
Int. J. Inf. Secur.
DOI 10.1007/s10207-016-0355-8

REGULAR CONTRIBUTION

Privacy-preserving smart metering revisited

Alfredo Rial1 · George Danezis2 · Markulf Kohlweiss3

© Springer-Verlag Berlin Heidelberg 2016

Abstract Privacy-preserving billing protocols are useful in
settings where a meter measures user consumption of some
service, such as smart metering of utility consumption, pay-
as-you-drive insurance and electronic toll collection. In such
settings, service providers apply fine-grained tariff policies
that require meters to provide a detailed account of user
consumption. The protocols allow the user to pay to the
service provider without revealing the user’s consumption
measurements. Our contribution is twofold. First, we pro-
pose ageneralmodelwhere ameter canoutputmeter readings
to multiple users, and where a user receives meter readings
from multiple meters. Unlike previous schemes, our model
accommodates a wider variety of smart metering applica-
tions. Second, we describe a protocol based on polynomial
commitments that improves the efficiency of previous pro-
tocols for tariff policies that employ splines to compute the
price due.

Keywords Universally composable security · Privacy ·
Billing · Smart meters · Polynomial commitments

B Alfredo Rial
alfredo.rial@uni.lu

George Danezis
g.danezis@ucl.ac.uk

Markulf Kohlweiss
markulf@microsoft.com

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg

2 University College London, London, UK

3 Microsoft Research, Cambridge, UK

1 Introduction

In privacy-preserving billing, a meter measures a user’s con-
sumption of some utility or service and service providers
apply fine-grained tariff policies, i.e., policies that require
detailed and frequent consumption measurements, in order
to determine the bill.

A classical example is smart metering of electricity, water
and gas [36]. In this setting, utility providers install smart
meters in households in order to measure user consumption.
Smart meters provide meter readings to the service provider.
These readings are used by the service provider to calculate
the bill under the tariff policy. The tariff policy may be com-
plex, e.g., by applying a different rate depending on the time
of consumption or onwhether the consumptionmeasurement
reaches a threshold.

Other examples are electronic toll collection [24] and pay-
as-you-drive car insurance [7]. In these cases, drivers install a
meter in their cars that reports to the service provider which
roads are used and when. Typical tariff policies apply dif-
ferent rates depending on the type of road (e.g., motorway,
street), the time of the day (e.g., day or night) or even the
speed of the vehicle.

In all the settings above, billing poses a threat to user
privacy. Meters report fine-grained readings to the service
provider, which potentially discloses sensitive information.
For example, electricity smart meter readings reveal when
users are at home and the electrical appliances they use [2],
and electronic toll collection and “pay-as-you-drive” insur-
ance reveal the driver’s whereabouts [3,40,49].

In privacy-preserving billing protocols,meters do not send
consumption measurements to the service provider. Instead,
the computation of the bill is done locally and only the
amount to be paid is revealed to the service provider.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-016-0355-8&domain=pdf


A. Rial et al.

Privacy-preserving billing protocols, in particular those
which employ meters that are not tamper resistant, involve
mechanisms to ensure that users report meter readings cor-
rectly, such as random spot checks in the electronic toll
collection protocol in [3,37,43].

The protocols that use tamper-resistant meters either per-
form the bill calculation in the meter or outsource it to an
untrusted platform to keep the meters simple. In [49], the bill
calculation is performed inside the tamper-resistant meter.
In contrast, in [47] the tamper-resistant meter outputs signed
meter readings to a user application. At the end of a billing
period, the user application employs the tariff policy sent
by the service provider and the signed readings obtained
from the meter to calculate the bill. The user application
reveals to the service provider only the total bill, along with
a proof that the computation of the bill is correct. This proof
does not reveal any additional information on the meter read-
ings. The approach in [47] has the advantage that it allows to
minimize the trusted computing base and that it avoids the
need to update tamper-resistant meters when the tariff pol-
icy changes. In addition, the mandatory deployment of smart
meters in many countries implies that the purchase cost of
a meter must be kept low. Therefore, it is advisable to keep
meters as simple as possible. In [47] and in our protocol,
meters are required to compute just digital signatures, but all
the other computations are executed outside the meter. Prac-
tical implementations of these protocols have been shown in
[17].

Our contribution We revisit the work of [47] and improve it
in twoways. First, we generalize the securitymodel in [47] to
consider multiple meters andmultiple users. Second, we pro-
pose a privacy-preserving billing protocol for our model that,
in comparison with the protocol in [47], improves efficiency
for policies described by splines.

The security model in [47] considered a setting where a
meter communicates only with one user, and a user com-
municates only with one meter, i.e., there is a one-to-one
relation between users and meters. This is insufficient for
some smart metering applications. For example, consider a
building where there is one meter per apartment that mea-
sures the water consumption in that apartment. Additionally,
in the laundry room, there are one washing machine and one
meter per apartment, and the meter measures the water con-
sumption of the washing machine. In this example, the user
needs to use meter readings from both meters to compute the
water consumption bill.

As another example, consider a buildingwith central heat-
ing. Each apartment is provided with a smart meter that
measures the electricity consumption of its tenants. Addi-
tionally, another meter measures the electricity consumption
of each of the tenants with respect to the central heating sys-
tem. To model this setting adequately, it is necessary to both

allow a meter to send meter readings to multiple users, and
to allow a user to receive meter readings from more than one
meter.

Of course, it is possible to use a protocol that considers
only a one-to-one relation between users and meters in these
examples. Simply, each meter–user pair is considered sepa-
rately, and the user reports one separate bill for each meter.
However, doing so does not achieve the same level of privacy
offered in our model because the user reveals the price to be
paid for the consumption at each meter, instead of revealing
only the total price.

Therefore, we propose an ideal functionality FBIL for
privacy-preserving billing protocols that considers multiple
meters and multiple users. In addition to that, FBIL has the
following main differences in comparison with the function-
ality for smart metering described in [47].

– FBIL includes an interface through which the service
provider sends a list of meters to a user at each billing
period. The meter readings received from the meters in
the list must be employed by the user to perform the bill
calculation for that billing period.

– FBIL includes an interface that allowsmeters to signal the
end of a billing period and to report to the users the num-
ber of meter readings that were sent during the billing
period. This necessary interface was omitted in the func-
tionality in [47].

– FBIL models explicitly the communication with the sim-
ulator S. S needs this communication in order to provide
a simulation for the adversary in the security proof.

– FBIL allows any verifying party (and not just the service
provider) to verify the bill to be paid. This may be use-
ful in case of dispute between the meter and the service
provider.

– FBIL models the cases in which corrupt users collude
with corrupt meters and/or with the service provider.

Wepropose a privacy-preserving billing protocol that real-
izes our functionality FBIL and thus allows a meter to send
meter readings to multiple users, and users to employ meter
readings from multiple meters in the computation of a bill.
In a nutshell, our protocol works as follows. At each billing
period, the provider registers a signed tariff policy. Tariff
policies are of the form Y : (c, t) → p, where c is the con-
sumption measurement, t is the time of consumption and p
is the price. The provider also sends to each user a signed
list of meters. Meters send signed meter readings to users
and a signed “end of billing period” message that contains
the number of meter readings sent from the meter to the user
at that billing period. The user application calculates the bill
and computes a zero-knowledge proof of knowledge of its
correctness. This zero-knowledge proof involves proofs of
signature possession that demonstrate that the correct tariff

123



Privacy-preserving smart metering revisited

policy is used to compute the price for each of the signed
meter readings.

In [47], it is shownhow to sign different types of tariff poli-
cies: a linear policy thatmultiplies each reading by a price per
unit of consumption and a cumulative policy that divides the
consumption range in intervals and applies a different price
per unit to each interval. Additionally, it is mentioned that,
in general, a tariff policy may be described by a polynomial
for each interval. (Other functions can be approximated by
polynomial splines.) Although the protocol in [47] provides
efficient zero-knowledge proofs for the linear and cumula-
tive policies, the cost of a zero-knowledge proof of a tariff
policy described by a polynomial grows with the polynomial
degree.

Our privacy-preserving billing protocol employs the same
technique in [47] to sign linear and cumulative policies, and
employs a newmethod for tariff policies described by splines.
Consider the following tariff policy as example. A day is
divided into L time intervals. For each time interval, the price
to be paid for the consumption c is given by a spline:

Y(c, t) =

⎧
⎪⎨

⎪⎩

Φ1(c) if t ∈ [t1, t2)
...

...

ΦL(c) if t ∈ [tL , tL+1)

⎫
⎪⎬

⎪⎭

Each spline Φl(c) (l ∈ [1, L]) is defined as follows.

Φl(c) =

⎧
⎪⎨

⎪⎩

φ1(c) if c ∈ [c1, c2)
...

...

φM (c) if c ∈ [cM , cM+1)

⎫
⎪⎬

⎪⎭

Therefore, for a meter reading (c, t), the price to be paid is
defined by the polynomial φm(c) such that c ∈ [cm, cm+1)

that belongs to the splineΦl(c) associatedwith the time inter-
val [tl , tl+1) such that t ∈ [tl , tl+1).

Alternatively, one can consider consumption bands, i.e.,
if a user’s consumption is below a certain threshold, she may
get a better price at peak hours. For each consumption band,
the price to be paid at a certain time of day t is given by a
spline where the polynomials take the time as input.

Ourmethod to sign a tariff policy given by splines employs
the polynomial commitment scheme of [29]. In a nutshell,
the service provider computes polynomial commitments C
to each of the polynomials in the tariff policy for the billing
period bp. Additionally, the service provider computes, for
each polynomial commitment, a signature on [bp,C, tl−1, tl ,
cm−1, cm]. The service provider sends the polynomial com-
mitments and the signatures to the users, together with the
polynomials. To prove in zero-knowledge that the price cal-
culated for a meter reading is correct, the user evaluates the
polynomial on input the consumption to compute the price
and then proves possession of a witness for the polynomial

commitment that shows that the price is the correct evalua-
tion of the committed polynomial. The size of this proof of
witness possession is independent of the polynomial degree.
Additionally, the user proves possession of a signature on
the polynomial commitment and proves that the values of
consumption and time in the meter reading lie within the
respective intervals in the signature.

Our use of polynomial commitments is somewhat dif-
ferent from their common use. In our scheme, the service
provider computes polynomial commitments and sends them
to the user together with the polynomials. Therefore, we do
not need the hiding property of commitments. However, we
need the binding property because the polynomial commit-
ments are employed by the user to prove in zero-knowledge
that prices are computed following the polynomials that
define the tariff policy.

The reasonwhywe use a polynomial commitment scheme
is that it provides efficient selective opening, i.e., the com-
mitment can be opened to an evaluation of the committed
polynomial with cost independent of the polynomial degree.
If a signature scheme is used, each of the coefficients of the
polynomial needs to be signed as a separate message in the
signature, and then, the cost of proving possession of the
signature is linear in the polynomial degree.

We show that our protocol realizes FBIL. Unlike [47], we
analyze all the possible collusion scenarios. Concretely, we
analyze in detail the case in which the provider is corrupt, the
case in which a subset of the users U are corrupt and the case
in which the provider, a subset of the users and a subset of
the metersM are corrupt. We analyze more briefly the case
in which the provider V and a subset of the users are corrupt,
the case in which a subset of the users U and a subset of the
meters M are corrupt and the case in which the provider V
and a subset of the metersM are corrupt.

For all the cases above, we consider Byzantine corrup-
tions where a single adversary corrupts different parties and
controls their behavior. Obviously, in this corruption model,
when the provider and ameter are corrupt, there is no protocol
that can prevent the provider from learning themeter readings
input to the meter because both entities are controlled by the
same adversary. For this reason, in Sect. 4.6.7, we consider
a corruption model in which different adversaries, with no
communication link between them, corrupt different parties.
We show that, under such corruption model, our protocol
prevents the corrupt meters from sending information about
the meter readings to the provider. This is akin to showing
that our protocol is collusion-free in the sense of [33].

Additionally, we consider the case in which the provider
and the meters are corrupt, but do not have a side commu-
nication channel between them. We show that, in this case,
our protocol is collusion-free in the sense of [33] and pre-
vents corrupt meters from disclosing the meter readings to
the provider or another corrupt verifying party.

123



A. Rial et al.

We discuss how our protocol compares to other possible
approaches for the design of privacy-preserving billing pro-
tocols in Sect. 5. Concretely,we discuss the use of regulations
and codes of conduct, trusted parties, techniques to reduce
variability, data anonymizationmethods, differential privacy,
verifiable computing, and secure two-party and multi-party
computation.

We note that our protocol is not only useful for billing,
but, in general, allows to prove correctness of any compu-
tation on meter readings. This is important in settings such
as smart metering, where meter readings are not only used
for the sake of billing but also for consumption forecasting
or profiling. For these other purposes, protocols that support
complex computations on meter readings are necessary.

Outline of the paper In Sect. 2, we summarize the univer-
sally composable security framework and we describe our
ideal functionality FBIL for privacy-preserving billing. In
Sect. 3, we describe the cryptographic building blocks that
are employed by our protocol. We depict our protocol in
Sect. 4. In Sect. 5, we discuss how our protocol compares to
other possible approaches, and we conclude in Sect. 6.

2 Definition of privacy-preserving billing

In Sect. 2.1, we summarize the universal composability par-
adigm and describe the ideal functionalities for registration,
common reference string and secure message transmission,
which are employed in our protocols. InSect. 2.2,wedescribe
our ideal functionality for privacy-preserving billing.

2.1 Universal composability

The universal composability framework [9] is a framework
for defining and analyzing the security of cryptographic pro-
tocols so that security is retained under arbitrary composition
with other protocols. The security of a protocol is defined by
means of an ideal protocol that carries out the desired task. In
the ideal protocol, all the parties send their inputs to an ideal
functionalityF for the task. The ideal functionality computes
locally the outputs of the parties and provides each party with
its prescribed output.

The security of a protocol ϕ is analyzed by comparing the
view of an environmentZ in a real execution of ϕ against that
of Z in the ideal protocol defined in Fϕ . The environment Z
chooses the inputs of the parties and collects their outputs. In
the real world, Z can communicate freely with an adversary
A who controls the network as well as any corrupt parties.
In the ideal world, Z interacts with dummy parties, who
simply relay inputs and outputs between Z and Fϕ , and a
simulator S. We say that a protocol ϕ securely realizes Fϕ

if Z cannot distinguish the real world from the ideal world,

i.e., Z cannot distinguish whether it is interacting with A
and parties running protocol ϕ or with S and dummy parties
relaying to Fϕ .

More formally, let k ∈ N denote the security parameter
and a ∈ {0, 1}∗ denote an input. Two binary distrib-
ution ensembles X = {X (k, a)}k∈N,a∈{0,1}∗ and Y =
{Y (k, a)}k∈N,a∈{0,1}∗ are indistinguishable (X ≈ Y ) if for
any c, d ∈ N there exists k0 ∈ N such that for all k > k0
and all a ∈ ∪κ≤kd {0, 1}κ , |Pr [X (k, a) = 1]−Pr [Y (k, a) =
1]| < k−c. Let REALϕ,A,Z (k, a) denote the distribution
given by the output of Z when executed on input a with A
and parties running ϕ, and let IDEALFϕ,S,Z (k, a) denote
the output distribution of Z when executed on a with S
and dummy parties relaying to Fϕ . We say that protocol
ϕ securely realizes Fϕ if, for all polynomial-time A, there
exists a polynomial-timeS such that, for all polynomial-time
Z,REALϕ,A,Z ≈ IDEALFϕ,S,Z .

A protocol ϕG securely realizes F in the G-hybrid model
when ϕ is allowed to invoke the ideal functionality G. There-
fore, for any protocol ψ that securely realizes functionality
G, the composed protocol ϕψ , which is obtained by replacing
each invocation of an instance of G with an invocation of an
instance of ψ , securely realizes F .

When describing ideal functionalities, we use the follow-
ing conventions:

Interface Naming Convention An ideal functionality can
be invoked by using one or more interfaces. The name
of a message in an interface consists of three fields sep-
arated by dots, e.g., reg.register.ini in the registration
functionality described in Fig. 1. The first field indicates
the name of the functionality and is the same in all the
interfaces of the functionality. This first field is useful
to distinguish between invocations of different function-
alities in a hybrid protocol that employs two or more
different functionalities. The second field indicates the
kind of action performed by the functionality and is the
same in all the messages that the functionality exchanges
within the same interface. The third field distinguishes
between the messages that belong to the same interface
and can take four different values. A message ∗. ∗ .ini is
the incoming message received by the functionality, i.e.,
the message through which the interface is invoked. A
message ∗. ∗ .end is the outgoing message sent by the
functionality, i.e., the message that ends the execution
of the interface. The message ∗. ∗ .sim is used by the
functionality to send a message to the simulator, and the
message ∗. ∗ .rep is used to receive a message from the
simulator.
Subsession identifiers Some interfaces in a functionality
can be invoked more than once. When the functionality
sends a message ∗. ∗ .sim to the simulator in such an
interface, a subsession identifier ssid is included in the

123



Privacy-preserving smart metering revisited

Functionality F
REG.Ver

REG

1. On input (reg.register.ini, sid , v) from a party T :
– Abort if sid = (T , sid ) or if there is a tuple
(sid , v , 0) stored.

– Abort if 0 = REG.Ver(v).
– Store (sid , v , 0).
– Send (reg.register.sim, sid , v) to S.

S. On input (reg.register.rep, sid) from the simulator S:
– Abort if (sid , v , 0) is not stored or if (sid , v ,1) is al-

ready stored.
– Store (sid , v , 1).
– Send (reg.register.end, sid) to T .

2. On input (reg.retrieve.ini, sid) from any party P:
– If (sid , v , 1) is stored, set v ← v , else set v .
– Create a fresh ssid and store (ssid , P, v ).
– Send (reg.retrieve.sim, sid , ssid , v ) to S.

S. On input (reg.retrieve.rep, sid, ssid) from the simulator S:
– Abort if (ssid , P, v ) is not stored.
– Delete ssid from (ssid , P, v ).
– Send (reg.retrieve.end, sid , v ) to P .

Functionality FSMT

Parameterized by a leakage function l : {0, 1}∗ → N that leaks
the message length, FSMT works as follows:

1. On input (smt.send.ini, sid,m) from a party T :
– Abort if sid = (T , R, sid ).
– Create a fresh ssid and store (ssid , R,m).
– Send (smt.send.sim, sid , ssid , l(m)) to S.

S. On input (smt.send.rep, sid , ssid) from S:
– Abort if (ssid , R,m) is not stored.
– Delete ssid from (ssid , R,m).
– Send (smt.send.end, sid,m) to R.

Functionality FCRS.Setup
CRS

Parameterized by a ppt algorithm CRS.Setup, FCRS works as
follows:

1. On input (crs.get.ini, sid) from any party P:
– If (sid , crs) is not stored, run crs ← CRS.Setup and

store (sid , crs).
– Create a fresh ssid and store (ssid , P).
– Send (crs.get.sim, sid , ssid , crs) to S.

S. On input (crs.get.rep, sid , ssid) from the simulator S:
– Abort if (ssid , P) is not stored.
– Delete ssid from (ssid , P).
– Send (crs.get.end, sid , crs) to P .

Fig. 1 Ideal functionalities F
REG.Ver

REG , FSMT and FCRS.Setup
CRS

message. The subsession identifier must also be included
in the response ∗. ∗ .rep sent by the simulator. The sub-
session identifier is used to identify themessage ∗. ∗ .sim
to which the simulator replies with a message ∗. ∗ .rep.
We note that, typically, the simulator in the security proof
may not be able to provide an immediate answer to the
functionality after receiving a message ∗. ∗ .sim. The

reason is that the simulator typically needs to interact
with the copy of the real adversary it runs in order to pro-
duce the message ∗. ∗ .rep, but the real adversary may
not provide the desired answer, or may provide a delayed
answer. In such cases, when the functionality sends more
than one message ∗. ∗ .sim to the simulator, the simula-
tor may provide delayed replies, and the order of those
replies may not follow the order of the received ∗. ∗ .sim
messages.
Aborts When we say that an ideal functionality F aborts
after being activated with a message (∗, . . .), we mean
that F halts the execution of its program and sends a
special abortion message (∗,⊥) to the party that invoked
the functionality.
Network versus local communication The identity of an
ITM instance (ITI) consists of a party identifier pid and
a session identifier sid. A set of parties in an execution
of a system of ITMs are a protocol instance if they have
the same session identifier sid. ITIs can pass direct inputs
to and outputs from “local” ITIs that have the same pid.
An ideal functionality F has pid = ⊥ and is considered
local to all parties. An instance of F with the session
identifier sid only accepts inputs from and passes outputs
to machines with the same session identifier sid. Some
functionalities require the session identifier to have some
structure. Those functionalities check whether the ses-
sion identifier possesses the required structure in the first
message that invokes the functionality. For the next mes-
sages, the functionality implicitly checks that the session
identifier equals the session identifier employed in the
first message. Communication between ITIs with differ-
ent party identifiers must take place over the network.
The network is controlled by the adversary, meaning that
he can arbitrarily delay, modify, drop or insert messages.

