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We present the first constant round, multicast, authenticated tree-based R-LWE group key exchange
protocol with logarithmic communication and memory complexity. Our protocol achieves post-
quantum security through a reduction to a Diffie-Hellman-like analogue to the decisional R-LWE
problem. We also present a sequential version with constant memory complexity but a logarithmic

number of rounds and communication complexity.
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1. INTRODUCTION

Ring-learning-with-errors (R-LWE) is a cryptograpic
approach for post-quantum cryptography, a candidate
for maintaining security against the upcoming quantum
computers while using classical computers to enact the
cryptographic protocols. As is, it has been applied to
fundamental cryptography such as two party key exchanges,
see for example Ding, Xie, and Lin [1] (with Peikert’s
reconcilliation tweak [2]). Apon, Dachman-Soled, Gong,
and Katz [3] at PQCrypto 2019, and Choi, Hong, and Kim
[4] from2020, bothmanage to extend the applicability further
by showing how to create authenticated group key exchanges
(AGKEs) from the decisional R-LWE problem [5]. Their
schemes are interesting generalizations of Diffie-Hellman
based group key exchanges (GKEs), one by Burmester and
Desmedt [6] and one by Dutta and Barua [7]. However, for =
parties, their protocols both have linear order communication
complexity. Group key exchanges have applicability in
modern scenarios where many parties need to communicate
securely, such as group chats and online gaming. These
scenarios often require group encryption, especially if there
is money or sensitive information involved. Furthermore,
for private persons with limited hardware capabilities, fast
group key exchangeswith lowcommunication complexity are
preferred, so it would be beneficial to reduce the complexity
if possible.

In this paper, we generalize a tree-based scheme, also
by Burmester and Desmedt [8], by combining it with
the Ding et al [1] key exchange using Peikert’s tweak
[2], and call it the tree-based R-LWE GKE (tree-R-LWE-
GKE). It is a constant round protocol with logarithmic
order communication and memory complexity. We also
generalize a sequential version, the peer-to-peer tree-basedR-

LWE GKE (P2P-tree-R-LWE-GKE). P2P-tree-R-LWE-GKE
achieves constant communication and memory complexity
but logarithmic order round complexity. The security of
these protocols reduces to a Diffie-Hellman-like version of
the decisional R-LWE problem, shown by Bos, Costello,
Naehrig, and Stebila [9] to have comparable security to the
decisional R-LWE problem. These GKEs were presented at
ICICS 2020 [10] in a preliminary version. We extend these
results by creating a compiler that turns both of our previous
protocols into AGKEs, while maintaining logarithmic order
complexities. The reason for considering such a compiler is
that the standard approach for turning a GKE into an AGKE,
by using a Katz-Yung compiler [11], forces the compiled
protocol to have at least linear order complexity, which we
seek to avoid. In order to do this, we modify the compiler
given by Desmedt, Lange, and Burmester [12], and prove
the security in a stronger security model than the original,
namely the G-CK+ model of Suzuki and Yoneyama [13], by a
simple reduction to theDiffie-Hellman-like problem given by
Bos et al [9]. The specific differences between our compiler
and the one given in [12] are explained in our concluding
remarks.

The organization of our paper is as follows. In Sect. 2, we
give our notation and explain both our security definitions
in Sect. 2.1 and R-LWE specific definitions in Sect. 2.2. In
Sect. 3, we state our tree-based R-LWE group key exchange
(tree-R-LWE-GKE) and our sequential tree-based R-LWE
group key exchange (P2P-tree-R-LWE-GKE) protocol. The
authenticated compiler for our GKEs is given in Sect. 4. We
compare our AGKEs to other post-quantum R-LWE AGKEs
in Sect. 5. We give our concluding remarks in Sect. 6.
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2. PRELIMINARIES

We begin by defining notation and notions that we will use
in our treatment of GKEs.

On notation, if j is a probability distribution over a set (,
then B '← j denotes sampling an element B ∈ ( according
to the distribution j. We use the notation B '← ( to denote
element B ∈ ( being chosen uniformly at random from (. If
Algo is an algorithm, then we let ~ ← Algo(G) denote the
output ~ from the algorithm, given input G. If the algorithm
is probabilistic and uses some randomness to choose its
output, we may draw attention to this by using the notation
~
'← Algo(G).
In this paper, (post-quantum) hard means that there is no

polynomial-time (quantum) algorithm that can solve a given
problem, except with negligible probability.

2.1. Security Model

For the security of our AGKE protocols, we consider the G-
CK+ model of Suzuki and Yoneyama [13]. We reformulate
their description to using our notation and note where we add
to the definition to fit the specific purposes of this article.

Consider a finite set of partiesP = {P0, . . . ,P[}modeled
by probabilistic polynomial-time (PPT) Turing machines
with security parameter _, usually given in unary as 1_. A
party P8 generates its own static secret key (( 8 and static
public key (% 8 , where the public key is linked with P8’s
identity in some public system like a public key infrastructure
(PKI). For a partyP8 , we denote the ephemeral secret (public)
key by �( 8 (�% 8).

2.1.1. Session
Any subset {P81 , . . . ,P8= } ⊆ P, where 2 ≤ = ≤ [, can,
at any time, decide to invoke a new GKE protocol. We
call such an invocation a session, managed by a tuple
(Π,P8; , {P81 , . . . ,P8= }), where Π is the protocol identifier
and P8; is the party identifier.3 Without loss of generality,
we hereafter suppose that P8; = P; . P8 outputs �% 8 and
receives �% 8′ from P8′ from all relevant (necessary) parties
and outputs the session key.4

When P8 is the 8-th party of a session, we may define the
session id sid = (Π,P8 , {P1, . . . ,P=}, �% 8). We callP8 the
owner of sid, if the second coordinate of sid is P8 , and a peer
of sid if it is not. A session is said to be completed if its owner
computes the session key. We say that (Π,P8′ , {P1, . . . ,P=})
is a matching session of (Π,P8 , {P1, . . . ,P=}), where 8′ ≠ 8.

3Suzuki and Yoneyama [13] define their sessions with a ‘role’ for a
party, which may be indexed differently from the party index, as well as a
corresponding ‘player’ definition. In our protocols, the role of a party is
determined by the placement in the double-tree (see Sect. 3), which in turn is
determined by the index of the party, which can be altered as needed, hence
the role is uniquely determined by the party index. We therefore remove this
‘role’ (and ‘player’) from our definition of session.

4Suzuki and Yoneyama [13] assume that each party receives public keys
from all other parties, but this forces any GKE to have at least linear order in
=, which we aim to avoid, hence we have altered the model slightly. In the
end, parties only need as many keys as are relevant or necessary to compute
the session key, which our alteration highlights.

2.1.2. Adversary
We consider an adversary A, modeled as a (not
necessarily classical) PPT Turing machine that controls all
communication, including session activation and registration
of parties. It does so using the following queries:

Send(P8 , <): P8 is the receiver and the message has
the form (Π,P8 , {P1, . . . ,P=}, �=8C) if it is an
initializing message for session activation, and includes
(Π,P8′ , {P1, . . . ,P=}, �% 8′) otherwise. Note that
these messages may be whatever A requires.

