
Password Guessers Under a Microscope: An In-Depth Analysis to
Inform Deployments

Zach Parish

Ontario Tech University

Ontario, Canada

zachary.parish@ontariotechu.net

Connor Cushing

Ontario Tech University

Ontario, Canada

connor.cushing@ontariotechu.net

Shourya Aggarwa

Indian Institute of Technology Delhi

New Delhi, Delhi, India

shourya.aggarwal.cs117@cse.iitd.ac.in

Amirali Salehi-Abari

Ontario Tech University

Ontario, Canada

abari@ontariotechu.ca

Julie Thorpe

Ontario Tech University

Ontario, Canada

julie.thrope@ontariotechu.ca

ABSTRACT
Password guessers are instrumental for assessing the strength of

passwords. Despite their diversity and abundance, comparisons

between password guessers are limited to simple success rates. Thus,

little is known on how password guessers can best be combined

with or complement each other. To extend analyses beyond success

rates, we devise an analytical framework to compare the types of

passwords that guessers generate. Using our framework, we show

that different guessers often produce dissimilar passwords, even

when trained on the same data. We leverage this result to show that

combinations of computationally-cheap guessers are as effective

in guessing passwords as computationally-intensive guessers, but

more efficient. Our framework can be used to identify combinations

of guessers that will best complement each other. To improve the

success rate of any guesser, we also show how an effective training

dataset can be identified for a given target password dataset, even

when the target dataset is hashed. Our insights allow us to provide

a concrete set of practical recommendations for password checking

to effectively and efficiently measure password strength.

KEYWORDS
Password Checking, Password Guessers, Passwords, User Authen-

tication

1 INTRODUCTION
Passwords are presently the most common form of user authenti-

cation, providing the first layer of defense in most systems. User

authentication aims to confirm a user’s claimed identity, typically

by something the user knows (e.g., a password), something they

have (e.g., a mobile device), or something they are (e.g., a biomet-

ric). Despite decades of research into more secure authentication

methods, passwords remain dominant mainly due to their ease to

implement and familiarity to most users [1]. Password systems, in

spite of their popularity, suffer from many security issues as pass-

words are mistakenly given to attackers [2], reused across accounts

[3], and cracked by guessing attacks [4–11].

Password guessing attacks are a threat to both accounts (par-

ticularly after a data breach of hashed passwords) and hard-disk

encryption (where passwords are used as a key). To protect against

password guessing attacks, administrators are advised to perform

password checking, either proactively at the time of password cre-

ation or reactively through attempting to crack their own password

databases [12]. While there are many password guessers available,

the administrator’s choice of them is critical for effective password

checking. However, there is uncertainty as to which guessers to

use, and how to train them, for best results.

To make an informed decision, an administrator must under-

stand how password guessers compare to and complement each

other under different conditions. Unfortunately, the literature lacks

methods to support such decisions and analyses of guesser com-

binations and training. Our work aims to fill this gap, by creating

and applying a framework to put a set of password guessers “under

a microscope", in order to support such decisions.

Our contributions are as follows: (1) We create an analytical

framework to reveal insights into password guessers’ behavior and

their ability to complement and substitute each other. Our frame-

work is an asset in identifying sets of complimentary guessers (as

shown in our experiments). (2) We apply our framework to perform

a comprehensive comparison between a set of six popular password

guessers, across a variety of training conditions. This comparison

is arguably the most comprehensive to date, as it compares many

aspects of the password guessers, including how they complement

each other, howwell they generalize, how sensitive they are to train-

ing data size, and their success rate over six different training and

testing datasets.(3) We show how practitioners can get more bang

for their buck by using combinations of computationally-cheap

guessers that, when used together, have comparable success rates

to computationally-intensive guessers, but are more efficient (i.e.,

run faster). (4) We perform a comprehensive analysis of six pub-

licly leaked password datasets, to support our investigation on how

guesser performance is impacted by different aspects of training

data. (5) We describe how a useful similarity metric can be applied

to identify a similar (which our results support is best) training

dataset for password guessers, even when the target dataset only

contains hashed passwords.

