

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

Newcastle University ePrints - eprint.ncl.ac.uk

Ali ST, McCorry P, Lee PH-J, Hao F. ZombieCoin 2.0: managing next-

generation botnets using Bitcoin. International Journal of Information

Security 2017

Copyright:

The final publication is available at Springer via https://doi.org/10.1007/s10207-017-0379-8

Date deposited:

22/08/2017

Embargo release date:

01 June 2018

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=238929
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=238929
https://doi.org/10.1007/s10207-017-0379-8

Noname manuscript No.
(will be inserted by the editor)

ZombieCoin 2.0: Managing Next-Generation Botnets
using Bitcoin

Syed Taha Ali · Patrick McCorry · Peter Hyun-Jeen Lee · Feng Hao

Received: date / Accepted: date

Abstract Botnets are the preeminent source of online

crime and arguably one of the greatest threats to the

Internet infrastructure. In this paper, we present Zom-

bieCoin, a botnet command-and-control (C&C) mech-

anism that leverages the Bitcoin network. ZombieCoin

offers considerable advantages over existing C&C tech-

niques, most notably the fact that Bitcoin is designed

to resist the very same takedown campaigns and reg-

ulatory processes that are the most often-used meth-

ods to combat botnets today. Furthermore, we describe

how the Bitcoin network enables novel C&C techniques,

which dramatically expand the scope of this threat, in-

cluding the possibilities of flexible rendezvous schedul-

ing, efficient botnet partitioning, and fine-grained con-

trol over bots.

We validate our claims by implementing ZombieCoin

bots which we then deploy and successfully control over

the Bitcoin network. Our findings lead us to believe that

Bitcoin-based C&C mechanisms are a highly desirable

option botmasters will pursue in the near future. We

This work is supported by the European Research Council
(ERC) Starting Grant (No. 306994).

Syed Taha Ali
School of Electrical Engineering and Computer Science
National University of Sciences and Technology, Pakistan
Tel.: +123-45-678910
Fax: +123-45-678910
E-mail: taha.ali@seecs.edu.pk

Patrick McCorry and Feng Hao
School of Computing Science, Newcastle University,
Newcastle upon Tyne, UK,
E-mail: {patrick.mccorry,feng.hao}@ncl.ac.uk

Peter Hyun-Jeen Lee
Paysafe Group,
Cambridge, UK,
E-mail: peter.hyunjeen.lee@gmail.com

hope our study provides a useful first step towards de-

vising effective countermeasures for this threat.

Keywords botnets · Bitcoin · cryptocurrencies · C&C

1 Introduction

Botnets are networks of compromised machines, indi-

vidually referred to as bots or zombies, controlled re-

motely by a malicious entity known as the botmaster.

They were originally developed as tools for vandalism

and to showcase hacking skills, and have evolved into

sophisticated platforms geared towards financial gain

and cyberwarfare. Almost eight years have passed since

Vint Cerf’s dire warning of a botnet “pandemic” [1],

and since then the threat has only intensified.
Large botnets today typically number millions of

infected victims, employed in a wide range of illicit ac-

tivity including spam and phishing campaigns, spying,

information theft and extortion [2]. The FBI recently

estimated that 500 million computers are infected annu-

ally, incurring global losses of approximately $110 bil-

lion [3]. Botnets have now started conscripting mobile

phones [4] and smart devices, such as refrigerators and

surveillance cameras to spam and mine cryptocurren-

cies [5]. There are even national security implications:

in the Estonian cyberattacks of 2007, botnets mounted

distributed denial of service (DDoS) campaigns, crip-

pling Estonian ICT infrastructure and forcing govern-

ment portals, media outlets, banks, and telcos to dis-

connect from the Internet [6]. These alarming develop-

ments have prompted US lawmakers to actively pursue

legislation to combat the botnet threat [7].

The fatal weak point for botnets is the C&C infras-

tructure which essentially functions as the central ner-

vous system of the botnet. Downstream communication

2 Syed Taha Ali et al.

comprises instructions and software updates sent by the

botmaster, whereas upstream communication from bots

includes loot, such as financial data, login credentials,

etc. Security researchers usually reverse engineer a bot,

infiltrate the C&C network, trace the botmaster and

disrupt the botnet. The overwhelming majority of suc-

cessful takedown operations to date have relied heavily

on exploiting or subverting botnet C&C infrastructures

[2].

In this paper, we argue that Bitcoin is an ideal C&C

dissemination mechanism for botnets. Bitcoin is a fully

functional decentralized cryptocurrency, the popular-

ity of which has skyrocketed in the wake of the global

financial crisis. 1 bitcoin (or BTC) trades at approxi-

mately $480 and the currency has a market cap of ap-

proximately $6.17 billion [8].1 Bitcoin trades over $257

million a day, which is a greater volume of transactions

than Western Union and this year some expect it to

overtake Paypal and American credit card networks in-

cluding Discover [9]. At the heart of Bitcoin’s success

is the blockchain, a massively distributed, cryptograph-

ically verifiable database, maintained over the Bitcoin

P2P network, which tracks currency ownership in near

real-time.

Bitcoin offers botmasters considerable advantages

over existing C&C techniques such as IRC chatrooms,

HTTP rendezvous points, or P2P networks. First, by

piggybacking communications onto the Bitcoin network,

the botmaster is spared the costly and hazardous pro-

cess of maintaining a custom C&C network. Second,

Bitcoin provides some degree of anonymity which may

be enhanced using conventional mechanisms like VPNs

or Tor. Third, Bitcoin has built-in mechanisms to har-

monize global state, eliminating the need for bot-to-bot

communication. Capture of one bot therefore does not

expose others, and an observer cannot enumerate the

size of the botnet.

Most importantly, C&C communications over the

Bitcoin network cannot be shut down simply by confis-

cating a few servers or poisoning routing tables. The

Bitcoin network is designed to withstand these very

kind of attacks. Furthermore, disrupting C&C commu-

nication would be difficult to do without seriously im-

pacting legitimate Bitcoin users and may break Bitcoin.

Any form of regulation would be a fragrant violation of

the libertarian ideology Bitcoin is built upon [10]. It

would also entail significant protocol modification on

the majority of Bitcoin clients scattered all over the

world.

We explore in detail the possibility of running a bot-

net over Bitcoin. Our specific contributions are:

1 Bitcoin prices are prone to fluctuation. All figures quoted
in this paper date to September, 2014.

1. We present ZombieCoin, a mechanism enabling bot-

masters to communicate with bots over the Bitcoin

network by embedding C&C communications in Bit-

coin transactions.

2. We describe how the Bitcoin paradigm enables novel

C&C possibilities including dynamic upstream chan-

nels, fine-grained control over bots, and efficient par-

titioning of the botnet.

3. We prototype and deploy ZombieCoin over the Bit-

coin network. Experimental results indicate that bot

response time is generally in the range of 5-12 sec-

onds.

4. We suggest possible countermeasures against such

botnets.

We have also chosen to make the ZombieCoin source

code available for purposes of academic research strictly.2

Our goal, of course, is not to empower criminal oper-

ations, but to evaluate this threat so that preemptive

solutions may be devised. This is in the spirit of exist-

ing research efforts exploring emergent threats (such as

cryptovirology [11] and the FORWARD initiative [12]).

The rest of this paper is organized as follows: Sec-

tion 2 presents essential background information on bot-

nets and Bitcoin and motivates the rest of this paper.

Section 3 describes the ZombieCoin protocol in detail

and proposes enhancements for additional functional-

ity. Section 4 presents our prototype implementation

and experimental results. We discuss possible counter-

measures in Section 5, related work in Section 6, and

conclude in Section 7.

2 Background

We summarize here the evolutionary path of C&C mech-

anisms, followed by a brief overview of Bitcoin.