Establish(P8 , (% 8): A new party is added to P. Note
that A is not required to prove possession of the
corresponding (( 8 . If a party is registered by such
a query, then the party is called dishonest, if not, the
party is called honest.

As an addition to theG-CK+model, we consider two different
adversary types: fair and manipulating. Both types of
adversary may send an initializing message to a subset of
parties to start a GKE protocol between them, but the fair
adversarymay not create, omit, nor manipulate any message
between parties, honestly relaying messages between parties
as per the protocol. Themanipulating adversary has no such
restrictions. This is to mimic the difference between GKEs
and authenticated GKEs.

The adversary is further given access to the following
attack queries.

SessionReveal(sid): Reveals the session key of a session
sid to the adversary, only if the session is completed.

StateReveal(sid): Reveals to the adversary the session
state of the owner of the sid if the session is not
yet completed, i.e. the session key has yet to be
established. The session state contains all ephemeral
secret keys and intermediate computation results except
for immediately erased information, but it does not
contain the static secret key. The protocol specifies
what the session state contains.

StaticReveal(P8): Reveals the static secret key of party
P8 to A.

EphemeralReveal(sid): Reveals to the adversary all
ephemeral secret keys of the owner of sid if the session
is not yet completed. This does not reveal other state
information such that an adversary might trivially win.

Definition 2.1. Let sid∗ = (Π,P8 , {P1, . . . ,P=}, �% 8)
be a completed session between honest parties {P1, . . . ,P=},
owned by P8 . If a matching session exists, then let sid∗ be a
matching session of sid∗. We say that sid∗ is fresh if none of
the following is true:

1. A queried SessionReveal(sid∗), or
SessionReveal(sid∗) for any sid∗ if sid∗ exists;
or
2. sid∗ exists, and A queried either StateReveal(sid∗)
or StaticReveal(sid∗); or
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3. sid∗ does not exist, andA queried StateReveal(sid∗);
or
4. A queried both StaticReveal(P8) and
EphemeralReveal(sid∗); or
5. sid∗ exists (the owner of sid∗ is P8′), and A queried
both StaticReveal(P8′) and EphemeralReveal(sid∗);
or
6. sid∗ does not exist, andA queried StaticReveal(P8′)
for any intended peer P8′ of P8 .

Otherwise, we call the session exposed.

Initially,A is given a set of honest users and makes use of
its attack queries as described above. Eventually, A makes
the following query.

Test(sid∗): Issues the final test. Once the adversary decides
that they have enough data, they query the Test oracle
for a challenge. A random bit 1 is generated; if 1 = 1
then the adversary is given the session key, otherwise
they receive a random key from the key space.

Before and after Test(sid∗) is issued, the adversary is
allowed to make adaptive queries, issuing oracle queries with
the condition that it cannot expose the test session. By the
definition of freshness, the Test query requires that sid∗ is
completed. Eventually,A guesses a bit 1′. We letSuccA (Π)
be the event that A guesses 1′ = 1, i.e. guesses the Test bit
1 correctly, and define the advantage

Adv(A) =
����%A [SuccA (Π)] −

1

2

���� .
In this model, we define (authenticated) GKE security to

be the following.

Definition 2.2. A group key exchange is said to be a
secure group key exchange (GKE) in the G-CK+ security
model if for any fair PPT adversary A,

1. If two honest parties complete matching sessions,
these sessions produce the same session key as output,
except with at most negligible probability;
2. Adv(A) is negligible in security parameter 1_ for the
test session sid∗

Definition 2.3. A group key exchange is said to be a
secure authenticated group key exchange (AGKE) in the G-
CK+ security model if for any manipulating PPT adversary
A,

1. If two honest parties complete matching sessions,
these sessions produce the same session key as output,
except with at most negligible probability;
2. Adv(A) is negligible in security parameter 1_ for the
test session sid∗

Note that, for the sake of forward secrecy, the
StaticReveal query is considered. If a group key exchange
is secure in this model, it is said to have forward security or
be forward-secure, i.e. revealing static keys does not expose
previous session keys.

2.1.3. Signatures
In this section, we also provide a definition of a (digital)
signature scheme as we will assume the existence of one for
our authenticated group key exchange later.

Definition 2.4 ([14]). A (digital) signature scheme,
ΠB8�=, consists of three PPT algorithms (Gen, Sign, Vrfy)
such that:

1. The key-generation algorithm Gen takes as input
a security parameter 1_ and outputs a pair of keys
(sign, vrfy), the signing key (or private key) and
verification key (or public key), respectively. We
assume that sign and vrfy each has length at least _,
and that _ can be determined from sign or vrfy.
2. The signing algorithm Sign takes as input a signing
key sign and a message < from some message space
(that may depend on vrfy). It outputs a signature f, and
we write this as f ← Signsign (<).
3. The deterministic verification algorithm Vrfy takes
as input a verification key vrfy, a message <, and a
signature f. It outputs a bit 1, with 1 = 1 meaning
valid and 1 = 0 meaning invalid. We write this as
1 ← Vrfyvrfy (<, f).

For correctness, it is required that except with negligible
probability over (sign, vrfy) output by Gen(1_), it holds that
1← Vrfyvrfy (<, Signsign (<)) for every (legal) message <.

Definition 2.5 (Security of Signatures[14]). The
signature experiment Sig − forgeA,ΠB8�=

(_):

1. Gen(1_) is run to obtain keys (sign, vrfy).
2. Adversary A is given vrfy and access to an oracle
Signsign (·). The adversary then outputs (<, f). Let Q
denote the set of queries that A asked its oracle.
3. A succeeds if and only if (1) 1← Vrfyvrfy (<, f) and
(2) < ∉ Q. In this case, the output of the experiment is
defined to be 1.

A signature scheme ΠB8�= (Gen, Sign, Vrfy) is existen-
tially unforgeable under an adaptive chosen-message at-
tack, or just secure, if for all PPT adversaries A, there is a
negligible function =4�; such that:

SuccA (ΠB8�=) = Pr[Sig − forgeA,ΠB8�=
(_) = 1]

≤ =4�; (_).

2.2. R-LWE Key Exchange and Hard Problem

Let Z be the ring of integers and denote [#] = {0, 1, . . . , # −
1}. In this paper, we set ' = Z[-]/(Φ(-)) where
Φ(-) = -< + 1 for < = 2; , for some ; ∈ Z+. We let @
be a positive integer defining the quotient ring '@ = '/@' �
Z@ [-]/(Φ[-]), where Z@ = Z/@Z.

Bos, Costello, Naehrig, Stebila [9] give a Diffie-
Hellman-like definition of indistinguishability that takes key
reconciliation into consideration and show how the R-LWE
key exchange reduces to this new problem. They also show
that this new problem is hard, if the decisional R-LWE
problem is hard.

The Computer Journal, Vol. ??, No. ??, ????