Our work has two primary outcomes: (i) Our results allow us

to provide a set of recommendations for practitioners performing

password checking. (ii) Our analytical framework supports more

comprehensive comparisons between password guessers. We dis-

cuss use cases regarding how researchers and practitioners can use

our framework to understand how additional password guessers

can compliment or substitute others.

ar
X

iv
:2

00
8.

07
98

6v
3

 [
cs

.C
R

]
 2

1
Fe

b
20

21

2 RELATEDWORK
Unfortunately, it has been repeatedly shown that user passwords

are often similar or identical, and are consequently guessable by

an adversary [7, 13–15]. In this section, we review some security

concerns with passwords, their counter-measures, and finally how

our work fits into the literature.

Patterns in Passwords. Many users adopt common strategies for

creating their passwords to help them remember their passwords.

However, these strategies leave behind specific patterns, which

often make passwords more guessable. These patterns include key-

board patterns [16], distribution of character classes (or password

structures) [17], replacement of letters with resembling characters

(e.g., e to 3) [18], popular topics (e.g., love) [6] and dates [19].

Reuse of Passwords. Password reuse weakens password strength.

When a password is reused across multiple accounts, the breach of

a password in one account could lead to a breach of other accounts.

The average password is used for approximately 6 different websites

[20], and 77% of users either reuse or modify an existing password

[3]. These reused passwords have been exploited in targeted at-

tacks (i.e., against a single target user), with success ranging from

16% in 1000 guesses [11] to 32-73% in 100 guesses when personal

information is also incorporated [10] .

Password Composition Policies. To prevent users from selecting

weak passwords, many systems implement password composition

policies—sets of rules that a new acceptable password must follow.

Common examples of composition policies include a minimum

password length and/or the inclusion of characters from multiple

character classes (e.g., lowercase, uppercase, numbers, special char-

acters). Despite their practical benefit in strengthening selected

passwords [5, 21], overly strict password policies push users to

insecure behaviors [5, 22, 23] including writing down passwords

[23], reusing passwords [5, 22], or extending a weak password with

a special character [5]. Partly due to this usability shortfall, many

social-media websites, which are often targets of attacks, choose to

adopt less restrictive policies [24].

Password Meters. Password meters, by estimating the strength of

passwords during creation, encourage users to create stronger pass-

words [25]. However, most of the heuristic-based meters used in

practice don’t accurately reflect actual password strength [26]. Re-

cent developments focus on various approaches, such as advanced

heuristics-based methods [27], probabilistic methods (e.g., Markov

model) [14], and neural networks [9, 11, 28]. Proposals based on

neural networks, Markov models, and PCFGs have been found to

outperform others [29]. Also, password meters can be personalized

either by taking into account a user’s personal information (e.g.,

user profile [30] or previously-leaked passwords [11]) in measuring

the password strength, or by providing personalized feedback for

password strength improvement [28].

Password Guessing Tools. There are many widely-studied guessing

tools and techniques for guessing passwords. Markov models have
been promising in password guessing [8, 31]. Probabilistic context-
free grammars (PCFGs) [4] (and its extensions [32, 33]) create gram-

mar structure-based password guesses, and has been widely-used

(see, for example [3, 7, 14, 15, 25, 34]). The semantic guesser [6] ex-
panded PCFGs to exploit semantic patterns in passwords. Recently,

neural network guessers have drawn considerable attention [9, 35].

The use of multiple guessers has been proposed to measure pass-

word strength [36]. While some guessers employ a combination

(e.g., PCFGv4 uses OMEN), it is not clear how to confirm they are

using the most complementary guessers, nor are there any studies

or methods to support their identification. Many password guessers

need to be carefully tuned on training datasets to effectively guess

passwords of a target dataset. Some password guessers are sensitive

to language differences in training data [37], and the similarity be-

tween training and target datasets improves guessing success [30],

a finding that we corroborated in just one of our many experiments

but using a different method, more data, and more guessers (see

Section 4.2.2).However, it was not clear how to identify similar data

sets when the target is hashed; we describe a method to do so using

our methods in Section 5.1.

We note that practitioners need to make many decisions to imple-

ment effective password checking. These decisions include which

subset of guessing tools to choose among many available options,

and which training dataset to choose. To support these decisions,

the literature falls short in systematically understanding guesser

behaviors and their ability to complement or substitute one another.