The conventions we use to describe of our ideal function-
alities make them longer. The reason is that we have chosen
not to omit any details, which are frequently omitted in the
literature. There are two reasons why the descriptions of our
functionalities are longer than usual.

– When our functionalities receive a message, we list all
the reasons why the functionality must abort, includ-
ing those related to the input message being malformed.
Other functionalities in the literature omit these needed
steps in their description.

– We describe in detail how the communication with the
simulator takes place. In many ideal functionalities in
the literature, after the functionality sends a message to
the simulator, the functionality waits for the simulator
to provide a response to that message. Similarly, many
functionalities in the literature employ delayed outputs.
However, in many cases, the simulator in the security

123



A. Rial et al.

proof needs to interact with a copy of the real adver-
sary in order to provide a response to the functionality.
Therefore, the simulator may not be able to provide a
response ormay be able to do so only at a later stage. This
means that many security proofs do not work because,
when the functionality demands an immediate response
from the simulator, the simulator is not able to provide it.
To solve this problem, our functionalities do not require
the simulator to provide an immediate response. Instead,
our functionalities save their state, create a subsession
identifier and call the simulator on input this subsession
identifier. When the simulator sends a reply with a given
subsession identifier, our functionalities recover the state
and continue the computation. With this mechanism, our
functionalities do not require the simulator to provide an
immediate response.

It is possible to omit these operations in the description
of a functionality and simply describe in a generic way that
functionalities abort when an input message is malformed
or that they save the state before calling the simulator and
recover it when receiving a reply. However, our approach is
less error-prone because it lists all the conditions for abortion
and it showswhat information needs to be saved and how this
information is recovered.

Our protocol makes use of the functionalityFREG for key
registration [9], FSMT for secure message transmission [9]
andFCRS.Setup

CRS [9] for common reference string generation.
We describe these functionalities in Fig. 1. We also employ a
variantFREG.Ver

REG of the registration functionality that is para-
meterized with a verification functionREG.Ver. We employ
a box to indicate the steps that are only executed in this variant
of FREG. We consider static corruptions only.

The functionalities FREG,FREG.Ver
REG and FCRS.Setup

CRS are
setup assumptions that we use in order to be able to provide
a protocol that realizes our functionality FBIL for privacy-
preserving billing. In [9], it is explained that only veryweakly
security guarantees can be obtained in the bare model, i.e.,
without setup assumptions. In the real world, these setup
assumptions can be realized by trusting certain parties, or
alternatively by relying on certain physical phenomena. In
the first case, to realize FREG,FREG.Ver

REG and FCRS.Setup
CRS ,

a protocol that follows the ideal world protocol defined by
FREG,FREG.Ver

REG and FCRS.Setup
CRS is employed, i.e., a trusted

party in the real world executes the protocol.
In the case of FSMT, it is shown in [9] how this func-

tionality can be realized by a protocol that uses a public key
encryption scheme and an ideal functionality for authenti-
cated communication. In [9], it is also shown that the ideal
functionality for authenticated communication can be real-
ized by a protocol that uses an existentially unforgeable
signature scheme and the ideal functionality for registra-

tion FREG. Here, FREG is a setup assumption that allows
the realization of the ideal functionality for authenticated
communication, which, as proven in [10], cannot be realized
without setup assumptions.

2.2 Ideal functionality for privacy-preserving billing

Wedepict the ideal functionalityFBIL for privacy-preserving
billing.FBIL interactswith a providerV , usersUi,metersMj,
and any verifying parties P . The provider V creates billing
periodsbp.Abilling period is not necessarily a periodof time.
More generally, it is an identifier that meters Mj associate
to the meter readings that they output. The meter readings
associated with the same billing period are used to compute
the payment for that billing period.

The provider V associates to each billing period bp a tariff
policy Y . The tariff policy Y : (c, t) → p is a function that
takes in a consumption value c and the time of consumption
t, and outputs the price to be paid p. FBIL can easily be
generalized to employ tariff policies that take as input more
variables.

At a billing period bp, the provider V also associates each
user Ui with a list of metersMj1 , . . . ,Mjm . The meter read-
ings output by those meters are employed by the user Ui to
calculate the bill p[bp] to be paid at the billing period bp.

A meterMj can send meter readings to multiple users. A
meter reading is a tuple (Ui, bp, c, t). At the end of a billing
period bp,Mj also sends a user Ui the number of meter read-
ings N[Mj, bp] that Mj sent to Ui during the billing period
bp.

A user Ui obtains the tariff policy Y and the list of meters
Mj1 , . . . ,Mjm for the billing period bp. The userUi also gets
meter readings frommultiple meters. In order to compute the
bill p[bp],Ui employs the meter readings received from the
meters in the listMj1 , . . . ,Mjm . Ui applies the tariff policy
Y to each meter reading in order to compute a price p. The
prices for all the meter readings are added in order to obtain
the bill p[bp].

Any verifying party P receives the bill p[bp] from a user.
P could be the provider V but, in general, is any party that
verifies the correctness of p[bp].

The interaction between the functionality FBIL and the
provider V , the users Ui, the meters Mj and the verifying
parties P takes place through the following interfaces:

1. The provider V uses the bil.policy.∗ interface to send the
pricing policy Y associated with the billing period bp.

2. The providerV uses the bil.listmeters.∗ interface to send
the list of meters Mj1 , . . . ,Mjm associated with a user
Ui at the billing period bp.

3. AmeterMj uses thebil.consumption.∗ interface to send
a meter reading (c, t) for the billing period bp to a user
Ui.

123



Privacy-preserving smart metering revisited

4. A meter Mj uses the bil.period.∗ interface to send to a
userUi the number of meter readingsN[Mj, bp] thatMj

sent to Ui during the billing period bp.
5. A user Ui employs the bil.payment.∗ interface to send

to any verifying party P the bill p[bp] for the billing
period bp. Ui also discloses to the provider V the number
of meter readings N[Mj, bp] obtained from each of the
meters Mj1 , . . . ,Mjm .

FBIL employs a table T to store meter readings. T stores
entries of the form (Mj,Ui, bp, c, t, b). Mj is the identifier
of themeter that outputs themeter reading.Ui is the identifier
of the user that receives the meter reading. bp denotes the
billing period, c is the consumption value, and t is the time
of consumption. The bit b = 0 indicates that the reading
was not received by the user, while b = 1 indicates that the
reading was received by the user.

FBIL has the following main differences in comparison
with the functionality for smart metering described in [47].

– FBIL interacts with multiple users and multiple meters,
while the functionality in [47] only considers one meter
and one user. Furthermore, FBIL allows a meter to
send meter readings to multiple users, and users receive
meter readings from multiple meters. Therefore, FBIL is
applicable to a wider variety of billing settings.

– FBIL includes an interface through which the service
provider sends a list of meters to a user at each billing
period. The meter readings received from the meters in
the list must be employed by the user to perform the bill
calculation for that billing period.

– FBIL includes an interface bil.period.∗, which allow
meters to signal the end of a billing period and to report
to the users the number of meter readings that were sent
during the billing period. This necessary interface was
omitted in the functionality in [47].

– FBIL models explicitly the communication with the sim-
ulator S. S needs this communication in order to provide
a simulation for the adversary in the security proof.

– FBIL allows any verifying party to receive the bill to be
paid. This may be useful in case of dispute between the
meter and the service provider.

– FBIL models the cases in which corrupt users collude
with corrupt meters and/or with the service provider. In
the functionality in [47], a corrupt meter was not consid-
ered because they were assumed to be tamper resistant.
A collusion of a corrupt provider with a corrupt user was
also not considered because it lacked practical interest.
However, when considering multiple meters and users as
FBIL does, FBIL must still provide some security guar-
antees for honest users in the case in which some meters,
some users and the provider are corrupt. For example,
FBIL guarantees that such a collusion is prevented from

reporting a bill calculation to any verifying party P on
behalf of an honest user. We note that, when a user col-
ludes with the provider or with a meter included in the
list of meters for a billing period, the price to be paid is
not computed by FBIL, but is input by the simulator S
and thus may not be correct.

We now discuss the five interfaces of the ideal function-
ality FBIL, which we depict in Figs. 2 and 3.

1. The provider V invokes the bil.policy.ini message on
input a billing period bp and a tariff policy Y . The restric-
tion that the provider’s identity must be included in the
session identifier sid = (V, sid′) guarantees that each
provider can initialize its own instance of the functional-
ity. This check is implicitly done in the other interfaces.
The functionality also checks that the billing period and
the tariff policy belong to their respective universes of
allowed inputs.FBIL performs similar checks on the data
received as input through the other interfaces. FBIL also
aborts if a policy for that billing period was already
received through the bil.policy.ini message. Otherwise
FBIL stores bp and Y and sends bp and Y to the simulator
S through the bil.policy.sim message.
After being triggered by the simulator S through the
bil.policy.repmessage on input a billing period bp,FBIL

aborts if the policy for that billing periodwas not received
through the bil.policy.inimessage or if the registration of
the policy was already finalized. To realize this feature
in any construction for FBIL, the registration functional-
ity in Sect. 2.1 can be employed. If FBIL does not abort,
FBIL stores the policy Y for the billing period bp.

2. The provider V invokes the bil.listmeters.ini message
on input a billing period bp, a user identifier Ui and a
list of meter identifiers (Mj1 , . . . ,Mjm ). FBIL aborts
if a list of meters for the same user and billing period
was already received as input before. We note that if the
provider V and the user Ui are corrupt, S can change
the list of meters used for a payment through the mes-
sage bil.payment.rep. Otherwise, FBIL records that a
list of meters for that user at that billing period has been
sent. FBIL creates a subsession identifier and sends Ui to
the simulator S through the message bil.listmeters.sim.
Since bp and (Mj1 , . . . ,Mjm ) are not revealed to S, any
construction that realizes FBIL would need to employ a
communication channel that prevents bp and (Mj1, . . . ,

Mjm ) from being disclosed toS. The functionalityFSMT

in Sect. 2.1 fulfills this property.
After being triggered byS through the bil.listmeters.rep
message,FBIL aborts if the subsession identifier does not
exist. If FBIL does not abort, FBIL stores the meter list
and sends the meter list to the user Ui.

123



A. Rial et al.

Functionality FBIL: Interfaces bil.policy.∗, bil.listmeters.∗ and bil.consumption.∗

FBIL is parameterized by a universe of policies Uy , a universe of consumptions Uc , a universe of times Ut , a universe of billing periods
Ubp , and a maximum size Mmax for the meter lists. FBIL interacts with a provider V , users Ui , meters Mj and verifying parties P .

1. On input (bil.policy.ini, sid , bp,Y ) from V:
– Abort if sid = (V, sid ), or if bp /∈ Ubp , or if Y /∈ Uy , or if (sid , bp ,Y , 0) such that bp = bp is already stored.
– Store (sid , bp,Y , 0).
– Send (bil.policy.sim, sid, bp,Y ) to S.

S. On input (bil.policy.rep, sid , bp) from S:
– Abort if (sid , bp,Y , 0) is not stored or if (sid , bp,Y , 1) is already stored.
– Store (sid , bp,Y , 1).
– Parse sid as (V, sid ).
– Send (bil.policy.end, sid) to V .

2. On input (bil.listmeters.ini, sid , bp, Ui , Mj1 , . . . , Mjm) from V:
– Abort if bp /∈ Ubp , or if Ui is not a user identifier, or if m > Mmax , or if, for k = 1 to m, Mjm is not a meter identifier.
– Abort if (sid , bp , Ui , Mj1 , . . . , Mjm , 0) such that bp = bp and Ui = Ui is already stored.
– Store (sid , bp, Ui , Mj1 , . . . , Mjm , 0).
– Create a fresh ssid and store (ssid , bp, Ui , Mj1 , . . . , Mjm).
– Send (bil.listmeters.sim, sid , ssid , Ui ) to S.

S. On input (bil.listmeters.rep, sid, ssid) from S:
– Abort if (ssid , bp, Ui , Mj1 , . . . , Mjm) is not stored.
– Store (sid , bp, Ui , Mj1 , . . . , Mjm , 1).
– Delete (ssid , bp, Ui , Mj1 , . . . , Mjm).
– Send (bil.listmeters.end, sid , bp, Mj1 , . . . , Mjm) to the user Ui .

3. On input (bil.consumption.ini, sid , Ui , bp, c, t) from the meter Mj :
– Abort if Ui is not a user identifier, or if bp /∈ Ubp , or if c /∈ Uc , or if t /∈ Ut .
– Abort if (sid , Mj , Ui , bp ,N [Mj , bp], 0) such that Mj = Mj , Ui = Ui and bp = bp is already stored.
– Store (Mj , Ui , bp, c, t , 0) in Table T .
– Create a fresh ssid and store (ssid , Mj , Ui , bp, c, t).
– Send (bil.consumption.sim, sid , ssid , Mj , Ui ) to S.

S. On input (bil.consumption.rep, sid , ssid) from S:
– Abort if (ssid , Mj , Ui , bp, c, t) is not stored.
– Delete ssid from (Mj , Ui , bp, c, t).
– Abort if (sid , Mj , Ui , bp ,N [Mj , bp], 1) such that Mj = Mj , Ui = Ui and bp = bp is already stored.
– Replace (Mj , Ui , bp, c, t , 0) by (Mj , Ui , bp, c, t , 1) in Table T .
– Send (bil.consumption.end, sid, Mj , bp, c, t) to Ui .

Fig. 2 FBIL: interfaces bil.policy.∗,bil.listmeters.∗ and bil.consumption.∗

3. A meter Mj invokes the bil.consumption.ini message
on input a user identifier Ui, a billing period bp, a con-
sumption value c and a time t. FBIL aborts if the meter
Mj had already sent an end of period message for the
billing period bp through the bil.period.inimessage. We
note that if the meterMj and the user Ui are corrupt, the
simulator can input an incorrect bill p[bp] through the
bil.payment.rep message. Otherwise, FBIL stores the
meter reading sent by the meter in the table T . FBIL cre-
ates a subsession identifier and sends the meter identifier
Mj and the user identifier Ui to the simulator S. The val-
ues c and t are not disclosed. Therefore, any construction
that realizesFBIL would need to employ a secure channel
such as FSMT.
After being triggered by the simulator S through the
message bil.consumption.rep,FBIL aborts if the sub-

session identifier is not stored. FBIL also aborts if the
end of billing period message has already been sent to
the user through a bil.period.endmessage. We note that
it is possible that FBIL receives a meter reading through
a bil.consumption.ini message before the end of billing
period message is received through a bil.period.inimes-
sage, but the bil.consumption.rep message for that
meter reading is received after the end of billing period
message is sent to the user. If FBIL does not abort,
FBIL indicates in the table T that the meter reading is
received by the user and sendsMj, bp, c and t to the user
Ui.

4. A meterMj invokes the bil.period.ini message on input
a user identifier Ui and a billing period bp. FBIL checks
the validity of the input. FBIL aborts if the message
bil.period.ini was already sent for the same user, meter

123



Privacy-preserving smart metering revisited

Functionality FBIL: Interfaces bil.period.∗ and bil.payment.∗

4. On input (bil.period.ini, sid , Ui , bp) from Mj :
– Abort if Ui is not a user identifier, or if bp /∈ Ubp .
– Abort if (sid , Mj , Ui , bp ,N [Mj , bp], 0) such that Mj = Mj , Ui = Ui and bp = bp is already stored.
– Set N [Mj , bp] to the number of entries (Mj , Ui , bp , c , t , b) in Table T such that Mj = Mj , Ui = Ui and bp = bp.
– Store (sid , Mj , Ui , bp,N [Mj , bp], 0).
– Create a fresh ssid and store (ssid , Mj , Ui , bp,N [Mj , bp]).
– Send (bil.period.sim, sid, ssid , Mj , Ui) to S.

S. On input (bil.period.rep, sid , ssid) from S:
– Abort if (ssid , Mj , Ui , bp,N [Mj , bp]) is not stored.
– Delete ssid from (ssid , Mj , Ui , bp,N [Mj , bp]).
– Set N [Mj , bp] to the number of entries (Mj , Ui , bp , c , t , b) in Table T such that Mj = Mj , Ui = Ui , bp = bp, and

b = 1.
– Abort if N [Mj , bp] = N [Mj , bp].
– Store (sid , Mj , Ui , bp,N [Mj , bp], 1).
– Send (bil.period.end, sid , bp, Mj ,N [Mj , bp]) to Ui .

5. On input (bil.payment.ini, sid , P, bp) from Ui :
– Abort if P is not a valid party identifier, of if bp /∈ Ubp .
– Abort if (sid , bp ,Y , 1) such that bp = bp is not stored.
– If Ui is honest or if V is honest, abort if (sid , bp , Ui , Mj1 , . . . , Mjm , 1) such that bp = bp and Ui = Ui is not stored.
– For k = 1 to m, if Ui is honest or if V and Mjk are honest, abort if a tuple (sid , Mj , Ui , bp ,N [Mj , bp], 1) such that Mj =

Mjk , bp = bp and Ui = Ui is not stored.
– Create a fresh ssid and store (ssid , Ui , P, bp).
– Send (bil.payment.sim, sid , ssid , Ui , P) to S.

S. On input (bil.payment.rep, sid, ssid), if either Ui is honest or if V and the meters in the list (sid , bp, Ui , Mj1 , . . . , Mjm , 1) are
honest, or else on input (bil.payment.rep, sid , ssid , p[bp], jk ,N [Mjk , bp] m

k=1) from S:
– Abort if (ssid , Ui , P, bp) is not stored.
– Delete ssid from (ssid , Ui , P, bp).
– Abort if Ui and V are corrupt and m > Mmax .
– If Ui or V are honest, retrieve (Mj1 , . . . , Mjm) from the tuple (sid , bp, Ui , Mj1 , . . . , Mjm , 1), else employ the list of meters

sent by S.
– For k = 1 to m, if Mjk is honest, abort if a tuple (sid , Mj , Ui , bp ,N [Mj , bp], 1) such that Mj = Mjk , bp = bp and

Ui = Ui is not stored.
– If either Ui is honest or if V and the meters in the retrieved list are honest, for k = 1 to m, do the following:

– Set p[Mjk , bp] = 0.
– Retrieve N [Mj , bp] from the tuple (sid , Mj , Ui , bp ,N [Mj , bp], 1) such that Mj = Mjk , bp = bp and Ui = Ui .
– Retrieve all the N [Mj , bp] tuples (Mj , Ui , bp , c, t , 1) in Table T such that Mj = Mjk , Ui = Ui and bp = bp.
– For n = 1 to N [Mjk , bp], set p[Mjk , bp] = p[Mjk , bp] +Y (c[k,n ], t [k,n ]).

– If either Ui is honest or if V and the meters in the retrieved list are honest, set p[bp] = p[Mj1 , bp] + . . . + p[Mjm , bp], else
employ the value p[bp] sent by S.

– For k = 1 to m, if Ui or Mjk (in the retrieved meter list) are honest, retrieve N [Mj , bp] from the tuple (sid , Mj , Ui , bp ,
N [Mj , bp], 1) such that Mj = Mjk , bp = bp and Ui = Ui , else employ the value N [Mjk , bp] sent by S or abort if this value
is lower than 0.

– Send (bil.payment.end, sid , Ui , bp, p[bp], Mj1 ,N [Mj1 , bp], . . . , Mjm ,N [Mjm , bp]) to P .

