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Abstract The widespread deployment of surveillance cameras has raised seri-
ous privacy concerns and many privacy-enhancing schemes have been recently
proposed to automatically redact images of selected individuals in the surveil-
lance video for protection. Of equal importance are the privacy and efficiency
of techniques to first, identify those individuals for privacy protection and
second, provide access to original surveillance video contents for security anal-
ysis. In this paper, we propose an anonymous subject identification and pri-
vacy data management system to be used in privacy-aware video surveillance.
The anonymous subject identification system uses iris patterns to identify in-
dividuals for privacy protection. Anonymity of the iris-matching process is
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guaranteed through the use of a garbled-circuit (GC) based iris matching pro-
tocol. A novel GC complexity reduction scheme is proposed by simplifying the
iris masking process in the protocol. A user-centric privacy information man-
agement system is also proposed that allows subjects to anonymously access
their privacy information via their iris patterns. The system is composed of
two encrypted-domain protocols: the privacy information encryption protocol
encrypts the original video records using the iris pattern acquired during the
subject identification phase; the privacy information retrieval protocol allows
the video records to be anonymously retrieved through a GC-based iris pat-
tern matching process. Experimental results on a public iris biometric database
demonstrate the validity of our framework.

Keywords Anonymous Subject Identification · Privacy Information
Management · Privacy Protection · Video Surveillance · Garbled circuit

1 Introduction

In recent years, surveillance cameras have been widely used for preventing
theft, collecting population data, and combating terrorism. Advances in pat-
tern recognition algorithms such as searchable surveillance and automatic
event/human recognition have turned the once labor-intensive processes into
powerful automated systems that can quickly and accurately identify visual
objects and events. Thus, it is unsurprising that the general public is increas-
ingly wary about the possibility of privacy invasion with video surveillance
systems. To mitigate these concerns and to facilitate continued development
of surveillance technologies, it is imperative to make privacy protection a pri-
ority in current and future video surveillance systems.

Systematic study of privacy protection in video surveillance can be traced
back to the PeopleVision system developed at IBM [59]. In the past decade,
many algorithms and prototypes have been developed, and some of them will
be reviewed in Section 2. Existing work in privacy protection mostly target
towards applications in public places like airports or city streets which do not
differentiate different individuals. Only mild obfuscation techniques such as
blurring or pixelation are applied to every individual in the scene so that the
resulting video is still useful for security purposes. Although such weak forms
of protection cannot withstand privacy attacks [47,56], it is still considered
beneficial as the expectation of privacy in public places is low.

However, as the applications of surveillance system broaden, the demands
for privacy become more sophisticated. There are many situations in which dif-
ferent individuals in the environment may have different privacy requirements.
Semi-public places like hospitals or schools may have legal and/or contractual
responsibility to protect privacy of selected individuals. For example in U.S.,
privacy of students are protected under FERPA [69] and patients are pro-
tected under HIPAA [27]. Even for privately-owned facilities, tenants living
in an apartment building may not want their every departure and return to
be logged and observed [34], while employees may feel apprehensive if their
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activities are constantly being monitored by their supervisors [61]. In order to
balance the need of privacy and security, only a specific group of individuals
in the environment, such as trusted employees of a corporation or patients in
a hospital, are provided with privacy protection while transient visitors must
be monitored at all time.

A key challenge of such a form of selective protection is a reliable and secure
mechanism to identify whether a particular individual belongs to the privacy
group. To reliably identify any individual, the best approach would be to rely
on biometric signals like iris patterns which are convenient and highly discrim-
inative. The use of biometric signals, however, provides a direct link between
the imagery to the true identity of an individual. Such a linkage contradicts
one of the fundamental tenets of privacy design discussed in the Common
Criteria specification [48], namely the unlinkability property that ensures dif-
ferent usages by the same user cannot be linked together. If the security of
the system is compromised, this extra information may pose a greater privacy
risk that it purports to protect. It is thus important to sever this link between
the biometric signal and the imagery to provide an anonymous identification
mechanism for subject identification.

This anonymous subject identification service, however, should not inter-
fere with the basic non-repudiation property of a surveillance system. As
surveillance video is a security record, privacy protection system must pro-
vide secure mechanisms to preserve the original footage to show the pres-
ence/absence of any individual in the environment [15,43,50,53,54]. To re-
trieve the original videos, existing approaches often assume the most sim-
plistic access control model in which a single user, usually the owner of the
surveillance, has complete control of all contents. Such a centralized model
is certainly not suitable for all situations, especially when there is a privacy
conflict between the owner and the subject. A better approach is to treat the
privacy visual information of an individual in the same manner as any other
privacy information such as personal financial or medical information – each
access of the information must require a full consent from the corresponding
user. This is consistent with the basic premise in both the Privacy Act of
U.S. and the Data Protection Directives of E.U. to obtain users’ consent be-
fore accessing their sensitive information [71, Chapter 19]. On the other hand,
implementing such a fine-grained access control posts a technical challenge be-
cause the anonymous surveillance system cannot associate the imagery with
the unknown identity of the individual.

In this paper, we describe a complete design of a selective privacy protec-
tion surveillance system to simultaneously address the problems of anonymous
identification and access control of privacy videos. Specifically, our proposed
system has two main novel constructions. First, we propose an Anonymous
Subject Identification (ASI) procedure that allows the surveillance system to
use iris patterns in determining the privacy protection status of an individual
without knowing his/her true identity. Our anonymous iris matching is based
on garbled circuits [72] and we propose a novel masking technique that sig-
nificantly reduces the complexity of the circuit. The new masking technique
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stems from the statistical patterns of iris patterns and is independent from the
specific GC implementation used. Second, we propose a novel Privacy Infor-
mation Management (PIM) system that uses iris patterns in encrypting the
privacy video. Two protocols, one for encryption and one for retrieval, are
developed to ensure the privacy of both the plaintext biometric signals and
privacy visual information. Preliminary results of this work have appeared in
[39,41]. Thoroughly revised protocols and additional experimental results are
presented here to demonstrate the effectiveness of our schemes.

The rest of the paper is organized as follows: related work are reviewed in
Section 2 and an overview of our proposed system is in Section 3. The image
processing component of our system is reviewed in Section 4. The design of the
ASI module using GC is presented in Section 5. In Section 6, we describe the
two protocols used in our privacy data management system and prove their
validity in protecting privacy information. We have tested our system using
a large collection of iris patterns and the results are shown in Section 7. We
conclude the paper in Section 8.

2 Related Work

Most existing literature on privacy protected video surveillance focus on how
to identify and protect sensitive information in the video. It is primarily a
computer vision problem, aimed to identify, segment, and obfuscate sensitive
visual information. Many schemes have been proposed ranging from the use
of black boxes or large pixels [68], scrambling [15], face replacement [74], body
replacement [67], to complete object removal [66] and a hybrid approach [49].
In addition, some work use variable strength filters such as inhomogeneous
diffusion [51] to provide different degrees of protection based on the inferred
sensitivity level of the pixel. The sensitivity can be determined based on dis-
tance [16,11], background details [16], and intention of the video as estimated
by the camera motion and the scene structure [45,46]. A recent work has also
analysed the trustworthiness of these techniques [54]. These works do not ex-
plicitly identify each individual to provide different levels of privacy protection.
While they can provide the essential visual obfuscation function, they are not
adequate in providing anonymity to selective privacy protected surveillance
systems.

There are a number of privacy protection systems that address the issue of
anonymous subject identification. In [58], individuals wore yellow hard hats to
indicate that their identities need to be protected. The prominent yellow color
on top of a person’s head makes the hard hat an easy target for automatic
identification. In [75], a color tag was used instead and triangulation through
multiple cameras was employed to minimize the impact of self occlusion. Other
sensors such as RFID have also been explored [70,53]. These methods provide
anonymous identification as there is no link between the true identity and the
physical marker used. However, the reliance on a physical marker makes the
system vulnerable to physical attacks. The subjects will lose privacy protection
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from the system if the marker is accidentally dropped. More importantly, if
the marker is maliciously embezzled by unauthorized individuals, the system
will protect the potential intruders and the security of the environment will
be compromised.