4 H. Hougaard and A. Miyaji

Definition 2.6 (Decisional R-LWE (D-R-LWE) Prob-
lem; [9], Definition 1). Let <, ', @ and '@ be as above. Let
j be a distribution over '@ and let B '← j. Define $j,B as
an oracle that does the following:

1. Sample 0 '← '@ and 4
'← j,

2. Return (0, 0B + 4) ∈ '@ × '@ .

The decisional R-LWE problem for <, @, j is to distinguish
$j,B from an oracle that returns uniformly random samples
from '@ × '@ .

Note 2.1. The above D-R-LWE problem is given in its
normal form, i.e. B is chosen from the error distribution as
opposed to uniformly at random from '@ . See [15, Lemma
2.24] for a proof that this problem is as hard as choosing B
uniformly at random from '@ .

In order to introduce theR-LWEkey exchange, which is the
chosen basis for our group key exchange, we must first define
Peikert’s key reconciliationmechanism, which requires some
background. Let d·c denote the rounding function: dGc = I
for I ∈ Z and G ∈ [I − 1/2, I + 1/2).

Definition 2.7 ([9], Definition 2). Let @ be a positive
integer. Define the modular rounding function

d·c@,2 : Z@ → Z2, G ↦→ dGc@,2 =
⌈
2
@
G

⌋
mod 2,

and the cross-rounding function

〈·〉@,2 : Z@ → Z2, G ↦→ 〈G〉@,2 =
⌊
4
@
G

⌋
mod 2.

Both functions are extended to elements of '@ coefficient-
wise: for 5 = 5<−1-<−1 + · · · + 51- + 50 ∈ '@ , define

d 5 c@,2 =
(
d 5<−1c@,2 , d 5<−2c@,2 , . . . , d 50c@,2

)
,

〈 5 〉@,2 =
(
〈 5<−1〉@,2 , 〈 5<−2〉@,2 , . . . , 〈 50〉@,2

)
.

We also define the randomized doubling function

dbl : Z@ → Z2@ , G ↦→ dbl(G) = 2G − 4,

where 4 is sampled from {−1, 0, 1} with probabilities ?−1 =
?1 =

1
4
and ?0 = 1

2
.

The doubling function may be applied to elements in '@
by applying it to each of the coefficients, as done with the
rounding functions. Such an application of the doubling
function results in a polynomial in '2@ . The reason for
considering such a doubling function is that it allows for odd
@ in the key exchange protocol.
The following lemma shows that the rounding of the

doubling function on a uniformly random element in Z@
results in a uniformly random element in Z2@ .

Lemma 2.1 ([9], Lemma 1). For odd @, if { ∈ Z@ is
uniformly random and {

'← dbl({) ∈ Z2@ , then, given
〈{〉2@,2, d{c2@,2 is uniformly random.

We may now define Peikert’s reconciliation function,
rec(·), which recovers d{c@,2 from an element | ∈ Z@ that
is “close” to the original { ∈ Z@ , given only | and the cross-
rounding of {.

Definition 2.8. Define sets �0 = {0, 1, . . . ,
⌈ @
2

⌋
− 1} and

�1 = {−
⌈ @
2

⌋
, . . . ,−1}. Let � = [− @

4
,
@

4
), then

rec : Z2@ × Z2 → Z2,

(|, 1) ↦→
{
0, if | ∈ �1 + � mod 2@,
1, otherwise .

Reconciliation of a polynomial in '@ is done coefficient-
wise so the following lemma allows us to reconcile two
polynomials in '@ that are close to each other, by considering
the coefficients of the two polynomials.

Lemma 2.2 ([9], Lemma 2). For odd @, let { = | + 4 ∈ Z@
for |, 4 ∈ Z@ such that 24 ± 1 ∈ � (mod @). Let { = dbl({),
then rec(2|, 〈{〉2@,2) = d{c2@,2.

Finally, we define the R-LWE key exchange.

Protocol 2.2 (R-LWE Key Exchange). Let <, ', @, '@
and j be as in the D-R-LWE problem (Definition 2.6). Given
'@ , ParaGen outputs a uniformly random 0

'← '@ . Parties
P0 and P1 generate a two-party key exchange protocol Π as
follows:

Setup: For input '@ , ParaGen outputs to each party P8
the public parameter 0 '← ParaGen('@).

Publish1: Each party P8 chooses B8 , 48
'← j as their

secret key and error key, respectively, computes their
public key 18 = 0B8 + 48 ∈ '@ , and sends their public
key 18 to party P1−8 .

Publish2: PartyP1, upon receiving 10 fromP0, chooses
a new error key 4′

1

'← j, computes { = 10B1 + 4′1 ∈ '@ ,
and uses the randomized doubling function on { to
receive { '← dbl({) ∈ '2@ . Using the cross-rounding
function, P1 computes 2 = 〈{〉2@,2 ∈ {0, 1}< and sends
2 to P0.

KeyGen: In order to generate the shared key, party
P0 uses the reconciliation function to output :1,0 ←
rec(211B0, 2) ∈ {0, 1}<. Party P1 simply computes
:0,1 = d{c2@,2 ∈ {0, 1}<.

Except with negligible probability :0,1 = :1,0 = ^, i.e. this
protocol satisfies correctness.

The security of the above protocol reduces to a decisional
hardness problem that Bos, Costello, Naehrig, Stebila [9]
dub the decision Diffie-Hellman-like (DDH-like) problem.
We give a reformulation of the DDH-like problem definition
from [9, Definition 3] for ease of proof later, although the
two are equivalent.

Definition 2.9 (Decision Diffie-Hellman-like (DDH–
like) Problem). Let<, ', @, '@ , j beD-R-LWE parameters.
Given a tuple sampled with probability 1/2 from one of the
following two distributions:
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• (0, 10, 11, 2, ^), where 0
'← '@ , B0, B1, 40, 41, 4′1

'← j,

18 = 0B8+48 ∈ '@ for 8 = 0, 1, { = 10B1+4′1, {
'← dbl({),

2 = 〈{〉2@,2, and : = d{c2@,2 ∈ {0, 1}<,
• (0, 10, 11, 2, ^), where 0, 10, 11, 2 are as above and
^
'← {0, 1}<,

determine from which distribution the tuple is sampled.

Theorem 2.3 (Hardness of DDH-like problem; [9],
theorem 1). Let < be a parameter, @ an odd integer,
and j a distribution on '@ . If the D-R-LWE problem
for <, ', @, '@ , j is hard, then the DDH-like problem for
<, ', @, '@ , j is also hard.

3. TREE-BASED R-LWE GROUP KEY EXCHANGE

From a set of parties,P, we consider a subset of = ≥ 2 parties
{P0,P1, . . . ,P=−1}, re-indexing if need be, that generate a
shared key. The GKE arranges the parties in a double tree,
i.e. two trees connected at the root. We assume the parties are
arranged in ascending order from the top-leftmost root, going
right, and continuing down the tree level-wise, starting with
P0 and P1 at the roots (see Figure 1). Parties are assumed to
only appear once in the tree.