2.1 Botnet C&C Mechanisms

First generation botnets, such as Agobot, SDBot, and

SpyBot (observed in 2002-2003) [13], maintain C&C

communications over Internet Relay Chat (IRC)

networks. The botmaster hardcodes IRC server and

channel details into the bot executable prior to deploy-

ment, and, after infection, bots log on to the specified

chatroom for instructions. This method has numerous

advantages: the IRC protocol is widely used across the

Internet, there are several public servers which botnets

can use, and communication is in real-time. However,

2 Interested parties are requested to contact the authors via
email.

ZombieCoin 2.0: Managing Next-Generation Botnets using Bitcoin 3

the network signature of IRC traffic is easily distin-

guished. More critically, this C&C architecture is cen-

tralized. Researchers can reverse-engineer bots, allow-

ing them to eavesdrop in C&C chatrooms, identify the

bots and track the botmaster. Researchers also regu-

larly coordinate with law enforcement to legally take

down C&C chatrooms, crippling the entire botnet in

just one step. According to insider accounts, two thirds

of IRC botnets are shut down in just 24 hours [14].

The next generation of botnets upgraded to HTTP-

based C&C communications. Examples include Ru-

stock, Zeus and Asprox (observed in 2006-2008). Bots

periodically contact a webserver using HTTP messages

to receive instructions and offload loot. HTTP is ubiq-

uitous on most networks and bot communications blend

in with legitimate user traffic. However, web domains

can be blocked at the DNS level, C&C webservers can

be located and seized and the botmaster can be traced.

To adapt, botmasters came up with two major in-

novations. Bots are no longer hardcoded with a web

address prior to deployment, but with a Domain Gen-

eration Algorithm (DGA) that takes date and time

as seed values to generate custom domain names at a

rapid rate. The rationale is that it is very costly and

time-consuming for law enforcement to seize a large

number of domains whereas the botmaster has to reg-

ister only one to successfully rendezvous with his bots

in a given time-window. Conficker-C generated 50,000

domain names daily, distributed over 116 Top Level Do-

mains (TLDs) which proved nearly impossible to block

[15]. However, DGAs can be reverse-engineered. Secu-

rity researchers hijacked the Torpig botnet for a period

of ten days by registering certain domains ahead of the

botmasters [16].

The second innovation is Domain Flux: botmas-

ters now link several hundreds of destination IP ad-

dresses with a single fully qualified domain name in

a DNS record (e.g. www.domain.com). These IP ad-

dresses are swapped at high frequency (as often as ev-

ery 3 minutes), so that different parties connecting to

the same domain within minutes of each other are redi-

rected to different locations. Furthermore, destination

IP addresses often themselves point to infected hosts

which act as proxies for the botmaster. Yet another

layer of confusion can be added into the equation by

similarly concealing the Authoritative Name Servers for

the domain within this constantly changing fast flux

cloud.

The third major development in botnet C&C infras-

tructures is decentralized P2P networks which have

been used by Conficker, Nugache and Storm botnets

in 2006-2007. Bots maintain individual routing tables,

and every bot actively participates in routing data in

the network, making it difficult to identify C&C servers.

However, P2P-based bots also have weak points: for in-

stance, to bootstrap entry into the P2P network, Phat-

bot uses Gnutella cache servers on the Internet and

Nugache bots are hardcoded with a seed list of IP ad-

dresses, both of which are centralized points of failure

[17]. Security researchers have been able to detect P2P

traffic signatures, successfully crawl P2P networks to

enumerate the botnet, and poison bot routing tables

to disrupt the botnet. In a concerted takedown effort,

Symantec researchers took down the ZeroAccess botnet

by flooding routing advertisements that overwhelmed

bot routing tables with invalid or sinkhole entries, iso-

lating bots from each other and crippling the botnet

[18].

Some botnets employ multiple solutions for robust-

ness, for example, Conficker uses HTTP-based C&C in

addition to its P2P protocol [15]. More recently botnets

have begun experimenting with esoteric C&C mech-

anisms, including darknets, social media and cloud ser-

vices. The Flashback Trojan retrieved instructions from

a Twitter account [19]. Whitewell Trojan used Face-

book as a rendezvous point to redirect bots to the C&C

server [20]. Trojan.IcoScript used webmail services like

Yahoo Mail for C&C communications [21]. Makadocs

Trojan [22] and Vernot [23] used Google Docs and Ev-

ernote respectively as proxies to the botmaster. The re-

sults have been mixed. Network administrators rarely

block these services because they are ubiquitously used,

and C&C traffic is therefore hard to distinguish. On the

other hand, C&C channels are again centralized and

companies like Twitter and Google are quick to crack

down on them.

2.2 Bitcoin

Bitcoin may be visualized as a distributed database

which tracks the ownership of virtual currency units

(bitcoins). Bitcoins are not linked to users or accounts

but to addresses. A Bitcoin address is simply a trans-

formation on a public-key, whereas, the private-key is

used to spend the bitcoins associated with that address.

A transaction is a statement containing an input ad-

dress, an output address, and the quantity to be trans-

ferred, digitally signed using the private-key associated

with the input. More complex transactions may include

multiple inputs and outputs. All inputs and outputs are

created using scripts that define the conditions to claim

the bitcoins.

Transactions are circulated over the Bitcoin net-

work, a decentralized global P2P network. Users known

as miners collect transactions and craft them into blocks,

4 Syed Taha Ali et al.

which are chained into a blockchain to maintain a cryp-

tographically verifiable ordering of transactions. Miners

compete to solve a proof-of-work puzzle to insert their

block into the blockchain. New blocks are generated

at the rate of approximately once every ten minutes.

The double spending problem of digital currencies is

overcome by replicating the blockchain at the network

nodes and using a consensus protocol to ensure global

consistency of state.

Bitcoin was deliberately designed to resist the kind

of centralization, monetary control, and oversight which

restrict fiat currencies [10]. Users have some degree of

anonymity3 which may be enhanced using Tor and mix-

ing services. The decentralized nature of the network

and the proof-of-work puzzle ensures that transactions

in the network cannot be easily regulated. Bitcoin can

only be subverted if a malicious party in the network

musters more computing power than the rest of the

network combined.

Entrepreneurs and researchers have been quick to

recognize Bitcoin as a new paradigm with wide appli-

cation. Projects like Mastercoin [24], Colored Coins [25]

and Counterparty [26] use the Bitcoin network as an un-

derlying primitive to track ‘virtual tokens’ which denote

financial instruments such as bonds and stocks, corpo-

rate currencies such as coupons and tickets, and even

digital properties like subscription services or software

licenses.

Namecoin [27], the first official fork of Bitcoin, en-

ables users to register domains in the Namecoin blockchain

as an alternative DNS outside of ICANN jurisdiction.

Applications towards timestamping have also evolved:

Commitcoin [28] is a research effort that embeds ‘com-

mitments’ to data in the blockchain, effectively times-

tamping it. Similarly, Monegraph provides a proof-of-

ownership service for digital artworks [29]. The One-

Name service [30] allows users to publicly link their

names and Bitcoin addresses by inserting the corre-

sponding details in the Namecoin blockchain.

3 ZombieCoin

Our work is the first to leverage the Bitcoin network

to enable C&C communications for botnets. As we will

demonstrate in the course of this paper, this new facility

offers botmasters significant advantages over traditional

C&C channels. Here we briefly outline the operation of

ZombieCoin:

1) The botmaster generates a set of Bitcoin cre-

dentials, i.e. a key pair (sk, pk). The public-key, pk, is

3 Bitcoin technically provides pseudonymity, a weaker form
of anonymity, in that Bitcoin addresses are not tied to identity
and it is trivial to generate new addresses.

hardcoded into the bot binary file prior to deployment,

so that bots can authenticate communication from the

botmaster. Bots are also equipped with an instruction

set to decode commands send by the botmaster. Our

implementation, described in Section 4, consists of sim-

ple instructions such as REGISTER, PING, UPDATE,

etc. with associated parameters.

2) The botnet is then released into the wild. We as-

sume there is an infection mechanism to propagate the

botnet. One common example nowadays is for botmas-

ters to embed advertisements on webpages frequented

by intended victims. When a viewer clicks on the link,

he is redirected to a website hosting malicious code

which executes in the background and infects his ma-

chine without his knowledge.