A better approach for identification is based on biometric signals. There
are a variety of biometric signals used for identification and the most common
types include fingerprints, palmprints, voice, signature, face, iris and retinal
patterns [71, Ch. 3]. In general, biometric signals excel in authenticating the
subject’s identity since they are based on who the subjects are. Face is per-
haps the most commonly used one in surveillance as it can be recognized at
long distance [23]. Iris recognition, on the other hand, is a far more accurate
biometric system compared with face recognition [24]. While traditional iris
readers require subjects to be in close range, emerging technologies can read
iris in video surveillance environments [33,13]. As such, we have chosen iris
recognition for our system based on the popular iriscode algorithm from [12].
Unlike those works that aim to extract iris patterns in the environment, our
focus would be on developing protocols to provide anonymity to iris matching
and to use iris for encrypting privacy information.

As described in Section 1, the use of biometric signals in selective privacy
protection systems poses a security threat as it provides a direct link between
the privacy information to the true identity of an individual. Anonymous
biometric matching can be achieved using Secure Multi-Party Computation
(SMPC) protocols [26], which can simultaneously guarantee the anonymity of
the subject and the authentication of the biometric query [5]. The blind-vision
face detector proposed in [1] is one such example. The authors use Oblivious
Transfer (OT) to detect face without direct access to the raw pixel values. The
privacy of the detector is guaranteed by having the entire table encrypted by
a pre-computed set of public keys and transmitted to the server for detection.
However, the large table size, the intensive encryption and decryption opera-
tions render the blind-vision detector computationally inefficient. A faster but
less general approach is to use partial Homomorphic Encryption (HE) which
preserves certain operations in the encrypted domain [19]. Paillier encryption,
a type of HE systems, has been used to provide anonymous biometric matching
in faces [17], iris patterns [73], and fingerprints [4].

While HE is efficient for arithmetic operations, iris matching consists of
mostly binary operations that are more suitable to be implemented by using
Garbled Circuits (GC). GC provides a generic implementation of any binary
function by having one party prepared an encrypted boolean circuit, and an-
other party obliviously evaluated the circuit without accessing to intermediate
values [72]. Blanton et al. propose a hybrid approach of GC and HE for efficient
iris matching [8]. Our implementation is a pure GC solution which is more ap-
pealing for two reasons. First, GC relies on faster symmetric encryption while
HE is based on asymmetric encryption. Recent research efforts have exploited
such fact to significantly improve GC’s efficiency [30,52,38,60]. Second, GC
is characterized by shorter security parameters, whose impact on efficiency
becomes pronounced in delivering medium and long term security [2]. In this
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paper, we further exploit key characteristics of iris patterns to develop a novel
computationally efficient GC-based iris matching circuit.

With anonymous subject identification, the surveillance system can anony-
mously determine privacy status of each individual for privacy protection. To
ensure non-repudiation, the system must provide mechanism to access the
original video. Existing approaches typically describe the access control via a
privacy policy [18,37,11], enforced by a trusted server which is vulnerable to
concerted attacks. A more distributed management system where the users
and the server agents can anonymously exchange data, credential, and autho-
rization information was proposed in [10]. However, anonymous access control
is not implemented in the system and the server could still associate the en-
crypted videos with the identity of an individual. The privacy information
management system proposed in this paper eliminates the trusted server by
using SMPC protocols to authenticate and decrypt privacy information.

The key innovation comes from our approach in combining anonymity in
biometric access control and privacy data management. Methods that use bio-
metric to protect sensitive data are referred to as biometric cryptosystems [65].
They have been applied in a number of practical biometric systems [25,9,64,
36] in which a random key is protected by a biometric signal to produce a pri-
vacy template [25,9] or helper data [64,36]. Such a privacy template or helper
data can only be decrypted by another biometric sample from the same indi-
vidual. The purpose of their proposed protocols is to protect the security of
the biometric system against the attack to central server by replacing the raw
biometric samples with these templates. For our application, we use biometric
cryptosystems to protect the AES keys that encrypt the privacy imagery. In
[25], a key-binding iris template scheme is proposed that relies on error correc-
tion coding (ECC) to cope with small variations between different iris patterns
from the same individual. While ECC-based techniques are efficient, ECC dic-
tates the use of Hamming distance in measuring similarity between biometric
signals and limits the threshold tolerance in the matching process. Our pro-
posed approach uses a general GC-based SMPC protocol which is capable of
complex similarity function and arbitrary choice of similarity tolerance.

3 System Overview and Security Model

The architecture of our system is shown in Figure 1. It has two networks that
are separately administered. The inner network is the Privacy Protected Video
Surveillance Network that consists of a set of cameras with the associated
video processing units. The outer network is a Server network, housing two
databases of encrypted videos and redacted videos, as well as a gallery of
iriscodes of individuals whose privacy need to be protected in the surveillance
environment.

We assume that there is an offline enrolment process to determine who need
to be protected and to populate their iriscodes into the gallery. The two video
databases are used to store redacted videos accessible by security personnel
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Fig. 1 System Architecture: the Server Network and Privacy Protected Video Surveillance
Network interacting with the external iris readers at entrance and remote terminal. The
three main groups of protocols are in red fonts.

with privacy information removed, and encrypted videos of the original footage
retrievable only by the authorized members in the videos.

The gallery only interacts with external iris readers at various locations
through an iris-matching garbled circuit, which is a one-time software that
supports encrypted-domain matching with a query probe. Two types of exter-
nal interactions are supported:

1. At any entrance to the surveillance environment, a user must provide an
iris probe for the anonymous matching. A virtual receipt ticket will be
provided back to the user as a QR code. The receipt contains time-of-entry
and a retrieval code for later retrieval.

2. At a remote terminal, a user can view surveillance video with all privacy
information redacted. A user can also provide an iris probe with the ap-
propriate retrieval code to remove redaction of his/her own imagery.

All the functions of our proposed system are grouped into three main sets of
protocols: the Anonymous System Identification module, the Privacy-Protected
Video Surveillance Network, and the Privacy Information Management mod-
ule. Their functions are described below, followed by the security model used
throughout our system.
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3.1 Anonymous Subject Identification

The Anonymous Subject Identification (ASI) module is jointly executed be-
tween the iris reader at the external entrance of the surveillance environment
and a Iris-matching Garbled Circuit at the server. ASI has the following guar-
antees:

1. The server sends a decision bit to the surveillance network on whether the
iris probe from the reader matches any signal represented in the garbled
circuit. If there is a match, visual privacy of the incoming subject will be
protected.

2. The server does not know the probe. Even if there is a match, the server
will not know which signal in the garbled circuit matches the probe. This
ensures the privacy of incoming subject.

3. The reader does not know anything about the signals represented in the
garbled circuit. This protects the secrecy of the gallery.

The details of ASI can be found in Section 5.

3.2 Privacy-Protected Video Surveillance Network

The second component is the Privacy-Protected Video Surveillance Network.
Due to the sensitively of raw video footage, this surveillance network is pro-
tected by two firewalls. The only input to the network is the decision bit from
ASI and all output videos are either encrypted or redacted. If ASI identifies a
match, the surveillance network will:

1. track the target individual across different camera views and handle pos-
sible occlusions with other individuals with different privacy status,

2. prepare a redacted video to be stored in the redacted video database with
the target individual obfuscated, and

3. encrypt and store the original pixels in the encrypted video database to
enable possible reversal of the obfuscation.

The implementation of the image processing steps in (1) and (2) will be dis-
cussed in Section 4. The encryption step (3) is part of the Privacy Information
Management module, which will be discussed next.

3.3 Privacy Information Management

Privacy Information Management (PIM) module is jointly executed by all
the databases in the server network and a remote user with an iris reader to
decrypt his/her protected imagery. PIM has the following guarantees:

1. The user should have access to all of his/her original video segments.
2. The user does not have access to original video segments of any other users.



ASI & PIM in Video Surveillance 9

3. The server does not have access to any original video segments or gain any
additional knowledge about the user’s access patterns.

4. The server must authenticate the user’s identity using his/her iris signal
without any access to the signal in plaintext.

Details of PIM can be found in Section 6.

3.4 Security Model

Our security model assumes that both networks and external readers faithfully
follow the protocols and do not collude with each other through side channels.
As such, our focus is on preventing any adversarial behaviors to infer secret
information from data exchanged among different components within the sys-
tem. These secret information include:

1. sensitive video footage captured by the surveillance network,
2. iris signals represented in the garbled circuits, and
3. iris probe and identity of individuals at the reader.