Fig. 3 FBIL: interfaces bil.period.∗ and bil.payment.∗

and billing period. Else FBIL calculates the number
N[Mj, bp] of meter readings that Mj sent to Ui at the
billing period bp. We note that, if the meter Mj and
the user Ui are corrupt, the simulator can change the
number of meter readings for that billing period through
the bil.payment.repmessage.FBIL creates a subsession
identifier and sends the meter identifierMj and the user
identifier Ui to the simulator S.
After being triggered by S through the bil.period.rep
message, FBIL aborts if the subsession identifier is not

stored. FBIL calculates the number of meter readings
received by Ui fromMj at that billing period and aborts
if that number does not equal the number of meter read-
ings sent byMj to Ui. IfFBIL does not abort,FBIL stores
N[Mj, bp] and sends N[Mj, bp] to Ui.

5. A user Ui invokes the bil.payment.ini message on input
the identifier of a verifying party P and a billing period
bp. FBIL aborts if the tariff policy is not stored. FBIL

also aborts if Ui or V are honest, but the list of meters
for the billing period bp is not stored. FBIL does not

123



A. Rial et al.

abort for this reason when Ui and V are corrupt because,
in that case, S is allowed to input another list through
the bil.payment.rep message. FBIL also aborts if Ui is
honest or if V and any of the meters in the list are honest,
but the end of period message from that meter was not
received by the user Ui. We note thatFBIL does not abort
for that reason when the meter is honest, but the user and
the provider are corrupt. The reason is that, when the user
and the provider are corrupt, S may send a different list
of meters through the bil.payment.repmessage. IfFBIL

does not abort, FBIL creates a subsession identifier and
sends the user identifier Ui and the party identifier P to
the simulator S.

When the simulator S invokes the bil.payment.rep mes-
sage, we distinguish two cases.

User honest or provider and meters honest S sends no
input to FBIL through the bil.payment.rep message.
FBIL aborts if the subsession identifier is not stored. Oth-
erwise,FBIL computes the bill p[bp] as follows. For each
of the meters in the list of meters that the provider sent
to the user for the billing period bp,FBIL takes the meter
readings that the meter sent to the user at that billing
period. FBIL applies the policy for the billing period
bp to each of the meter readings to obtain a price. The
prices associated with a meter are summed up to get a
price p[Mjk , bp] for the meter readings sent by the meter
Mjk . Finally, the prices corresponding to each meter are
summed up to get the bill p[bp]. FBIL sends to the party
P the bill, the billing period and the user identifier along
with themeter list and the number ofmeter readings from
each meter.
User corrupt and provider or meters corrupt S sends to
FBIL a price, a list of meters and a counter of meter
readings for each meter. If the provider is honest, FBIL

disregards the list of meters sent by S and uses instead
the list that the functionality stores for that billing period.
For each of the meters in the list, if the user or the meter
are honest, FBIL disregards the counter of meter read-
ings sent by S and uses instead the one the functionality
stores. FBIL outputs the price, the billing period and the
user identifier along with the list of meters and counter
of meter readings from each meter.

We note that disclosing to the verifying party P the num-
ber of meter readings from each meter along with the bill
may reveal sensitive information about the user. It is easy to
modify FBIL so that this information is not disclosed. How-
ever, the constructions that realize such a functionality would
be less efficient.

3 Technical preliminaries

3.1 Non-interactive zero-knowledge proofs of knowledge

Let R be a polynomial-time computable binary relation. For
tuples (wit, ins) ∈ R we call wit the witness and ins the
instance. LetL be theNP language consisting of the instances
ins for which there exist witnesses wit such that (wit, ins)
∈ R. A non-interactive zero-knowledge proof of knowledge
(NIPK) system for the relation R consists of three algorithms
PKSetup,PKProve andPKVerify. On input a security para-
meter 1k,PKSetup(1k) outputs the parameters parpk . The
algorithm PKProve(parpk,wit, ins) checks whether (wit,
ins) ∈ R and in that case outputs a proof π . PKVerify(parpk,
ins, π) outputs 1 if π is a valid proof that ins ∈ L or 0 if that
is not the case.

Definition 1 ANIPK systemmust fulfill the following com-
pleteness, extractability and zero-knowledge properties.

Completeness Completeness requires that the verifica-
tion algorithm PKVerify accepts the proofs computed
by the algorithm PKProve. More formally, for all
(wit, ins) ∈ R, the completeness property is defined as
follows.

Pr

⎡

⎢
⎣

parpk
$←− PKSetup(1k);

π
$←− PKProve(parpk,wit, ins) :

1 = PKVerify(parpk, ins, π)

⎤

⎥
⎦ = 1

Extractability The extractability property requires the
existence of a knowledge extractor (E1, E2). E1(1k) out-
puts parameters parpk and a trapdoor tde such that parpk is
indistinguishable from the output ofPKSetup(1k).More
formally, for all polynomial-time adversaries A:

Pr[parpk $←− PKSetup(1k) : 1 = A(parpk)] ≈
Pr[(parpk, tde) $←− E1(1k) : 1 = A(parpk)]

For all polynomial-time adversaries A, E2 extracts wit
from a valid proof with overwhelming probability. More
formally,

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(parpk, tde)
$←− E1(1k);

(ins, π)
$←− A(parpk, tde);

wit ← E2(parpk, tde, ins, π) :
1 = PKVerify(parpk, ins, π) ∧
(ins,wit) /∈ R

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≤ ε(k)

Zero-knowledge Zero-knowledge requires that there
exists a simulator (S1,S2) such that, for all polynomial-
time adversaries A:

123



Privacy-preserving smart metering revisited

Pr[parpk $←− PKSetup(1k) :
1 = A(parpk)

↔Op(parpk ,·,·)] ≈
Pr[(parpk, tds) $←− S1(1

k) :
1 = A(parpk)

↔S(parpk ,tds,·,·)]

The oracle Op(parpk,wit, ins) executes the algorithm
PKProve(parpk,wit, ins) and returns its output. (We
recall that PKProve only outputs a proof if (wit, ins)
∈ R.) S(parpk, tds,wit, ins) runs S2(parpk, tds, ins) and
returns its output if (wit, ins) ∈ R, else returns failure.

3.2 Signature schemes

Asignature schemeconsists of the algorithmsKeyGen,Sign
and VfSig. Algorithm KeyGen(1k) outputs a secret key sk
and a public key pk, which include a description of the
message space M. Sign(sk,m) outputs a signature s on a
messagem ∈ M.VfSig(pk, s,m) outputs 1 if s is a valid sig-
nature onm and 0 otherwise. This definition can be extended
to blocks of messages m̄ = (m1, . . . ,mn). In this case,
KeyGen(1k, n) receives the maximum number of messages
as input.

Definition 2 A signature scheme must fulfill the following
correctness and existential unforgeability properties [21].

Correctness Correctness ensures that the algorithmVfSig
accepts the signatures created by the algorithm Sign on
input a secret key computed by the algorithm KeyGen.
More formally, correctness is defined as follows.

Pr

[
(sk, pk)

$←− KeyGen(1k); m
$←− M;

s
$←− Sign(sk,m) : 1 = VfSig(pk, s,m)

]

= 1

Existential Unforgeability The property of existential
unforgeability ensures that it is not feasible to output a
signature on a message without knowledge of the secret
key or of another signature on that message. LetOs be an
oracle that, on input sk and a message m ∈ M, outputs
Sign(sk,m), and let Ss be a set that contains the mes-
sages sent to Os . More formally, for any ppt adversary
A, existential unforgeability is defined as follows.

Pr

⎡

⎢
⎢
⎢
⎣

(sk, pk)
$←− KeyGen(1k);

(m, s)
$←− A(pk)↔Os (sk,·) :

1 = VfSig(pk, s,m) ∧
m ∈ M ∧ m /∈ Ss

⎤

⎥
⎥
⎥
⎦

≤ ε(k)

3.3 Commitment schemes

Acommitment scheme consists of algorithmsCSetup,Com
and VfCom. The algorithm CSetup(1k) generates the para-
meters of the commitment scheme parc, which include a
description of the message space M. Com(parc, x) outputs
a commitment com to x ∈ M and some auxiliary informa-
tion open. The verification algorithm VfCom(parc, com, x,
open) outputs 1 if com is a commitment to x ∈ Mwith some
auxiliary information open or 0 if that is not the case.

Definition 3 A commitment scheme should fulfill the fol-
lowing correctness, hiding and binding properties.

Correctness Correctness requires that VfCom accepts all
commitments created by the algorithm Com, i.e., for all
x ∈ M

Pr

⎡

⎢
⎣

parc
$←− CSetup(1k);

(com, open)
$←− Com(parc, x) :

1 = VfCom(parc, com, x, open)

⎤

⎥
⎦ = 1.

Hiding The hiding property ensures that a commitment
com to x does not reveal any information about x. For
any PPT adversary A, the hiding property is defined as
follows:

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

parc
$←− CSetup(1k);

(x0, st)
$←− A(parc);

x1
$←− M;

b
$←− {0, 1};

(com, open)
$←− Com(parc, xb);

b′ $←− A(st, com) :
x0 ∈ M ∧ b = b′

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 1

2
+ ε(k).

Binding The binding property ensures that com cannot
be opened to another value x′. For any PPT adversaryA,
the binding property is defined as follows:

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎣

parc
$←− CSetup(1k);

(com, x, open, x′, open′) $←− A(parc) :
x ∈ M ∧ x′ ∈ M ∧ x 
= x′∧
1 = VfCom(parc, com, x, open) ∧
1 = VfCom(parc, com, x′, open′)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≤ ε(k).

3.4 Polynomial commitments

A polynomial commitment scheme [29] consists of the fol-
lowing algorithms.

123



A. Rial et al.

PSetup(1k, 	) On input the security parameter 1k and
an upper bound for the polynomial degree 	, output the
parameters parp, which include a description of the poly-
nomial space M.
PCommit(parp, φ(x))On input the parameters parp and
a polynomial φ(x) ∈ M, output a commitmentC to φ(x)
and decommitment information d.
PProve(parp, φ(x), i, d) Output a witness w that φ(i) is
the evaluation of φ(x) on input i.
PVerify(parp,C, i, φ(i),w) Output 1 if w is a valid wit-
ness that φ(i) is the evaluation of φ(x) on input i.
Otherwise, output 0.

Definition 4 A polynomial commitment scheme should ful-
fill the correctness and evaluation binding properties.

CorrectnessCorrectness ensures that the output ofPProve
is always accepted by PVerify. More formally, for all
φ(x) ∈ M:

Pr

⎡

⎢
⎢
⎢
⎣

parp
$←− PSetup(1k, 	);

(C, d)
$←− PCommit(parp, φ(x));

w ← PProve(parp, φ(x), i, d) :
1 = PVerify(parp,C, i, φ(i),w)

⎤

⎥
⎥
⎥
⎦

= 1

Evaluation Binding A commitment to a polynomial φ(x)
cannot be opened to two different evaluations φ(i) and
φ(i)′ on input i. More formally, for any ppt adversaryA,
the evaluation binding property is defined as follows.

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎣

parp
$←− PSetup(1k, 	);

(C, i, 〈φ(i),w〉, 〈φ(i)′,w′〉) $←− A(parp) :
1 = PVerify(parp,C, i, φ(i),w) ∧
1 = PVerify(parp,C, i, φ(i)′,w′) ∧
φ(i) 
= φ(i)′

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≤ ε(k)

4 Construction of privacy-preserving billing

We describe our construction for privacy-preserving billing.
Construction BIL involves a provider V , usersUi, metersMj

and verifying parties P .
First, we provide a generic description of construction

BIL in Figs. 4 and 5. This description does not depend on
the type of tariff policy being used. In Sects. 4.1, 4.2 and 4.3,
we give the details of our construction when, respectively, a
linear policy, a cumulative policy and a polynomial policy
are employed. In Sect. 4.4, we discuss other policies.

Construction BIL is parameterized by a universe of poli-
cies Uy, a universe of consumptions Uc, a universe of times
Ut , a universe of billing periods Ubp and a maximum size

Mmax for the meter lists. We denote by U the universe of user
identities and by M the universe of meter identities.

Construction BIL uses a commitment scheme (CSetup,

Com,VfCom). The provider employs a signature scheme
(KeyGen1,Sign1,VfSig1) to sign tariff policies, whose
message space is specific to each of the tariff policies, and a
signature scheme (KeyGen2,Sign2,VfSig2) to sign meter
lists, whose message space is (Ubp,U ,MMmax ). The meters
employ a signature scheme (KeyGen3,Sign3,VfSig3) to
sign meter readings, whose message space is (U ,Ubp,N,

Uc,Ut), and a signature scheme (KeyGen4,Sign4,VfSig4)
to sign the number of meter readings in a billing period,
whose message space is (U ,Ubp,N). Construction BIL also
employs a NIPK scheme (PKSetup,PKProve,PKVerify)
for a relation R. The relation R is specific to each of the
tariff policies. Construction BIL works in the FSMT,FREG,

FREG.Ver
REG and FCRS.Setup

CRS -hybrid model. FSMT,FREG,

FREG.Ver
REG and FCRS.Setup

CRS are described in Sect. 2.1.
When a polynomial tariff policy is employed, construc-

tion BIL also employs a polynomial commitment scheme
(PSetup,PCommit,PProve,PVerify). In our generic des-
cription of the construction, we employ the box POL: …
to denote computations that only occur when a polynomial
policy is used.

The provider V , users Ui, metersMj and verifying parties
P are activated through the bil.policy.∗,bil.listmeters.∗,

bil.consumption.∗,bil.period.∗ and bil.payment.∗ inter-
faces. We describe on a high level the computations per-
formed for each of these interfaces.

1. The provider V receives (bil.policy.ini, sid, bp,Y) as
input. If the parameters of the scheme are not stored, V
gets the parameters of the commitment scheme and of the
NIPK scheme from FCRS.Setup

CRS . In the case of a polyno-

mial policy, FCRS.Setup
CRS also provides the parameters of

the polynomial commitment scheme. If the signing key
is not stored, V also creates a key pair for the signature
scheme that signs the tariff policies. Next, V proceeds
to sign the tariff policy. The concrete method to sign the
tariff policy is described in Sects. 4.1, 4.2 and 4.3 for
the linear, cumulative and polynomial policies. Finally,
V registers the signing public key and the signed tariff
policy with a new instance of FREG.Ver

REG for the billing
period bp.

2. The provider V receives (bil.listmeters.ini, sid, bp,Ui,

Mj1 , . . . ,Mjm ) as input. If a list of meters for the user
Ui at the billing period bp was already sent, V aborts.
Else, if the signing key is not stored, V creates a key pair
for the signature scheme that signs the lists of meters and
registers the public key with FREG. V signs the list of
meters Mj1 , . . . ,Mjm and sends the list of meters and
the signature to the user Ui through an instance of the
functionality FSMT. Ui aborts if a list of meters for the

123



Privacy-preserving smart metering revisited

Construction BIL: Interfaces bil.policy.∗, bil.listmeters.∗ and bil.consumption.∗

Construction BIL involves a provider V , users Ui , meters Mj and verifying parties P . We denote by U the universe of user
identities and by M the universe of meter identities. Construction BIL is parameterized by a security parameter 1k . It is also
parameterized by a universe of policies Uy , a universe of consumptions Uc , a universe of times Ut , a universe of billing peri-
ods Ubp , and a maximum size Mmax for the meter lists. Construction BIL uses a commitment scheme (CSetup, Com, VfCom)
and a NIPK scheme (PKSetup, PKProve, PKVerify). The provider employs a signature scheme (KeyGen1, Sign1, VfSig1), whose
message space is specific to each of the tariff policies, and another signature scheme (KeyGen2, Sign2, VfSig2), whose message
space is (Ubp , U , MMmax ). The meters employ a signature scheme (KeyGen3, Sign3, VfSig3), whose message space is (U ,Ubp ,
{0, 1}L,Uc ,Ut ) (L is large enough to avoid collisions), and (KeyGen4, Sign4, VfSig4), whose message space is (U ,Ubp ,N).
Construction BIL employs a polynomial commitment scheme (PSetup, PCommit, PProve, PVerify). Construction BIL works in the

FSMT, FREG, FREG.Ver
REG and FCRS.Setup

CRS -hybrid model, where CRS.Setup consists of the algorithms ( PSetup, CSetup, PKSetup).

1. On input (bil.policy.ini, sid , bp,Y ), V does the following:
– Abort if sid = (V, sid ), or if bp /∈ Ubp , or if Y /∈ Uy .
– If the parameters POL: parp , parc and parpk are not stored, send the message (crs.get.ini, sid) to FCRS.Setup

CRS , receive the mes-

sage (crs.get.end, sid , POL: parp , parc, parpk ) from the functionality FCRS.Setup
CRS , and store POL: parp , parc and parpk .

The functionality FCRS.Setup
CRS runs POL: parp ← PSetup(1k ) ( is the maximum degree of the polynomials in the policy),

parc ← CSetup(1k ) and parpk ← PKSetup(1k).
– If (sk1 , pk1 ) is not stored, run (sk1 , pk1 ) ← KeyGen1(1k ) and store (sk1 , pk1 ).
– Compute a signed tariff policy Ys as described in Section 4.1, Section 4.2 or Section 4.3.
– Send (reg.register.ini, sid , bp , pk1 ,Ys ) to FREG.Ver

REG and receive (reg.register.end, sid , bp ) from FREG.Ver
REG . In Section 4.1,

Section 4.2 or Section 4.3, we describe REG.Ver.
– Output (bil.policy.end, sid).

2. On input (bil.listmeters.ini, sid , bp, Ui , Mj1 , . . . , Mjm), V and Ui do the following:
– V aborts if bp /∈ Ubp , or if Ui is not a user identifier, or if m > Mmax , or if, for k = 1 to m, Mjm is not a meter identifier.
– V aborts if (sid , bp , Ui , Mj1 , . . . , Mjm , s) such that bp = bp and Ui = Ui is already stored.
– If (sk2 , pk2 ) is not stored, run (sk2 , pk2 ) ← KeyGen2(1k ), send (reg.register.ini, sid , pk2 ) to FREG, receive
(reg.register.end, sid , pk2 ) from FREG and store (sk2 , pk2 ).

– V stores (sid , bp, Ui , Mj1 , . . . , Mjm).
– V signs s ← Sign2(sk2 , bp, Ui , Mj1 , . . . , Mjm ).
– V sets sidSMT ← (V, Ui , sid) and sends (smt.send.ini, sidSMT, bp, Ui , Mj1 , . . . , Mjm , s ) to FSMT.
– Ui receives (smt.send.end, sidSMT, bp, Ui , Mj1 , . . . , Mjm , s ) from FSMT.
– Ui aborts if (sid , bp , Mj1 , . . . , Mjm , s) such that bp = bp is already stored.
– If pk2 is not stored, Ui sends (reg.retrieve.ini, sid) to FREG, receives (reg.retrieve.end, sid, pk2 ), and stores pk2 .
– Ui runs b ← VfSig2(pk2 , s, bp, Ui , Mj1 , . . . , Mjm ).
– Ui aborts if b = 0.
– Ui stores (sid , bp, Mj1 , . . . , Mjm , s).
– Ui outputs (bil.listmeters.end, sid , bp, Mj1 , . . . , Mjm).

3. On input (bil.consumption.ini, sid , Ui , bp, c, t), Mj and Ui do the following:
– Mj aborts if Ui is not a user identifier, or if bp /∈ Ubp , or if c /∈ Uc , or if t /∈ Ut .
– Mj aborts if (sid , Ui , bp , ctm[bp, Ui ], s) such that Ui = Ui and bp = bp is already stored.
– If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not stored, Mj runs (sk3 ,k , pk3 ,k) ← KeyGen3(1k ) and (sk4 ,k , pk4 ,k) ←

KeyGen4(1k ), sends (reg.register.ini, sid , Mj , pk3 ,k , pk4 ,k ) to FREG, receives (reg.register.end, sid , Mj , pk3 ,k ,
pk4 ,k ) from FREG and stores (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k).