Upon infection, each bot generates a unique bot

identifier. This may be done in various ways. For in-

stance, Torpig bots derive an 8 byte identifier (nid) by

hashing the victim’s hard disk volume and serial num-

ber information [16]. Unique identifiers enable the bot-

master to enumerate the botnet, and, as we will demon-

strate later, exercise dynamic fine-grained control over

the bots.

3) Bots then individually connect to the Bitcoin net-

work and receive and propagate incoming Bitcoin trans-

actions. All network communication for the botnet then

proceeds as per the standard Bitcoin protocol specifi-

cation described in [31]. By adhering to the standard

protocol, the network behavior of the bots to an out-

side observer is indistinguishable from the traffic of a

genuine Bitcoin user.

4) The botmaster periodically issues C&C instruc-

tions by obfuscating and embedding them into transac-

tions. Bots identify these transactions by scanning the

ScriptSig field in the transaction input which contains

the botmaster’s public-key, pk, and the digital signa-

ture (computed over the transaction) using private-key

sk. Bots verify the signature, decode the instructions

and execute them accordingly. These instructions may

include commands to not only spy on the victim and

steal his personal information, but also to undertake

external attacks, such as send spam emails and launch

DoS attacks on specified targets.

Next we detail various strategies to embed C&C

commands in transactions.

3.1 Inserting C&C Instructions in Transactions

The most straightforward method is to insert C&C data

in the OP RETURN output script function. The

OP RETURN function is a recent feature included in

the 0.11.0 release of the Bitcoin Core client and allows

ZombieCoin 2.0: Managing Next-Generation Botnets using Bitcoin 5

users to insert up to 80 bytes of data in transactions.

However, a transaction may only have one OP RETURN

script.

This inclusion is due to immense lobbying by the

Bitcoin community [32]. Developers anticipate the us-

age of this function to be along the lines of meaningful

transaction identifiers (similar to text fields in online

banking transactions), hash digests of some data such

as contracts [33], cryptotokens, or even index values to

link to other data stores. Analysis of a recent 80-block

portion of the blockchain reveals that the OP RETURN

field was used in about a quarter of transactions in that

portion, indicating that this feature is proving popular

[34]. One company has already launched timestamping

services which rely on embedding hash data in this field

[34].

This bandwidth is more than sufficient to embed

most botnet commands which are typically instruction

sets in the format < command >< parameter > ... <

parameter >. For instance, the DDoS attack library

for Agobot [13] contains commands: ddos.synflood <

host >< time >< delay >< port > and ddos.httpflood <

url >< number >< referrer >< delay >< recursive >,

etc. Agobot has over ninety such commands and they

can be encoded numerically using efficient schemes like

Huffman coding to fit within the 80 byte limit.

A second approach offering greater bandwidth pos-

sibilities is to embed C&C instructions as unspend-

able outputs. Prior to release of the OP RETURN

function, this was the common method by which users

inserted custom data into transactions, and is used by

Counterparty [26] and Mastercoin [24]. We dissect a

typical Mastercoin transaction in Fig. 1. The first out-

put address, 1EXoDusjG..., referred to as the Master-

coin Exodus Address, identifies this as a Mastercoin

transaction. The last output address is an unspendable

output, which decodes into a Mastercoin transaction.

Very small bitcoin values are generally associated with

such outputs because they cannot be redeemed. Up to

20 bytes of data may be inserted into an unspendable

output, and a single transaction may have multiple such

outputs. Proof of Existence [35], a Bitcoin-based notary

public service, timestamps data by inserting hash di-

gests as multiple unspendable outputs in transactions.

Incidentally, however, Mastercoin, Counterparty, and

Proof of Existence have expressed intent to switch to

the OP RETURN function [32]. As we noted, unspend-

able outputs are inherently wasteful. This method is

also clumsy: Bitcoin clients maintain a live inventory of

unspent transaction outputs (UTXO) to efficiently ver-

ify validity of new transactions. Clients cannot identify

malformed outputs, with the result that these addresses

populate the UTXO data set indefinitely (since they are

{ inputs: [{ address: '1LQBddrjjUaMLHcd4cG9XnN4cCZbHfREJF' , value: 1445759 }],
 outputs: [{ address: '1EXoDusjGwvnjZUyKkxZ4UHEf77z6A5S4P', value: 6000 },
 { address: '12ARS3euPbdQ9S68xXhmq4ySzSADfMaR1a', value: 6000 }
 { address: '1D3tBJ6b3htSaMhEV3EtTAPLvTHwLBrQPH', value: 1417759 },
 { address: ' ', value: 6000 }] }

0b 00000000 00000001 000000004042cd1d000000

0b – transaction sequence number

00000000 – transaction type (regular send)

00000001 – currency ID (Mastercoin)

000000004042cd1d – value – converting hex to decimal (1078119709)

Bitcoin Transaction

Mastercoin Transaction

Fig. 1 Decoding a Mastercoin transaction [36]

never spent), affecting the efficiency of the network as

a whole.

A more elegant technique is to communicate C&C

messages by key leakage. Signing two different mes-

sages using the same random factor in the ECDSA

signature algorithm allows an observer to derive the

signer’s private-key d. Such instances have already been

observed in the blockchain, resulting in coin theft [37].

In this case, the botmaster frames the C&C instruc-

tion within a 32 byte ECDSA private-key (including

padding with random data so that identical commands

do not always yield the same private-key). This is fol-

lowed by an obfuscation technique to give the data

enough randomness to function as a private-key. The

public-key is then derived.

The botmaster then signs two transactions using the

same random factor k, which will derive two signatures

(r, s1) and (r, s2). Clearly any observer (including our

bots) can detect this C&C message as r appears twice

which also allows them to derive the random factor’s

private key, k (as outlined in [38]). Once k is known, it

is then a trivial operation to derive the private signing

key d and allow the bot to read the command. Notably

this approach has also been used by Commitcoin [28] to

insert hash digests in transactions. Bitcoins need not be

wasted using this method (if the botmaster fully spends

the bitcoins linked to the private key), and bandwidth

is up to 32 bytes per input. However, two transactions

are needed to transmit the C&C instructions.

A more covert solution is to use subliminal chan-

nels. Simmons [39] [40] notably demonstrated that two

parties can set up a secret communications channel in

digital signature schemes. This is again done by exploit-

ing the random factor used by the signing algorithm.

The botmaster creates a C&C instruction bitstring of

length x bits. He then repeatedly generates signatures

on the transaction using different random factors, un-

6 Syed Taha Ali et al.

til he gets a match, i.e. a signature, the first x bits

of which match the target bitstring. He attaches this

signature to the transaction and publishes it. Nodes re-

ceive the transaction, verify that the signature is valid,

and propagate it. Bots, on the other hand, extract the

instructions from the first x bits and execute them.

Bandwidth is very restricted using this technique

due to the one-way nature of the signing function. Gen-

erating x bits of an ECDSA signature to match a bit-

string takes on average 2x iterations. For larger instruc-

tions, the botmaster may choose to split the instruction

into smaller target bitstrings inserted in multiple signa-

tures. We briefly investigate here the practicality of this

approach. We use an Intel i7 machine operating at 2.8

GHz with 8GB RAM, running 64-bit Windows 7, and

we use the OpenSSL toolkit to construct ECDSA sig-

natures with subliminal channels of incrementing size.

In each run we construct eight signatures matching a

target string and record the time taken. Results are

plotted in Fig. 2.

As demonstrated, it takes under 10 minutes (600s)

to sequentially generate eight signatures with sublim-

inal channels of size 14 bits each. Total bandwidth in

this case is 8 · 14 bits (14 bytes). We consider here a

couple of optimizations: first, we use multithreading to

parallelize operations across the multiple processors of

the machine. It now takes about 3 minutes to gener-

ate eight signatures with 14-bit channels, a reduction

of nearly 65%.