For the security analysis of all our proposed protocols, we will thus assume
a semi-honest adversarial behavior model to demonstrate that all messages
exchanged in the protocol do not leak private information. We employ widely
used efficient encryption such as AES and SHA that can provide long-term
security using a long enough key size [3] to protect the system against brute
force attacks. For the security analysis of Privacy Protected Video Surveillance
Networks we remind to [66,76,10], while security of Amonymous Subject Iden-
tification protocol is analyzed in [39]. A discussion of the security of Privacy
Imformation Management protocol is provided in Section 6. The no-collusion
and semi-honest adversarial behavior model can also be difficult to guarantee
in practice. In our prototype implementation, we monitor all the data traffic
by firewalls and only specific types of data conformed to the protocols, as in-
dicated in Figure 1, can pass through. This is accomplished by filtering out all
but traffic to and from known addresses (within the internal networks), and
specific ports. While such an approach cannot prevent collusion attacks within
the network, it is effective in blocking external attacks. However we underline
that the non-colluding semi-honest server can be used in many practical ap-
plications where server networks are cloud storage with no specific interest
in the content of videos and biometric readers and cameras are simple IoT
devices with limited available memory. Firewalls block online communication
between the devices and memory constraints limit the possibility to store data
on devices for later collusion.

4 Privacy Protected Video Surveillance Network

The privacy-protected video surveillance camera network is composed of a
number of intelligent camera systems. The intelligent camera system is respon-
sible for segmenting, tracking, encrypting, and obfuscating the visual imagery
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corresponding to each individual based on the privacy bit from ASI. Figure
2 shows a screenshot of our system with redacted outputs from two cameras
in our network, alongside with a video feed at the lower right from a separate
camera showing the raw video scene. The details of the implementation can
be found in a number of our prior works [66,76,10] and this section highlights
a number of unique features in our design.

Segmentation: Segmentation identifies pixels in a single video frame that
correspond to occupants. This is accomplished by a background subtrac-
tion algorithm in which each frame is compared with a background model
of the environment to identify substantially different pixels as foreground.
Background subtraction technologies are well-studied and our recent work
showed that average precision can reach above 95% for well-controlled en-
vironments and 70% for challenging environments, including those with
sudden changes in illumination, night camera, bad weather, and pan-tilt-
zoom cameras [57]. Even though background subtraction on color cameras
work well in our prototype, recently available RGB-depth cameras such as
Microsoft Kinect have the potential to deliver even better segmentation
performance due to their immunity to environmental noise.

Occlusion Handling: After segmentation, foreground pixels need to be as-
signed to individual occupants and a key challenge is occlusion. Environ-
mental occlusion can typically be minimized by a careful placement of
cameras. The dominant occlusion problem is between multiple occupants
within a camera view. It is possible to build appearance models for different
occupants using color, texture and motion, and then use these models for
pixel assignment [66]. However, such an approach can be unreliable due to
variations in appearance of an individual across the environment, and simi-
larity in appearance among different individuals. As such, we have adopted
a simple and conservative approach – raw pixels from the occluded regions
are encrypted using the credentials from ALL individuals in the regions.
Such an approach cannot provide full access of privacy video as stated in
goal 1 in 3.3. Nevertheless, the alternative of letting each individual to have
access may violate privacy guarantee (goal 2 in 3.3) and is deemed a more
serious offense.

Tracking: Tracking refers to the process of linking pixels corresponding to
the same individual across time and camera views. The problem for track-
ing a lone person in a camera view is trivial. It is important to point out
that we enforce this single-person view for the camera at the entrance when
a person first passes through the biometric reader. An example is shown
in the top left picture of Figure 1. This allows the surveillance network to
unmistakably relate the decision bit from ASI to the visual appearance of
one person. Situations for the rest of the cameras are more complicated.
Tracking of multiple individuals without occlusion in a single camera view
is still straightforward - visual objects in consecutive frames are assigned
to the same individual based on their spatial proximity. When occlusion
occurs, tracking is unnecessary as our occlusion handling does not differ-
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entiate different individuals. However, after occlusion, it is challenging to
re-establish tracking of separate individuals using only appearance models.
To increase robustness, we exploit overlap between adjacent camera views
to resolve ambiguity after occlusion. Figure 2 shows an example with two
persons occluding each other in one camera view but not at all in the other
view. Tracking information from the non-occluded view can be related to
the occluded one in resolving ambiguity. In fact, overlapping view between
different cameras is crucial in relaying tracking status from one camera
to another in covering a large surveillance environment. In [76], we have
developed an optimal camera placement strategy to compute the mini-
mum number of cameras and their locations so that every point within an
arbitrary-shaped surveillance environment can be observed by at least two
cameras [76]. Occlusions involving n > 2 individuals can theoretically be
resolved when every point can be observed by n or more cameras. However,
the number of cameras required can be significantly higher and may not
be practical in most situations.

Obfuscation and Preservation: Segmentation and tracking allow us to iden-
tify all the raw pixels across different camera views that correspond to a
specific individual. If this individual is marked by ASI for protection, these
pixels will need to be redacted and their original values securely preserved.
For preservation, those raw pixel values at each frame are padded with
black background to make a rectangular frame and compressed using a
standard video compression software. The compressed video stream will
be further encrypted and details of the encryption are provided in Section
6.1. To redact these sensitive regions so as to provide a publicly accessible
surveillance video, a myriad of different obfuscation schemes are provided
ranging from black box, colored silhouette to full object removal [66]. Some
examples are shown in Figure 2.

5 Anonymous Subject Identification

The Anonymous Subject Identification (ASI) protocol is a SMPC protocol
that supports anonymous matching of biometric signals between the biometric
reader and the iris-database server. In this section, we first review the basics of
garbled circuits (GC) and provide a simple GC implementation of the iriscode
matching procedure. Then, we describe a novel iris masking technique that
simplifies the on-line operations on the encrypted data.

5.1 Fundemental GC primitives

Garbled Circuit (GC) approach [72] is an efficient computationally-secure
method for evaluating a binary circuit with private input bits from two par-
ties. While the circuit itself is public, GC guarantees that neither parties can
discover the intermediate value and the final answer is available to at least
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Fig. 2 The user interface on the left shows two camera views from our system. Two in-
dividuals (blue box and red silhouette) are redacted - note that the two different camera
views allow accurate tracking despite the occlusion in the bottom view. The actual scene is
shown in the lower right corner - it is captured by a hand-held camera that is not part of
the system.

one party. There are different variations of GC but we will focus on the simple
case where one party, Garbler, prepares a garbled circuit and sends it to the
other party, Evaluator, for evaluation. Garbler implements the binary circuit
and encrypts its private inputs by representing different logical states of each
wire with garbled values. Specifically, for each wire Wi of the circuit, the gar-
bler randomly chooses a pair of complementary garbled values consisting of
two secrets, w0

i , w
1
i ∈ {0, 1}t, where wj

i is the garbled value corresponding to
logical value j on wire Wi and t is the security parameter. It is crucial to note
that the knowledge of wj

i does not reveal j.

Before describing the protocol for building and evaluating a garbled circuit,
we first describe an interactive protocol called 1-out-of-2 Oblivious Transfer
(OT), denoted as wr := OT (r;w0, w1). OT uses a public-key cipher to map
Evaluator’s private binary input r ∈ {0, 1} to a garbled value wr on the input
wire. OT guarantees that Garbler knows nothing about r, and Evaluator gets
wr but knows nothing about w1−r, the complementary garbled value. Details
of OT are given in Protocol 1.

We provide a brief explanation of Protocol 1 here and detailed security
analysis and implementations can be found in [31, ch. 4]. After the initializa-
tion in steps 1 and 2, Garbler sends two public keys pk0 and pk1 corresponding
to 0 and 1 to Evaluator in step 3. In step 4, Evaluator chooses pkr based on
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Require
Garbler: garbled values w0, w1;
Evaluator: input r ∈ {0, 1}(
Encpk(·), Decsk(·)

)
is a public-key cipher with public key pk and private key sk.