Excepting the leaves of the tree, each party P8 has a parent
par(8), and a set of children 9 .cld(8) for 9 = 1, 2, . . . , ;8 where
0 ≤ ;8 ≤ = − 2 is the amount of children of P8 , which are all
considered the neighbours of P8 (see Figure 2). For all P8
that are leaves we have ;8 = 0, i.e. the lowest rungs of each
branch have no children. The set ancestors(8) is the set of
indexes of all ancestors of a party P8 , including 8 but having
removed 0 and 1. Parties P0 and P1 are parents of each other.

P0 P1

P2 P3

P6 P7 P8 P9

P4 P5

P10 P11

FIGURE 1: Possible double tree graph configuration for
= = 12

?0A (8)

P8

1.2;3 (8) 2.2;3 (8) · · · ;8 .2;3 (8)

FIGURE 2: The neighbours of P8: parent and children.

In the following, multicast means that a party only sends
a message to a discrete subset of all potential parties.

For security reasons to be discussed in Note 3.2, we
distinguish a set of root parties during the protocol. For use
in our AGKE compiler in Sect. 4, we add the session name to

the GKE protocol parameter generation. The session name
is a unique session name.

Protocol 3.1 (Tree-based R-LWE Group Key
Exchange). The tree-based R-LWEGroupKey Exchange
(tree-R-LWE-GKE) protocol for = parties, Π=, takes as
input parameters <, ', @, '@ and j, as in the DDH-like
problem (Definition 2.9), and outputs a session key  ∈
{0, 1}<.
The parameter generator algorithm, ParaGen, takes as

input the parameter '@ and the number of parties, =. The
algorithm outputs a tuple consisting of a uniformly random
0

'← '@ , a double tree for the = parties, Γ, and a unique
session name, B# .
The parties P8 for 8 = 0, 1, . . . , = − 1 generate a group key

exchange protocol Π= as follows:

Setup: For the input '@ and the number of parties, =, the
algorithm outputs to each party P8 the tuple:

params := (0, Γ, B#) ← ParaGen('@ , =),

where B# is the unique session name. Set the root
parties to be ℜ := {P0,P1}.

Publish1: Given params, each P8 chooses random secret
keys B8 , 48 , 4′8

'← j and computes a public key 18 =
0B8 + 48 . P8 then multicasts its public key to its
neighbours (parent and ;8 children).

Publish2a: Upon receiving the public key 1par(8) from its
parent, Ppar(8) , P8 generates the value {8 = 1par(8) B8 + 4′8 .
Using the randomized doubling function on this value,
P8 finds {8

'← dbl({8) ∈ '2@ . Using the cross-rounding
function, P8 then computes

28 = 〈{8〉2@,2 ∈ {0, 1}<,

the reconciliation key for its parent, which P8 sends to
said parent, Ppar(8) .

We assume, without loss of generality, that P1 generates
21 and sends it to P0, while P0 generates no
reconciliation key 20.

Publish2b: Upon receiving the respective reconciliation
keys 2 9.cld(8) from its ;8 children, and also using the value
{8 , P8 computes the shared keys :par(8) ,8 and : 9.cld(8) ,8
for each 9 ∈ {1, . . . , ;8}:

:par(8) ,8 = d{8c2@,2 ∈ {0, 1}<,
: 9.cld(8) ,8 ← rec(21 9.cld(8) B8 , 2 9.cld(8) ) ∈ {0, 1}<,

for 9 ∈ {1, . . . , ;8}, where d·c is the modular rounding
function and rec is the reconciliation function.

Again, without loss of generality, P1 sets :0,1 =

d{0c2@,2 ∈ {0, 1}< while P0 computes :1,0 ←
rec(211B0, 21) ∈ {0, 1}<.
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6 H. Hougaard and A. Miyaji

Publish3: Each P8 with children (this excepts the leaves of
Γ) computes

G 9.cld(8) = :par(8) ,8 ⊕ : 9.cld(8) ,8 ,

and multicasts this value to its respective descendants,
for each 9 ∈ {1, . . . , ;8}.

KeyGen: Each P8 computes the session key

 8 = :par(8) ,8 ⊕
⊕

ℎ∈ancestors(8)
Gℎ =  .

Proposition 3.1 (Correctness). Except with negligible
probability, each party in the tree-based Ring-LWEgroup key
exchange protocol (Protocol 3.1) computes the same session
key  = :0,1.

Proof. This can be seen by induction. By key reconciliation,
except with negligible probability,  0 =  1 = :0,1. Assume
that  par(8) =  then, as

 par(8) = :par(par(8)) ,par(8) ⊕
⊕

ℎ∈ancestors(par(8))
Gℎ ,

except with negligible probability, we have that, except with
negligible probability,

 8 = :par(8) ,8 ⊕
⊕

ℎ∈ancestors(8)
Gℎ

= :par(8) ,8 ⊕
(
:par(par(8)) ,par(8) ⊕ :8,par(8)

)
⊕

⊕
ℎ∈ancestors(par(8))

Gℎ

=  par(8) =  .

�

The session key of the group is simply the shared key of
the root parties P0 and P1.

Note 3.2. In order to prove that our tree-R-LWE-GKE
protocol is secure, we show a reduction to the DDH-like
problem from Definition 2.9. However, the session key
is equal to the (secret) shared key between P0 and P1 so
the indistinguishability of the session key depends on the
indistinguishability of the secret key between P0 and P1.
With the state reveal and ephemeral reveal queries simulating
any attack that leaks the ephemeral keys, we are forced to
assume that such queries are never asked of either P0 or
P1 (the root parties; see Setup description in Protocol 3.1)
as their shared key could then be easily derived and the
indistinguishability trivially broken. We therefore assume
that neither the static secret keys of the root parties in all
sessions nor their ephemeral secret keys in the test session, are
revealed by any attack query by the adversary. This additional
assumption still allows for strong corruptions of ephemeral
secrets such that it remains a strong model, stronger than
the security models given by Bresson et al [16] and Katz
and Yung [11] that do not address (strong) corruptions of
ephemeral secrets, however, it is slightly weaker than both the

MSU model (also called the G-eCK+ model), the Bresson-
Manulis model [17], and the model which we consider in this
paper, G-CK+.

In our extra assumption, we also consider key reuse attacks
such as the signal leakage attack of [18] and the attack of
[19]. However, the signal leakage attack [18] requires 2@
queries (where @ is from '@), so we could simply require
that there be less than 2@ − 1 children per node. The attack in
[19] is independent of @ but only succeeds on a shared key
mismatch, which would make the GKE and AGKE protocols
fail. As keys are newly generated in each instance of the
GKE and AGKE protocols, and as there is forward secrecy
(this will be shown), both attacks fail to break our protocols.
Furthermore, all the key reuse attacks we looked at required
a manipulating adversary who could initiate as many key
exchanges as needed, but in our GKE we assume a fair
adversary, and in both our GKEs and AGKEs, the number of
two-party key exchanges per party per session is limited by
the number of children per node, eliminating such attacks.