Second, instead of passing each thread a single tar-

get bitstring, we let each thread search across the whole

range of the target bitstrings. The process stops as soon

as each individual thread has located at least one dis-

tinct target. This shared-search step exploits the ran-

domness of the signature generation process, increasing

the odds of a successful match. We note an approxi-

mate 20% improvement over the basic multithreading

scenario. It now takes approximately only 2 minutes to

generate eight 14-bit subliminal channels, which is very

practical. The botmaster can order the resulting sig-

natures accordingly in the transaction to construct the

complete subliminal channel.

We have considered here four methods to insert C&C

instructions into the blockchain, i.e. in the OP RETURN

function, as unspendable outputs, via key leakage, and

by creating subliminal channels. The botmaster can

pick the technique of his choice or even combine dif-

ferent methods as per his requirements. While these

channels are sufficient for typical botnet communica-

tions, they are however restricted in that they provide

low bandwidth of only a few tens of bytes per transac-

tion in the downstream direction (i.e. from botmaster to

bots) only. However, occasionally the botmaster’s com-

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

Bandwidth of Individual Subliminal Channel (bits)

S
ig
n
a
tu
re
 G
e
n
e
ra
ti
o
n
 T
im
e
 (
s
)

Sequential

Multithreading

Shared-search Multithreading

Fig. 2 Bandwidth vs. signature generation time for sublimi-
nal channels

munication requirements may exceed these limitations.

We discuss next some novel proposals to expand the

C&C communication channel.

3.2 Extending ZombieCoin

In this section, we describe enhancements to ZombieCoin

to enable upstream C&C communication, delivery of

larger payloads, and efficient fine-grained botnet parti-

tioning.

Upstream Communication: Botnets require an

upstream channel to send status updates and loot back

to the botmaster. On successful infection, the bot usu-

ally sends a registration message (including bot identi-

fier, machine specifications and geolocation data, etc.)

and periodic heartbeat messages. Loot consists of vic-

tim’s login credentials, financial data or proprietary in-

formation. It would be prohibitively expensive and im-

practical for bots to communicate upstream by embed-

ding information in Bitcoin transactions. However, the

botmaster may use the downstream channel to periodi-

cally announce rendezvous points where bots can direct

upstream communications. For instance, this could be

the web address of a domain owned by the botmaster.

Similar approaches have been observed in the wild.

For instance, botmasters used a Facebook Wall feed to

redirect Whitewell Trojan bots to C&C servers [20].

This is similar to using a domain generation algorithm

but with one key difference: DGAs have been reverse en-

gineered by researchers to lockdown rendezvous points

ahead of time. Some botnets adapted by seeding DGAs

with unpredictable input (such as current Twitter search

trends [16]), which improves the situation a bit, but the

botmaster still has to act within a very narrow time

window to register domains.

ZombieCoin 2.0: Managing Next-Generation Botnets using Bitcoin 7

In our scenario though, since the Bitcoin network

acts as a near real-time broadcast channel to the bots,

the botmaster can announce rendezvous points as often

as he wants, and bots can start sending upstream mes-

sages right away. Typically the botmaster has a load-

balancing solution deployed on servers at his end to

cope with the large amount of incoming bot traffic (or it

would amount to a virtual self-DDoS). To better cope,

he could provide bots with multiple web addresses. Bots

could even be programmed to fire a randomized timer

before initiating communication.

The botmaster has considerable flexibility in this

scenario. It will take time for law enforcement to neu-

tralize his servers (depending on geographical location,

ISP regulatory processes, etc.). This critical window,

even if it is a few tens of minutes, may be sufficient.

And if his server is shut down, the C&C channel over

the Bitcoin network is still active, and the botmaster is

free to try again by announcing new rendezvous points.

There is a further advantage: if bots encrypt the

payload with the botmaster’s public-key, they could

upload the data to public locations where the botmas-

ter could easily retrieve it. This may include services

that host user-generated content such as blogging plat-

forms like Tumbler or WordPress and cloud storage

such as Dropbox, OneDrive and text-sharing services

like Pastebin. These options offer less risk for the bot-

master; he does not have to maintain his own servers

or deploy load-balancing and location-masking services.

Bot payload data is encrypted in case law enforcement

confiscates it (however, the data may leak secondary in-

formation which may aid in enumerating the size of the

botnet or the location of the bots). There is already a

rich literature on building censorship-resistant commu-

nication channels on the Internet using social networks

and public sites in a way that takedown is very hard

[41] [42] [43].

Larger Payloads: As we noted earlier, the bot-

master may insert multiple inputs and outputs in a

transaction for greater bandwidth. An alternative for

larger messages is transaction chaining. The botmas-

ter splits the C&C instruction over several transactions

where the output of one is the input of the next and so

on. Bots receive the transactions, order them by exam-

ining the input and output fields to reconstruct the pay-

load. We employ this technique in our proof of concept

implementation, described in Section 4, to transmit 256

byte RSA public-keys to the bots. For large payloads

(in the order of tens of kilobytes or more) such as soft-

ware updates, the botmaster can announce rendezvous

points where bots may download the data.

Partitioning Botnets: Botmasters commonly mon-

etize their activities by partitioning botnets and leasing

them as “botnets for hire” (a typical advertisement in

underground markets cites a price of US $2000 for 2000

bots “consistently online for 40% of the time” [44]).

Partitioning botnets also enables multitasking and is a

good damage control strategy in case part of the net-

work is compromised. The P2P Zeus botnet had over

200,000 bots, distributed into sub-botnets, by hardcod-

ing bots with sub-botnet identifiers prior to deployment

[45]. The Storm botnet assigned unique encryption keys

to bots to distribute them into sub-botnets [46].

This simple approach to partitioning the network

does not permit much flexibility. Ideally the botmaster

should be able to partition botnets dynamically using

parameters such as size, geographical location, machine

specification, etc. In such a scenario, more powerful

machines may be assigned to mining cryptocurrencies

whereas machines with large disk space could be used

to store loot. Machines in the same time zone could

be used to coordinate DDoS attacks. Bots in countries

with lax law enforcement may be used for spam. We

present here an intuitive and elegant solution allowing

fine-grained control over the botnet.

Upon successful infection, bots send a registration

message to the botmaster, communicating their unique

bot identifier and important information about the vic-

tim machine such as machine specification, operating

system, organization, etc. The botmaster maintains a

database of this information and can periodically di-

rect queries at it4. Sample queries may be as follows:

What are the identifiers of all bots in the UK? or What

are the identifiers of 1000 bots running Mac OS X?.

To direct an instruction to these particular bots, the

botmaster inserts the returned identifiers into a Bloom

filter and transmits the result along with the instruc-

tion by embedding the data in a Bitcoin transaction.

ZombieCoin bots receive the filter result and use their

identifiers to check if they are included in the set. If so,

they execute the instructions. This step essentially con-

verts the broadcast communication mode of the Bitcoin

network to a multicast/anycast mode.

A Bloom filter is a space-efficient randomized data

structure used to test for set membership [48]. The

probability for a bot identifier that is not in the origi-

nal set to result in a positive match is referred to as the

Bloom filter’s false positive rate, and is calculated as:

Pf = (1 − (1 − 1/m)kn)k ≈ (1 − e−kn/m)k (1)

where m is the size of the Bloom filter in bits, n is

the number of members in the set, and k is the number

of hash functions used. Minimizing Pf w.r.t k indicates

4 C&C servers belonging to the Zeus botnet were discov-
ered to maintain a similar MySQL database with a web-based
administrative GUI for botmasters [47].

8 Syed Taha Ali et al.

2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Bits per member in the set (m/n)

F
a
ls
e
p
o
si
ti
v
e
p
ro
b
a
b
il
it
y
P
f

Fig. 3 False positive rate vs. number of bits per member in
the Bloom filter

that Pf is minimum when k = (ln2) ·m/n. We plot in

Fig. 3, the false positive rate for the ratio m/n, i.e. the

number of bits per member.