This work attempts to address this gap.

3 ANALYTICAL FRAMEWORK
The analytical framework presented in this section can be applied

to evaluate any set of guessers. It can also be used to evaluate a

set of training datasets to identify the best training datasets for

password checking. These two use cases are discussed further in

Section 5.

We consider a set of 𝑚 password guessers G = {𝑔1, . . . , 𝑔𝑚}
where each 𝑔𝑖 represents a specific guesser (e.g., John the Ripper,

OMEN, etc.). We aim to understand how each guesser 𝑔𝑖 ∈ G
behaves when trained on or tested against particular password

datasets, what types of passwords they guess, and how similar one

guesser’s behavior is to others. To this end, each guesser 𝑔 ∈ G
will be trained on and tested against a set of 𝑛 password datasets

D = {𝐷1, ..., 𝐷𝑛}, where each 𝐷 𝑗 is a publicly-available password

dataset (e.g., RockYou, Twitter, etc.).
1
When a guesser 𝑔𝑖 ∈ G is

trained on a dataset 𝐷 𝑗 ∈ D, it can create a password guess list

𝐿𝑖 𝑗 . To compare various guessers trained on various datasets, we

develop some statistics (see Section 3.3) for comparing guessers’

guess lists. Our statistics deploy some pairwise-comparison metrics

(see Section 3.2), which use either structural features (see Section

3.1) or the passwords shared between two lists.

3.1 Password Features
For each password𝑤 , we extract two structural features: password
length 𝑛𝑤 (i.e., the number of its characters) and the number of char-
acter classes 𝑐𝑤 that it contains. We focus on four distinct character

classes: lowercase letters, uppercase letters, numbers, and symbols.

For instance, 𝑤 = 𝑝𝑎𝑠𝑠𝑤0𝑟𝑑! has 𝑛𝑤 = 9 and 𝑐𝑤 = 3 with three

character classes: lowercase letter, number, and symbol.

1
We use the terminology of “testing against a dataset” when a guesser is guessing the

passwords of a target password dataset.

2

To extract features from password list 𝐿′ (e.g., leaked password

database or guess list of a guesser), we first aggregate the extracted

features of all𝑤 ∈ 𝐿′ into a matrix V = [𝑣𝑥𝑦] where 𝑣𝑥𝑦 is the frac-

tion of passwords in password list 𝐿′ which contains 𝑦 characters

covering 𝑥 character classes:

𝑣𝑥𝑦 =
1

|𝐿′ |
∑︁
𝑤∈𝐿′

1[𝑐𝑤 = 𝑥 & 𝑛𝑤 = 𝑦], (1)

where 1[.] is the indicator function, and |𝐿′ | represents the number

of passwords in the list.
2
The matrix V has a natural probability

interpretation: when one selects a password𝑤 from the password

list 𝐿′ uniformly at random, the password𝑤 contains 𝑦 characters

from 𝑥 character classes with a probability of 𝑣𝑥𝑦 . In other words,

ourmatrixV captures the joint probability distribution of passwords

over character classes and the number of characters. To ease our

notations and analyses, we collapse (i.e., flatten) the matrix V into

a feature vector v. We refer to this feature vector as the structural
features of a password list. This simple representation allows us to

preserve the impact of password policies of each password list.

3.2 Pairwise Comparison Metrics
Our deployed pairwise comparison metrics are symmetric, so are

computed once for each pair of password lists. While these metrics

can use any features, we use either the structural features described

in Section 3.1 or the passwords shared between two lists. The use of

cosine similarity combined with our proposed structural password

features ease the interpretation of our analyses with regard to their

connections to the password policies of password datasets. The

use of Jaccard Index on the passwords shared between two lists

allows us to analyze the degree to which password guessers have

complementary behavior on the finest level of granularity. Our met-

rics have been widely used in information retrieval [38–40], data

mining [41, 42], and other password research [30]. Of particular in-

terest is the generalized Jaccard index, which as we show in Section

5 and the Appendix, can be used to not only measure similarity

between each guesser’s output, but also measure similarity between

a plaintext dataset and a hashed & salted password dataset.