This addition would also be needed to prove the security
of the original Desmedt-Lange-Burmester [12] GKE and
authenticated GKE compiler in our security model. This
comes from the fact that they do not consider security against
active insiders, which the current model does (and more).

Theorem 3.3. Under the assumption that the DDH-like
problem (Definition 2.9) is hard and that the root parties are
secure from EphemeralReveal queries,5 the tree-R-LWE-
GKE protocol given in Protocol 3.1 is a secure GKE (with
forward security) in the G-CK+ security model.

Proof. We must show that the protocol in Protocol 3.1
satisfies the security notion given in Definition 2.2. The
first requirement is satisfied by the correctness shown in
Proposition 3.1.

For the second requirement, assume that there exists a
(not necessarily classical) polynomial-time adversary A,
allowed polynomially-many classical queries, with non-
negligible advantage Adv(A) = Y (see Definition 2.2 for
this notation). We build a polynomial-time distinguisher D,
allowed polynomially-many classical queries, for the DDH-
like problem in Algorithm 1.

As an analysis of our distinguishing algorithm, we note
the following.

For every session, except the ℓ-th, D simulates the tree-
R-LWE-GKE protocol to A, choosing new random secret
keys for each party in each session and simulating all
communication through A. As all randomness is generated
anew for each session and there are no long-term keys, all
sessions are independently generated. Hence, any attack
on any other session does not reveal anything about the ℓ-
th session except through repetition of secret keys, which
happens with negligible probability.

For the ℓ-th session, using the public information for
P0, namely 10, D simulates R-LWE key exchange (Def-
inition 2.2) with the secret keys B 9.cld(0) , 4 9.cld(0) , 4

′
9.cld(0)

5There are no static keys in our GKE, hence no need to assume that
the StaticReveal queries are not issued to the root parties. StateReveal
queries in the test case are excluded by the freshness definition.
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Algorithm 1 DDH-like distinguisher, D.
Input: (<, ', @, '@ , j, 0, 10, 11, 2, ^) as in the DDH-like
problem.

1: ℓ
'← {1, . . . ,Λ}, where Λ is an upper bound on the

number of sessions activated by A in any interaction.
2: InvokeA and simulate protocol toA, except for the ℓ-th

activated protocol session.
3: For the ℓ-th session:
4: Set params := (0, Γ, s), where Γ is an =-party

double tree and s is the session name.
5: Set 1′

0
= 10, 1

′
1
= 11 and 21 = 2. Choose

(B8 , 48 , 4′8)
'← j3 for 8 = 2, . . . , =−1 and set 1′

8
= 0B8 +48 .

Set {8 = 1par(8) B8 + 4′8 , generate {8
'← dbl({8) ∈ '2@ and

compute 28 = 〈{8〉2@,2 ∈ {0, 1}<. Simulate multicasting
for each P8 along with identifying information (P8 , s).

6: Set

G ′
9.cld(0) := ^ ⊕ :0, 9.cld(0) , ∀ 9 ∈ {1, 2, . . . , ;0},
G ′
9.cld(1) := ^ ⊕ :1, 9.cld(1) , ∀ 9 ∈ {1, 2, . . . , ;1},
G ′
9.cld(8) := :par(8) ,8 ⊕ : 9.cld(8) ,8 , ∀ 9 ∈ {1, 2, . . . , ;8},

for 8 ≥ 2 where P8 is not a leaf in Γ.
7: if the ℓ-th session is chosen byA as the test session then
8: Provide A as the answer to the test query,
9: 3 ← A’s output
10: else
11: 3

'← {0, 1}.
Output: 3

of party P 9.cld(0) , obtaining the shared key :0, 9.cld(0) =
: 9.cld(0) ,0, except with negligible probability. Like-
wise, using the public information for P1, namely
11, D simulates R-LWE key exchange with the secret
keys B 9.cld(1) , 4 9.cld(1) , 4

′
9.cld(1) of party Pj.cld(1) , obtaining

:1, 9.cld(1) = : 9.cld(1) ,1, except with negligible probability. All
other shared keys may be computed in polynomial-time as
the secret keys for P8 are known for 8 = 2, . . . , = − 1.
As the B8 , 48 , 4′8 are chosen uniformly at random for 8 ≥ 2,

the distribution of the 1′
8
, G ′
9.cld(8) in Algorithm 1 are identical

to that in a tree-R-LWE-GKE instance.
The transcript given to A by D is

(1′0, . . . , 1
′
=−1, G

′
1.cld(0) , G

′
2.cld(0) , . . . ,

. . . , G ′
;0.cld(0) , G

′
1.cld(1) , . . . , G

′
(;=−1) .cld(=−1) ),

where we assign a blank value for the G ′ value when there is
no child.
In each session, all attack queries are answered fully and

honestly, except in the ℓ-th session, where state reveal and
ephemeral reveal attack queries to the root parties force the
distinguisher to end the experiment and output 3 '← {0, 1}.
As the ℓ-th session is chosen as the test session with
probability 1/Λ and per our assumption the ephemeral reveal
query is not queried to the root parties in the test case, the
experiment cannot end this way every time.

If the ℓ-th session is the test session and ^ is a valid tree-
R-LWE-GKE session key, then ^ = :0,1, i.e. (0, 10, 11, 2, ^)
is indeed a valid DDH-like tuple, where ^ = d{0c2@,2.

If the ℓ-th session is not the test session, then D outputs
a random bit, i.e. it has advantage 0. However, if the test
session is the ℓ-th session, which happens with probability
1/Λ, thenA will succeed with advantage Y. Hence, the final
advantage of the DDH-like distinguisher D is Y/Λ, which is
non-negligible. �

Corollary 3.1. Assuming the DDH-like problem is post-
quantum hard and that the root parties are secure from
EphemeralReveal queries, tree-R-LWE-GKE is a post-
quantum secure group key exchange with forward security.

We now give a peer-to-peer (sequential) version of our
tree-R-LWE-GKE, calling it the P2P-tree-R-LWE-GKE
protocol. As it is sequential, relying on a party to generate the
session key before sending a final message to its children, the
number of rounds is bounded by the length of the double
tree, while the communication and memory complexity
become constant. The protocol differs from the tree-R-
LWE-GKE protocol after the %D1;8Bℎ21 step. It achieves
the same level of security as the tree-R-LWE-GKE protocol
through an analogous argument, which we therefore omit,
and summarize this in the following theorem.

Protocol 3.4 (Peer-to-Peer Tree-based R-LWE GKE).
The peer-to-peer R-LWE group key exchange (P2P-tree-
R-LWE-GKE) protocol for = parties, Π=, takes as input
parameters <, ', @, '@ and j, as in the DDH-like problem
(Definition 2.9), and outputs a session key  ∈ {0, 1}<.
The parameter generator algorithm, ParaGen, takes as

input the parameter '@ and the number of parties, =. The
algorithm outputs a tuple consisting of a uniformly random
0

'← '@ , a double tree for the = parties, Γ, and a unique
session name, B# .
The parties P8 for 8 = 0, 1, . . . , = − 1 generate a group key

exchange protocol Π= as follows:

Setup: For the input '@ and the number of parties, =, the
algorithm outputs to each party P8 the tuple:

params := (0, Γ, B#) ← ParaGen('@ , =),

where B# is the unique session name. Set the root
parties to be ℜ := {P0,P1}.