– Mj increments a counter ctm[bp, Ui ] (initialized at zero).
– Mj runs s ← Sign3(sk3 ,k , i , bp, ctm[bp, Ui ], c, t ).
– Mj sets sidSMT ← (Mj , Ui , sid) and sends (smt.send.ini, sidSMT, i , bp, ctm[bp, Ui ], c, t , s ) to FSMT.
– Ui receives (smt.send.end, sidSMT, i , bp, ctm[bp, Mj ], c, t , s ) from FSMT.
– Ui aborts if (sid , Mj , bp , ctm [bp, Mj ], s ) such that Mj = Mj and bp = bp is already stored.
– If pk3 ,k and pk4 ,k are not stored, Ui sends (reg.retrieve.ini, sid , Mj ) to FREG, receives (reg.retrieve.end, sid , Mj ,

pk3 ,k , pk4 ,k ), and stores pk3 ,k and pk4 ,k .
– Ui runs b ← VfSig3(pk3 ,k , s, i , bp, ctm[bp, Mj ], c, t ).
– Ui aborts if b = 0.
– For all the tuples [Mj , bp , ctm [bp, Mj ], c, t , s] stored such that Mj = Mj and bp = bp, Ui aborts if ctm [bp, Mj ] =

ctm[bp, Mj ].
– Ui stores [Mj , bp, ctm[bp, Mj ], c, t , s].
– Ui outputs (bil.consumption.end, sid , Mj , bp, c, t).

Fig. 4 Construction BIL: interfaces bil.policy.∗,bil.listmeters.∗ and bil.consumption.∗

123



A. Rial et al.

Construction BIL: Interfaces bil.period.∗ and bil.payment.∗

4. On input (bil.period.ini, sid , Ui , bp), Mj and Ui do the following:
– Mj aborts if Ui is not a user identifier, or if bp /∈ Ubp .
– Mj aborts if (sid , Ui , bp , ctm[bp, Ui ]) such that Ui = Ui and bp = bp is already stored.
– Mj stores (sid , Ui , bp, ctm[bp, Ui ]). The counter ctm[bp, Ui ] equals 0 if Mj did not send any meter reading to Ui at the billing

period bp.
– If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not stored, Mj runs (sk3 ,k , pk3 ,k) ← KeyGen3(1k ) and (sk4 ,k , pk4 ,k) ←

KeyGen4(1k ), sends (reg.register.ini, sid , Mj , pk3 ,k , pk4 ,k ) to FREG, receives (reg.register.end, sid , Mj ) from
FREG and stores (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k).

– Mj runs s ← Sign4(sk4 ,k , i , bp, ctm[bp, Ui ] ).
– Mj sets sidSMT ← (Mj , Ui , sid) and sends (smt.send.ini, sidSMT, i , bp, ctm[bp, Ui ], s ) to FSMT.
– Ui receives (smt.send.end, sidSMT, i , bp, ctm[bp, Mj ], s ) from FSMT.
– Ui aborts if there is a tuple (sid , Mj , bp , ctm [bp, Mj ], s) stored such that Mj = Mj and bp = bp.
– If pk3 ,k and pk4 ,k are not stored, Ui sends (reg.retrieve.ini, sid , Mj ) to FREG, receives (reg.retrieve.end, sid , Mj ,

pk3 ,k , pk4 ,k ), and stores pk3 ,k and pk4 ,k .
– Ui runs b ← VfSig4(pk4 ,k , s, i , bp, ctm[bp, Mj ] ).
– Ui aborts if b = 0.
– Ui counts the number of tuples [Mj , bp , ctm [bp, Mj ], c, t , s] stored such that Mj = Mj and bp = bp. If the number

is different from ctm[bp, Mj ], Ui aborts. Ui also aborts if, from d = 1 to ctm[bp, Mj ], Ui cannot find a tuple [Mj , bp ,
ctm [bp, Mj ], c, t , s] stored such that Mj = Mj and bp = bp and d = ctm [bp, Mj ].

– Ui stores (sid , Mj , bp, ctm[bp, Mj ], s).
– Ui outputs (bil.period.end, sid , bp, Mj , ctm[bp, Mj ]).

5. On input (bil.payment.ini, sid , P, bp), Ui and P do the following:
– Ui aborts if P is not a valid party identifier, of if bp /∈ Ubp .
– If POL: parp , parc and parpk are not stored, Ui sends the message (crs.get.ini, sid) to FCRS.Setup

CRS , receives the message

(crs.get.end, sid , POL: parp , parc, parpk ) from FCRS.Setup
CRS , and stores POL: parp , parc and parpk .

– If (sid , bp , pk1 ,Ys ) such that bp = bp is not stored, Ui sends (reg.retrieve.ini, sid , bp ) to FREG.Ver
REG , re-

ceives (reg.retrieve.end, sid , bp , pk1 ,Ys ) from FREG.Ver
REG , and stores (sid , bp, pk1 ,Ys ). Ui aborts if FREG.Ver

REG sends
(reg.retrieve.end, sid , bp , ⊥).

– If a meter list (sid , bp , Mj1 , . . . , Mjm , s) such that bp = bp is not stored, Ui aborts.
– For k = 1 to m, Ui does the following:

– Abort if a tuple (sid , Mj , bp , ctm[bp, Mj ]) such that Mjk = Mj and bp = bp is not stored.
– Set pk = 0.
– For d = 1 to ctm[bp, Mj ], retrieve each of the ctm[bp, Mj ] tuples [Mj , bp , d, cd, td, sd] such that Mjk = Mj and

bp = bp and set pk = pk +Y (cd, td).
– Set p = m

k=1 pk.
– Run (com, open) ← Com(parc, p).
– Set wit and ins for a relation R as described in Section 4.1, Section 4.2 or Section 4.3.
– Run π ← PKProve(parpk ,wit , ins).
– Ui sets sidSMT ← (Ui , P, sid) and sends (smt.send.ini, sidSMT, p, open, com, bp, Mj1 , . . . , Mjm , s, ins, π ) to FSMT.
– P receives (smt.send.end, sidSMT, p, open, com, bp, Mj1 , . . . , Mjm , s, ins, π ) from FSMT.
– If (sid , bp , pk1 ,Ys ) such that bp = bp is not stored, Ui sends (reg.retrieve.ini, sid , bp ) to FREG.Ver

REG , re-
ceives (reg.retrieve.end, sid , bp , pk1 ,Ys ) from FREG.Ver

REG , and stores (sid , bp, pk1 ,Ys ). Ui aborts if FREG.Ver
REG sends

(reg.retrieve.end, sid , bp , ⊥).
– If pk2 is not stored, P sends (reg.retrieve.ini, sid) to FREG, receives (reg.retrieve.end, sid , pk2 ) from FREG, and stores pk2 .
– P aborts if 1 = VfSig2(pk2 , s, bp, Ui , Mj1 , . . . , Mjm ).
– For k = 1 to m, If pk3 ,k and pk4 ,k are not stored, P sends (reg.retrieve.ini, sid , Mj ) to FREG, receives
(reg.retrieve.end, sid , Mjk , pk3 ,k , pk4 ,k ), and stores pk3 ,k and pk4 ,k .

– If POL: parp , parc and parpk are not stored, P sends the message (crs.get.ini, sid) to FCRS.Setup
CRS , receives the message

(crs.get.end, sid , POL: parp , parc, parpk ) from FCRS.Setup
CRS , and stores POL: parp , parc and parpk .

– P checks that the instance ins is consistent with the received values pk1 , pk3 ,k , pk4 ,k , POL: parp , parc and parpk . P also
checks that, for k = 1 to m, the instance includes a counter ctm[bp, Mjk ] of meter readings and that the proof proves possession
of ctm[bp, Mjk ] meter readings numbered from 1 to ctm[bp, Mjk ].

– P aborts if 1 = PKVerify(parpk , ins, π).
– P aborts if 1 = VfCom(parc, com, p, open).
– P retrieves (ctm[bp, Mj1 ], . . . , ctm[bp, Mjm ]) from ins .
– P outputs (bil.payment.end, sid , Ui , bp, p, Mj1 , ctm[bp, Mj1 ], . . . , Mjm , ctm[bp, Mjm ]).

Fig. 5 Construction BIL: interfaces bil.period.∗ and bil.payment.∗

123



Privacy-preserving smart metering revisited

billing period bp was received before or if the signature
is not correct, else Ui outputs the list of meters.

3. The meter Mj receives (bil.consumption.ini, sid,Ui,

bp, c, t) as input. Mj aborts if the end of billing period
message was already sent to Ui at the billing period bp. If
the signing keys are not stored,Mj creates key pairs for
the signature schemes that sign meter readings and the
number of meter readings output in a billing period, and
registers themwith an instance ofFREG. Next,Mj incre-
ments a counter ctm[bp,Ui] that counts the number of
meter readings sent to the userUi during the billing period
bp. Mj signs the meter reading (Ui, bp, ctm[bp,Ui], c,
t) and sends the meter reading and the signature to the
user Ui through an instance of the functionalityFSMT. Ui

aborts if the end of billing period message was already
received from the meterMj at the billing period bp. If Ui

does not store the signing public key, Ui retrieves it from
the instance ofFREG.Ui verifies the signature, checks that
the counter value in the meter reading does not equal the
counter value of any of the stored meter readings from
that meter at that billing period, and outputs the meter
reading.

4. The meter Mj receives (bil.period.ini, sid,Ui, bp) as
input.Mj aborts if the end of periodmessagewas already
sent to Ui at the billing period bp. Mj signs the counter
that counts the number of meter readings sent to the user
Ui during the billing period bp. Mj sends the counter
and the signature to Ui through an instance of the func-
tionality FSMT. Ui aborts if the end of period message
was already received from Mj at the billing period bp.
Ui verifies the signature, checks that it stores the number
of meter readings indicated by the counter and that the
meter readings are numbered from 1 to the counter value,
and outputs the billing period bp, the meter identity Mj

and the number of meter readings.
5. The meter Ui receives (bil.payment.ini, sid,P, bp) as

input. If the parameters of the scheme are not stored, Ui

gets them from FCRS.Setup
CRS . If the public key and the

signed policy are not stored, Ui retrieves them from the
corresponding instance ofFREG.Ver

REG .Next,Ui checks that
V sent the list of meters (Mj1 , . . . ,Mjm ) for the billing
period bp. Ui also checks that each of the meters in that
list sent the end of billing period message. In that case,Ui

computes the bill to be paid by applying the tariff policy
to each of the meter readings and summing up the prices
to be paid for each of the meter readings. Ui computes
a non-interactive zero-knowledge proof that the bill is
correctly calculated. The details for this proof are given
in Sects. 4.1, 4.2 and 4.3 for the linear, cumulative and
polynomial policies, respectively. Ui sends the signed list
of meters, the bill and the proof to the verifying party
P through an instance of the functionality FSMT. If the

parameters of the scheme are not stored, P gets them
from FCRS.Setup

CRS . P also retrieves the public keys of the
provider and of the meters. P verifies the signed meter
list and the proof and then outputs the bill.

4.1 Linear policies

A linear policy is a tariff policy in which the time is divided
into time intervals [t1, t2), [t2, t3), . . . [tL , tL+1). The tariff
policy associates each time interval to a rate r. The rate
denotes a price per unit of consumption. The policy can be
expressed as follows:

Y(c, t) =

⎧
⎪⎨

⎪⎩

c · r1 if t ∈ [t1, t2)
...

...

c · rL if t ∈ [tL , tL+1)

⎫
⎪⎬

⎪⎭

In order to sign this tariff policy using a key pair (pk1,
sk1) for the signature scheme (KeyGen1,Sign1,VfSig1),
the provider V proceeds as follows. For each time interval
[tmin, tmax ) in the tariff policy, V computes a signature s
← Sign1(sk1, 〈bp, r, tmin, tmax 〉). The signed tariff policy
Ys consists of L tuples [rl , tmin,l , tmax,l , sl ]Ll=1. The verifica-
tion function REG.Ver verifies the signatures in the signed
tariff policy.

In order to compute a non-interactive zero-knowledge
proof of correctness of the bill computation, Ui proceeds as
follows. Let (sid, bp,Mj1 , . . . ,Mjm , s) be the list of meters
signedbyV . For k = 1 tom, let (sid,Mjk , bp, ctm[bp,Mjk ],
sk) be the number of meter readings sent by meter Mjk .
For d = 1 to ctm[bp,Mjk ], let [Mjk , bp, d, ck,d , tk,d , sk,d ]
be the meter readings sent to Ui by Mjk . Ui computes a
non-interactive zero-knowledge proof of knowledge for the
following relation.

R = {(ins,wit) :
{1 = VfSig4(pk4,k, sk , 〈bp, Ui, ctm[bp, Mjk ]〉) ∧ (1)
[1 = VfSig3(pk3,k, sk,d , 〈Ui, bp, d, ck,d , tk,d 〉) ∧ (2)
1 = VfSig1(pk1, s

′
k,d , 〈bp, rk,d , tmin,k,d , tmax,k,d 〉) ∧ (3)

tk,d ∈ [tmin,k,d , tmax,k,d ] ∧ (4)

pk,d = ck,d · rk,d ]ctm[bp,Mjk ]
d=1 }mk=1 ∧ (5)

p =
∑m

k=1

∑ctm[bp,Mjk ]
d=1

pk,d ∧ (6)

1 = VfCom(parc, com, p, open)}. (7)

In this relation, for eachmeterMjk in themeter list, Line 1
requires the user to prove knowledge of the signature sk from
Mjk on the tuple 〈bp,Ui, ctm[bp,Mjk ]〉. This signed tuple
belongs to the instance of the proof. Despite the fact that the

123



A. Rial et al.

signed values are revealed in the proof instance, the signature
sk must belong to the witness to prevent a malicious meter
from disclosing information to the verifying party through
sk . For the ctm[bp,Mjk ] meter readings that Mjk sent to
Ui, Line 2 requires the user to prove knowledge of a meter
reading ck,d and tk,d and of a signature sk,d fromMjk on that
meter reading. The signed values Ui, bp and d belong to the
proof instance. Line 3 requires the user to prove knowledge
of the rate rk,d , of an interval [tmin,k,d , tmax,k,d), and of a
signature s′k,d in the tariff policy that signs those values. The
signed billing period bp belongs to the proof instance. Line 4
is a rangeproof that requires the user to prove that the time tk,d
proven in Line 2 lies within the interval [tmin,k,d , tmax,k,d)

proven in Line 3. Thanks to that, the verifier ensures that
the user employs the rate rk,d associated with the correct
time interval in the tariff policy. Line 5 requires the user to
prove that the price associated with the meter reading proven
in Line 2 is computed by multiplying the rate rk,d by the
consumption ck,d . Finally, Line 6 and Line 7 require the user
to prove that com is a commitment to the total price, which is
computed by summing up the prices for each meter reading.

Ui sets the witness as follows.

wit ← (p, open, [〈ck,d , tk,d , pk,d , sk,d , s′k,d , rk,d ,
tmin,k,d , tmax,k,d 〉ctm[bp,Mjk ]

d=1 , sk ]mk=1)

Ui sets the instance as follows.

ins ← (parc, pk1, Ui, com, bp,

[pk3,k, pk4,k, ctm[bp, Mjk ]]mk=1).

The verifying party P , in order to verify the statement
1 = VfSig3(pk3,k, sk,d , 〈Ui, bp, d, ck,d , tk,d〉) in Line 2 of
the relation, must employ values d from 1 to ctm[bp,Mjk ].

4.2 Cumulative policies

A cumulative policy is a tariff policy in which, as in the lin-
ear policy, the time is divided into time intervals [t1, t2),
[t2, t3), . . . [tL , tL+1). Additionally, for each time interval
[tl , tl+1), the consumption is also divided into intervals [cl,1,
cl,2), [cl,2, cl,3), . . . [cl,M , cl,M+1). The tariff policy asso-
ciates with each time interval a set of rates, one for each
consumption interval. The rate denotes a price per unit of

consumption. The policy can be expressed as follows:

Y(c, t) =

⎧
⎪⎨

⎪⎩

Φ1(c) if t ∈ [t1, t2)
...

...

ΦL(c) if t ∈ [tL , tL+1)

⎫
⎪⎬

⎪⎭

Each of functions Φl(c) (l ∈ [1, L]) is defined as follows.

Φl(c) =

⎧
⎪⎨

⎪⎩

(c − c1) · r1 + F1 if c ∈ [c1, c2)
...

...

(c − cM ) · rM + FM if c ∈ [cM , cM+1)

⎫
⎪⎬

⎪⎭

Therefore, for a meter reading (c, t), the price to be paid
is defined by the function Φl(c) associated with the time
interval such that t ∈ [tl , tl+1). For a consumption c such
that c ∈ [cm, cm+1), the functionΦl(c) is (c−cm) · rm + Fm .
Fm is a constant that equals

∑m−1
m′=1(cm′+1 − cm′) · rm′ , i.e.,

Fm is the price to be paid for a consumption cm , which is
computed by summing up the prices to be paid for all the
previous consumption intervals.

In order to sign this tariff policy using a key pair (pk1,
sk1) for the signature scheme (KeyGen1,Sign1,VfSig1),
the provider V proceeds as follows. For each consump-
tion interval [cmin, cmax ) in a function Φ(c) associated
with the time interval [tmin, tmax ),V computes a signa-
ture s ← Sign1(sk1, 〈bp, r, F, tmin, tmax , cmin, cmax 〉). The
signed tariff policy Ys consists of tuples of the form [r, F,

tmin, tmax , cmin, cmax , s]. Theverification functionREG.Ver
verifies the signatures in the signed tariff policy.

In order to compute a non-interactive zero-knowledge
proof of correctness of the bill computation, Ui computes a
non-interactive zero-knowledge proof of knowledge for the
following relation.

R = {(ins,wit) :
{1 = VfSig4(pk4,k, sk , 〈bp, Ui, ctm[bp, Mjk ]〉) ∧ (8)
[1 = VfSig3(pk3,k, sk,d , 〈Ui, bp, d, ck,d , tk,d 〉) ∧ (9)

1 = VfSig1(pk1, s′k,d , 〈bp, rk,d , Fk,d ,

tmin,k,d , tmax,k,d , cmin,k,d , cmax,k,d 〉) ∧ (10)

tk,d ∈ [tmin,k,d , tmax,k,d ] ∧ (11)

ck,d ∈ [cmin,k,d , cmax,k,d ] ∧ (12)

pk,d = (ck,d − cmin,k,d ) · rk,d + Fk,d (13)

]ctm[bp,Mjk ]
d=1 ∧ }mk=1

p =
∑m

k=1

∑ctm[bp,Mjk ]
d=1

pk,d ∧ (14)

1 = VfCom(parc, com, p, open)}. (15)

123



Privacy-preserving smart metering revisited

We highlight the differences between this relation and the
relation for linear policies by using boxes. Line 10 requires
the user to prove knowledge of the rate rk,d , of the constant
Fk,d , of a time interval [tmin,k,d , tmax,k,d), of a consumption
interval [cmin,k,d , cmax,k,d) and of a signature s′k,d in the tar-
iff policy that signs those values. The signed billing period
bp belongs to the proof instance. Line 12 is a range proof that
requires the user to prove that the consumption ck,d proven
in Line 9 lies within the interval [cmin,k,d , cmax,k,d) proven
in Line 10. Thanks to that, the verifier ensures that the user
employs the rate rk,d , the value cmin,k,d , and the constant Fk,d
associated with the correct consumption interval in the tariff
policy. Line 13 requires the user to prove that the price asso-
ciated with the meter reading proven in Line 9 is computed
by doing (ck,d − cmin,k,d) · rk,d + Fk,d .

Ui sets the witness as follows.

wit ← (p, open, [〈ck,d , tk,d , pk,d , sk,d , s′k,d , rk,d , Fk,d , tmin,k,d ,

tmax,k,d ,cmin,k,d , cmax,k,d 〉ctm[bp,Mjk ]
d=1 , sk ]mk=1)

Ui sets the instance as in the case of a linear policy. As
for the linear policy, the verifying party P , in order to verify
the statement 1 = VfSig3(pk3,k, sk,d , 〈Ui, bp, d, ck,d , tk,d〉)
in Line 9 of the relation, must employ values d from 1 to
ctm[bp,Mjk ].