3.2.1 Cosine Similarity. Cosine similarity measures the angle be-

tween two non-zero vectors. For comparison of two password lists,

one can extract structural features from each list, and then compute

the cosine similarity on the corresponding feature vectors. The

cosine similarity between two password lists 𝐴 and 𝐵 is given by

𝐶 (𝐴, 𝐵) = vA · vB
∥vA∥∥vB∥

, (2)

where vA and vB are structural feature vectors of 𝐴 and 𝐵, respec-

tively. ∥ .∥ is the Euclidean norm, and vA · vB is the dot product of
those two vectors. The closer the cosine similarity value is to 1, the

smaller the angle between the two vectors is, and the more similar

they are. In other words, two lists of passwords with similar feature

distributions have a high cosine similarity. We use cosine similarity

combined with our proposed structural features for two purposes:

(i) comparing the structure of leaked password databases with each

other; (ii) comparing the structure of two guess lists.

2
Indicator function 1[𝑠] returns 1 if the statement 𝑠 is true; otherwise 0.

3.2.2 Jaccard Index. Jaccard index measures the extent two sets

overlap with each other, where the intersection of two sets is com-

pared to their union. The Jaccard index between two password lists

𝐴 and 𝐵 can be computed by

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | . (3)

The closer the Jaccard index is to 1, the closer in size the intersection

of the sets is to their union, and consequently the more similar two

sets are. In other words, two sets of passwords with high overlap

will have a high Jaccard index. The Jaccard index also has a natural

probabilistic interpretation: if one chooses a password uniformly

at random from either password list, the Jaccard index captures the

likelihood of selecting a password belonging to both sets.

When password lists have duplicates (e.g., leaked password

datasets), we view the password list as a multiset, a modification

of sets that allows for duplicated elements. In these cases, we ap-

ply a generalized version of the Jaccard index [30] to preserve the

frequency information of password duplicates in password lists.

Letting 𝑜 (𝑤,𝐴) be the number of occurrences of password𝑤 in pass-

word list 𝐴, the generalized Jaccard index between two password

lists 𝐴 and 𝐵 is given by

𝐽 (𝐴, 𝐵) =
∑

𝑤∈𝑈 𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵))∑
𝑤∈𝑈 𝑚𝑎𝑥 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵)) , (4)

where𝑈 = (Ω (𝐴) ∪Ω (𝐵)), and Ω (𝐴) represents the set of unique
passwords in the password list 𝐴.

3.3 Statistics
Our comparison metrics can be readily used for the comparison of

a pair of password lists. However, to compare two guessers thor-

oughly, it is useful to summarize the comparison metrics of two

guessers under different training and testing datasets. This sec-

tion explains our proposed statistics for summarizing comparison

metrics. Our statistics fall into two categories: relating to guessing

behaviors and relating to guessing success.

3.3.1 Statistics for Guessing Behaviors. This class of statistics is
devised to either compare the guessing behaviors of password

guessers with each other, or measure how different training datasets

affect the guessing behavior of a given guesser.

Our guessing similarity statistic summarizes the similarity of two

guessers’ guess lists when trained on the same dataset by averaging

the comparison metric (e.g, Jaccard or Cosine) of their guess lists

over various training datasets. We calculate the guessing similarity
of two guessers 𝑔𝑖 and 𝑔 𝑗 by

G(𝑔𝑖 , 𝑔 𝑗 , 𝑀) = 1

𝑛

𝑛∑︁
𝑘=1

𝑀 (𝐿𝑖𝑘 , 𝐿𝑗𝑘) (5)

where𝑀 ∈ {𝐶, 𝐽 } is either Cosine similarity (see Eq. 2) or Jaccard

index (see Eq. 3), and 𝐿𝑖𝑘 is the list of password guesses (without

any duplicates) generated by 𝑔𝑖 trained on datasets 𝐷𝑘 . Here, 𝑛 is

the number of datasets in D. We also introduce successful guessing
similarity to measure how two guessers’ successful guesses are

similar:

SG(𝑔𝑖 , 𝑔 𝑗 , 𝑀) = 1

𝑛(𝑛 − 1)