Ensure
Evaluator gets wr

1. Garbler prepares two random key pairs (pk0, sk0) and (pk1, sk1) to represent logical
values 0 and 1 respectively.

2. Evaluator prepares a random key pair (pk, sk).
3. Garbler sends public keys pk0 and pk1 to Evaluator.
4. Evaluator computes c := Encpkr (pk) based on its private input r and sends c to Garbler.

5. Garbler decrypts c using both of its secret keys: p̂k
0

:= Decsk0 (c) and p̂k
1

:= Decsk1 (c).
6. Garbler encrypts the garbled values using the corresponding decrypted results: c0 :=

Enc
p̂k

0 (w0) and c1 := Enc
p̂k

1 (w1).

7. Garbler sends (c0, c1) to Evaluator.
8. Evaluator decrypts wr := Decsk(cr).

Protocol 1: 1-out-of-2 Oblivious Transfer wr := OT (r;w0, w1)

her secret and uses it to encrypt her chosen public key pk for Garbler. In

step 5, Garbler gets p̂k
r

due to the matching keys, but without the knowl-
edge of pk, it is unable to identify which one is correct. The remaining steps
show how Garbler transfers the encrypted garbled values to Evaluator, which
eventually decrypt the chosen wr. The extra information c1−r does not reveal
any information about w1−r because Evaluator does not have the secret key

corresponding to p̂k
1−r

.

The expensive public key operations can be treated as pre-computation [31]:
during the setup phase, the full OT procedure is executed based on randomly

chosen values r′, w′
0
, and w′

1
so that Evaluator obtains w′

r′
. During the online

phase, Evaluator sends to Garbler the masked bit b := r′⊕ r based on the real
private input r exclusive-or (⊕) with r′. If b is 0, Garbler knows that Evaluator

has the same input as in the setup phase and sends (w′
0 ⊕ w0, w′

1 ⊕ w1). If

b is 1, Garbler sends (w′
1 ⊕ w0, w′

0 ⊕ w1). Finally, Evaluator XORs the r-th

value in the returned duple with the stored w′
r′

to obtain wr. The online stage
requires only XOR operations.

Using the OT protocol, the GC protocol is fully specified in Protocol 2. In
step 1, Garbler randomly generates all the garbled values for all wires. The
garbled values corresponding to the private inputs of Garbler can be directly
sent to Evaluator (step 2) while those corresponding to the private inputs of
Evaluator need to be revealed with a 1-out-of-2 OT (steps 5-6). Steps 3-4 and
7 form the core of GC’s encrypting and evaluating the circuit. The garbled
table G(fl) in step 3 encrypts the output garbled value as SHA(wr

i ‖ ws
j ‖

l) ⊕ wfl(r,s)
k , which can only be decrypted if Evaluator has the correct input

garbled values. As the same set of inputs can be used by multiple gates, we
include the gate index l and collision-resistant hash function SHA to make
the encryption of different gates independent from each other. The random
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Require
Garbler: private input X ∈ {0, 1}|WG|;
Evaluator: private input Y ∈ {0, 1}|WE |;
Ensure
Garbler gets C(X,Y ) where C is a public circuit consisting of a set of binary gates GA, a
set of wires WG for input X, wires WE for input Y , and connecting wires WI .

1. Pre: Garbler randomly selects a pair of garbled values corresponding to 0 and 1 for each
wire:

GW := {(w0
i , w

1
i ) ∈ {0, 1}t × {0, 1}t for each Wi ∈WG

⋃
WE

⋃
WI}.

2. Pre: Garbler commits its private inputs to the garbled values and sends to Evaluator:

GWG := {wxi
i from (w0

i , w
1
i ) ∈ GW corresponding to each xi ∈ X}.

3. Pre: Each gate fl(Wi,Wj) = Wk ∈ GA is a truth-table with 4 entries. To garble each
entry fl(r, s) where r, s ∈ {0, 1}, Garbler creates the following tuple (based on [42]):(

SHA(wr
i ‖ ws

j ‖ l)⊕ w
fl(r,s)
k , SHA(w

fl(r,s)
k )

)
(1)

where SHA denotes the SHA-256 hash function, ‖ means concatenation and ⊕ is
exclusive-or. Garbler forms the garbled gate G(fl) which is a random permutation of
(1) for all r, s ∈ {0, 1}.

4. Pre: Garbler sends the collection of garbled gates GGA := {G(fl),∀fl ∈ GA} to
Evaluator.

5. Pre: Garbler and Evaluator start the pre-computation steps of OT for Evaluator to learn
the garble values corresponding to its private inputs:

GWE := {wyi
i := OT (yi;w

0
i , w

1
i ) where (w0

i , w
1
i ) ∈ GW corresponding to each yi ∈ Y }.

6. Garbler and Evaluator complete OT. Evaluator gets GWE .
7. Evaluator proceeds to recursively evaluate each garbled gate G(fl) ∈ GGA starting

with those based on the inputs. Using the gate index l and previously obtained input
garbled values w′

i and w′
j where w′

i ∈ GWG and w′
j ∈ GWE , Evaluator decrypts the

first element in (1) for each of the 4 entries in the truth table as follows:

SHA(wr
i ‖ ws

j ‖ l)⊕ w
fl(r,s)
k ⊕ SHA(w′

i ‖ w′
j ‖ l) (2)

and obtains the unique output garbled value by hashing (2) and validating it with the
second element in (1).

8. Following the same procedure, Evaluator can evaluate the entire GGA in a breadth-first
search order to obtain the final garbled value wC(X,Y ).

9. Depending on whether the output is private to Garbler, Garbler can either decrypt
wC(X,Y ) for Evaluator or provide the output table to Evaluator with each entry en-
crypted by the corresponding garbled value wC(X,Y ).

Protocol 2: Garbled Circuit C(X,Y ) := GCC(X;Y )

permutation ensures that no consistent patterns are revealed to Evaluator.
The second hash value in (1) ensures that Evaluator can identify the correct
output garbled value during evaluation in step 7. The entire circuit can then
be recursively evaluated in step 8 following a similar manner. The final output
value can be either shared with or withheld from Garbler as described in step
9.
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All the steps in Protocol 2 that do not depend on the private inputs from
Evaluator are marked as pre-computation. This classification is important to
complexity reduction in our application. In our iriscode matching circuit, the
biometric server plays the role of Garbler that encrypts a matching circuit
based on the entire gallery. The biometric reader is Evaluator waiting for
the input of a biometric probe. The pre-computation steps can be completed
during the system setup time. The complexity reduction effort will thus con-
centrate on the online portion when a user is actually waiting. In addition,
the optimization effort will focus on reducing the number of non-XOR gates
because of the free-XOR gate technique introduced in [30]. The idea is based
on the observation that complementary garbled values of a wire need to be
statistically independent. As such, it is sufficient to have w1 := w0⊕R, where
R is a secret random number at the garbler. If the garbled values of both
inputs to a XOR gate are related by the same R, the evaluation of the gar-
bled table of the gate (step 7 of Protocol 2) can be replaced by a single XOR
function on the input garbled values, effectively rendering it “free” [30]. As
the XOR gate is not universal, there could be other binary non-XOR gates
remained. Thus, the goal of optimization is to implement our circuit with as
few non-XOR gates as possible.

Another important consideration is that this GC implementation is not
reusable in the sense that a new circuit is required for each query probe.
This is because multiple different probes from the same user can reveal the
complementary garbled values of input wires that can fully/partially decrypt
the associated gates. There are recent work on reusable GC [22] but it could
lead to a significant increase in circuit size [20]. Luckily, with multiple circuits
preloaded to the reader during the setup phase, this lack of reusability has
only a minor impact on the time complexity of the online computation.

5.2 GC-based iriscode matching

In our proposed system, the biometric server has an N -member iriscode gallery
DB := {(x1,maskx1

) . . . , (xN ,maskxN
)}. xi denotes the n-bit iris feature

of member i and maskxi
is the corresponding binary mask that zeros out

the unusable portion of the irises due to occlusion by eyelids and eyelash,
specular refections, boundary artifacts of lenses, or poor signal-to-noise ratio.
The reader captures a probe (q,maskq) from the user and evaluates the GC,
which produces a match if there exists at least an xi ∈ DB such that d(q,xi) <
ε for a similarity threshold ε. d(q,xi) is a modified Hamming Distance (HD)
defined below [12]:

d(q,xi) :=
D(q,xi)

M(q,xi)
=
‖ (q⊕ xi) ∩maskq ∩maskxi ‖

|maskq ∩maskxi ‖
(3)

where ∩ and ‖ · ‖ denote logical-and and the norm of the binary vector re-
spectively.