4.3 Polynomial policies

Apolynomial policy is a tariff policy inwhich, as in the cumu-
lative policy, the time is divided into time intervals [t1, t2),
[t2, t3), . . . [tL−1, tL) and, for each time interval [tl , tl+1), the
consumption is also divided into intervals [cl,1, cl,2), [cl,2,
cl,3), . . . [cl,M , cl,M+1). The tariff policy associates to each
time interval a spline Φ. The policy can be expressed as fol-
lows:

Y(c, t) =

⎧
⎪⎨

⎪⎩

Φ1(c) if t ∈ [t1, t2)
...

...

ΦL(c) if t ∈ [tL , tL+1)

⎫
⎪⎬

⎪⎭

Each of the splines Φl(c) (l ∈ [1, L]) is defined as follows.

Φl(c) =

⎧
⎪⎨

⎪⎩

φ1(c) if c ∈ [c1, c2)
...

...

φM (c) if c ∈ [cM , cM+1)

⎫
⎪⎬

⎪⎭

Therefore, for a meter reading (c, t), the price to be paid is
defined by the polynomial φm(c) such that c ∈ [cm, cm+1)

that belongs to the splineΦl(c) associatedwith the time inter-
val [tl , tl+1) such that t ∈ [tl , tl+1).

To compute the signed tariff policy Ys , for all the polyno-
mials φ in the tariff policy, the provider V computes (C, d)

← PCommit(parp, φ) and signs s ← Sign1(sk1, 〈bp,C,

tmin, tmax , cmin, cmax 〉), where [tmin, tmax ) and [cmin, cmax )

are the time and consumption intervals associated with the
polynomial φ. The signed tariff policy Ys consists of tuples
of the form [φ, tmin, tmax , cmin, cmax ,C, d, s]. The verifica-
tion function REG.Ver verifies the signatures in the signed
tariff policy.

In order to compute a non-interactive zero-knowledge
proof of correctness of the bill computation, Ui computes a
non-interactive zero-knowledge proof of knowledge for the
following relation.

R = {(ins,wit) :
{1 = VfSig4(pk4,k, sk , 〈bp, Ui, ctm[bp, Mjk ]〉) ∧ (16)
[1 = VfSig3(pk3,k, sk,d , 〈Ui, bp, d, ck,d , tk,d 〉) ∧ (17)

1 = VfSig1(pk1, s′k,d , 〈bp,Ck,d ,

tmin,k,d , tmax,k,d , cmin,k,d , cmax,k,d 〉) ∧ (18)

tk,d ∈ [tmin,k,d , tmax,k,d ] ∧ (19)
ck,d ∈ [cmin,k,d , cmax,k,d ] ∧ (20)

1 = PVerify(parp,Ck,d , ck,d , pk,d ,wk,d ) (21)

]ctm[bp,Mjk ]
d=1 }mk=1 ∧
p =

∑m

k=1

∑ctm[bp,Mjk ]
d=1

pk,d ∧ (22)

1 = VfCom(parc, com, p, open)}. (23)

We highlight the differences between this relation and
the relation for cumulative policies by using boxes. Line 18
requires the user to prove knowledge of a commitment Ck,d ,
of a time interval [tmin,k,d , tmax,k,d), of a consumption inter-
val [cmin,k,d , cmax,k,d) and of a signature s′k,d in the tariff
policy that signs those values. The signed billing period bp
belongs to the proof instance. Line 21 requires the user to
prove that the price pk,d associated with the meter reading
(ck,d , tk,d) proven in Line 17 is the evaluation of the polyno-
mial committed to in Ck,d on input ck,d .

Ui sets the witness as follows.

wit ← (p, open, [〈ck,d , tk,d , pk,d , sk,d , s′k,d ,
Ck,d ,wk,d , tmin,k,d , tmax,k,d ,

cmin,k,d , cmax,k,d 〉ctm[bp,Mjk ]
d=1 , sk ]mk=1)

123



A. Rial et al.

Ui computes the witnesses wk,d by running the algorithm
wk,d ← PProve(parp, φk,d , ck,d , dk,d).

Ui sets the instance as follows.

ins ←( parp, parc, pk1, Ui, com, bp,

[pk3,k, pk4,k, ctm[bp, Mjk ]]mk=1).

As for the linear and cumulative policies, the verifying
party P , in order to verify the statement 1 = VfSig3(pk3,k,
sk,d , 〈Ui, bp, d, ck,d , tk,d〉) in Line 17 of the relation, must
employ values d from 1 to ctm[bp,Mjk ].

4.4 Other policies

In [47], a discrete policy and an interval policy are also
considered. In a discrete policy, each consumption value is
associated with a price. In an interval policy, each range of
consumption values is associated with a price. These policies
can be supported by our protocol as simplifications of the lin-
ear and cumulative policies. Additionally, it is also possible
to consider composite policies created by combining two or
more of the aforementioned types.

In the tariff policies considered so far, the price to be paid
for a meter reading (c, t) is solely determined by the tariff
policy and the values (c, t). However, in many practical tariff
policies, the price to be paid depends also on the past behavior
of the user. For example, the tariff policies change depending
on the last daily or monthly consumption of the user, or on
the accumulated consumption of the current day.

Our protocol can support such history-dependent policies
as follows. Consider for instance a policy that employs the
past consumption pc of the user in the last billing period.

Φ[pca, pca+1](c, t) =

⎧
⎪⎨

⎪⎩

φ1(c) if t ∈ [t1, t2]
...

...

φL(c) if t ∈ [tL , tL+1]

⎫
⎪⎬

⎪⎭

In this policy, the past consumption pc is divided into inter-
vals [pca, pca+1] for a ∈ [1, A]. Each interval [pca, pca+1] is
associated with a splineΦ[pca, pca+1](c, t), where the price
to be paid is determined by a polynomial φl(c) for a meter
reading (c, t) such that t ∈ [tl , tl+1].

The modification needed in the protocol is as follows. To
sign the tariff policy, the service provider signs tuples [bp,C,

tl , tl+1, pca, pca+1], where the the values [pca, pca+1] define
a past consumption interval.

In the payment phase, the user computes a commitment
com to the past consumption pc of the last billing period and
proves in zero-knowledge that pc is correctly computed, i.e.,
by summing up the consumption values of themeter readings

that belong to the last billing period. Then, to compute the
proof that the total bill is correct, the user proves knowledge
of the value pc in com and proves that pc ∈ [pca, pca+1]
to ensure that the correct commitment C associated with the
interval [pca, pca+1] in the tuple [bp,C, tl , tl+1, pca, pca+1]
is employed.

4.5 Efficiency discussion

For a tariff or a cumulative policy, our protocol is quite similar
to the protocol provided in [47] for the setting with onemeter
and one user. In [47], an implementation and performance
measurements are provided. Therefore, we refer to [47] for
an in-depth efficient analysis.

We analyze now the cost of the protocol proposed in [47]
when applying a polynomial tariff policy. To sign the tariff
policy, V computes signatures on tuples [bp, φ0, φ1, . . . , φt ,

tl , tl+1, cm, cm+1], where (φ0, φ1, . . . , φt ) denote the coeffi-
cients of the polynomial. In the payment message, the proof
of correct evaluation of the polynomial to show that p = φ(c)
employs the coefficients (φ0, φ1, . . . , φt ). While in our pro-
tocol the communication cost of this proof does not depend
on the polynomial degree, the cost of this proof grows with
the degree.

In Sect. 4.6, we analyze the security of our protocol under
two corruption models. Our main analysis considers Byzan-
tine corruptions, where a single adversary corrupts different
parties and controls their behavior. Obviously, in this corrup-
tion model, when the provider and a meter are corrupt, there
is no protocol that can prevent the provider from learning the
meter readings input to the meter because both entities are
controlled by the same adversary.

For this reason, in Sect. 4.6.7, we also consider a corrup-
tion model in which different adversaries, with no commu-
nication link between them, corrupt different parties. This
model is relevant in the case in which the provider V and a
subset of the metersM are corrupt, but they cannot commu-
nicate directly between each other. In this second corruption
model, for the sake of efficiency, the protocol proposed in
[47] does not prevent the verifying party from learning the
meter readings. The reason is that, in that protocol, instead
of proving knowledge of the signatures on the meter read-
ings, the user sends those signatures to the verifying party
(the signatures sign commitments to the meter readings, so
as not to reveal the meter readings). By manipulating the sig-
nature value, a corrupt meter could disclose information on
the meter readings to the verifying party.

In [47], it is explained that, to protect user privacy in this
corruption model, the user must prove in zero-knowledge
possession of the signatures on the meter readings to the ver-
ifying party. This is the approachwe follow in our protocol, in
which the user proves possession of signatures on the meter
readings and on the counter ofmeter readings. Thanks to that,

123



Privacy-preserving smart metering revisited

no information output by the meter to the user is revealed by
the user to the verifying party, which allows us to protect user
privacy in this corruption model (see Sect. 4.6.7).

4.6 Security analysis of construction BIL

Theorem 1 Construction BIL securely realizes FBIL in the

FCRS.Setup
CRS ,FSMT,FREG and FREG.Ver

REG -hybrid model.

We prove that the construction BIL realizes the function-
ality FBIL when a linear, a cumulative and a polynomial
policy are employed. We provide a unified description of
those proofs. The box POL: … is used to describe a com-
putation that only occurs in the case of a polynomial tariff
policy.

To prove that our protocol securely realizes the ideal func-
tionality FBIL, we have to show that for any environment Z
and any adversary A there exists a simulator S, such that Z
cannot distinguish whether it is interacting with A and the
protocol in the real world or with S and FBIL. The simulator
therefore plays the role of all honest parties in the real world
and interacts with FBIL for all corrupt parties in the ideal
world.

Our simulatorS employs any simulatorSCRS,SSMT,SREG

and SREG.Ver
REG for the constructions that realize the func-

tionalities FCRS.Setup
CRS ,FSMT,FREG and FREG.Ver

REG , respec-
tively. We note that the simulators for all the constructions
that realize the functionalitiesFCRS.Setup

CRS ,FSMT,FREG and
FREG.Ver
REG communicate with each of those functionalities

through the same interfaces. These are the interfaces that
our simulator employs to communicate with any simulator
SCRS,SSMT,SREG and SREG.Ver

REG . S forwards all the mes-
sages exchanged between any simulator SCRS,SSMT,SREG

and SREG.Ver
REG and the adversary A. When the adversary A

sends a message that corresponds to a protocol that real-
izes any of the functionalities FCRS.Setup

CRS ,FSMT,FREG or
FREG.Ver
REG ,S implicitly forwards that message to the respec-

tive simulator SCRS,SSMT,SREG or SREG.Ver
REG .

We analyze the case in which the provider V is corrupt
in Sect. 4.6.1. In Sect. 4.6.2, we analyze the case in which a
subset of the users U are corrupt. In Sect. 4.6.3, we analyze
the case in which the provider, a subset of the users U and
a subset of the metersM are corrupt. We provide a detailed
analysis of these three cases. Note that the provider or a user
can also act as verifying parties, and thus,we consider corrupt
verifying parties in all these cases.

We also consider the case in which the provider V and
a subset of the users are corrupt (Sect. 4.6.4), the case in
which a subset of the users U and a subset of the meters M
are corrupt (Sect. 4.6.5) and the case in which the provider
V and a subset of the metersM are corrupt (Sect. 4.6.6). We
do not provide a detailed security analysis of those cases, but
describe on a high level the simulator.

We note that, e.g., the case in which only a subset of the
users is corrupt is not subsumed by the case in which the
provider, a subset of the users and a subset of the meters is
corrupt. The reason is that the functionality behaves differ-
ently depending on whether the provider is corrupt or not.
If the provider and a user are corrupt, the functionality does
not guarantee that the price reported by the corrupt user to
the verifying party is correct (even if the meters are hon-
est), but when only the user is corrupt, the functionality does
guarantee that the price is correct.

When we say that a subset of the users or a subset of the
meters is corrupt, we mean that at least one user or at least
one meter is corrupt. The security proof does not rely on the
fact that the number of corrupt users or the number of corrupt
meters is limited by a threshold.

For all the cases above, we consider Byzantine corrup-
tions where a single adversary corrupts different parties and
controls their behavior. Obviously, in this corruption model,
when the provider and ameter are corrupt, there is no protocol
that can prevent the provider from learning the meter read-
ings input to the meter because both entities are controlled
by the same adversary.

For this reason, we also consider a corruption model in
which different adversaries, with no communication link
between them, corrupt different parties. This model is rel-
evant in the case in which the provider V and a subset of the
metersM are corrupt, but they cannot communicate directly
between each other. We show that, under such corruption
model, our protocol prevents the corruptmeters from sending
information about the meter readings to the verifying parties
in Sect. 4.6.7. This is akin to showing that our protocol is
collusion-free in the sense of [33].

We note that FBIL guarantees that the bill revealed to the
verifying party is correct when the user is honest or when
the provider and the meters that are involved in the bill com-
putation are honest. For the cases in which a corrupt user
colludes with the provider and/or with a meter involved in
the computation of the bill, our security analysis shows that
our protocol realizes FBIL, but the total bill revealed to the
verifying party is chosen by the adversary.

4.6.1 Case V corrupt

We start with the case where the provider V is corrupt. The
simulator communicateswith the ideal functionality and sim-
ulates the behavior of the honest parties toward the corrupt
provider. To simulate the behavior of the honest parties, our
simulator follows the real-world protocol, with the excep-
tion that it creates a simulation trapdoor for theNIPK system
and, when an honest user sends a bill to the corrupt provider
(which is acting as a verifying party), the simulator computes
a simulated non-interactive zero-knowledge proof of knowl-
edge π to create the message (smt.send.end, sidSMT, 〈p,

123



A. Rial et al.

open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉). Therefore, secu-
rity follows thanks to the zero-knowledge property of the
NIPK system. In Fig. 6, we describe our simulator S.
Theorem 2 When the provider is corrupt, construction

BIL securely realizes FBIL in the FCRS.Setup
CRS ,FSMT,FREG

and FREG.Ver
REG -hybrid model if the non-interactive proof of

knowledge scheme (PKSetup,PKProve,PKVerify) is zero-
knowledge.

Proof We show by means of a series of hybrid games that
the environment Z cannot distinguish between the ensem-
ble REALBIL,A,Z and the ensemble IDEALFBIL,S,Z with
non-negligible probability. We denote by Pr [Game i] the
probability that the environment distinguishes Game i from
the real-world protocol.

Game 0 This game corresponds to the execution of the real-
world protocol. Therefore, Pr [Game 0] = 0.

Game 1 Game 1 follows Game 0, except that Game 1
computes parpk by running S1(1k).Game 1 stores
tds. The zero-knowledge property ensures that
parpk output by S1 is indistinguishable from those
output by the algorithm PKSetup. Therefore,
|Pr [Game 1] − Pr [Game 0]| ≤ Advzk−nipk

A .

Game 2 Game2 followsGame1, except that,when anhon-
est user sends a message (smt.send.ini, sidSMT,

〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉),
Game 2 computes the proof π by running π

← S2(parpk, tds, ins). The zero-knowledge prop-
erty ensures that proofs π computed by algorithm
S2 are indistinguishable from those output by
PKProve. Therefore, we have that |Pr [Game 2]
− Pr [Game 1]| ≤ Advzk−nipk

A .

The distribution of Game 2 is identical to that of our simu-
lation.

4.6.2 Case U corrupt

We analyze the case where a subset of the users Ui is corrupt.
The simulator communicates with the ideal functionality and
simulates the behavior of the honest parties toward the sub-
set of corrupt users. To simulate the behavior of the honest
parties, our simulator follows the real-world protocol, with
two exceptions. First, as in the case where only the provider
is corrupt described in Sect. 4.6.1, the simulator creates
a simulation trapdoor for the NIPK system and, when an
honest user sends a bill to a corrupt user (which is acting
as a verifying party), the simulator computes a simulated
non-interactive zero-knowledge proof of knowledgeπ to cre-
ate the message (smt.send.end, sidSMT, 〈p, open, com, bp,
Mj1 , . . . ,Mjm , s, ins, π〉). Security follows thanks to the

zero-knowledge property of the NIPK system. Second, the
simulator aborts when a corrupt user sends a payment mes-
sage that is verified successfully but where the payment p is
incorrect. In this case, security follows thanks to the unforge-
ability of the signature schemes used by the provider, which
prevent a dishonest user from forging signatures on the tar-
iff policy or on the list of meters for a billing period, and
on the unforgeability of the signature schemes used by the
meters, which prevents a dishonest user from forging sig-
natures on meter readings or on the number of readings in
a billing period. Additionally, the binding property of the
commitment scheme prevents a corrupt user from opening
the commitment to the price to an incorrect value. In the case
of a polynomial tariff policy, the evaluation binding property
of the polynomial commitment scheme prevents a dishonest
user from opening the polynomial commitments included in
the tariff policy to wrong values. The extraction property of
the NIPK scheme is also employed because it is necessary
for the simulator to get the signatures and the commitment
and polynomial commitment openings included in the wit-
ness of the zero-knowledge proof, which is needed to reduce
to the unforgeability, binding and evaluation binding proper-
ties, respectively. In Figs. 7 and 8, we describe our simulator
S.

Theorem 3 When a subset of the users is corrupt, construc-

tion BIL securely realizes FBIL in the FCRS.Setup
CRS ,FSMT,

FREG and FREG.Ver
REG -hybrid model if the non-interactive

proof of knowledge scheme (PKSetup,PKProve,PKVerify)
is zero-knowledge and extractable, the signature schemes
(KeyGen1,Sign1,VfSig1), (KeyGen2,Sign2,VfSig2),
(KeyGen3,Sign3,VfSig3), (KeyGen4,Sign4,VfSig4) are
existentially unforgeable, and the commitment scheme
(CSetup,Com,VfCom) is binding. In the case of a polyno-
mial policy, the polynomial commitment scheme (PSetup,

PCommit,PProve,PVerify) must be evaluation binding.

Proof We show by means of a series of hybrid games that
the environment Z cannot distinguish between the ensem-
ble REALBIL,A,Z and the ensemble IDEALFBIL,S,Z with
non-negligible probability. We denote by Pr [Game i] the
probability that the environment distinguishes Game i from
the real-world protocol.

Game 0 This game corresponds to the execution of the real-
world protocol. Therefore, Pr [Game 0] = 0.

Game 1 Game 1 follows Game 0, except that, when the
adversary sends amessage (smt.send.ini, sidSMT,

〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) such
that s is a correct signature on 〈bp,Ui,Mj1 ,

. . . ,Mjm 〉, but the adversary did not receive any
signature s′ on 〈bp,Ui,Mj1 , . . . ,Mjm 〉,Game 1
aborts. Thanks to the existential unforgeability of

123



Privacy-preserving smart metering revisited

Simulator S: case V corrupt

The simulator S employs the simulator (S1, S2) of the zero-knowledge property of the NIPK scheme described in Section 3.1.

– On input (crs.get.ini, sid) from SCRS, if ( POL: parp , parc, parpk , tds) is not stored, S runs POL: parp ← PSetup(1k ), parc

← CSetup(1k ) and (parpk , tds) ← S1(1k), and stores ( POL: parp , parc, parpk , tds). S creates a fresh ssid , stores ssid and sends

(crs.get.sim, sid, ssid , POL: parp, parc, parpk ) to SCRS.
– On input the message (crs.get.rep, sid , ssid) from SCRS, if ssid is stored, the simulator S deletes ssid and sends the message
(crs.get.end, sid , POL: parp , parc, parpk ) to SCRS.

– On input the message (reg.register.ini, sid , pk2 ) from SREG, the simulator S runs a copy of FREG on input (reg.register.ini, sid ,
pk2 ). When FREG outputs the message (reg.register.sim, sid , pk2 ), S sends the message (reg.register.sim, sid, pk2 ) to SREG.

– On input the message (reg.register.rep, sid) from SREG, the simulator S runs FREG on input the message (reg.register.rep, sid).
When FREG outputs the message (reg.register.end, sid), the simulator S sends the message (reg.register.end, sid) to SREG.