Publish1: Given params, each P8 chooses random secret
keys B8 , 48 , 4′8

'← j and computes a public key 18 =
0B8 + 48 . P8 then multicasts its public key to its
neighbours (parent and ;8 children).

Publish2a: Upon receiving the public key 1par(8) from its
parent, Ppar(8) , P8 generates the value {8 = 1par(8) B8 + 4′8 .
Using the randomized doubling function on this value,
P8 finds {8

'← dbl({8) ∈ '2@ . Using the cross-rounding
function, P8 then computes 28 = 〈{8〉2@,2 ∈ {0, 1}<, the
reconciliation key for its parent, which P8 sends to said
parent, Ppar(8) .

The Computer Journal, Vol. ??, No. ??, ????



8 H. Hougaard and A. Miyaji

We assume, without loss of generality, that P1 generates
21 and sends it to P0, while P0 generates no
reconciliation key 20.

Publish2b: Upon receiving the respective reconciliation
keys 2j.cld(8) from its ;8 children, and also using the value
{8 , P8 computes the shared keys :par(8) ,8 and : 9.cld(8) ,8
for each 9 ∈ {1, . . . , ;8}:

:par(8) ,8 = d{8c2@,2 ∈ {0, 1}<,
: 9.cld(8) ,8 ← rec(21 9.cld(8) B8 , 2 9.cld(8) ) ∈ {0, 1}<,

for 9 ∈ {1, . . . , ;8}, where d·c is the modular rounding
function and rec is the reconciliation function.
Again, without loss of generality, P1 sets :0,1 =

d{0c2@,2 ∈ {0, 1}< while P0 computes :1,0 ←
rec(211B0, 21) ∈ {0, 1}<.

Publish3a: Parties P0 and P1 have already computed the
same session key  = :1,0 = :0,1 (except with
negligible probability) and send G 9.cld(0) =  ⊕
: 9.cld(0) ,0, respectively G 9.cld(1) =  ⊕ : 9.cld(1) ,1, to their
respective children, for 9 ∈ {1, . . . , ;0}, respectively
9 ∈ {1, . . . , ;1}.

KeyGen and Publish3b: Upon receiving Gpar(8) , P8 com-
putes the session key

 8 = Gpar(8) ⊕ :par(8) ,8 .

Every party P8 with children (this excepts the leaves
of Γ), then computes G 9.cld(8) =  8 ⊕ : 9.cld(8) ,8 and
multicasts this to its 9-th child, for each 9 ∈ {1, . . . , ;8}.

Theorem 3.5. Assuming the DDH-like problem is
post-quantum hard and the root parties are secure
from EphemeralReveal queries, P2P-tree-R-LWE-GKE
(Protocol 3.4) is a post-quantum secure group key exchange
with forward security.

4. NEWAUTHENTICATEDGKEBASEDONR-LWE

As is known, it is possible to combine a constant-round GKE
and a signature scheme to create a constant-round AGKE
using aKatz-Yung compiler [11]. Such anAGKEwould have
computational complexity$ (=) however, as each party needs
to verify $ (=) signatures. Instead, we propose an adjusted
version of the Katz-Yung compiler with computational
complexity equivalent to the underlying GKE, broadly based
on one given in Desmedt, Lange, and Burmester [12]. The
main reason for this complexity reduction is that our compiler
only requires receiving signatures from the parties it interacts
with, as opposed to all parties involved in the group key
exchange.

In our compiler, each party P8 generates static signing and
verification keys. For each instantiation of the underlying
GKE protocol, each party then generates session-specific
randomness in the form of a random nonce and uses this
nonce, along with the party ID, session name, and message
counter, for communication.

In Tree-R-LWE-GKE, assuming a balanced tree, each user
only needs to exchange a logarithmic number of messages in
order to compute the session key, which the compiler below
preserves.

Protocol 4.1 (Authenticated Tree-R-LWE-GKE).
We assume there exists a set of all parties P. Consider the
following protocol, which uses a secure signature scheme,
ΠB8�=, and the forward-secure Tree-R-LWE-GKE, ΠCA44,
where the latter is assumed to be instantiated on the
parameters <, ', @, '@ , and j as in the D-R-LWE problem
(Problem 2.6). We consider the corresponding parameter
generating algorithms: GenB8�= and GenCA44. GenB8�= takes
as input a security parameter _B8�= and outputs parameters
required for secure signing. GenCA44 takes as input '@ and a
number of participants, =, and outputs the public parameters
for Tree-R-LWE-GKE.

Setupsign: For a security parameter _B8�=, the algorithm
outputs to all of the parties in P the parameters for
the chosen signature scheme:

paramsB8�=
'← GenB8�= (1_B8�= ).

Keysign: Given paramsB8�=, each party P8 ∈ P generates the
signing/verification keys (sign8 , vrfy8). These are static
(long-term) keys.

SetupII : Let P= = {P0, . . . ,P=−1} ⊂ P be a set of =
parties wishing to do a GKE (re-indexing if need be)
and let gid be their group identifier (of size $ (log: =)).
Each P8 ∈ P= chooses an ephemeral random nonce
[8 ∈ {0, 1}_B8�= for the session.

ParaGen: For the parameter '@ and the number of
parties, =, the algorithm outputs to all the parties
inP= the ΠCA44 parameters:

(0, Γ, B#) '← GenCA44 ('@ , =),

the tuple of the public value 0, the double tree Γ,
and the unique session name B# , as prescribed by
the tree-R-LWE-GKE protocol.
Set the root parties to be ℜ := {P0,P1}.

Inisign: Let relsid
8 = {P1′ ,P2′ , . . . ,PC′

8
} denote the set

of all ancestors, party P0 or P1 (depending on
which side of the double-tree P8 is on), and the ;8
children of P8 in session sid. The size of this set
depends, in particular, on the amount of ancestors.
Each P8 computes f ← Signsign8 (P8 |B# |0|[8)
and multicasts P8 |B# |0|[8 |f to its parent and all
its descendants. After positive verification, each
party P8 stores the session specific information as
infosid

8 = (gid|B# |P1′ |[1′ | . . . |PC′
8
|[C′

8
), as a part of

the state information.

GKE: The tree-R-LWE-GKE protocol, Π) A44, is executed
with the following changes:
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• Whenever party P8 is supposed to multicast a
message < as part of the protocol, the party
computes f ← Signsign8 (P8 |B# | 9 |< |[8), where
9 is the message number, and multicasts the string
P8 |B# | 9 |< |f.6

• Upon receiving P∗ |B# | 9 |< |f, party P8 checks
that:
1. P∗ ∈ rel8 ,
2. 9 is the next expected sequence number for

messages from P∗,
3. 1← Vrfyvrfy∗ (P∗ |B# | 9 |< |[∗, f).
If any of these are untrue, the session is aborted,
i.e. P8 does not complete the session, wiping its
state. Otherwise, P8 continues as it would inΠCA44
and uses <.