Our GC implementation has the server as Garbler with private inputs DB
and ε, and the reader as the evaluator with private iriscode (q,maskq). As



16 Ying Luo et al.

Protocol 2 is applicable to any boolean circuits, we focus on the schematic of
our iriscode matching circuit here. Figure 3(a) shows the circuit for private
iriscode matching between the probe q and the entry xi in the database. It
uses the basic garbled circuits (XOR, AND, and MULtiplication), a COUNT
circuit to compute the number of ones in its input [6], and a COMPARE circuit
to check if the first input is lower than the second input [29]. Given the fact
that division in (3) is a complicated circuit [32] and multiplication involves
fewer gates than division [28], we roll the denominator M(q,xi) of (3) into
the similarity threshold ε and test whether D(q,xi) < ε ·M(q,xi). Since all
computation should be computed over integers and ε is a decimal number in
the range [0, 1], we pre-multiply ε by 2l and round it to an integer in the range
[0, 2l] before taking part in the multiplication circuit with M(q,xi). Also,
D(q,xi) is left shifted by l bits so the COMPARE function checks the result
of D(q,xi) · 2l < (ε · 2l) ·M(q,xi). In order to highlight the overall structure
of the circuit, we hide the scale-up processing and use D(q,xi) and ε instead
of D(q,xi) · 2l and ε · 2l in Figure 3(a).

(a) Sub-circuit: D(q,xi) < εM(q,xi)

(b) Entire matching circuit with N sub-circuits from (a) followed by a disjunctive aggregation

Fig. 3 Circuit design for private iriscode matching

The output of the sub-circuit D(q,xi) < ε · M(q,xi) cannot be made
available to the server in plaintext, otherwise the server will know the exact
entry that matches the probe and reveal the user’s identity. In Figure 3(b), we
use OR gates to connect the outputs of all COMPARE sub-circuits D(q,xi) <
ε ·M(q,xi) for i ∈ {1, . . . , N} together. In the end, only the final output of all
OR gates will be decoded and shared by two parties.
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5.3 Reduction of GC gates’ amount through iris masks

The online complexity of our GC circuit depends on two sets of parameters:
the size of the circuit and the security parameters for the basic OT and GC
protocols as discussed in Section 5.1. Our focus is to reduce the size of the
circuit, while relying on publicly-available software library to provide state-of-
the-arts performance on the OT and GC protocols. Externally, the size of the
circuit is determined by the size of the gallery N , the length of the iriscode
n, and the precision parameter l. While these are design parameters based on
applications, we can optimize the circuit by reducing the number of gates to
carry out the same operations.

As explained in Section 5.1, our goal is to minimize the number of non-
XOR gates used in our circuit. Using the implementation of basic blocks from
[30], the numbers of non-XOR gates used by different functions in our circuit
implementation depicted in Figure 3 are tabulated in Table 1. As expected,
the complexity of all functions grows linearly with the number of iriscodes N
in the gallery. For iriscode matching, the size of the iriscode n is typically much
larger than the precision parameter l. As such, the AND gates and COUNT
functions dominate the complexity over other functions.

Table 1 Complexity of different components in Figure 3

Function Number of non-XOR gates

AND 2Nn
COUNT 2N(n− log(n+ 1))

COMPARE Nl log(n)
MUL Nl
OR N

As shown in Figure 3, the abundance of AND gates is due to the incorpora-
tion of masks in the distance computation. If the masks were treated as public
information, all the AND gates and one COUNT function could be eliminated
and the complexity could be significantly reduced. While the iris feature is
obviously private data, it is unclear if the mask itself contains any sensitive
information for identification. Prior schemes such as that in [40] treated masks
as public information without quantifying the possible loss in privacy. There
are other studies such as [35] that showed eyelashes positions, which made up
a significant portion of the mask, had inherent correlation and could be used
to infer important ethnic information about an individual. To the best of our
knowledge, the privacy leakage through iris masks has not been statistically
quantified in any previous studies. Using a publicly-available iriscode database
CASIA [62], which contains multiple iriscodes for more than 290 individuals,
we statistically measure the difference between the Hamming distances of iris
masks for the same individuals and for different individuals. We found that iris
masks from the same individual demonstrate correlations that are not present
across different individuals. As such, iris masks should be considered as private
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information at the server and not shared with the external biometric reader.
The details of the experimental results are provided in Section 7.1.

Even though the actual masks should not be shared, we consider a different
approach to simplify the usage of masks in our GC implementation. A typ-
ical mask contains information about eyelashes, eyelids, specular reflections,
or other noise, and most of their positions do not vary significantly from one
individual to another. As such, it is possible that the positions of these im-
perfections do not significantly affect the distance computation. A common
iris mask can therefore be designed to replace the individual masks without
much loss in precision. The common mask can be created by ORing all the
available masks in the database. Our experiments in Section 7.2 show that
using such a common mask on CASIA results in only less than 1% drop in
recognition performance when compared with using individual masks. While
it is our ongoing work to see if such a conclusion can be scaled up to a much
larger database, we present here the design of a simplified iriscode matching
circuit based on a publicly-available mask common among all iriscodes. The
simplified GC sub-circuit for D(q,xi) < εM(q,xi) is shown in Figure 4. We
use MASK to denote the common mask and highlight all the function blocks
that can be pre-computed. Similar to the scenario in which the masks are
treated as public information, this circuit eliminates all the AND gates and
one COMPARE function. Instead, MASK FILTER functions are added which
only accept the iriscodes into the matching processing with the set of corre-
sponding masks. As demonstrated in our experiments in Section 7, the use of
a common mask results in a speedup factor of over 3.7.

Fig. 4 Simplified GC sub-circuit for D(q,Xi) < εM(q,Xi)
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6 Privacy Information Management (PIM)

In this section, we describe the Privacy Information Management (PIM) sys-
tem that supports anonymous authentication of privacy information retrieval
using biometric signals. Our proposed design consists of two protocols: the first
one is the encryption of the privacy imagery in video, based on the biometric
signal obtained during the ASI process as described in Section 5. The second
protocol is invoked during the retrieval process where the decryption is per-
formed using the biometric signal from a remote location. These two protocols
are described below.

6.1 Privacy Information Encryption

The privacy information encryption protocol is executed right after the server
has ascertained, via the ASI module from Section 5, that the subject entering
the surveillance needs to be protected. The protocol involves three parties:
the biometric reader (Reader), the server (Server), and the camera network
(Camera) as described in Section 4. The objective is to let Camera use the
biometric information from Reader to encrypt the privacy videos, which are
then stored in Server for later retrieval. The details of the privacy information
encryption protocol are given in Protocol 3, where we assume all transmission
are made through secure channels, i.e. eavesdroppers are not able to observe
transmitted messages and attackers cannot modify or erase the messages.

Require
Reader: Biometric probe q;
Camera: Video segment v containing the protected subject;
Server: No private inputs.
Ensure
The following record is stored at Server:

(AESk(v), k ⊕ r,q⊕ s) (4)

where k is a random AES key (256-bit), AESk(v) is the AES-encrypted video v with key
k, r is a 256-bit random number, and s is a random number as long as the iris probe q.
In addition, (r, s) are provided by the Reader to the user as the retrieval code.

1. Upon entry of a new user whose identity has been anonymously authenticated in ASI
module, Reader randomly prepares an AES key k and two random numbers r and s.
(r, s) along with the timestamp are provided back to the user for later retrieval.

2. Reader sends k to Camera, and sends (k ⊕ r,q⊕ s) to Server.
3. Camera computes AESk(v), and sends AESk(v) to Server.
4. Server indexes the record (4) by the time-of-the-day and stores it in the encrypted video

database

Protocol 3: Privacy Information Encryption

Security Analysis of Protocol 3
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As Protocol 3 is a storage protocol with no specific output, its ideal func-
tionality is a no-op and the goal of the analysis is to ensure that the information
exchanged is indistinguishable from uniform random data.

Reader: No data is sent to Reader so it does not learn any private information
from Camera or Server.