– On input (reg.register.ini, sid , bp , pk1 ,Ys ) from SREG.Ver
REG , S runs a copy of FREG.Ver

REG on input (reg.register.ini, sid , bp , pk1 ,
Ys ). When FREG.Ver

REG outputs (reg.register.sim, sid , bp , pk1 ,Ys ), S retrieves Y from Ys and sends (bil.policy.ini, sid , bp,Y )
to FBIL. When FBIL outputs (bil.policy.sim, sid , bp,Y ), S sends (reg.register.sim, sid , bp , pk1 ,Ys ) to SREG.Ver

REG .
– On input the message (reg.register.rep, sid , bp ) from SREG.Ver

REG , the simulator S runs the copy of FREG.Ver
REG on input the message

(reg.register.rep, sid , bp ). When FREG.Ver
REG outputs the message (reg.register.end, sid , bp ), the simulator S sends the message

(bil.policy.rep, sid , bp) to the functionality FBIL. When the functionality FBIL outputs (bil.policy.end, sid), the simulator S sends
(reg.register.end, sid , bp ) to SREG.Ver

REG .
– On input the message (smt.send.ini, sidSMT, bp, Ui , Mj1 , . . . , Mjm , s ) from SSMT, S checks that sidSMT is (V, Ui , sid). The

simulator S runs a copy of FSMT on input the message (smt.send.ini, sidSMT, bp, Ui , Mj1 , . . . , Mjm , s ). When FSMT outputs
the message (smt.send.sim, sidSMT, ssid , l( bp, Ui , Mj1 , . . . , Mjm , s )), the simulator S forwards it to SSMT.

– On input the message (bil.consumption.sim, sid , ssid , Mj , Ui ) from the functionality FBIL, the simulator S sets sidSMT ← (Mj ,
Ui , sid) and sends the message (smt.send.sim, sidSMT, ssid , l) to SSMT, where l is the length of the message i , bp, d, c, t , s .

– On input the message (bil.period.sim, sid , ssid , Mj , Ui ) from the functionality FBIL, the simulator S sets sidSMT ← (Mj , Ui ,
sid) and sends the message (smt.send.sim, sidSMT, ssid , l) to SSMT, where l is the length of the message i , bp, ctm[bp, Ui ], s .

– On input (bil.payment.sim, sid , ssid , Ui , P) from FBIL, S sets sidSMT ← (Ui , P, sid) and sends (smt.send.sim, sidSMT, ssid ,
l) to SSMT, where l is the length of the message p, open, com, bp, Mj1 , . . . , Mjm , s, ins, π .

– On input (smt.send.rep, sidSMT, ssid) from SSMT, S proceeds as follows:
– If a message (smt.send.sim, sidSMT, ssid , . . .) such that (sidSMT, ssid ) = (sidSMT, ssid) was not sent to SSMT, S ignores

the message.
– Else, if the message (smt.send.sim, sidSMT, ssid , . . .)was sent after receiving a message (smt.send.ini, sidSMT, bp, Ui , Mj1 ,

. . . , Mjm , s ) from SSMT, S runs the corresponding instance of FSMT on input (smt.send.rep, sidSMT, ssid). When FSMT
sends (smt.send.end, sidSMT, bp, Ui , Mj1 , . . . , Mjm , s ), S does nothing if there is not an instance of FREG that stores pk2 .
S does nothing if a tuple (sid , bp , Ui , Mj1 , . . . , Mjm , s) such that bp = bp and Ui = Ui is already stored. S does nothing if
1 = VfSig2(pk2 , s, bp, Ui , Mj1 , . . . , Mjm ). Otherwise S stores (sid , bp, Ui , Mj1 , . . . , Mjm , s). S sends (bil.listmeters.ini,
sid , bp, Ui , Mj1 , . . . , Mjm) to FBIL. When FBIL outputs (bil.listmeters.sim, sid, ssid , Ui), S sends (bil.listmeters.rep, sid ,
ssid) to FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.consumption.sim, sid , ssid , Mj ,
Ui ) from the functionality FBIL, the simulator S sends the message (bil.consumption.rep, sid , ssid) to the functionality FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.period.sim, sid , ssid, Mj , Ui)
from the functionality FBIL, the simulator S sends the message (bil.period.rep, sid , ssid) to the functionality FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid, . . .) was sent after receiving a message (bil.payment.sim, sid, ssid , Ui , P)
from FBIL, the simulator S sends the message (bil.payment.rep, sid , ssid) to the functionality FBIL.

– On input (bil.payment.end, sid , Ui , bp, p[bp], Mj1 ,N [Mj1 , bp], . . . , Mjm ,N [Mjm , bp]) from FBIL, S proceeds as follows:

– S retrieves the stored POL: parp , parc and (parpk , tds).
– S retrieves pk1 and Ys for the billing period bp from the corresponding copy of FREG.Ver

REG .
– If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not stored, for k = 1 to m, S runs (sk3 ,k , pk3 ,k) ← KeyGen3(1k ) and (sk4 ,k , pk4 ,k)

← KeyGen4(1k ) and stores (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k).
– S runs (com, open) ← Com(parc, p).
– S sets ins ← ( POL: parp , parc, pk1 , Ui , com, bp, [pk3 ,k , pk4 ,k , ctm[bp, Mjk ]]

m
k=1).

– S runs π ← S2(parpk , tds , ins). The relation R used by S2 is described in Section 4.1, Section 4.2 and Section 4.3.
– S recovers sidSMT from the last (smt.send.rep, sidSMT, ssid)message received from SSMT. S sends (smt.send.end, sidSMT,

p, open, com, bp, Mj1 , . . . , Mjm , s, ins, π ) to SSMT.

Fig. 6 Simulator S: case V corrupt

123



A. Rial et al.

Simulator S: case U corrupt (I)

The simulator S employs the simulator (S1, S2) of the zero-knowledge property of the NIPK scheme described in Section 3.1.

– On input (bil.policy.sim, sid , bp,Y ) from FBIL, S proceeds as follows:

– If this is the first (bil.policy.sim, sid , . . .) message received from FBIL, S does the following. If ( POL: parp , parc, parpk ,

tds) are not stored, S runs the algorithms POL: parp ← PSetup(1k ), parc ← CSetup(1k ) and (parpk , tds) ← S1(1k ),

and stores ( POL: parp , parc, parpk , tds). S creates a fresh ssid , stores (ssid , bp,Y ), and sends (crs.get.sim, sid, ssid ,

POL: parp, parc, parpk ) to SCRS.
– Else, S computes a signed tariff policy Ys for Y as described in Section 4.1, Section 4.2 or Section 4.3. S stores (bp,Ys) and

sends (reg.register.sim, sid , bp , pk1 ,Ys ) to SREG.Ver
REG .

– On input (crs.get.ini, sid) from SCRS, S works as in the case where V is corrupt.
– On input the message (crs.get.rep, sid , ssid) from SCRS, S proceeds as follows:

– If there is a tuple (ssid , bp,Y ) such that ssid = ssid , S proceeds as follows. S runs (sk1 , pk1 ) ← KeyGen1(1k ) and stores
(sk1 , pk1 ). S computes a signed tariff policy Ys for Y as described in Section 4.1, Section 4.2 or Section 4.3. S stores (bp,Ys),
deletes (ssid , bp,Y ) and sends (reg.register.sim, sid , bp , pk1 ,Ys ) to SREG.Ver

REG .
– Else, S sends the message (crs.get.end, sid, POL: parp, parc, parpk ) to SCRS.

– On input (reg.register.rep, sid , bp ) from SREG.Ver
REG , if (bp,Ys) is stored, S sends (bil.policy.rep, sid , bp) to FBIL.

– On input (reg.retrieve.ini, sid , bp ) from SREG.Ver
REG , S creates a fresh ssid . If pk1 ,Ys are not stored, S stores (sid , bp, ssid, ⊥)

and sends (reg.retrieve.sim, sid , bp , ssid , ⊥) to SREG.Ver
REG , else stores (sid , bp, ssid , pk1 ,Ys ) and sends (reg.retrieve.sim, sid ,

bp , ssid , pk1 ,Ys ) to SREG.Ver
REG .

– On input (reg.retrieve.rep, sid , bp , ssid) from SREG.Ver
REG , S ignores the message if there is no tuple (sid , bp, ssid , . . .) stored. If

there is a tuple (sid , bp, ssid , ⊥) stored, S sends (reg.retrieve.end, sid , bp , ⊥) to SREG.Ver
REG . If there is a tuple (sid , bp, ssid , pk1 ,

Ys ) stored, S sends (reg.retrieve.end, sid , bp , pk1 ,Ys ) to SREG.Ver
REG .

– On input (bil.listmeters.sim, sid , ssid , Ui) from FBIL, S sets sidSMT ← (V, Ui , sid) and sends (smt.send.sim, sidSMT, ssid , l)
to SSMT, where l is the length of the message bp, Ui , Mj1 , . . . , Mjm , s .

– On input (bil.listmeters.end, sid , bp, Mj1 , . . . , Mjm) from FBIL, S proceeds as follows. If (sk2 , pk2 ) is not stored, S runs (sk2 ,
pk2 ) ← KeyGen2(1k ) and stores (sk2 , pk2 ). S signs s ← Sign2(sk2 , bp, Ui , Mj1 , . . . , Mjm ). S uses the last sidSMT received
in a (smt.send.rep, sidSMT, ssid) message from SSMT and sends (smt.send.end, sidSMT, bp, Ui , Mj1 , . . . , Mjm , s ) to SSMT.

– On input (reg.retrieve.ini, sid) from SREG, S creates a fresh ssid . If (sk2 , pk2 ) is not stored, S stores (ssid , ⊥) and sends
(reg.retrieve.sim, sid , ssid , ⊥) to SREG, else stores (ssid , pk2 ) and sends (reg.retrieve.sim, sid , ssid , pk2 ) to SREG.

– On input (reg.retrieve.rep, sid , ssid) from SREG, S ignores the message if there is no tuple (ssid , . . .) stored. If there is a tuple
(ssid , ⊥) stored, S sends (reg.retrieve.end, sid , ⊥) to SREG. If there is a tuple (ssid , pk2 ) stored, S sends (reg.retrieve.end, sid ,
pk2 ) to SREG.

– On input (bil.consumption.sim, sid , ssid , Mj , Ui) from FBIL, S sets sidSMT ← (Mj , Ui , sid) and sends (smt.send.sim,
sidSMT, ssid , l) to SSMT, where l is the length of the message i , bp, d, c, t , s .

– On input (bil.consumption.end, sid , Mj , bp, c, t) from FBIL, S proceeds as follows. If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not
stored for the meter Mj , Mj runs (sk3 ,k , pk3 ,k) ← KeyGen3(1k ) and (sk4 ,k , pk4 ,k) ← KeyGen4(1k ), and stores (sk3 ,k , pk3 ,k)
and (sk4 ,k , pk4 ,k). S recovers sidSMT from the last (smt.send.rep, sidSMT, ssid) message sent by SSMT. S gets Ui from sidSMT.
S increments a counter ctm[bp, Mj , Ui ] (initialized at zero) that counts the number of meter readings that Mj sends to Ui dur-
ing the billing period bp. S runs s ← Sign3(sk3 ,k , i , bp, ctm[bp, Mj , Ui ], c, t ). S sends (smt.send.end, sidSMT, i , bp,
ctm[bp, Mj , Ui ], c, t , s ) to SSMT.

– On input (reg.retrieve.ini, sid , Mj ) from SREG, S creates a fresh ssid . If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not stored, S stores
(ssid , ⊥) and sends (reg.retrieve.sim, sid , Mj , ssid, ⊥) to SREG, else stores (ssid , pk3 ,k , pk4 ,k ) and sends (reg.retrieve.sim,
sid , Mj , ssid , pk3 ,k , pk4 ,k ) to SREG.

– On input (reg.retrieve.rep, sid , Mj , ssid) from SREG, S ignores the message if there is no tuple (ssid , . . .) stored. If there is a
tuple (ssid , ⊥) stored, S sends (reg.retrieve.end, sid , Mj , ⊥) to SREG. If there is a tuple (ssid , pk3 ,k , pk4 ,k ) stored, S sends
(reg.retrieve.end, sid , Mj , pk3 ,k , pk4 ,k ) to SREG.

– On input (bil.period.sim, sid , ssid , Mj , Ui ) from FBIL, S sets sidSMT ← (Mj , Ui , sid) and sends (smt.send.sim, sidSMT, ssid ,
l) to SSMT, where l is the length of the message i , bp, ctm[bp, Mj ], s .

– On input (bil.period.end, sid , bp, Mj ,N [Mj , bp]) from FBIL, S proceeds as follows. If (sk3 ,k , pk3 ,k) and (sk4 ,k , pk4 ,k) are not
stored for Mj , S runs (sk3 ,k , pk3 ,k) ← KeyGen3(1k ) and (sk4 ,k , pk4 ,k) ← KeyGen4(1k ), and stores (sk3 ,k , pk3 ,k) and (sk4 ,k ,
pk4 ,k). S recovers sidSMT from the last (smt.send.rep, sidSMT, ssid)message sent by SSMT. S gets sidSMT and Ui from sidSMT.
S runs s ← Sign4(sk4 ,k , i , bp,N [Mj , bp] ). S sends (smt.send.end, sidSMT, i , bp,N [Mj , bp], s ) to SSMT.

– On input (bil.payment.sim, sid , ssid , Ui , P) from FBIL, S sets sidSMT ← (Ui , P, sid) and sends (smt.send.sim, sidSMT, ssid ,
l) to SSMT, where l is the length of the message p, open, com, bp, Mj1 , . . . , Mjm , s, ins, π .

– On input (bil.payment.end, sid , Ui , bp, p[bp], Mj1 ,N [Mj1 , bp], . . . , Mjm ,N [Mjm , bp]) from FBIL, S proceeds as in the case
where V is corrupt, except that S replaces V by the identity of the corrupt user that acts as verifying party.

Fig. 7 Simulator S: case U corrupt (I)

123



Privacy-preserving smart metering revisited

Simulator S: case U corrupt (II)

– On input (smt.send.ini, sidSMT, p, open, com, bp, Mj1 , . . . , Mjm , s, ins, π ) from SSMT, S proceeds as follows.
– S ignores the message if (sk2 , pk2 ) or (sk2 , pk2 ) are not stored, or if (sk3 ,k , pk3 ,k) or (sk4 ,k , pk4 ,k) are not stored for any meter

Mjk (for k = 1 to m), or if POL: parp , parc and parpk are not stored.
– S parses sidSMT as (Ui , P, sid).
– S checks if the values POL: parp , parc , pk1 , pk3 ,k , and pk4 ,k stored are equal to those in the instance ins = ( POL: parp , parc,

pk1 , Ui , com, bp, [pk3 ,k , pk4 ,k , ctm[bp, Mjk ]]
m
k=1). If not, S ignores the message. S also checks that, for k = 1 to m, the

instance includes a counter ctm[bp, Mjk ] of meter readings and that the proof proves possession of ctm[bp, Mjk ] meter readings
numbered from 1 to ctm[bp, Mjk ].

– S ignores the message if 1 = VfCom(parc, com, p, open).
– S ignores the message if 1 = VfSig2(pk2 , s, bp, Ui , Mj1 , . . . , Mjm ).
– S aborts if the adversary did not receive any signature s on bp, Ui , Mj1 , . . . , Mjm .
– S ignores the message if 1 = PKVerify(parpk , ins, π).
– S aborts if, for k = 1 to m, the adversary did not receive a signature sk on the tuple bp, Ui , ctm[bp, Mjk ] .
– S performs the computation of the price p to be paid by Ui at the billing period bp using as input the meter readings sent to Ui by

the meters j1 , . . . , Mjm and the tariff policy for that billing period. If p = p, S aborts.
– S gets the verifying party identifier P from sidSMT and sends (bil.payment.ini, sid , P, bp) to FBIL.

– On input (smt.send.rep, sidSMT, ssid) from SSMT, S proceeds as follows.
– If a message (smt.send.sim, sidSMT, ssid , . . .) such that (sidSMT, ssid) = (sidSMT, ssid ) was not sent to SSMT, S ignores

the message.
– Else, if the message (smt.send.sim, sidSMT, ssid, . . .)was sent after receiving a message (bil.listmeters.sim, sid , ssid , Ui) from

FBIL, S sends (bil.listmeters.rep, sid , ssid) to FBIL.
– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.consumption.sim, sid , ssid , Mj ,

Ui ) from the functionality FBIL, the simulator S sends the message (bil.consumption.rep, sid , ssid) to the functionality FBIL.
– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (bil.period.sim, sid , ssid, Mj , Ui)

from the functionality FBIL, the simulator S sends the message (bil.period.rep, sid , ssid) to the functionality FBIL.
– Else, if the message (smt.send.sim, sidSMT, ssid, . . .) was sent after receiving a message (bil.payment.sim, sid, ssid , Ui , P)

from FBIL, the simulator S sends the message (bil.payment.rep, sid , ssid) to the functionality FBIL.

Fig. 8 Simulator S: case U corrupt (II)

the signature scheme (KeyGen2,Sign2,VfSig2),
Game 1 aborts with negligible probability. There-
fore, |Pr [Game 1] − Pr [Game 0]| ≤ Advunf−sig

A .
Game 2 Game 2 followsGame 1, except thatGame 2 com-

putes the parameters parpk by running (parpk, tde)
← E1(1k).Game 2 stores tde. The extraction prop-
erty ensures that the parameters parpk output by
E1(1k) is indistinguishable from those output by
PKSetup. Therefore, |Pr [Game2]−Pr [Game1]|
≤ Advex−nipk

A .

Game 3 Game 3 follows Game 2, except that, when the
adversary sends (smt.send.ini, sidSMT, 〈p, open,
com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), after verify-
ing s, com and π,Game 3 runs wit ← E2(parpk,
tde, ins, π). Game 3 aborts if extraction fails.
The extraction property ensures that extraction
works with overwhelming probability. Therefore,
|Pr [Game 3] − Pr [Game 2]| ≤ Advex−nipk

A .
Game 4 Game 4 follows Game 3, except that, when the

adversary sends (smt.send.ini, sidSMT, 〈p, open,
com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), after extract-
ing the witness wit,Game 4 aborts if any of the
signatures sk in the witness wit signs a tuple 〈bp,

Ui, ctm[bp,Mjk ]〉 such that no signature on that
tuple was sent to the adversary. Thanks to the
existential unforgeability of the signature scheme
(KeyGen4,Sign4,VfSig4), Game 4 aborts with
negligible probability. Therefore, |Pr [Game 4] −
Pr [Game 3]| ≤ Advunf−sig

A .
Game 5 Game 5 follows Game 4, except that, when the

adversary sends amessage (smt.send.ini, sidSMT,

〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), aft-
er extracting the witness wit,S aborts if any of
the signatures sk,d in the witness wit signs a tuple
〈Ui, bp, d, ck,d , tk,d〉 such that a signature on that
tuple was not sent to the adversary. Thanks to the
existential unforgeability of the signature scheme
(KeyGen3,Sign3,VfSig3), Game 5 aborts with
negligible probability. Therefore, |Pr [Game 5] −
Pr [Game 4]| ≤ Advunf−sig

A .
Game 6 Game 6 follows Game 5, except that, when the

adversary sends amessage (smt.send.ini, sidSMT,

〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), aft-
er extracting the witness wit,S aborts if any of the
signatures s′k,d in the witnesswit signs a tuple such
that the tuple is not in the signed policy Ys sent to

123



A. Rial et al.

the adversary. The tuple is of one of the following
forms.

Linear Policy The tuple is of the form 〈bp, rk,d , tmin,k,d ,

tmax,k,d〉.
Cumulative Policy The tuple is of the form 〈bp, rk,d ,
Fk,d , tmin,k,d , tmax,k,d , cmin,k,d , cmax,k,d〉.
Polynomial Policy. The tuple is of the form 〈bp,Ck,d ,

tmin,k,d , tmax,k,d , cmin,k,d , cmax,k,d〉.

Thanks to the existential unforgeability of the signature
scheme (KeyGen1,Sign1,VfSig1), Game 6 aborts with
negligible probability. Therefore, we have that |Pr [Game 6]
− Pr [Game 5]| ≤ Advunf−sig

A .