The botmaster can now compute optimal filter pa-

rameters: to create a partition of 1000 bots with a false

positive rate of less than 1% (10 bots), he will need

a Bloom filter of size 10 · 1000 bits, i.e. approximately

1.2kB. For 0.5% (5 bots), this would amount to 1.5kB.

The result could easily be transmitted by transaction

chaining or uploading the data to a rendezvous point.

4 Proof of Concept

To validate ZombieCoin, we build a 14 node botnet and

evaluate its performance over the Bitcoin network. We

use the BitcoinJ library [49], which is an open source

Java implementation of the Bitcoin protocol. We chose

the Simplified Payment Verification (SPV) mode [50],

which has a considerably low memory and traffic foot-

print, ideally suited for botnets. As opposed to Core

nodes, SPV nodes do not replicate the entire blockchain

but only a subset of block headers and filter incoming

traffic to transactions of interest. Our bot application is

7MB in size and the locally stored blockchain content

is maintained at 626kB. Furthermore, at the network

level, the bot’s traffic is indistinguishable from that of

any other legitimate Bitcoin SPV client.

To simulate a distributed presence, we installed our

bots in multiple locations in the United States, Europe,

Brazil, and East Asia using Microsoft’s Azure cloud

platform [51], and ran two bots locally in our Comput-

ing Science Department. The bots individually connect

to the Bitcoin network, download peer lists, and scan

for transactions and by the botmaster (us).

Our experiment loops approximately once per hour

through an automated cycle of rudimentary instruc-

 From Command To
PING

< 1 > < website > < number of pings >
Botmaster instructs bots to ping a website a certain number of times

Tenant

Botmaster

Botmaster

Botmaster

Tenant

Tenant

REGISTER
< 2 > < webserver address >

Botmaster instructs bots to send registration messages to a webserver

RENT
< 3 > < block height > < Tenant Bitcoin address >

Botmaster rents botnet to a Tenant

DOWNLOAD
< 4 > < number of transactions >

Tenant instructs bots to download data from specified number of transactions

SCREENSHOT
 < 5 > < webserver address > < number of screenshots > < delay >

Tenant instructs bots to capture screenshots and upload them to a webserver

Botnet

Botnet

Botnet

Botnet

Botnet

Fig. 4 Sequence of commands in the experiment

tions in the sequence depicted in Fig. 4. We embed C&C

instructions in the OP RETURN field and in (3-bit)

subliminal channels in the outputs. Bots are hardcoded

with a public-key, enabling them to identify our trans-

actions. Bots receive transactions, verify, decode, and

execute them.

We simulate botnet leasing in Step 3 in Fig. 4. Bot-

master and tenant sign and publish a multi-input trans-

action containing the RENT command. Bots verify the

input signatures, record the tenant’s public-key, and ac-

cept C&C instructions issued by the tenant for the du-

ration of the lease period. The RENT transaction is a

bona fide contract between botmaster and tenant and

includes the lease payment in bitcoins from the tenant

to botmaster.

When the tenant assumes control, he may send bots

new encryption credentials or software modules. We

simulate this with the DOWNLOAD command which

uses transaction chaining to send bots a 256 byte RSA

public-key, split over 7 back-to-back transactions. When

bots receive the SCREENSHOT command, they cap-

ture a snapshot of the victim’s desktop, encrypt it us-

ing the tenant’s RSA public-key and send it to the web

address specified.

We collect over 2300 responses from our bots over a

24 hour period.5 We are interested in the C&C channel

latency and in the time it takes for bots to respond

to an instruction. We define a bot’s response time

as the time period from when the botmaster issues an

5 The C&C transactions pertaining to our experiment
can be identified in the blockchain by transaction input
1LujiuygToEddPEmRGMQUGXbsMGmup1Wrs. The initial
‘ping’ command is recorded in Block 319998 (transaction ID:
b26b3ea0d8065d3288a5142580a5f0e372445d27bb51b45a491d2e5f20238c5e).
The final ‘screenshot’ command oc-
curs in Block 320153 (transaction ID:
326e06b6c187c5d97ad783fc4d7bd67cf9c80894cd9837d5e83b04ce0f0f4068).
Commands can be decoded by setting the offset for each
ASCII character to -125.

ZombieCoin 2.0: Managing Next-Generation Botnets using Bitcoin 9

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bot response time t (s)

P
ro
b
a
b
ili
ty
 t
h
a
t
b
o
t
re
s
p
o
n
s
e
 t
im
e
 <
 t

Fig. 5 Cumulative probability distribution of bot response
time

instruction and it is successfully received by the bot

over the Bitcoin network. To synchronize readings over

multiple time zones, we configure bots to set their clocks

using a common timeserver.

All bots successfully received the botmaster’s in-

structions. Fig. 5 plots the cumulative probability dis-

tribution of the bot response time. Due to the connec-

tivity of the Bitcoin P2P network, about 50% of the

time, the bots responded within 5 seconds, and 90% of

the time within 10 seconds. The median response time

is 5.54 seconds. In the interest of improved visualiza-

tion, our results do not show outliers beyond the 100

second mark. Only in 15 instances (0.6% of the overall

communications) was bot response time greater, rang-

ing from 100-260s.

4.1 Discussion

To summarize thus far: ZombieCoin inherits the key

strengths of the Bitcoin network, namely low-latency

communication, consistent network state, and a dis-

tributed decentralized architecture. The botmaster need

not maintain his own C&C infrastructure, which is a

risky and costly endeavor. Bots can be maintained in

isolation from each other. C&C traffic over the local

network is indistinguishable from that of legitimate Bit-

coin users. Upstream channels can be conveniently es-

tablished and Bloom filters enable fine-grained control

over the botnet. We believe our experimental results,

together with the relative ease of implementation us-

ing freely available software, highlight the realistic and

practical aspects of ZombieCoin and we should take se-

riously the threat of botnets upgrading C&C commu-

nications onto the Bitcoin network.

So far we have assumed bots identify messages from

the botmaster based on transaction input which raises

the possibility of blacklisting the botmaster’s Bitcoin

address. This is not likely to resolve the problem. For

one, it would be a form of regulation, a fundamental

violation of the Bitcoin ethos [10], and we expect Bit-

coin users would be the first to vigorously resist such

attempts.

Second, such a step would require a significant pro-

tocol upgrade which could potentially degrade perfor-

mance and usability of Bitcoin for legitimate users. Min-

ers by themselves could, with relative ease, cooperate

and ensure ZombieCoin transactions do not appear in

the blockchain. However, this does not solve the under-

lying problem of the circulation of ZombieCoin trans-

actions throughout the network. In the current Bitcoin

protocol version, nodes that receive incoming transac-

tions perform checks for correctness (i.e. the input ad-

dress is valid, the transaction is in the correct format,

sum of inputs equals outputs, the digital signature is

verified, etc.) and then forward the transaction on to

other nodes. Valid transactions are forwarded to all

nodes, irrespective of the number of nodes in the net-

work.

In our implementation described earlier, our bots

do not look up transactions from incoming blocks of

the blockchain (at approximate 10 minute intervals),

but instead receive them within a 5-12 second window

as the transactions propagate throughout the network.

Therefore, even if all C&C transactions are ultimately

rejected by miners, the bots have already received them,

validated them, and carried out the embedded instruc-

tions. Halting the propagation of these transactions in

the Bitcoin network would require the explicit cooper-

ation of the majority of nodes in the network, neces-

sitating not just protocol modifications, but network-

wide synchronization of nodes against a blacklist that

all parties agree upon.

Furthermore, to defeat any censorship measures the

botmaster can switch to alternate authentication strate-

gies which do not rely solely on Bitcoin addresses but

may use subliminal channels in transaction outputs or

digital signatures. Botmasters could potentially keep

switching authentication strategies, thereby escalating

the fight and making it harder for legitimate clients to

use the network.