Camera: It receives k from Reader. k is a one-time randomly chosen AES key
that will be associated with the individual while he/she is in the surveil-
lance area. As it is a one-time encryption key, the Camera will not be able
to use this information to relate to any previous recordings of the same
individual.

Server: It receives AESk(v) from Camera, and (k⊕ r,q⊕ s) from Reader. As
the Server has databases of videos and iriscode of the same individual, it
is important to ensure that the new message does not allow the Server to
infer the identify.
– For the AES encrypted video AESk(v), we shall assume the 256-bit key

length is robust against brute-force attacks on k. The key k is a one-
time encryption key so previous recordings of the same individual at
the Server are independent.

– The security of k⊕ r is ensured by the one-time pad with a private key
r that is only available at the Reader. The query probe q is encrypted
with another one-time randomly generated private key s, which is either
2048 or 9600 bit long. As such, brute-force attacks on r and s are not
possible.

– However, Server has an iriscode q′ in its gallery that is similar or pos-
sibly identical to q and it can use q′ to attack s. However, the retrieval
code (r, s) is only available at the Reader, making it impossible for
Server to ascertain if there is a match. Also, as s changes every time,
different records from the same individual are independent from each
other. A drawback of this approach is that the user needs the correct
retrieval code for retrieval. Details of the retrieval procedure can be
found in Protocol 4.

6.2 Privacy Information Retrieval

The privacy information retrieval protocol, described in Protocol 4, is used
when a user (Requester) wants to retrieve his/her privacy videos from the video
database stored at Server. We assume that communications are made through
secure channels. The security goals in Section 3 state that the user must be
authenticated with the biometric and only allowed to access the associated
records. The encryption protocol introduced in Section 6.1 further requires
the user to possess the correct retrieval code in addition to the iris biometric
to complete the process.
Correctness of Protocol 4

In steps 1 and 2, Server identifies all the relevant records pertinent to
Requester’s query. For each record, Server generates a random key ti in step
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Require
Requester: Probe q′ and retrieval code (r′, s′);
Server: A set of records in the form of (4);
Ensure
Requester obtains the associated private video.

1. Requester sends time-stamp query to Server.
2. Server identifies all records with matching time. Denote this set of records as

A := {
(
AESki

(vi), ki ⊕ ri,qi ⊕ si
)

: i = 1, 2, . . . , N} (5)

where N is the number of matching records.
3. For each record in A,

(a) Server generates a 256-bit uniformly random number ti.
(b) Server creates a garbled circuit GC(qi ⊕ si;x) that returns ti if d(qi ⊕ si,x) < ε

and sends the GC to Requester.
(c) Requester uses her private input x := q′⊕s′ and jointly evaluates the garbled circuit

with Server to obtain the output t′i, which is available only to the Requester.
(d) Server sends the following to Requester:(

AESki
(vi), ki ⊕ ri ⊕ ti

)
(6)

(e) Requester uses her own r′ and GC’s output t′i to compute:

k′i := ki ⊕ ri ⊕ ti ⊕ r′ ⊕ t′i

(f) Requester tries to decrypt AESki
(vi) with k′i.

Protocol 4: Privacy Information Retrieval

3(a) to encrypt ki ⊕ ri as in (6). Server also creates a new garbled circuit
GC(qi ⊕ si; x) in step 3(b) to encrypt ti and sends it to Requester, which
provides her private input x := q′ ⊕ s′. If Requester has a matching iriscode,
i.e. d(qi,q

′) < ε, and a matching second part of the retrieval code, si = s′i, then
joint execution of the GC will result in d(qi⊕ si,q′⊕ s′) < ε as the XOR does
not affect the hamming distance calculation and the GC will return t′i = ti
in step 3(c). If the inputs do not match, GC will return a random output.
In step 3(d), Server sends the encrypted video AESki

(vi) and encrypted key
ki ⊕ ri ⊕ ti to Requester, who can easily retrieve the AES key ki in step 3(e)
with a matching first part of the retrieval code ri = r′ and the correct GC
output. The video can then be decrypted with the correct AES key in step
3(f).
Security Analysis of Protocol 4

The ideal functionality for Requester is to decrypt her videos but nothing
else, and the ideal functionality for Server is no-op.

Requester: Based on steps 3(b) and (d), the following information is received
by Requester:

B := {(AESki(vi), ki ⊕ ri ⊕ ti, GC(qi ⊕ si; x)) : i = 1, 2, . . . , N} (7)

For a given record i, we claim that it is indistinguishable from uniform
random data unless r = ri, s = si, and d(qi,q) < ε. The reason is as follows:
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first, if either of the last two conditions are not met, the garbled circuit will
return an uniformly random value independent of ti, which makes ki⊕ri⊕ti
independent of AESki

(vi). This applies even if the retrieval code is stolen,
i.e. (r, s) = (ri, si), the record still does not reveal any information without
a matching biometric q′. Second, if the two conditions are met but r 6= r′,
the garbled circuit will produce the correct ti but the unknown ri still
keeps ki⊕ri and AESki(vi) secret. Finally, as ki, ti, and ri are independent
for different i’s and so are the garbled circuits, Requester’s capability of
decrypting one record has no impact on others, thereby protecting privacy
of videos not belonging to her.

Server: Server receives the time-stamp query from Requester in step 1. This
step can reveal the possible time frame Requester is interested in. Alterna-
tively, Server can send the entire database to Requester to plug this small
information leak, but such an approach is not practical for large video
databases. It is important to note that Server also receives additional in-
formation in step 3(c) during the joint evaluation of the garbled circuits.
However, the result of the evaluation is not available to Server and the
security of garbled circuits guarantees that Server does not know which
videos Requester can successfully decrypt.

7 Implementation Details and Experiments

All our experiments are based on a subset of the CASIA Iris database, the
CASIA-IrisV3-Lamp, from the Chinese Academy of Sciences Institute of Au-
tomation (CASIA) [62]. To ensure that we begin with a good quality set of
samples, we remove erroneous samples which cannot produce accurate iriscode
based on the Matlab feature generation code from [44]. As a result, 3763 sam-
ples from 292 individuals are included in our dataset. Our proposed system
is implemented in Java and runs on an Intel Core i7-4790 CPU @3.60GHz
3.60GHz with 12GB RAM on 64-bit Windows 8.1 Enterprise.

7.1 Privacy and similarity among iris masks

In this section, we study if the mask alone in an iriscode can leak privacy infor-
mation. While there are different ways to measure privacy leakage, we argue
that masks contain privacy information if two masks from the same individual
are more similar than the masks from two randomly selected individuals. As
there are no well established methods to measure similarity between masks,
we consider two generic similarity measurements between binary strings: nor-
malized Hamming distance (HD) and overlap size (OS) defined below:

dHD(x,y) :=
1

n
||x⊕ y|| and sOS :=

1

n
||x ∩ y|| (8)

Treating these measures on masks from same individuals and different indi-
viduals as random variables, we can formulate statistical tests to determine
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if they are distinguishable. In our experiments, we have computed these mea-
sures for 28, 006 pairs of masks between the same individuals and 7, 050, 197
pairs between different individuals. The distributions of the two measures for
these two sets are shown in Figure 5(a) and (b).
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Fig. 5 Mask distance distributions

To test if the difference of these measures between from the same and
different individuals are statistically significant, we utilize the distribution-
free Wilcoxon Rank-Sum Test between these two samples [14, Ch.15]. We focus
the analysis on dHD here as that of sOS is the same and leads to the same
conclusion. We hypothesize that masks from the same individual are smaller
in distance compared to those from different individuals. If this hypothesis
is accepted, there is no identity information leaked through masks. In our
test, the samples from the same individuals are labeled as X and the samples
from different individuals as Y . Let µx and µy be the averages of X and Y
respectively. The null hypotheses is H0 : µx − µy = 0 and the alternative
hypothesis is Ha : µx − µy 6= 0. When the samples from X and from Y are
pooled into a combined sample of size m + n, these observations are sorted
from smallest (rank 1) to largest (rank m + n). Then, the sum of ranks of
all samples from X is considered as our test statistic W , i.e. W =

∑m
i=1Ri

where Ri is the rank for the i-th sample of X. Due to the large sample size,
the distribution of the test statistic z = (W − µW )/σW can be approximated
by a standard normal distribution if H0 is true where

µW =
m(m+ n+ 1)

2
= 9.91× 1010

σ2
W =

mn(m+ n+ 1)

12
= 1.16× 1017

At the confident level of 99%, H0 is rejected if either z ≥ 2.58 or z ≤ −2.58.
In our experiments, W = 5.19 × 108 which implies that z = −288.91. The
null hypothesis is therefore rejected. Based on these results, we conclude that
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masks have inter-correlation among each individual, and therefore, should not
be shared between the server and the biometric reader.