𝑛∑︁
𝑘=1

𝑛∑︁
ℓ≠𝑘

𝑀

(
𝐿𝑖𝑘 ∩ 𝐷ℓ , 𝐿𝑗𝑘 ∩ 𝐷ℓ

)
. (6)

3

Onemight be interested inmeasuring how similarly two different

password datasets can train guessers. To this end, we introduce our

training similarity statistic which calculates the extent two different

training password datasets result in generating similar guess lists

of passwords when used for training. We define training similarity
between two datasets 𝐷 𝑗 and 𝐷𝑘 by

T (𝐷 𝑗 , 𝐷𝑘 , 𝑀) = 1

𝑚

𝑚∑︁
𝑖=1

𝑀 (𝐿𝑖 𝑗 , 𝐿𝑖𝑘), (7)

where 𝑚 is the number of different guessers in G. This formula

computes how similarly 𝐷 𝑗 and 𝐷𝑘 can train guessers on average.

By capturing the extent two various datasets are effectively similar

in training guessers, one can identify training datasets which are

as effective as another dataset in training guessers. This could be

used to identify effective, yet small datasets, which could drastically

speed up the training process.

3.3.2 Statistics for Guessing Success. The guessing success statistics
quantify the guessing accuracy of guessers under various settings

(e.g., training and testing datasets), and also determine how training

data affects guessing success for various guessers.

When each guesser 𝑔𝑖 is trained on password dataset 𝐷 𝑗 and

tested against password dataset 𝐷𝑘 , one can compute its success
rate, as the portion of successfully guessed passwords, by

𝑠𝑖 𝑗𝑘 =
|𝐿𝑖 𝑗 ∩ 𝐷𝑘 |

|𝐷𝑘 |
. (8)

Note that 𝑠𝑖 𝑗𝑘 ∈ [0, 1], where 𝑠𝑖 𝑗𝑘 = 1 implies that all passwords

in 𝐷𝑘 are guessed successfully by 𝑔𝑖 trained on 𝐷 𝑗 . To summarize

the success rate for a specific guesser 𝑔𝑖 , one can compute its mean

success rate over all distinct training and testing datasets by

⟨𝑠𝑖::⟩ =
1

𝑛(𝑛 − 1)

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘≠𝑗

𝑠𝑖 𝑗𝑘 . (9)

We similarly compute the success rate of training dataset 𝐷 𝑗 by〈
𝑠:𝑗 :

〉
=

1

𝑚(𝑛 − 1)

𝑚∑︁
𝑖=1

𝑛∑︁
𝑘≠𝑗

𝑠𝑖 𝑗𝑘 , (10)

and the average success rate of a fixed dataset 𝐷 𝑗 and guesser 𝑔𝑖 by〈
𝑠𝑖 𝑗 :

〉
=

1

𝑛 − 1

𝑛∑︁
𝑘≠𝑗

𝑠𝑖 𝑗𝑘 . (11)

4 EXPERIMENTS
Our experiments aim to understand the impact of training dataset

choice on guessers, the performance of guessers, and how guessers

can complement or substitute one another.

4.1 Experimental Setup
We choose a variety of different password datasets and guessers.

4.1.1 Password Datasets. Our experiments use a variety of publicly

available leaked password datasets, which have been the subject

of other password research studies (for example, [3, 10, 17, 43–

45]). We have curated and cleaned these datasets by converting

their passwords to Unicode. Table 1 shows the number of total and

Table 1: The password datasets, their sizes, and the ratio be-
tween unique and total number of passwords. *Merged con-
tains all other plaintext datasets in this table.