Polynomial policy only:

Game 7 Game 7 follows Game 6, except that, when
the adversary sends a message (smt.send.ini,
sidSMT, 〈p, open, com, bp,Mj1 , . . . ,Mjm ,

s, ins, π〉), after extracting the witness
wit,Game 7 aborts if any price pk,d in the
witness wit is not the result of evaluating on
input the consumption ck,d the polynomial in
the policy Ys associated with the time interval [
tmin,k,d , tmax,k,d) and the consumption interval
[cmin,k,d , cmax,k,d) such that tk,d ∈ [tmin,k,d ,

tmax,k,d) and ck,d ∈ [cmin,k,d , cmax,k,d). The
evaluation binding property of the polynomial
commitment scheme prevents a polynomial
commitment from being open on the same
input to two different values. Therefore,
|Pr [Game 7] − Pr [Game 6]| ≤ Advbd−pcom

A .

Game 8 Game 8 follows Game 7, except that, when the
adversary sends amessage (smt.send.ini, sidSMT,

〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), aft-
er extracting thewitnesswit,S aborts if (p′, open′)
in the witness wit does not equal (p, open). The
binding property of the commitment scheme pre-
vents the commitment com from being opened
to two different values. Therefore, we have that
|Pr [Game 8] − Pr [Game 7]| ≤ Advbd−com

A .

In Game 8, we have shown that S receives with negligi-
ble probability a message (smt.send.ini, sidSMT, 〈p, open,
com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) that makes S abort.

Game 9 Game 9 follows Game 8, except that Game 9
computes parpk by running S1(1k).Game 9 stores

tds. Game 9 does not run the extractor E2. The
zero-knowledge property ensures that parpk out-
put by S1 is indistinguishable from those out-
put by PKSetup. Therefore, |Pr [Game 9] −
Pr [Game 8]| ≤ Advzk−nipk

A .
Game 10 Game 10 follows Game 9, except that, when

an honest user sends (smt.send.ini, sidSMT, 〈p,
open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉),Game
10 computes the proof π by running π ←
S2(parpk, tds, ins). The zero-knowledge property
ensures that proofs π computed by algorithm
S2 are indistinguishable from those output by
PKProve. Therefore, |Pr [Game 10]−Pr [Game
9]| ≤ Advzk−nipk

A .

The distribution of Game 10 is identical to that of our sim-
ulation.

4.6.3 Case V,U and M corrupt

We analyze the case where the provider V , a subset of the
users Ui and a subset of the meters Mj are corrupt. The
simulator communicateswith the ideal functionality and sim-
ulates the behavior of the honest parties toward the subset of
corrupt users, the subset of corrupt meters and the corrupt
provider. To simulate the behavior of the honest parties, our
simulator follows the real-world protocol, with two excep-
tions. First, as in the cases where only the provider is corrupt
described in Sect. 4.6.1 and where a subset of the users is
corrupt in Sect. 4.6.2, the simulator creates a simulation trap-
door for the NIPK system and, when an honest user sends
a bill to a corrupt verifying party, the simulator computes a
simulated non-interactive zero-knowledge proof of knowl-
edge π to create the message (smt.send.end, sidSMT, 〈p,
open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉). Security follows
thanks to the zero-knowledge property of the NIPK system.
Second, the simulator aborts when a corrupt user sends a pay-
ment message that is verified successfully, but where, for any
of the meters in the payment message, if the meter is hon-
est, the number of meter readings included in the instance
ins is not correct. In this case, security follows thanks to the
unforgeability of the signature scheme that meters use to sign
the number of meter readings. The extraction property of the
NIPK scheme is also employed because it is necessary for the
simulator to get the signatures on the number of meter read-
ings included in the witness of the zero-knowledge proof,
which is needed to reduce to the unforgeability property. In
Figs. 9 and 10, we describe our simulator S.
Theorem 4 When the provider V , a subset of the users
and a subset of the meters are corrupt, construction BIL
securely realizes FBIL in the FCRS.Setup

CRS ,FSMT,FREG and
FREG.Ver
REG -hybridmodel if the non-interactive proof of knowl-

123



Privacy-preserving smart metering revisited

Simulator S: case V , U and M corrupt (I)

– On input (crs.get.ini, sid) from SCRS, S works as in the case where V is corrupt.
– On input (crs.get.rep, sid , ssid) from SCRS, S works as in the case where V is corrupt.
– On input (reg.register.ini, sid , pk2 ) from SREG, S works as in the case where V is corrupt.
– On input (reg.register.rep, sid) from SREG, S works as in the case where V is corrupt.
– On input (reg.register.ini, sid , bp , pk1 ,Ys ) from SREG.Ver

REG , S works as in the case where V is corrupt.
– On input (reg.register.rep, sid , bp ) from SREG.Ver

REG , S works as in the case where V is corrupt.
– On input (reg.retrieve.ini, sid) from SREG, S works as in the case where U is corrupt.
– On input (reg.retrieve.rep, sid , ssid) from SREG, S works as in the case where U is corrupt.
– On input (reg.retrieve.ini, sid , bp ) from SREG.Ver

REG , S works as in the case where U is corrupt.
– On input (reg.retrieve.rep, sid , bp , ssid) from SREG.Ver

REG , S works as in the case where U is corrupt.
– On input (smt.send.ini, sidSMT, bp, Ui , Mj1 , . . . , Mjm , s ) from SSMT, S works as in the case where V is corrupt.
– On input (reg.register.ini, sid , Mj , pk3 ,k , pk4 ,k ) from SREG, the simulator S runs a copy of FREG on input (reg.register.ini,

sid , Mj , pk3 ,k , pk4 ,k ). When FREG outputs the message (reg.register.sim, sid , Mj , pk3 ,k , pk4 ,k ), S sends the message
(reg.register.sim, sid , Mj , pk3 ,k , pk4 ,k ) to SREG.

– On input the message (reg.register.rep, sid , Mj ) from SREG, the simulator S runs FREG on input the message (reg.register.rep,
sid , Mj ). When FREG outputs the message (reg.register.end, sid , Mj ), the simulator S sends the message (reg.register.end,
sid , Mj ) to SREG.

– On input (reg.retrieve.ini, sid , Mj ) from SREG, S works as in the case where U is corrupt.
– On input (reg.retrieve.rep, sid , Mj , ssid) from SREG, S works as in the case where U is corrupt.
– On input (smt.send.ini, sidSMT, i , bp, d, c, t , s ) from SSMT, the simulator S checks that sidSMT = (Mj , Ui , sid) where Mj

is a corrupt meter. S runs a copy of FSMT on input the message (smt.send.ini, sidSMT, i , bp, d, c, t , s ). When FSMT outputs
the message (smt.send.sim, sidSMT, ssid , l( i , bp, d, c, t , s )), the simulator S forwards it to SSMT.

– On input (bil.consumption.sim, sid , ssid, Mj , Ui) from FBIL, S works as in the case where U is corrupt.
– On input (bil.consumption.end, sid , Mj , bp, c, t) from FBIL, S works as in the case where U is corrupt.
– On input (smt.send.ini, sidSMT, i , bp, ctm[bp, Ui ], s ) from SSMT, the simulator S checks that sidSMT = (Mj , Ui , sid)where

Mj is a corrupt meter. The simulator S runs a copy of FSMT on input the message (smt.send.ini, sidSMT, i , bp, ctm[bp, Ui ], s ).
When FSMT outputs the message (smt.send.sim, sidSMT, ssid , l( i , bp, ctm[bp, Ui ], s )), the simulator S forwards it to SSMT.

– On input (bil.period.sim, sid , ssid , Mj , Ui ) from FBIL, S works as in the case where U is corrupt.
– On input (bil.period.end, sid , bp, Mj ,N [Mj , bp]) from FBIL, S works as in the case where U is corrupt.
– On input (bil.payment.sim, sid , ssid , Ui , P) from FBIL, S works as in the case where V or U acting as verifying parties are corrupt.
– On input (bil.payment.end, sid , Ui , bp, p[bp], Mj1 ,N [Mj1 , bp], . . . , Mjm ,N [Mjm , bp]) from FBIL, S works as in the case where

V or U acting as verifying parties are corrupt.
– On input (smt.send.rep, sidSMT, ssid) from SSMT, S proceeds as follows:

– If a message (smt.send.sim, sidSMT, ssid , . . .) such that (sidSMT, ssid) = (sidSMT, ssid ) was not sent to SSMT, S ignores
the message.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .)was sent after receiving a message (smt.send.ini, sidSMT, bp, Ui , Mj1 ,
. . . , Mjm , s ) from SSMT, S works as in the case where V is corrupt.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (smt.send.ini, sidSMT, i , bp, d,
c, t , s ) from SSMT, S runs the corresponding instance of FSMT on input (smt.send.rep, sidSMT, ssid). When FSMT sends
(smt.send.end, sidSMT, i , bp, d, c, t , s ), S does nothing if there is not an instance of FREG that stores pk3 ,k , pk4 ,k . (S
checks that the meter identifier Mj in sidSMT and the meter identifier contained in the session identifier sid , Mj of FREG
are the same.) S does nothing if 1 = VfSig3(pk3 ,k , s, i , bp, d, c, t ). S does nothing if there is a tuple (sid , Ui , Mj , bp ,
ctm [bp, Mj ]) stored such that Ui = Ui , Mj = Mj and bp = bp. S does nothing if it stores a tuple [Ui , Mj , bp , d , c, t , s]
such that Ui = Ui ,Mj = Mj , bp = bp and d = d. Otherwise S stores [Ui , Mj , bp, d, c, t , s]. S sends (bil.consumption.ini,
sid , Ui , bp, c, t) to FBIL. When FBIL outputs (bil.consumption.sim, sid , ssid, Mj , Ui), S sends (bil.consumption.rep, sid ,
ssid) to FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid , . . .) was sent after receiving a message (smt.send.ini, sidSMT, i , bp,
ctm[bp, Ui ], s ) from SSMT, S runs the corresponding instance of FSMT on input (smt.send.rep, sidSMT, ssid). When FSMT
sends (smt.send.end, sidSMT, i , bp, ctm[bp, Ui ], s ), S does nothing if there is not an instance of FREG that stores pk3 ,k ,
pk4 ,k . (S checks that the meter identifier Mj in sidSMT and the meter identifier contained in the session identifier sid , Mj of
FREG are the same.) S does nothing if 1 = VfSig4(pk4 ,k , s, i , bp, ctm[bp, Mj ] ). S does nothing if there is a tuple (sid , Ui ,
Mj , bp , ctm [bp, Mj ]) stored such that Ui = Ui , Mj = Mj and bp = bp. S does nothing if the number of tuples [Ui , Mj ,
bp , d, c, t , s] stored such that Ui = Ui , Mj = Mj and bp = bp is different from ctm[bp, Mj ]. S also aborts if, from d = 1
to ctm[bp, Mj ], S cannot find a tuple [Ui , Mj , bp , ctm [bp, Mj ], c, t , s] stored such that Ui = Ui , Mj = Mj and bp = bp
and d = ctm [bp, Mj ]. Otherwise S stores (sid , Ui , Mj , bp, ctm[bp, Mj ], s). S sends (bil.period.ini, sid , Ui , bp) to FBIL.
When FBIL outputs (bil.period.sim, sid , ssid , Mj , Ui ), S sends (bil.period.rep, sid , ssid) to FBIL.

– Else, if the message (smt.send.sim, sidSMT, ssid, . . .) was sent after receiving a message (bil.payment.sim, sid, ssid , Ui , P)
from FBIL, if (ssid , p, jk , ctm[bp, Mjk ]

m
k=1) is stored, S deletes that tuple and sends (bil.payment.rep, sid , ssid , p,

jk , ctm[bp, Mjk ]
m
k=1) to FBIL, else S sends the message (bil.payment.rep, sid , ssid) to the functionality FBIL.

Fig. 9 Simulator S: case V, U and M corrupt (I)

123



A. Rial et al.

Simulator S: case V , U and M corrupt (II)

– On input (smt.send.ini, sidSMT, p, open, com, bp, Mj1 , . . . , Mjm , s, ins, π ) from SSMT, S proceeds as follows.
– S ignores the message if pk1 or pk2 are not stored, or if pk3 ,k or pk4 ,k are not stored for any Mjk (for k = 1 to m), or if

POL: parp , parc and parpk are not stored.
– S parses sidSMT as (Ui , P, sid) and checks that Ui is corrupt.
– S checks if the values POL: parp , parc , pk1 , pk3 ,k , and pk4 ,k stored are equal to those in the instance ins = ( POL: parp , parc,

pk1 , Ui , com, bp, [pk3 ,k , pk4 ,k , ctm[bp, Mjk ]]
m
k=1). If not, S ignores the message. S also checks that, for k = 1 to m, the

instance includes a counter ctm[bp, Mjk ] of meter readings and that the proof proves possession of ctm[bp, Mjk ] meter readings
numbered from 1 to ctm[bp, Mjk ].

– S ignores the message if 1 = VfCom(parc, com, p, open).
– S ignores the message if 1 = VfSig2(pk2 , s, bp, Ui , Mj1 , . . . , Mjm ).
– S ignores the message if 1 = PKVerify(parpk , ins, π).
– S aborts if, for k = 1 to m, Mjk is honest and the number of meter readings ctm[bp, Mjk ] contained in the instance ins is not

the one sent to the adversary by Mjk at that billing period.
– S sends (bil.payment.ini, sid , P, bp) to FBIL. When FBIL sends (bil.payment.sim, sid , ssid, Ui , P), S stores (ssid , p, jk ,

ctm[bp, Mjk ]
m
k=1) and sends (smt.send.sim, sidSMT, ssid , l( p, open, com, bp, Mj1 , . . . , Mjm , s, ins, π )) to SSMT.

Fig. 10 Simulator S: case V, U and M corrupt (II)

edge scheme (PKSetup,PKProve,PKVerify) is zero-know-
ledge and extractable and the signature scheme (KeyGen4,
Sign4,VfSig4) is existentially unforgeable.

Proof We show by means of a series of hybrid games that
the environment Z cannot distinguish between the ensem-
ble REALBIL,A,Z and the ensemble IDEALFBIL,S,Z with
non-negligible probability. We denote by Pr [Game i] the
probability that the environment distinguishes Game i from
the real-world protocol.

Game 0 This game corresponds to the execution of the real-
world protocol. Therefore, Pr [Game 0] = 0.

Game 1 Game 1 followsGame 0, except thatGame 1 com-
putes the parameters parpk by running (parpk, tde)
← E1(1k).Game 2 stores tde. The extraction prop-
erty ensures that the parameters parpk output by
E1(1k) is indistinguishable from those output by
PKSetup. Therefore, |Pr [Game1]−Pr [Game 0]|
≤ Advex−nipk

A .

Game 2 Game 2 follows Game 1, except that, when the
adversary sends amessage (smt.send.ini, sidSMT,

〈p, open, com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), af-
ter verifying s, com and π,Game 2 runs wit ←
E2(parpk, tde, ins, π). Game 2 aborts if extrac-
tion fails. The extraction property ensures that
extraction works with overwhelming probability.
Therefore, |Pr [Game 2] − Pr [Game 1]| ≤
Advex−nipk

A .
Game 3 Game 3 follows Game 2, except that, when the

adversary sends (smt.send.ini, sidSMT, 〈p, open,
com, bp,Mj1 , . . . ,Mjm , s, ins, π〉), after extract-
ing thewitnesswit,Game 3 aborts if any of the sig-

natures sk in the witness wit signs a tuple 〈bp,Ui,

ctm[bp,Mjk ]〉 such that the meter Mjk is honest
and no signature on that tuplewas sent to the adver-
sary. Thanks to the existential unforgeability of
the signature scheme (KeyGen4,Sign4,VfSig4),
Game 3 aborts with negligible probability. There-
fore, |Pr [Game 3] − Pr [Game 2]| ≤ Advunf−sig

A .

In Game 3, we have shown that S receives with negligi-
ble probability a message (smt.send.ini, sidSMT, 〈p, open,
com, bp,Mj1 , . . . ,Mjm , s, ins, π〉) that makes S abort.

Game 4 Game 4 follows Game 3, except that Game 4
computes parpk by running S1(1k).Game 4 stores
tds. Game 4 does not run the extractor E2. The
zero-knowledge property ensures that parpk out-
put by S1 is indistinguishable from those out-
put by PKSetup. Therefore, |Pr [Game 4] −
Pr [Game 3]| ≤ Advzk−nipk

A .
Game 5 Game5 followsGame4, except that,when anhon-

est user sends (smt.send.ini, sidSMT, 〈p, open,
com, bp,Mj1 , . . . ,Mjm , s, ins, π〉),Game 5 co-
mputes the proofπ by runningπ ← S2(parpk, tds,
ins). The zero-knowledge property ensures that
proofs π computed by algorithm S2 are indistin-
guishable from those output by PKProve. There-
fore, we have that |Pr [Game 5] − Pr [Game 4]|
≤ Advzk−nipk

A .

The distribution of Game 5 is identical to that of our simu-
lation.

123



Privacy-preserving smart metering revisited

4.6.4 Case V and U corrupt

We omit a formal proof of this case. We give a high-level
description of the simulator.

bil.policy.∗,bil.listmeters.∗ For these interfaces, the
simulator S proceeds as in the case where the provider, a
subset of the users and a subset of the meters are corrupt.
bil.consumption.∗,bil.period.∗ For these interfaces,
the simulator S proceeds as in the case where only a
subset of users is corrupt.
bil.payment.∗ In this interface, the simulator proceeds as
in the case where the provider, a subset of the users and
a subset of the meters are corrupt. The only difference
is that, when a corrupt user sends a payment message,
since now all the meters are honest, the simulator does
not need to check whether the meters involved in a pay-
ment message are honest or not, and thus, the simulator
always aborts if the payment message contains a signa-
ture on a billing period, user identifier and counter of
meter readings such that no signature on that tuple was
sent to the adversary while simulating the corresponding
honest meter.

4.6.5 Case U and M corrupt

We omit a formal proof of this case. We give a high-level
description of the simulator.

bil.policy.∗,bil.listmeters.∗ For these interfaces, the
simulator S simulates the honest provider toward the
adversary as in the case where only a subset of the users
is corrupt.
bil.consumption.∗,bil.period.∗ For these interfaces,
when an honest meter sends a meter reading or an end
of billing period message to a corrupt user, the simulator
S proceeds as in the case where only a subset of users
is corrupt. When a corrupt meter sends a message to an
honest user, the simulator S proceeds as described in the
case where a subset of users, a subset of meters and the
provider are corrupt.
bil.payment.∗ In this interface, when an honest user
sends a payment message to a corrupt verifying party, the
simulator proceeds as described in the case where only
the provider is corrupt. If a corrupt user sends a payment
message to an honest verifying party, the simulatorS dis-
tinguishes between two cases. If all themeters involved in
the payment message are honest, the simulator proceeds
as described in the case where only a subset of the users
is corrupt. If any of those meters is corrupt, the simulator
S proceeds in a similar way as the one described for the
case in which a subset of the meters, a subset of the users
and the provider are corrupt. The only difference is thatS

also aborts if the payment message contains a signature
on a list of meters, user identifier and billing period that
was not sent to the adversary. Therefore, security in this
case also relies on the existentially unforgeability of the
signature scheme (KeyGen2,Sign2,VfSig2).

4.6.6 Case V and M corrupt

We omit a formal proof of this case. We give a high-level
description of the simulator.

bil.policy.∗,bil.listmeters.∗ For these interfaces, the
simulator S proceeds as in the case where only the
provider is corrupt.
bil.consumption.∗,bil.period.∗ For these interfaces,
when a corrupt meter sends a message to an honest user,
the simulator S proceeds as described in the case where
a subset of users, a subset of meters and the provider are
corrupt.
bil.payment.∗ In this interface, when an honest user
sends a payment message to a corrupt verifying party,
the simulator proceeds as described in the case where
only the provider is corrupt.

4.6.7 Case V and M corrupt but collusion-free

In Sect. 4.6.6, we have argued that our protocol realizes
FBIL. However, in that corruption model, the adversary con-
trols all the corrupt parties and is thus able to communicate
information between them. Therefore, a corrupt meter can
communicate the meter readings of an honest user to any
corrupt party, which violates user privacy.