7.2 Common mask

Samples of masks from different individuals are shown in Figure 6(a). We
can observe that there are a great deal of similarity among masks even from
different individuals. Also, our earlier experiments depicted in Figure 5(a)
indicate that there could be up to 50% bit difference even between masks
from the same individual.

(a) Real masks from database

(b) Common mask

Fig. 6 Real masks and common mask

As such, it is conceivable to use a common mask to replace individual
masks without much loss in precision. As we have pointed out in Section 5.3,
the use of a common mask can significantly reduce the complexity of our GC
circuits. To test this hypothesis, we use the following method to derive the
common mask: first, we pre-align all iriscodes in the database with respect
to a randomly chosen iriscode x by shifting each of them to a position that
minimizes its distance from x. The common iris mask is set to ’1’ at all bit
positions where the percentages of the pre-aligned masks being ’1’ at those
positions exceed an empirically-determined threshold λ. The common mask
obtained from the CASIA iris database is shown in Figure 6(b).

Figure 7 shows the distribution of HDs using both real masks and the
common mask. With ε = 0.41, False Accept Rate (FAR) is 0.53% while False
Reject Rate is 0.54% for the distribution computed with real masks. The best
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FAR and FRR are 1.44% and 1.47% at ε = 0.43 for the distribution with the
common mask, based on setting λ to 80%. We can see that the accuracy in
the case of common mask is reduced by less than 1%.

(a) Real masks (b) Common mask

Fig. 7 HD distributions

7.3 GC-based Anonymous Iris-code matching

We analyze the computation performance of our implementation of ASI using
two sets of iriscodes: the first one is the 9600-bit code generated by the scheme
in [44] and the second one is a downsampled version of the first set to conform
with the 2048-bit code described in [12]. The reason of using the second set
is to have a fair comparison with the scheme described in [8]. Downsampling
should not affect the complexity measurements in this section and is used here
as there is no public implementation of the scheme described in [12]. The basic
building blocks are based on [29]. Other GC implementation can be used as
our focus is on simplifying the GC circuit for iriscode matching instead of
basic GC blocks. The complexity measurements of the two sets using different
security parameters are shown in Table 2.

We do not include circuit construction and circuit transmission in our
complexity measurements as they can be computed offline [7]. The setup time
is based on OT precomputation which is needed every time when a new iris
probe is presented to the reader. The setup time is independent of the size of
the iris database but is related to the length of the iriscode, as shown in Table
2. The online time is the real computation time measured at the reader and
the server for the entire circuit evaluation process after the pre-computation is
completed. The overall time includes, in addition to the online time, the time
for loading the circuits from the files, constructing the garbled table for each
gate, and communicating between the two parties. All the results in Table 2
are measured by averaging the comparisons of 100 pairs of iriscodes in the
database.
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Table 2 Number of non-XOR gates, runtime (ms) and bandwidth (KB) based on different
security parameters (bit)

n-bit # non Security Setup Online Time Overall Band-
-XOR Parameters Time Reader Server Time width

Individual Masks

2048 8349
80 17,127 15 62 142 571.5
112 18,557 17 69 151 754.0
128 18,798 18 75 159 845.7

9600 38654
80 87,033 62 285 611 2655.0
112 88,256 63 287 641 3503.2
128 93,278 76 323 686 3828.5

Common Mask

2048 2059
80 8,850 7 19 38 133.7
112 9,153 9 21 46 176.5
128 9,289 10 24 49 197.9

9600 9641
80 43,337 18 64 162 626.1
112 43,490 19 65 176 826.5
128 43,696 22 74 189 926.7

The performance of the totally GC-based private iris-code matching is
quite efficient: when we adopt an 80-bit security parameter, it takes 142 ms
to compare two 2048-bit iris-codes with private iris features and masks. If the
common mask is used, a speedup factor of up to 3.7 or 38 ms per comparison
can be achieved. This is comparable to 14 ms as reported in [8]. Considering
that longer cyphertexts will be required to provide longer-term security, we
also measure the processing time using longer security parameters of 112 and
128 bits in Table 2. The execution time is increased by 12% for the individual
masks and 29% for the common mask at the most. These are much smaller
than the 62% increase for the hybrid protocol as reported in [55]. As such, our
GC-only protocol is clearly preferred in the cases when longer term security is
needed.

7.4 Privacy Information Management

In this section, we focus on the implementation details and performance anal-
ysis of the PIM system as described in Section 6. The privacy information
encryption protocol described in Protocol 3 relies on an AES cipher for pro-
tecting the original video imageries. Specifically, we employed the video en-
cryption model in [63, Ch.5] to encrypt the H.263 video bitstream pertinent
to each individual. The encryption time of the 256-bit AES key is on average
10.16 ms. The decryption time is 9.37 ms. The main computation and storage
burden of the entire protocol are dominated by the AES encryption the private
video, which varies depending on the number of protected individuals and the
time duration of each protected individual inside the surveillance perimeter.
Since the AES implementation is not our original work, we do not analyze
the computation and communication complexity of video encryption. The pri-
vacy information retrieval protocol described in Protocol 4 needs an additional
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GC circuit to match the live probe from the requester with the stored data.
We adopted 80-bit security parameter for our GC implementation. The result
GC circuit has 2071 non-XOR gates with total runtime measured at 47ms for
comparing a pair of 2048-bit iriscode combined with the same length random
number and 9655 non-XOR gates at 188ms for 9600-bit inputs.

8 CONCLUSION

In this paper, we have proposed a framework for anonymous subject identifica-
tion (ASI) and privacy information management (PIM) with biometric signals
in a privacy-aware video surveillance system. Our ASI system uses iris pat-
terns to determine the privacy protection status of an incoming individual. By
capitalizing on the recent advancements in garbled-circuit (GC) based secure
multi-party protocols, a novel GC-based implementation of the ASI system
has been proposed in the first part of the paper. We have discovered that the
complexity of the GC-based ASI system heavily depends on the use of indi-
vidual iris masks. Our experiments have demonstrated that while making the
masks public as suggested by other works can leak privacy information, using
a common mask for all comparisons can significantly reduce the complexity
with negligible loss in recognition accuracy. In the second part of the paper, we
have designed a PIM system that protects all surveillance videos with privacy
information and allows any user to anonymously access his/her own imageries.
The proposed system uses the user’s biometric signal and a retrieval code ob-
tained during the ASI process to encrypt a secret key for unlocking the original
video imagery. The retrieval process is based on a simple GC to authenticate
the identity of the user, while guaranteeing that the user cannot gain any in-
formation about other users, and the server knows nothing about the identity
of the user or the actual video contents. Future works include validation of
the common mask assumption with a larger database, improved performance
in GC-based similar iris search through hierarchical clustering of data, and a
distributed implementation of the PIM system in a large camera network.