In theory, an anti-virus installed on a victim’s ma-

chine could scan the Bitcoin network in lockstep with

bots and block incoming C&C instructions. However,

new malware are adept at evading anti-viruses: Torpig

bots [16] contain rootkit functionality, executing their

code prior to loading the OS, or injecting their code into

legitimate processes to escape detection. Others like Ze-

10 Syed Taha Ali et al.

roAccess contain tripwire mechanisms which suspend

anti-virus scanning activity [18].

We would also make mention here of the costs of

running ZombieCoin. At the time of our experiments,

it cost us about 3 cents (0.1mBTC) for every 1000

bytes of data in the transaction. Our experiment ran

over 24 hours and 250 C&C instructions were sent at a

cost of US$ 7.50. We also note that since transactions

are flooded to the entire Bitcoin network, the transac-

tion fees would have remained constant regardless of

the number of bots we deployed. These costs are there-

fore trivial compared to the profits made by successful

botnets which are typically in the hundreds of thou-

sands of dollars. Furthermore, Bitcoin-based C&C is

also a considerably safer option compared to existing

botnets where the odds of detection, botnet takedown,

and identification of the botmaster are dramatically

higher.

5 Recommendations

Thus far we have found little recognition of this threat

among the Bitcoin community.6 However, there has been

some attempt made at raising awareness within the bot-

net and hacker communities. Interpol researchers at the

BlackHat Asia conference recently demonstrated a mal-

ware which downloads specific coded strings from the

Bitcoin blockchain (where they are stored as transac-

tion outputs) and stitches them together into one com-

mand and executes it. Forbes magazine profiled this

threat and others (including a preliminary version of

ZombieCoin [53]), dubbing this phenomenon blockchain

“pollution”, and concluded on the somber note that

there are as yet no easy solutions to this problem [54].

Perhaps we need to shift research focus back to traf-

fic analysis and malware detection techniques. The new

paradigm of software-defined networking (SDN) may

hold some promise: there is already research suggesting

SDN assists significantly in detecting malware-related

anomalies at the network level [55].

We would stress here an earlier suggestion from the

literature [16]: researchers and law enforcement should

cultivate working relationships with registrars and ISPs

to enable rapid response time to malware threats. If a

botmaster announces rendezvous points over the Bit-

coin network, registrars scattered over the world may

6 The Namecoin lead developer was interviewed in 2014 on
the possibility of Namecoin being used to empower botnets.
His response, “Is there a real benefit for the zombie computer to
use this instead of connecting to an IRC channel or else? Updat-

able IP? It may be less complex to get IP from hacked computers

all over the world or to build a P2P botnet. As each thing that
provides power to its user, it can be used in a bad or good way

(as knives, secure communication software, etc).” [52].

need to block sites at very short notice. Incidentally,

third party DNS services (such as OpenDNS, or Google

Public DNS) and cloud-based security solutions (like

Umbrella) may actually prove agile enough for this pur-

pose [56].

Another approach proposed before, but, to the best

of our knowledge, never applied in practice is to combat

the botnet problem at its root, the economy that drives

it. Ford et al. propose [57] deliberately infecting large

numbers of decoy virtual machines (honeypots) to join

the botnet but remain under control of the white hats.

By disruptive, unpredictable behavior, these sybils will

actively undermine the economic relationship between

the botmaster and clients. An ad master for instance,

may pay for a certain number of ad impressions, and

the machines may make artificial clicks but this will not

translate to a corresponding increase in actual sales.

Targeting the economic incentive may prove a potent

counter to the botnet threat.

6 Prior Work

Botnet-related research follows multiple strands. There

are studies on the botnet economy [58] [57] [59]. Re-

searchers have autopsied botnets, including early vari-

eties like Agobot, SDbot [13], and state-of-the-art worms,

Conficker [60], Storm [61], Waladec [62], and ZeroAc-

cess [45]. There is extensive work on botnet tracking

methods [63] [64] and traffic analysis and detection tools

such as BotSniffer [65], BotMiner [66], and BotHunter

[67]. Researchers have infiltrated botnets [16] and doc-

umented insider perspectives [68]. Readers interested in

comprehensive surveys of the botnet phenomenon are

directed to [69] [70].

There is a growing literature on exploring novel C&C

mechanisms so that preemptive solutions may be de-

vised. We summarize here a few such efforts:

Lee et al. [71] and Szabo et al. [72] propose auto-

mated botnets that derive instructions from pervasive

Internet information (e.g. stock market figures or major

news events). This data cannot be easily manipulated

and C&C traffic blends in with legitimate user traffic.

Such botnets are uncontrolled and unpredictable. This

may not make economic sense, but hearkens back to

earlier days when botnets were mostly built to enhance

standing in the hacker community.

Starnberg et al. present Overbot [73] which uses the

P2P protocol Kademlia for stealth C&C communica-

tions. The authors share our design concerns that bot

traffic is covert and not easily distinguishable. However,

there are critical differences: Overbot nodes carry the

private key of the botmaster, and capturing one bot

ZombieCoin 2.0: Managing Next-Generation Botnets using Bitcoin 11

compromises the entire botnet’s communications. Fur-

thermore, unlike our case where instructions are circu-

lated within seconds, for Overbot this may take up to

12 hours. ZombieCoin also requires substantially less

network management as the Bitcoin network handles

message routing and global consistency.

The work closest to ours is that of Nappa et al. [74]

who propose a C&C channel overlaid on the Skype net-

work. Skype is closed-source, has a large user base, is

resilient to failure, enforces default encryption, and is

notoriously difficult to reverse engineer, all of which are

ideal qualities for C&C communications. As in our case,

disrupting this botnet would significantly impact legit-

imate Skype users. However, unlike Bitcoin, Skype is

not designed to maintain low latency global consistency

of state. Furthermore, after the Microsoft takeover in

2011, Skype has switched to a centralized cloud-based

architecture [75].

Researchers have also proposed novel C&C mecha-

nisms: Stegobot [76] creates subliminal channels on so-

cial networks by steganographic manipulation of user-

shared images. Zeng et al. [77] describe a mobile P2P

botnet concealing C&C communication in SMS spam

messages. Desimone et al. [78] suggest creating covert

channels in BitTorrent protocol messages. These solu-

tions present interesting possibilities but are not very

practical, with limitations in terms of bandwidth, la-

tency and security.

7 Conclusion

In this paper we have described ZombieCoin, a mecha-

nism to control botnets using Bitcoin. ZombieCoin in-

herits key strengths of the Bitcoin network, namely it

is distributed, has low latency, and it would be hard to

censor C&C instructions inserted in transactions with-

out significantly impacting legitimate Bitcoin users. Zom-

bieCoin has a key advantage over current botnet C&C

mechanisms in that common takedown techniques of

confiscating suspect web domains, seizing C&C servers

or poisoning P2P networks, would not be effective. Fur-

thermore, ZombieCoin enables novel and powerful C&C

communication modes, allowing botmasters to easily

set up upstream channels, expand bandwidth, efficiently

partition botnets, and exercise fine-grained control over

individual bots. Our prototype implementation demon-

strates that it is easy to implement this C&C function-

ality by modifying freely available software, and experi-

mental results show that instructions propagate in near

real-time on the Bitcoin network.

We believe ZombieCoin poses a credible emergent

threat and we hope our work prompts further discus-

sion and proves a step towards devising effective coun-

termeasures.

8 Acknowledgements

This paper is an extended version of work that was first

presented in February, 2015 at the 2nd Workshop on

Bitcoin Research (Bitcoin15) co-located with Financial

Cryptography (FC) [53].

The authors thank Hassaan Bashir, Mike Hearn,

Pawel Widera, and Siamak Shahandashti for invaluable

assistance with experiments and helpful comments.

References

1. Tim Weber. Criminals ’may overwhelm the web’.
BBC Home, Jan. 25 2007. http://news.bbc.co.uk/1/hi/
business/6298641.stm.

2. David Dittrich. So you want to take over a botnet. In
Proceedings of the 5th USENIX conference on Large-Scale
Exploits and Emergent Threats, pages 6–6. USENIX Asso-
ciation, 2012.

