf, September 2013. (Cited on page 4.)

T.R.B. Sanders. The Aims and Principles of Standardization. International Organization for
Standardization — ISO, 1972. (Cited on page 25.)

Standards Australia. AS 5185-2010 Protocol for Lightweight Authentication of IDentity
(PLAID). Standards Australia, 2010. (Cited on pages 3, 4, and 25.)

Josh Taylor. Centrelink ID protocol still in trial phase. http://www.zdnet.com/centrelink-
id-protocol-still-in-trial-phase-1339336953/, May 2012. ZDNet. (Cited on page 3.)

Serge Vaudenay. Security flaws induced by CBC padding - applications to SSL, IPSEC, WTLS
... pages 534-546, 2002. (Cited on page 22.)

Dai Watanabe. Security analysis of PLAID. http://crypto-protocol.nict.go.jp/data/
eng/ISOIEC_Protocols/25185-1/25185-1_Scyther.pdf, September 2013. (Cited on page 4.)

30

http://secureidnews.com/news-item/improving-contactless-security-is-goal-of-emerging-plaid-project/
http://secureidnews.com/news-item/improving-contactless-security-is-goal-of-emerging-plaid-project/
http://csrc.nist.gov/publications/drafts/nistir-7977/nistir_7977_second_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-7977/nistir_7977_second_draft.pdf
http://risky.biz/netcasts/risky-business/risky-business-106-centrelinks-new-plaid-auth-protocol
http://risky.biz/netcasts/risky-business/risky-business-106-centrelinks-new-plaid-auth-protocol
http://risky.biz/netcasts/risky-business/risky-business-106-centrelinks-new-plaid-auth-protocol
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_ProVerif.pdf
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_ProVerif.pdf
http://www.zdnet.com/centrelink-id-protocol-still-in-trial-phase-1339336953/
http://www.zdnet.com/centrelink-id-protocol-still-in-trial-phase-1339336953/
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_Scyther.pdf
http://crypto-protocol.nict.go.jp/data/eng/ISOIEC_Protocols/25185-1/25185-1_Scyther.pdf

	Introduction
	PLAID Protocol Description
	PLAID Setup
	Initial Authenticate
	Final Authenticate

	Shill-Key Fingerprinting – Tracing Cards in PLAID
	Tracing Cards via Shill-Key Ciphertexts
	Tracing Cards from a Mixed Set of Shill-Key Ciphertexts
	Tracing Cards During Lunchtime
	Connection to Key Privacy of RSA Encryption
	Countermeasures to Our Attacks

	Keyset Fingerprinting – Determining a Card's Capabilities
	The Attack in a Nutshell
	The Attack Details
	Potential Countermeasures Against Our Attack

	Further Security Considerations
	Forward (In)security
	Key (In)security in the Bellare–Rogaway Model
	On the Applicability of Bleichenbacher's Attack
	CBC-mode Encryption
	Entity Authentication
	Payload Insecurity
	On the Impossibility of Key Revocation
	Key Legacy Attack

	Responses of the ISO Authority Regarding Technical Aspects
	A Cryptographer's Perspective on the Standardization Process of PLAID
	The Pre-ISO Phase
	The ISO Standardization Process
	The Aftermath of Our Work

	Conclusion