KeyGen: Each non-aborted session computes the session
key as in ΠCA44.

Theorem 4.2. Assuming that the signature scheme ΠB8�=
is (post-quantum) secure, the DDH-like problem is (post-
quantum) hard, and the root parties are secure from
StaticReveal andEphemeralReveal queries (as inNote 3.2),
the authenticated tree-R-LWE-GKE given in Protocol 4.1 is
a (post-quantum) secure authenticated group key exchange
in the G-CK+ security model (Definition 2.3), with forward
security.

Proof. As a message is utilized in a session as it would
in ΠCA44 if the message is verified, by the correctness of
tree-R-LWE-GKE, and as we assume that ΠB8�= is secure
(and thereby has correctness), the first requirement in
Definition 2.3 is satisfied by Protocol 4.1.

For the second requirement, assume that there exists a
(not necessarily classical) polynomial-time adversaryA with
non-negligible advantageAdv(A) = Y. We use the adversary
A to construct a distinguisher D for the DDH-like problem,
which we give in Algorithm 2.

There are three ways D may succeed: By forging a
signature for a party in the Test case, by reusing a signature,
or by distinguishing a correct session key from random. The
success probability of the first is bounded by the advantage
of an adversary to forge a signature, i.e. negligible. The
second is bounded by a combinatorial consideration of the
amount of sent messages and protocol executions compared
to the space of random nonces. The third is bounded by the
advantage of an adversary to distinguish between a Tree-R-
LWE-GKE session key and a random key in the same space,
which by Theorem 3.3 is negligible.

DDH-like distinguisher D generates correctly distributed
signing/verification keys and random nonces to be used
in sessions, and using them, honestly simulates all
communication requests in the sessions (recall that the
adversary A is in charge of all communications in our
model).

6At most this requires one re-signing of a message when a party is
required to send the tree-R-LWE-GKE protocol G value to a child (with
which it has already exchanged more than one previous message) and its
other descendants (with which it has sent at most one previous message).

Algorithm 2 DDH-like distinguisher, D.
Input: (0, 10, 11, 2, ^)
1: ℓ

'← {1, . . . ,Λ}, where Λ is an upper bound on the
number of sessions activated by A in any interaction.

2: Invoke A and simulate protocol to A:
3: Generate static signature/verification keys for each

party P8 ∈ P.
4: For every session except the ℓ-th: Generate

ephemeral random nonces and simulate group key
exchange protocol ΠCA44 as prescribed by Protocol 4.1.

5: For the ℓ-th session, using signature and verification
keys and random nonces as prescribed by Protocol 4.1
for message sending/multicasting:

6: Set paramsCA44 = (0, Γ, s), where Γ is an =-party
binary graph and s is the session name.

7: Set 1′
0
= 10, 1

′
1
= 11 and 21 = 2. Choose

(B8 , 48 , 4′8)
'← j3 for 8 = 2, . . . , =−1 and set 1′

8
= 0B8 +48 .

Set {8 = 1par(8) B8 + 4′8 , generate {8
'← dbl({8) ∈ '2@ and

compute 28 = 〈{8〉2@,2 ∈ {0, 1}<.
8: Set

G ′
9.cld(0) := ^ ⊕ :0, 9.cld(0) , ∀ 9 ∈ {1, 2, . . . , ;0},
G ′
9.cld(1) := ^ ⊕ :1, 9.cld(1) , ∀ 9 ∈ {1, 2, . . . , ;1},
G ′
9.cld(8) := :par(8) ,8 ⊕ : 9.cld(8) ,8 , ∀ 9 ∈ {1, 2, . . . , ;8},

for 8 ≥ 2 where P8 is not a leaf in Γ.
9: if the ℓ-th session is chosen byA as the test session then

10: ProvideA as the answer to the distinguishing query,
11: 3 ← A’s output
12: else
13: 3

'← {0, 1}.
Output: 3

For any session ≠ ℓ, D may answer any query by A
entirely.

For the ℓ-th session, the distributions are as in the tree-R-
LWE-GKE protocol, giving us the session key distributed as
in the DDH-like problem. We therefore wish to show that
the forging and repeating attacks succeed with negligible
probability such that any distinguishing attack must occur on
the key exchange part with non-negligible probability, i.e.
we may build a DDH-like distinguisher.

Let SignForge be the event that A can output a new,
valid message/signature pair with respect to the public
verification key vrfy∗ of some party P∗ before querying
StaticReveal(P∗). The probability of this event occurring
is bounded by the total number of parties times the success
probability of forging the signature, SuccA (ΠB8�=), which
per assumption was hard, i.e. the probability is negligible.
In other words,

Pr[SignForge] ≤ |P| · (D22A (ΠB8�=),

such that the probability that SignForge occurs, is negligible.
Let Repeat be the event that a nonce used by any
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party in response to a Send query was previously used
by that party. Recall that the adversary A is in charge of
all communications. If we ignore the uniqueness of the
session names, B# , which will only force the Send queries
considered to be from the same execution of the protocol,
then the probability of this event occurring is bounded by
the maximum number of Send queries in a session and the
amount of protocol executions, in the sense that

Pr[Repeat] ≤ a(a + Λ)
2_B8�=

,

where a is the maximum number of Send queries queried by
the adversary in a single execution of the protocol, andΛ is as
in Algorithm 2. As both a and Λ are polynomially-bounded,
this probability is negligible.

Let the sum of these two negligible probabilities, for
SignForge and Repeat, be denoted as negl.
In each session, all attack queries are answered fully

and honestly, except in the ℓ-th session, where state reveal,
ephemeral reveal, and static reveal attack queries to the root
parties force the distinguisher to end the experiment and
output 3 '← {0, 1}. As the ℓ-th session is chosen as the test
session with probability 1/Λ, and per our assumption that the
static and ephemeral reveal queries are not queried to the root
parties as in Note 3.2, this outcome cannot occur every time.

If the test session is not the ℓ-th session, then D outputs
a random bit, i.e. has advantage 0. If the test session is the
ℓ-th session, which happens with probability 1/Λ, then A
will succeed with advantage Y. Hence, the final advantage
of the DDH-like distinguisher D is (Y − negl)/Λ, which is
non-negligible.

Forward security comes from the forward security ofΠCA44
combined with the ineffectiveness of replay attacks. �

The above compiler can be instantiated using the P2P-
tree-R-LWE-GKE as the underlying protocol instead of tree-
R-LWE-GKE, with only a slight change to the �=8B8�= step.
The change is that party P8 still computes the signature f ←
Signsign8 (P8 |B# |0|[8) but only multicasts P8 |B# |0|[8 |f to
its parent and its children, as opposed to all the descendants.
The session specific information is also reduced to

infosid
8 = gid|B# |Ppar(8) |[par(8) |P1.cld(8) |[1.cld(8) | · · ·

· · · |P;8 .cld(8) |[;8 .cld(8) .

By an analogous proof as that for authenticated tree-R-LWE-
GKE, we get the following theorem.