References

1. Avidan, S., Moshe, B.: Blind vision. In: Proceedings of the 9th European Conference
on Computer Vision, pp. 1–13 (2006)

2. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key man-
agement. NIST Special Publication 800-57 (2012)

3. Barker, E.B.: Sp 800-57 rev. 4. recommendation for key management. part 1: General
(2016)

4. Barni, M., Bianchi, T., Catalano, D., Raimondo, M.D., Labati, R.D., Failla, P., Fiore, D.,
Lazzeretti, R., Piuri, V., Piva, A., et al.: A privacy-compliant fingerprint recognition
system based on homomorphic encryption and fingercode templates. In: Biometrics:
Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Conference
on, pp. 1–7. IEEE (2010)

5. Barni, M., Droandi, G., Lazzeretti, R.: Privacy protection in biometric-based recognition
systems: A marriage between cryptography and signal processing. Signal Processing
Magazine, IEEE 32(5), 66–76 (2015)



28 Ying Luo et al.

6. Barni, M., Guajardo, J., Lazzeretti, R.: Privacy preserving evaluation of signal quality
with application to ECG analysis. In: Information Forensics and Security (WIFS), 2010
IEEE International Workshop on, pp. 1–6. IEEE (2010)

7. Beaver, D.: Precomputing oblivious transfer. Advances in CryptologyCRYPT095 pp.
97–109 (1995)

8. Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint identifica-
tion. Tech. rep., Cryptology ePrint Archive, Report 2010/627, 2010. http://eprint. iacr.
org (2010)

9. Cavoukian, A., Stoianov, A.: Biometric encryption: A positive-sum technology that
achieves strong authentication, security and privacy. Information and Privacy Commis-
sioner, Ontario, Canada (2007)

10. Cheung, S.C., Venkatesh, M.V., Paruchuri, J., Zhao, J., Nguyen, T.: Protecting and
managing privacy information in video surveillance systems. In: A. Senior (ed.) Pro-
tecting Privacy in Video Surveillance. Springer (2009)

11. Chinomi, K., Nitta, N., Ito, Y., Babaguchi, N.: Prisurv: Privacy protected video surveil-
lance system using adaptive visual abstraction. In: Advances in Multimedia Modeling.
Springer, pp. 144–154 (2008)

12. Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems
for Video Technology 4, 21–30 (2004)

13. De Marsico, M., Nappi, M., Riccio, D., Wechsler, H.: Mobile iris challenge evaluation
(MICHE)-I, biometric iris dataset and protocols. Pattern Recognition Letters 57, 17–23
(2015)

14. Devore, J.: Probability and Statistics for Engineering and the Science, Brooks/Cole
Pub. Co., Monterey, California 704 (1991)

15. Dufaux, F., Ebrahimi, T.: Scrambling for video surveillance with privacy. 2006 Con-
ference on Computer Vision and Pattern Recognition Workshop (CVPRW’06) p. 160
(2006). DOI http://doi.ieeecomputersociety.org/10.1109/CVPRW.2006.184

16. Elezovikj, S., Ling, H., Chen, X.: Foreground and scene structure preserved visual
privacy protection using depth information. In: Multimedia and Expo Workshops
(ICMEW), 2013 IEEE International Conference on, pp. 1–4. IEEE (2013)

17. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-
preserving face recognition. In: Privacy Enhancing Technologies, pp. 235–253. Springer
(2009)

18. Fidaleo, D.A., Nguyen, H.A., Trivedi, M.: The networked sensor tapestry (nest): a pri-
vacy enhanced software architecture for interactive analysis of data in video-sensor net-
works. In: VSSN ’04: Proceedings of the ACM 2nd international workshop on Video
surveillance & sensor networks, pp. 46–53. ACM Press, New York, NY, USA (2004).
DOI http://doi.acm.org/10.1145/1026799.1026809

19. Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists.
EURASIP Journal on Information Security 2007 (2007)

20. Gentry, C., Gorbunov, S., Halevi, S., Vaikuntanathan, V., Vinayagamurthy, D.: How
to compress (reusable) garbled circuits. IACR Cryptology ePrint Archive 2013, 687
(2013)

21. Goldreich, O.: Foundations of Cryptography: Volume II Basic Applications. Cambridge
(2004)

22. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pp. 555–564. ACM (2013)

23. Grother, P., Ngan, M.: Face recognition vendor test (frvt) performance of face identifi-
cation algorithms. NIST Interagency Report 8009, 2 (2014)

24. Grother, P., Quinn, G., Matey, J., Ngan, M., Salamon, W., Fiumara, G., Watson, C.:
Irex iii performance of iris identification algorithms. Interagency report 7836 (2012)

25. Hao, F., Anderson, R., Daugman, J.: Combining cryptography with biometrics effec-
tively. IEEE Transactions on Computers 55(9), 1081–1088 (2006)

26. Hazay, C., Lindell, Y.: Efficient secure two-party protocols: Techniques and construc-
tions. Springer (2010)

27. of Health, U.D., Services, H., et al.: Summary of the HIPAA privacy rule. Washington,
DC: Department of Health and Human Services (2003)



ASI & PIM in Video Surveillance 29

28. Kolesnikov, V., Sadeghi, A., Schneider, T.: How to Combine Homomorphic Encryption
and Garbled Circuits. Signal Processing in the Encrypted Domain pp. 100–121 (2009)

29. Kolesnikov, V., Sadeghi, A., Schneider, T.: Improved garbled circuit building blocks and
applications to auctions and computing minima. Cryptology and Network Security pp.
1–20 (2009)

30. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and applications.
Automata, Languages and Programming pp. 486–498 (2008)

31. Lazzeretti, R.: Privacy preserving processing of biomedical signals with application to
remote healthcare systems. Ph.D. thesis, Ph. D. thesis, PhD school of the University of
Siena, Information Engineering and Mathematical Science Department (2012)

32. Lazzeretti, R., Barni, M.: Division between encrypted integers by means of garbled cir-
cuits. The 2011 IEEE Intl. Workshop on Information Forensics and Security (WIFS’11)
(2011)

33. Lee, Y., Micheals, R.J., Filliben, J.J., Phillips, P.J.: Vasir: An open-source research
platform for advanced iris recognition technologies. Journal of Research of the National
Institute of Standards and Technology 118, 218 (2013)

34. Lewis, S.M.: The fourth amendment in the hallway: Do tenants have a constitutionally
protected privacy interest in the locked common areas of their apartment buildings?
Michigan Law Review pp. 273–310 (2002)

35. Li, Y., Savvides, M., Chen, T.: Investigating useful and distinguishing features around
the eyelash region. In: 2008 37th IEEE Applied Imagery Pattern Recognition Workshop.
IEEE (2008)

36. Linnartz, J., Tuyls, P.: New shielding functions to enhance privacy and prevent misuse
of biometric templates. In: Audio-and Video-Based Biometric Person Authentication,
pp. 1059–1059. Springer (2003)

37. Lioudakis, G.V., Koutsoloukas, E.A., Dellas, N.L., Tselikas, N., Kapellaki, S., Prez-
erakos, G.N., Kaklamani, D.I., Venieris, I.S.: A middleware architecture for privacy
protection. Computer Networks 51(16), 4679–4696 (2007)

38. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: A generic, customizable,
and reusable secure computation architecture. In: IEEE Security and Privacy (2015)

39. Luo, Y., Cheung, S.C., Pignata, T., Lazzeretti, R., Barni, M.: An efficient protocol for
private iris-code matching using garbled circuits. In: IEEE International Conference on
Image Processing (ICIP 2012). Orlando, Florida, USA (2012)

40. Luo, Y., Cheung, S.C.S., Ye, S.: Anonymous biometric access control based on homo-
morphic encryption. In: IEEE International Conference on Multimedia & Expo. Cancun,
Mexico (2009)

41. Luo, Y., Sen-ching, S.C.: Privacy information management for video surveillance. In:
SPIE Defense, Security, and Sensing, pp. 871,207–871,207. International Society for
Optics and Photonics (2013)

42. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party computation
system. In: USENIX (2004). http://www.cs.huji.ac.il/project/Fairplay

43. Martin, K., Plataniotis, K.N.: Privacy protected surveillance using secure visual object
coding. Circuits and Systems for Video Technology, IEEE Transactions on 18(8), 1152–
1162 (2008)

44. Masek, L., Kovesi, P.: Matlab source code for a biometric identification system based
on iris patterns. Tech. rep., The School of Computer Science and Software Engineering,
The University of Western Australia (2003)

45. Nakashima, Y., Babaguchi, N., Fan, J.: Automatically protecting privacy in consumer
generated videos using intended human object detector. In: Proceedings of the interna-
tional conference on Multimedia, pp. 1135–1138. ACM (2010)

46. Nakashima, Y., Babaguchi, N., Fan, J.: Automatic generation of privacy-protected
videos using background estimation. In: Multimedia and Expo (ICME), 2011 IEEE
International Conference on, pp. 1–6. IEEE (2011)

47. Newton, E.N., Sweeney, L., Main, B.: Preserving privacy by de-identifying face images.
IEEE Transactions on Knowledge and Data Engineering 17(2), 232–243 (2005)

48. Organisations, C.C.P.S.: Common criteria for information technology security evalua-
tion, part 2: Security functional components. Tech. Rep. CCIMB-2012-09-002 (2012)



30 Ying Luo et al.
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