3. Alastair Stevenson. Botnets infecting 18 sys-
tems per second, warns FBI. V3.co.uk, July 16
2014. http://www.v3.co.uk/v3-uk/news/2355596/botnets-

infecting-18-systems-per-second-warns-fbi.
4. Android smartphones ’used for botnet’, researchers say,

July 5 2012. http://www.bbc.co.uk/news/technology-

18720565.
5. James Vincent. Could your fridge send you spam? Secu-

rity researchers report ’internet of things’ botnet. The In-
dependent, Jan. 20 2014. http://www.independent.co.uk/

life-style/gadgets-and-tech/news/could-your-fridge-

send-you-spam-security-researchers-report-internet-

of-things-botnet-9072033.html.
6. Joshua David. Hackers Take Down the Most

Wired Country in Europe. Wired Magazine, Aug.
21 2007. http://archive.wired.com/politics/security/

magazine/15-09/ff estonia?currentPage=all.
7. Julian Hattem. Senate Dem wants to bat-

tle botnets. The Hill, July 15 2014. http:

//thehill.com/policy/technology/212338-senate-dem-

wants-to-battle-botnets.
8. CoinMarketCap. Crypto-Currency Market Capital-

izations. BitcoinTalk, Jan. 21 2016. https://

coinmarketcap.com/.
9. Joseph Young. VISA: Bitcoin is no Longer

a Choice Anymore. NewsBTC, Dec. 29 2015.
http://www.newsbtc.com/2015/12/29/visa-bitcoin-
is-no-longer-a-choice-anymore/.

10. Maria Bustillos. The Bitcoin Boom. The New Yorker,
April 2013. http://www.newyorker.com/tech/elements/
the-bitcoin-boom.

11. Adam Young and Moti Yung. Malicious cryptography: Ex-

posing cryptovirology. John Wiley & Sons, 2004.
12. ICT-FORWARD Consortium. FORWARD: Managing

Emerging Threats in ICT Infrastructures, 2007-2008.
http://www.ict-forward.eu/.

13. Paul Barford and Vinod Yegneswaran. An Inside Look at
Botnets. In Malware Detection, pages 171–191. Springer,
2007.

12 Syed Taha Ali et al.

14. Robert Westervelt. Botnet Masters Turn to Google,
Social Networks to Avoid Detection. TechTarget,
Nov. 10 2009. http://searchsecurity.techtarget.com/

news/1373974/Botnet-masters-turn-to-Google-social-

networks-to-avoid-detection.
15. Mark Bowden. Worm: the First Digital World War. At-

lantic Monthly Press, 2011.
16. Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob

Gilbert, Martin Szydlowski, Richard Kemmerer, Christo-
pher Kruegel, and Giovanni Vigna. Your Botnet is my
Botnet: Analysis of a Botnet Takeover. In Proceedings of

the 16th ACM conference on Computer and communications

security (CCS), pages 635–647. ACM, 2009.
17. Ping Wang, Sherri Sparks, and Cliff Changchun Zou. An

advanced hybrid peer-to-peer botnet. Dependable and
Secure Computing, IEEE Transactions on, 7(2):113–127,
2010.

18. Alan Neville and Ross Gibb. Security Response: ZeroAc-
cess Indepth. White paper, Symantec, Oct. 4 2013.

19. Brian Prince. Flashback Botnet Updated to In-
clude Twitter as C&C. SecurityWeek, April 30
2012. http://www.securityweek.com/flashback-botnet-
updated-include-twitter-cc.

20. Andrea Lelli. Trojan.Whitewell: What’s your (bot)
Facebook Status Today? Symantec Security Response
Blog, Oct. 2009. http://www.symantec.com/connect/

blogs/trojanwhitewell-what-s-your-bot-facebook-

status-today [online; accessed 22-July-2014].
21. Eduard Kovacs. RAT Abuses Yahoo Mail for

C&C Communications. SecurityWeek, Aug. 4 2014.
http://www.securityweek.com/rat-abuses-yahoo-mail-

cc-communications.
22. Takashi Katsuki. Malware Targeting Windows 8

Uses Google Docs. Symantec Official Blog, Nov. 16
2012. http://www.symantec.com/connect/blogs/malware-

targeting-windows-8-uses-google-docs.
23. Sean Gallagher. Evernote: So useful, even mal-

ware loves it. Ars Technica, Mar. 27 2013.
http://arstechnica.com/security/2013/03/evernote-

so-useful-even-malware-loves-it/.
24. J. R. Willet. The Second Bitcoin Whitepaper, v.

0.5, January 2012. https://sites.google.com/site/

2ndbtcwpaper/2ndBitcoinWhitepaper.pdf [online; accessed
22-July-2014].

25. Meni Rosenfeld. Overview of Colored Coins, Decem-
ber 2012. https://bitcoil.co.il/BitcoinX.pdf [online; ac-
cessed 22-July-2014].

26. Counterparty: Pioneering Peer-to-Peer Finance. https:

//www.counterparty.co/.
27. Ben Isgur. A Little Altcoin Sanity: Namecoin. Coin-

Report, July 16 2014. https://coinreport.net/little-

altcoin-sanity-namecoin/.
28. Jeremy Clark and Aleksander Essex. Commitcoin: Car-

bon Dating Commitments with Bitcoin. In Financial
Cryptography and Data Security, pages 390–398. Springer,
2012.

29. Daniel Cawrey. How Monegraph Uses the Block
Chain to Verify Digital Assets. CoinDesk, May 15
2014. http://www.coindesk.com/monegraph-uses-block-
chain-verify-digital-assets/.

30. OneName. https://onename.io/.
31. Protocol Specification. Bitcoin Wiki. https://

en.bitcoin.it/wiki/Protocol specification.
32. Richard L. Apodaca. OP RETURN and the Future of

Bitcoin. Bitzuma, July 29 2014. http://bitzuma.com/

posts/op-return-and-the-future-of-bitcoin/.

33. Gavin Andresen. Core Development Update
#5. Bitcoin Foundation, Oct. 24 2013. https:

//bitcoinfoundation.org/2013/10/core-development-

update-5/.
34. Danny Bradbury. BlockSign Utilises Block Chain

to Verify Signed Contracts. CoinDesk, Aug. 27
2014. http://www.coindesk.com/blocksign-utilises-
block-chain-verify-signed-contracts/.

35. Jeremy Kirk. Could the Bitcoin Network be Used as an
Ultrasecure Notary Service? PCWorld, May 24 2013.
http://www.pcworld.com/article/2039705/could-the-

bitcoin-network-be-used-as-an-ultrasecure-notary-

service.html.
36. Mastercoin transaction on Bitcoin Block Explorer. https:

//goo.gl/dq1ra3.
37. Joppe W Bos, J Alex Halderman, Nadia Heninger,

Jonathan Moore, Michael Naehrig, and Eric Wustrow.
Elliptic curve cryptography in practice. IACR Cryptology

ePrint Archive, 2013:734, 2013.
38. Don Johnson, Alfred Menezes and Scott Vanstone. The

Elliptic Curve Digital Signature Algorithm (ECDSA). In
International Journal of Information Security, 1(1). pages
36–63. Springer, 2001.

39. Gustavus J Simmons. The prisoners problem and the
subliminal channel. In Advances in Cryptology, pages 51–
67. Springer, 1984.

40. Gustavus J Simmons. The subliminal channel and digi-
tal signatures. In Advances in Cryptology, pages 364–378.
Springer, 1985.

41. Sam Burnett, Nick Feamster, and Santosh Vempala.
Chipping away at censorship firewalls with user-
generated content. In USENIX Security Symposium, pages
463–468. Washington, DC, 2010.