Theorem 4.3. Assuming the signature scheme ΠB8�= is
(post-quantum) secure and that the DDH-like problem is
(post-quantum) hard, authenticated P2P-tree-R-LWE-GKE
is a (post-quantum) secure AGKE in the G-CK+ security
model, with forward security.

5. COMPARISON

In this section, we compare our AGKEs with other post-
quantum R-LWE GKEs: Apon, Dachman-Soled, Gong,
and Katz [3] and Choi, Hong, and Kim [4]. Apon et al

[3] generalize a Diffie-Hellman based GKE construction
by Burmester and Desmedt [6] into the R-LWE setting.
Choi et al [4] generalize another Diffie-Hellman based
GKE by Dutta and Barua [7] into the R-LWE setting.
Both papers arrange the parties in a ring structure, letting
P= = P0,P=+1 = P1, etc., and achieve post-quantum R-LWE
=-party AGKE protocols with communication and memory
complexity $ (=).
We choose to consider our auth. tree-R-LWE-GKE and

auth. P2P-tree-R-LWE-GKE having binary double trees
as their graphs, which are double trees where each party
(excepting leaves) has exactly2 children. Due to the signature
initialization, there is a communication overhead in both
AGKEs of at most $ (log2 =). This gives auth. tree-R-LWE-
GKE a constant number of rounds with communication and
memory complexity log2 (=), while the values are more or
less reversed for auth. P2P-tree-R-LWE-GKE.

We evaluate the AGKEs in the following aspects: the
number of rounds, the communication complexity, and the
number of values needed to compute the session key, i.e.
the memory complexity. The number of rounds is taken
to be the maximum number of times any party must wait
for information from other parties in order to proceed. The
communication complexity considers the maximum number
of broadcast/multicast messages received by any party in
one call of the protocol7. The memory complexity takes
into account the maximum number of values stored until the
session key computation. Table 1 shows these parameters for
our selected AGKEs.

For auth. tree-R-LWE-GKE, we have four rounds, as the
signatures are initialized in the first round, R-LWE public
keys are exchanged in the second round, reconciliation keys
in the third round, and the exclusive-or of shared keys in the
fourth round. The multicast values received are the signature
initialization values of all ancestors and each child, R-LWE
public keys of the parent and each child, a reconciliation key
from the parent, as well as one exclusive-or sum from each
ancestor. The values stored until the session key computation
consist of one exclusive-or sum from each ancestor as well
as the R-LWE key shared with the parent.

The auth. tree-R-LWE-GKE protocol and the related auth.
P2P-tree-R-LWE-GKEdiffer greatly in the number of rounds,
communication complexity, and values needed to generate
the session key. We note that for both protocols, the overall
smallest number of operations per party is obtained for a
binary double tree. That said, depending on the structure
of the network and the computational power of the parties
involved, among other factors, it may be beneficial to select
one protocol over the other and to arrange the double tree as
needed.

Parameter Constraints. Beyond the parameter
constraints required for the hardness of the R-LWE problem,

7In doing so, we assume that broadcasting/multicasting a message does
not depend on the number of receivers but that receiving ; messages means
that the receiver incurs a cost of ;, even if all messages are received in
a single round. The reason for this is that it takes into account that
receiving messages requires being online and also storing said messages
while broadcasting/multicasting is usually a one-time operation.
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TABLE 1: Comparision overview of R-LWE based AGKEs.

Protocol Rounds Communication Memory
Apon et al [3] 4 $ (=) $ (=)
Choi et al [4] 3 $ (=) $ (=)
Auth. tree-R-LWE-GKE 4 $ (log2 =) $ (log2 =)
Auth. P2P-tree-R-LWE-GKE $ (log2 =) $ (log2 =) 2

the parameters of [3] and [4] (including the number of
parties) are required to satisfy further bounds set by the key
reconciliation andRényi bounds, for correctness and security.
Fixing the ring, noise distributions, and security parameters
therefore limits the amount of parties their protocols can
support, while our security proof sets no further constraints
on our parameters and our correctness bound makes the
amount of parties inconsequential (see below). Although our
protocol does not have constraints other than those required
for the hardness of the DDH-like problem, the advantage
for an adversary in solving the DDH-like problem is less
than the sum of the advantages of solving two instances of
the D-R-LWE problem (see [9, Theorem 1]), meaning that
our R-LWE parameters must be adjusted accordingly. For
example, [9] suggest = = 1024, @ = 232 − 1, f = 8/

√
2c to

achieve statistical 128-bit classical security, giving theoretical
64-bit post-quantum security, assuming Grover’s algorithm
corresponds to a square-root speed up to the search problem.
Using these parameters and Proposition 2 of [9], we find that
the failure rate of our two AGKE protocols are equivalent
and bounded by the probability of at least one party having
the wrong session key: = · 2−214 .

6. CONCLUDING REMARKS

We gave a compiler for our tree-based R-LWE GKEs,
relying on the hardness of the DDH-like problem and the
security of the signature scheme employed in the compiler.
Our protocols give us versatile post-quantum R-LWE =-
party AGKEs that, when balanced with 2 children per
node, in one case achieves constant round complexity with
communication and memory complexity $ (log2 =), and in
the other case, constant memory complexity with round and
communication complexity $ (log2 =).
Initially, our GKE (and thereby the P2P version andAGKE

versions) incorporates the generation of a double-tree and a
session name, B# , into the protocol creation algorithm. The
AGKE compiler of Section 4 is a variant of the Desmedt-
Lange-Burmester compiler [7], where infosid

8 (called direct 9
*

in [7]) is no longer included in the signature of messages,
but B# instead. The reason is that infosid

8 has at least length
$ (log =) while the session name, B# , may be much shorter,
which is an improvementwithout detracting from the security
(see the Repeat event argument in the proof of Theorem 23).
In fact, [7] do not use a session name as we do and do not sign
their random nonces when multicasting them to the relevant
parties, which leaves them open to attacks such as replay
attacks.

We remark that R-LWE AGKEs of [3] and [4] have high

communication and memory complexity, but possibly other
benefits, due to their integration of the R-LWE two-party
key exchange mechanics into the protocol steps, unlike ours,
which requires each pair of parent and child to complete a
R-LWE key exchange before proceeding. It may be possible
to improve our key exchange by likewise integrating R-LWE
key exchange principles into the tree structure but we have
not considered the possibility. In any case, as our protocols
are tree-based, they benefit from being able to structure the
tree according to processing power or memory capabilities.
We further remark that signatures might not be required for
authentication if we employ an authenticated key exchange
as the underlying KE, such as the one proposed by Zhang et
al [20], however our purpose in this article was to construct
a compiler from the basic R-LWE KE.

In conclusion, the low communication and memory
complexity in our protocol, the versatility of tree-based
constructions, along with the added security benefit from
reducing to the indistinguishability of a single instance of
Ding, Xie, and Lin’s R-LWE key exchange with Peikert’s
tweak, makes our protocols highly competitive R-LWE based
post-quantum AGKEs.
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