In a smart metering setting, it is useful to consider a cor-
ruption model where the meters and the provider (or other
verifying parties) are corrupt, but do not have a side com-
munication channel between them. In our protocol, the only
way such adversarial parties would have to coordinate their
actions and to disclose information between each otherwould
be to construct a side channel through the user.

However, we can show that our protocol does not allow
that and is collusion-free in the sense of [33]. The payment
message sent by a user to a verifying party is 〈p, open, com,

bp,Mj1 , . . . ,Mjm , s, ins, π〉. The values (p, open, com, π)

are computed by the user. The billing period bp, the meter
identifiersMj1 , . . . ,Mjm and the signature s are sent by the
provider. The instance ins is of the following form.

ins =( parp, parc, pk1, Ui, com, bp,

[pk3,k, pk4,k, ctm[bp, Mjk ]]mk=1).

123



A. Rial et al.

Here, only the values [pk3,k, pk4,k, ctm[bp,Mjk ]]mk=1 are
generated by the meter. The public keys pk3,k and pk4,k can
be generated at setup, before meter readings are output. The
counter ctm[bp,Mjk ] must employ a unique representation
for all the numbers in its domain, so that the meter is not able
to use it to disclose any information to the verifying parties.
To prevent a corrupt meter from manipulating the value of
the counter to convey information, it is possible to enforce
a constant number of meter readings from each meter in a
payment message.When these conditions are met, our proto-
col avoids a collusion between corrupt meters and verifying
parties that do not have a side communication channel.

5 Related work

To the best of our knowledge, currently deployed fine-
grained billing protocols reveal meter readings to the service
provider. In the case of smart metering, relevant standards
that define communication protocols betweenmeters and ser-
vice providers include ANSI C12.18, C12.19 and C12.22,
and the open smart grid protocol. We refer to [23] for a
wider overview of communication protocols and standards
applicable to the smart grid. In the case of electronic toll
collection, the Decision 2009/750/EC, which defines the
European Electronic Toll Service and its technical elements,
requires location data to be reported to the service provider
for the purpose of billing.

In the context of the smart grid, several papers analyze
the types of personal information that can be inferred from
power consumption data [35,44]. They show how to infer
many intimate details of users’ daily lives. In the context
of location-based applications, the privacy threats related to
disclosing location data have also been analyzed [18].

In order to protect privacy in smart metering applications,
several approaches have been considered in the literature:

Regulations and codes of conduct We find tools to define
and enforce privacy policies [45], privacy-friendly access
control protocols to ensure that data are only accessed by
authorized parties [8], and audit tools to verify that no
inappropriate access has taken place [5]. For example,
Kumari et al. [31] propose usage control mechanisms
for data shared by smart meters. In addition, there are
transparency-enhancing tools that help users to under-
stand how data are collected, shared, stored, processed
and analyzed [11,38], which can be applied to smart
metering.
Variability reduction Data mining methods take advan-
tage of the changes in power consumption in order to infer
personal data. One approach to minimize this informa-
tion leakage consists in installing a rechargeable battery
on the user’s side [27,46,50]. The rechargeable battery
inputs power at an (ideally) constant rate and outputs it

depending on the user’s needs. Therefore, the provider’s
view is that of a user whose consumption of electricity
does not vary. In practice, the privacy provided by this
approach depends on the capacity of the battery. If the
user consumption is lower (resp. greater) than the battery
consumption, the battery must reduce (resp. increase) its
consumption, and thus, in practice it is not possible to
achieve a constant rate.
AnonymizationAnonymization techniques allow the ser-
vice provider to obtain meter data from users without
being able to tell apart the meter readings that belong to
each individual user [16,51]. This technique can be use-
ful for applications such as forecasting, leak detection
or flow monitoring, where knowing the consumption of
each user may not be needed. For billing, Popa et al. [43]
propose a protocol based on anonymization for electronic
toll collection. Users send location data segments anony-
mously to a database. The provider computes the prices
for each segment and sends them to the users. Each user
employs the prices corresponding to their segments to
compute the total bill and a proof of correctness of the bill
calculation. The main problems of anonymization tech-
niques are that they require anonymous communication
channels and that they are vulnerable to deanonymization
attacks [30].
Differential Privacy Differential privacy methods consist
in adding noise to meter readings in such a way that the
result of a statistical query on a database ofmeter readings
does not reveal any information about individual meter
readings [1,4]. Differential privacy methods are difficult
to apply in the case of billing because adding noise to
consumption measurements leads to an inaccurate bill.
Nevertheless, differential privacy has been used together
with a privacy-preserving billing protocol to hide from
the provider the bill to be paid by adding positive noise
to it, together with a rebate mechanism that ensures that
users get back their excess payments [15].
Verifiable Computing Verifiable computing allows a
client with limited resources to outsource the compu-
tation of a function to an untrusted worker in such a
way that the client is able to verify the correctness of
the computation [20]. The basic requirement is that the
cost of verifying correctness is smaller than the cost of
computing the function. Some schemes provide public
verifiability [42], so that the verification can be performed
by any party. The zero-knowledge property ensures that
the worker can convince the client that it knows an input
that fulfills some property, while the client does not learn
further information on the input beyond what can be
inferred from the result of the function [41].
Verifiable computing can be applied to our setting as
follows. The provider acts as the client and outsources
the computation of the tariff policy to the user. The user

123



Privacy-preserving smart metering revisited

inputs the meter readings from the meter, uses the zero-
knowledge property to prove that they are signed by the
meter, performs the computation of the tariff policy and
reveals to the provider the result, along with a proof of
correctness.
Althoughverifiable computing can inprinciple be applied
to our setting, there are several shortcomings. First, the
provider is not resource constrained; it in fact possesses
more computation power than the user. So in our pro-
tocol we do not focus on saving provider’s resources at
the expense of the user. Furthermore, verifiable comput-
ing schemes have a costly preprocessing phase where the
client computes an evaluation key, which is sent to the
worker. The cost of this preprocessing phase is amortized
after outsourcing the computation of the function several
times. However, in smart metering applications, tariff
policies change dynamically depending on the power
generation cost. For example, in Spain, the tariff policy
changes hourly1. Therefore, it may be possible that the
preprocessing cost is not amortized.
Trusted party Meter readings are sent to a trusted party
that keeps them secret and only reveals the results of the
computations done on them. Bohli et al. [6] propose a
solution where a trusted party aggregates meter readings
and reveals the aggregate to the provider.
Secure Two-Party Computation In these protocols, two
parties, each of them with a private input, wish to jointly
compute a function of their inputs and learn the result
without disclosing their private inputs. The feasibility
of secure two-party computation for any function has
been shown [52], and subsequent works improve the effi-
ciency of computation [34,39] and minimize the number
of communication rounds [25,26]. Recently, some proto-
cols involve a costly preprocessing phase and an efficient
online phase [13], while others distribute the workload
asymmetrically between participants [12], like in server-
aided secure computation [28], but as mentioned above
this is not advisable in our setting.
Our protocol is a secure two-party computation opti-
mized for the task of billing. In this setting, only the
user has a private input (the meter readings signed by the
meter), while the provider only needs to verify the result
of the computation. This allows us to design a simple
non-interactive protocol where the user performs the bill
calculation locally and sends the result to the provider,
along with a proof of correctness.
SecureMulti-Party Computation In this case, several par-
ties, each of them with a private input, compute jointly
the result of function on input their private inputs. Parties
obtain the result of the computation, but they do not learn

1 http://moneysaverspain.com/electricity-bill-spain/

the private inputs of the other parties. The feasibility of
secure multi-party computation has been shown [22].
In the context of smart metering, secure multi-party com-
putation has been applied to reveal to the service provider
the result of a function that takes in the meter readings
of more than one user. Some works focus on revealing
to the service provider the aggregate consumption of a
group of users, for purposes such as fraud detection, sta-
tistics collection or demand management [14,19,32,48].
We note that [48] shows a two-party protocol for billing
purposes, but it requires to perform all the computation
inside the tamper-resistant meter and the class of tariff
policies that it supports is very limited.

6 Conclusion

Privacy-preserving billing protocols allow users to calcu-
late the total bill on input meter readings and prove to the
service provider that the bill is correct without disclosing
meter readings. They are useful to protect user privacy in
any application that employs fine-grained billing, such as
smart metering, electronic traffic pricing and road tolling.
First, we have revisited the security model in [47] and we
have proposed an ideal functionality for privacy-preserving
billing where a meter can output meter readings to multiple
users, and where a user receives meter readings from mul-
tiple meters. We have also proposed a protocol that realizes
our ideal functionality and that, for tariff policies described
by splines, improves the communication cost of the protocol
in [47].

References

1. Acs, G., Castelluccia, C.: I have a dream!(differentially private
smart metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.)
Information hiding, pp. 118–132. Springer, Berlin, Heidelberg
(2011)

2. Anderson, R., Fuloria, S.: On the security economics of electricity
metering. In: 9th Annual workshop on the economics of informa-
tion security, WEIS 2010, Harvard University, Cambridge, MA,
USA, 7–8 June 2010

3. Balasch, J., Rial, A., Troncoso, C., Preneel, B., Verbauwhede, I.,
Geuens, C.: Pretp: Privacy-preserving electronic toll pricing. In:
USENIX Security Symposium, pp. 63–78. USENIX Association
(2010)

4. Barthe, G., Danezis, G., Grégoire, B., Kunz, C., Zanella-Béguelin,
S.: Verified computational differential privacy with applications to
smart metering. In: 2013 IEEE 26th Computer Security Founda-
tions Symposium (CSF), pp. 287–301. IEEE (2013)

5. Biswas, D., Niemi, V.: Transforming privacy policies to auditing
specifications. In: 2011 IEEE 13th International Symposium on
High-AssuranceSystemsEngineering (HASE), pp. 368–375. IEEE
(2011)

6. Bohli, J.M., Sorge, C., Ugus, O.: A privacy model for smart meter-
ing. In: 2010 IEEE International Conference on Communications
Workshops (ICC), pp. 1–5. IEEE (2010)

123

http://moneysaverspain.com/electricity-bill-spain/


A. Rial et al.

7. Bordoff, J., Noel, P.: Pay-as-you-drive Auto Insurance: A Sim-
ple Way to Reduce Driving-Related Harms and Increase Equity.
Hamilton Project Discussion Paper (2008)

8. Byun, J.W., Li, N.: Purpose based access control for privacy pro-
tection in relational database systems. VLDB J. 17(4), 603–619
(2008). doi:10.1007/s00778-006-0023-0

9. Canetti, R.: Universally composable security: a new paradigm for
cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer
Society (2001)

10. Canetti, R.: Universally composable signature, certification, and
authentication. In: 2004 Proceedings of the 17th IEEE Computer
Security Foundations Workshop, pp. 219–233. IEEE (2004)

11. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M.,
Reagle, J.: The platform for privacy preferences 1.0 (p3p1. 0) spec-
ification.W3CRecomm. 16 (2002). https://www.w3.org/TR/P3P/

12. Damgård, I., Faust, S., Hazay, C.: Secure two-party computation
with low communication. In: Cramer, R. (ed.) Theory of cryptog-
raphy, pp. 54–74. Springer, Berlin, Heidelberg (2012)

13. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty compu-
tation from somewhat homomorphic encryption. In: Safavi-Naini,
R., Canetti, R. (eds.) Advances in cryptology-CRYPTO 2012, pp.
643–662. Springer, Berlin, Heidelberg (2012)

14. Danezis, G., Fournet, C., Kohlweiss, M., Zanella-Béguelin, S.:
Smart meter aggregation via secret-sharing. In: Proceedings of the
First ACM Workshop on Smart Energy Grid Security, pp. 75–80.
ACM (2013)

15. Danezis, G., Kohlweiss, M., Rial, A.: Differentially private billing
with rebates. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) Infor-
mation hiding, pp. 148–162. Springer, Berlin, Heidelberg (2011)

16. Efthymiou, C., Kalogridis, G.: Smart grid privacy via anonymiza-
tion of smart metering data. In: 2010 First IEEE International
Conference on Smart Grid Communications (SmartGridComm),
pp. 238–243. IEEE (2010)

17. Fournet, C., Kohlweiss, M., Danezis, G., Luo, Z.: Zql: a compiler
for privacy-preserving data processing. In: 22nd USENIX Security
Symposium (USENIXSecurity 13),Washington, DC, pp. 163–178
(2013)

18. Freudiger, J., Shokri, R., Hubaux, J.P.: Evaluating the privacy risk
of location-based services. In: Blythe, J. (ed.) Financial cryptog-
raphy and data security, pp. 31–46. Springer, Berlin, Heidelberg
(2012)

19. Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via
homomorphic encryption. In: Cuellar. J., Lopez, J., Barthe, G.,
Pretschner. A. (eds.) Security and trust management, pp. 226–238.
Springer, Berlin, Heidelberg (2011)

20. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In: Rabin,
T. (ed.) Advances in cryptology–CRYPTO 2010, pp. 465–482.
Springer, Berlin, Heidelberg (2010)

21. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput.
17(2), 281–308 (1988)

22. Goldwasser, S., Micali, S., Wigderson, A.: How to play any men-
tal game, or a completeness theorem for protocols with an honest
majority. In: Proceedings of the Nienteenth Annual ACM STOC,
vol. 87, pp. 218–229 (1987)

23. Gungor, V.C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati,
C., Hancke, G.P.: Smart grid technologies: communication tech-
nologies and standards. IEEE Trans. Ind. Inform. 7(4), 529–539
(2011)

24. Hensher, D.A.: Electronic toll collection. Transp. Res. A: Gen.
25(1), 9–16 (1991)

25. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai,
A.: Efficient non-interactive secure computation. In: Paterson,K.G.
(ed.) Advances in Cryptology–EUROCRYPT 2011, pp. 406–425.
Springer, Berlin, Heidelberg (2011)

26. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on
oblivious transfer—efficiently. In: Wagner, D. (ed.) Advances in
Cryptology–CRYPTO 2008, pp. 572–591. Springer, Berlin, Hei-
delberg (2008)

27. Kalogridis, G., Efthymiou, C., Denic, S.Z., Lewis, T.A., Cepeda,
R.: Privacy for smart meters: towards undetectable appliance load
signatures. In: 2010 First IEEE International Conference on Smart
Grid Communications (SmartGridComm), pp. 232–237. IEEE
(2010)

28. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-
aided secure function evaluation. In: Proceedings of the 2012ACM
conference on Computer and communications security, pp. 797–
808. ACM (2012)

29. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commit-
ments to polynomials and their applications. In: Abe, M. (ed.)
ASIACRYPT, Lecture Notes in Computer Science, vol. 6477, pp.
177–194. Springer, New York (2010)

30. Krumm, J.: Inference attacks on location tracks. In: LaMarca, A.,
Langheinrich, M., Truong, K.N. (eds.) Pervasive computing, pp.
127–143. Springer, Berlin, Heidelberg (2007)

31. Kumari, P., Kelbert, F., Pretschner, A.: Data protection in heteroge-
neous distributed systems: a smart meter example. In: Proceedings
of dependable software for critical infrastructures, Berlin, 6 Octo-
ber 2011

32. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggre-
gation for the smart-grid. In: Fischer–Hübner, S., Hopper, N. (eds.)
Privacy enhancing technologies, pp. 175–191. Springer, Berlin,
Heidelberg (2011)

33. Lepinksi, M., Micali, S., et al.: Collusion-free protocols. In: Pro-
ceedings of the thirty-seventh annual ACM symposium on Theory
of computing, pp. 543–552. ACM (2005)

34. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-
choose oblivious transfer. J. Cryptol. 25(4), 680–722 (2012)

35. Lisovich, M.,Wicker, S.: Privacy concerns in upcoming residential
and commercial demand-response systems. In: 2008 ClemsonUni-
versity Power Systems Conference. Clemson University (2008).
http://www.truststc.org/pubs/332.html

36. Massoud Amin, S., Wollenberg, B.F.: Toward a smart grid: power
delivery for the 21st century. IEEE Power EnergyMag. 3(5), 34–41
(2005)

37. Meiklejohn, S., Mowery, K., Checkoway, S., Shacham, H.: The
phantom tollbooth: Privacy-preserving electronic toll collection in
the presence of driver collusion. In: USENIXSecurity Symposium,
vol. 201 (2011)

38. Nguyen, D.H., Mynatt, E.D.: Privacy mirrors: understanding and
shaping socio-technical ubiquitous computing systems (2002)

39. Nielsen, J.B., Orlandi, C.: Technical report, Georgia Institute of
Technology

40. Ogden, K.: Privacy issues in electronic toll collection. Transp. Res.
C: Emerg. Technol. 9(2), 123–134 (2001)

41. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly
practical verifiable computation. In: 2013 IEEE Symposium on
Security and Privacy (SP), pp. 238–252. IEEE (2013)

42. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate
and verify in public: verifiable computation from attribute-based
encryption. In: Cramer, R. (ed.) Theory of cryptography, pp. 422–
439. Springer, Berlin, Heidelberg (2012)

43. Popa, R.A., Balakrishnan, H., Blumberg, A.J.: Vpriv: Protecting
privacy in location-based vehicular services. In: USENIX Security
Symposium, pp. 335–350 (2009)

44. Quinn, E.L.: Privacy and the new energy infrastructure. Available
at SSRN 1370731 (2009)

45. Quinn, E.L.: Smart metering and privacy: existing laws and com-
peting policies. Available at SSRN 1462285 (2009). doi:10.2139/
ssrn.1462285

123

http://dx.doi.org/10.1007/s00778-006-0023-0
https://www.w3.org/TR/P3P/
http://www.truststc.org/pubs/332.html
http://dx.doi.org/10.2139/ssrn.1462285
http://dx.doi.org/10.2139/ssrn.1462285


Privacy-preserving smart metering revisited

46. Rajagopalan, S.R., Sankar, L.,Mohajer, S., Poor, H.V.: Smartmeter
privacy: A utility-privacy framework. In: 2011 IEEE International
Conference on Smart Grid Communications (SmartGridComm),
pp. 190–195. IEEE (2011)

47. Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Chen,
Y., Vaidya, J. (eds.) WPES, pp. 49–60. ACM, New york (2011)

48. Thoma, C., Cui, T., Franchetti, F.: Secure multiparty computation
based privacy preserving smart metering system. In: 2012 North
American Power Symposium (NAPS), pp. 1–6. IEEE (2012)

49. Troncoso, C., Danezis, G., Kosta, E., Preneel, B.: Pripayd: pri-
vacy friendly pay-as-you-drive insurance. In: Ning, P., Yu, T. (eds.)
WPES, pp. 99–107. ACM, New York (2007)

50. Varodayan, D., Khisti, A.: Smart meter privacy using a recharge-
able battery: minimizing the rate of information leakage. In: 2011
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1932–1935. IEEE (2011)

51. Wang, S., Cui, L., Que, J., Choi, D.H., Jiang, X., Cheng, S., Xie,
L.: A randomized response model for privacy preserving smart
metering. IEEE Trans. Smart Grid 3(3), 1317–1324 (2012)

52. Yao, A.C.C.: How to generate and exchange secrets. In: 1986 27th
Annual SymposiumonFoundations ofComputer Science, pp. 162–
167. IEEE (1986)

123


	Privacy-preserving smart metering revisited
	Abstract
	1 Introduction
	2 Definition of privacy-preserving billing
	2.1 Universal composability
	2.2 Ideal functionality for privacy-preserving billing

	3 Technical preliminaries
	3.1 Non-interactive zero-knowledge proofs of knowledge
	3.2 Signature schemes
	3.3 Commitment schemes
	3.4 Polynomial commitments

	4 Construction of privacy-preserving billing
	4.1 Linear policies
	4.2 Cumulative policies
	4.3 Polynomial policies
	4.4 Other policies
	4.5 Efficiency discussion
	4.6 Security analysis of construction BIL
	4.6.1 Case mathcalV corrupt
	4.6.2 Case mathcalU corrupt
	4.6.3 Case mathcalV, mathcalU and mathcalM corrupt
	4.6.4 Case mathcalV and mathcalU corrupt
	4.6.5 Case mathcalU and mathcalM corrupt
	4.6.6 Case mathcalV and mathcalM corrupt
	4.6.7 Case mathcalV and mathcalM corrupt but collusion-free


	5 Related work
	6 Conclusion
	References