42. Luca Invernizzi, Christopher Kruegel, and Giovanni Vi-
gna. Message in a bottle: sailing past censorship. In Pro-
ceedings of the 29th Annual Computer Security Applications

Conference, pages 39–48. ACM, 2013.
43. Tariq Elahi and Ian Goldberg. Cordon–a taxonomy of in-

ternet censorship resistance strategies. University of Wa-

terloo CACR, 33, 2012.
44. Max Goncharov. Russian Underground 101, 2012.

http://www.trendmicro.com/cloud-content/us/pdfs/

security-intelligence/white-papers/wp-russian-

underground-101.pdf.
45. Dennis Andriesse, Christian Rossow, Brett Stone-Gross,

Daniel Plohmann, and Herbert Bos. Highly resilient
peer-to-peer botnets are here: An analysis of gameover
zeus. In Malicious and Unwanted Software:” The Amer-

icas”(MALWARE), 2013 8th International Conference on,
pages 116–123. IEEE, 2013.

46. Ryan Naraine. Storm Worm botnet partitions for
sale, Oct. 15 2007. http://www.zdnet.com/blog/security/

storm-worm-botnet-partitions-for-sale/592.
47. Insight a ZeuS C&C server. http://www.abuse.ch/?p=1192,

March 20 2009.
48. Burton H Bloom. Space/time trade-offs in hash cod-

ing with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

49. BitcoinJ: A Java implementation of a Bitcoin client-only
node. https://code.google.com/p/bitcoinj/.

50. Satoshi Nakamoto. Bitcoin: A Peer-to-peer Electronic
Cash System. http://www.bitcoin.org/bitcoin.pdf, 2009.
[online; accessed 22-July-2014].

51. Azure: Microsoft’s Cloud Platform. https:

//azure.microsoft.com/en-gb/.
52. interview with khalahan - namecoins lead developer, June

2014. http://coinabul.tumblr.com/post/25890690158/
khalahan-and-namecoin-interview.

ZombieCoin 2.0: Managing Next-Generation Botnets using Bitcoin 13

53. Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee,
and Feng Hao. ZombieCoin: Powering Next Generation
Botnets with Bitcoin . In Proceedings of the 2nd Workshop

on Bitcoin Research, BITCOIN’15, 2015.
54. Thomas Fox-Brewster. Bitcoin’s Blockchain Offers

Safe Haven For Malware And Child Abuse, Warns
Interpol. Forbes, March 27 2015. http://www.forbes.com/

sites/thomasbrewster/2015/03/27/bitcoin-blockchain-

pollution-a-criminal-opportunity/#6ae1d8583297.
55. Syed Akbar Mehdi, Junaid Khalid, and Syed Ali

Khayam. Revisiting traffic anomaly detection using soft-
ware defined networking. In Recent Advances in Intrusion

Detection, pages 161–180. Springer, 2011.
56. Chris Hoffman. 7 Reasons to Use a Third-Party DNS

Service, Sept. 7 2013. http://www.howtogeek.com/167239/

7-reasons-to-use-a-third-party-dns-service/.
57. Richard Ford and Sarah Gordon. Cent, five cent, ten cent,

dollar: hitting botnets where it really hurts. In Proceedings

of the 2006 workshop on New security paradigms, pages 3–
10. ACM, 2006.

58. Jason Franklin, Adrian Perrig, Vern Paxson, and Stefan
Savage. An inquiry into the nature and causes of the
wealth of internet miscreants. In ACM conference on Com-

puter and communications security, pages 375–388, 2007.
59. Zhen Li, Qi Liao, and Aaron Striegel. Botnet economics:

uncertainty matters. In Managing Information Risk and
the Economics of Security, pages 245–267. Springer, 2009.

60. Phillip Porras, Hassen Säıdi, and Vinod Yegneswaran.
A foray into confickers logic and rendezvous points. In
USENIX Workshop on Large-Scale Exploits and Emergent

Threats, 2009.
61. Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Bier-

sack, and Felix C Freiling. Measurements and Mitigation
of Peer-to-Peer-based Botnets: A Case Study on Storm
Worm. In Proceedings of the First USENIX Workshop on

Large-Scale Exploits and Emergent Threats (LEET), pages
1–9, 2008.

62. Ben Stock, Jan Gobel, Markus Engelberth, Felix C Freil-
ing, and Thorsten Holz. Walowdac-analysis of a peer-
to-peer botnet. In Computer Network Defense (EC2ND),

2009 European Conference on, pages 13–20. IEEE, 2009.
63. Evan Cooke, Farnam Jahanian, and Danny McPherson.

The zombie roundup: Understanding, detecting, and dis-
rupting botnets. In Proceedings of the USENIX SRUTI
Workshop, volume 39, page 44, 2005.

64. Daniel Ramsbrock, Xinyuan Wang, and Xuxian Jiang.
A first step towards live botmaster traceback. In Recent
Advances in Intrusion Detection, pages 59–77. Springer,
2008.

65. G Gu, J Zhang, and W Lee. Botsniffer: Detecting botnet
command and control channels in network traffic. In Pro-

ceedings of the 15th Annual Network and Distributed System
Security Symposium, NDSS, 2008.

66. Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee,
et al. Botminer: Clustering analysis of network traffic for
protocol-and structure-independent botnet detection. In
USENIX Security Symposium, pages 139–154, 2008.

67. Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Mar-
tin W Fong, and Wenke Lee. Bothunter: Detecting mal-
ware infection through ids-driven dialog correlation. In
USENIX Security, volume 7, pages 1–16, 2007.

68. Chia Yuan Cho, Juan Caballero, Chris Grier, Vern Pax-
son, and Dawn Song. Insights from the inside: A view
of botnet management from infiltration. In USENIX

Workshop on Large-Scale Exploits and Emergent Threats
(LEET), 2010.

69. Sheharbano Khattak, N Ramay, K Khan, A Syed, and
S Khayam. A Taxonomy of Botnet Behavior, Detection,
and Defense. IEEE Communications Surveys & Tutorials,
16(2):898–924, 2014.

70. Sérgio SC Silva, Rodrigo MP Silva, Raquel CG Pinto,
and Ronaldo M Salles. Botnets: A Survey. Computer

Networks, 57(2):378–403, 2013.
71. Hui Huang Lee, Ee-Chien Chang, and Mun Choon Chan.

Pervasive Random Beacon in the Internet for Covert Co-
ordination. In Information Hiding, pages 53–61. Springer,
2005.

72. Joe Szabo, John Aycock, Randal Acton, and Jörg Den-
zinger. The tale of the weather worm. In Proceedings
of the 2008 ACM symposium on Applied computing, pages
2097–2102. ACM, 2008.

73. Guenther Starnberger, Christopher Kruegel, and Engin
Kirda. Overbot: a Botnet Protocol based on Kademlia. In
Proceedings of the 4th international Conference on Security
and Privacy in Communication Networks (SecureComm),
page 13. ACM, 2008.

74. Antonio Nappa, Aristide Fattori, Marco Balduzzi, Mat-
teo DellAmico, and Lorenzo Cavallaro. Take a Deep
Breath: a Stealthy, Resilient and Cost-effective Botnet
using Skype. In Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 81–100. Springer, 2010.

75. Zack Whittaker. Skype ditched peer-to-peer su-
pernodes for scalability, not surveillance. http://

www.zdnet.com/skype-ditched-peer-to-peer-supernodes-

for-scalability-not-surveillance-7000017215/, June
24 2013.

76. Shishir Nagaraja, Amir Houmansadr, Pratch Piyawong-
wisal, Vijit Singh, Pragya Agarwal, and Nikita Borisov.
Stegobot: a Covert Social Network Botnet. In Information

Hiding, pages 299–313. Springer, 2011.
77. Yuanyuan Zeng, Kang G Shin, and Xin Hu. Design

of SMS Commanded-and-Controlled and P2P-Structured
Mobile Botnets. In Proceedings of the Fifth ACM confer-

ence on Security and Privacy in Wireless and Mobile Net-
works (WiSec), pages 137–148, 2012.

78. Joseph Desimone, Daryl Johnson, Bo Yuan, and Peter
Lutz. Covert Channel in the BitTorrent Tracker Pro-
tocol. In International Conference on Security and Man-
agement. Rochester Institute of Technology, 2012. http:

//scholarworks.rit.edu/other/300.