Number of Passwords

Datasets Total Unique Ratio Type

ClixSense [46] 2,222,359 1,628,205 0.7326 Plaintext

Webhost [47] 15,292,021 10,589,775 0.6925 Plaintext

Mate1 [48] 27,403,932 11,988,154 0.4375 Plaintext

RockYou [49] 32,596,319 14,337,716 0.4399 Plaintext

Fling [50] 40,769,652 16,810,091 0.4123 Plaintext

Twitter [51] 40,872,901 22,579,065 0.5524 Plaintext

Merged* 159,157,184 67,628,637 0.4249 Plaintext

LinkedIn [52] 174,243,105 61,829,207 0.3548 Hashed

unique passwords in each dataset as well as the ratio between those

values.
3

4.1.2 Password Guessers. To include a wide variety of guesser

behaviors, we focus on six guessers from three different classes

of password guessers: Markov models, Probabilistic Context Free

Grammars (PCFGs), and Neural Networks. All examined guessers

are used with their recommended optimal/default settings, or tuned

to perform their best on our datasets.

John the Ripper (JtR-Markov). We use its community build (1.9.0-

bleeding-jumbo) [53] in Markov mode. We restrict the maximum

length of passwords to 12 characters, which provided the best

results and is consistent with other studies [6]. JtR runs single-

threaded during both training and guessing.

Ordered Markov Enumerator (OMEN).We use OMEN [8, 54] with

the default settings. OMEN produces only ASCII passwords and

runs single-threaded during training and guessing.

Probabilistic Context-Free Grammar (PCFGv4).We used PCFG ver-

sion 4.0 [33], an extension of the original PCFG [4]. This version

uses OMEN to generate a certain percentage of passwords and

generate the remainder with PCFGs. We have disabled this fea-

ture to generate passwords exclusively from PCFGv4 as the use

of OMEN decreased the success rate in most of our tests. PCFGv4

runs single-threaded.

Semantic Guesser (Sem). We use the lite version of Sem [6, 55]. The

grammars are trained as recommended using maximum likelihood

estimation, the backoff algorithm is used for producing tags, and

mangling rules are enabled for generating guesses. Sem uses multi-

processing during training, but runs single threaded for guessing.

Neural Network (NN).We generate guesses using the NN’s “human”

mode [9, 56], and sort them in descending probability order. We

limit the length of passwords to 6–40 characters to maximize NN’s

success rate for our datasets. We use a model consisting of three

LSTM layers (with 1024 neurons each) and two dense layers (with

512 neurons each). The neural network is our only guesser that

3
We exclusively use publicly available datasets and don’t report any specific password

information. Thus, there is no risk of exposing private user information. We keep only

the passwords with no links to their original owner.

4

Twier

RockYou

ClixSense

Webhost

Mate1

Fling

Figure 1: The average success rates over all guessers for train-
ing and testing dataset pairs. The edges are directed clock-
wise from training to testing dataset, with colors matching
the training dataset color. The edge width is proportional to
the average success rate of guessers for a fixed training and
testing dataset pair. The node size shows the dataset size.

uses GPU resources along with CPU. The neural network runs

multi-threaded during training and guessing.

Identity Guesser (ID). This guesser takes a training dataset as in-

put, removes its duplicates, and outputs its unique passwords in

descending order of their frequency in the training dataset. In other

words, this guesser computes the empirical probability distribution

of the passwords in the training dataset (i.e., training phase), then

outputs the passwords from the highest to the lowest probability

(i.e., generation phase). This simple guesser is a valuable benchmark

for understanding how well other guessers learn and generalize.

4.2 Impact of Training Data Choice
We investigate how guessing success rates are impacted by different

aspects of training data. We train all six password guessers on each

of the six individual plaintext datasets and test them against every

other plaintext dataset, yielding 180 password cracking scenarios.

For all guessers, we set the cutoff to 300 million guesses.

Figure 1 captures the average success rates for various pairs of

training and testing datasets. One can make two important obser-

vations: (i) some datasets (e.g., Twitter, Mate1) are more effective

training data than others (e.g., Webhost); (ii) some pairs of datasets

are effective for training and testing against each other, i.e., when

one dataset can train guessers well against another dataset (e.g.,

RockYou-Mate1, ClixSense-Mate1, etc.). These two observations

motivate us towards a deeper analysis of the characteristics of

effective training datasets.

4.2.1 Size of training dataset. We ask whether the success rate of

a guesser, on average, increases with the size of training dataset.

Table 2 shows the average success rates of each training dataset

over all guessers and target datasets (computed by Eq. 10), with

datasets ordered from smallest to largest size. While our largest

Table 2: Mean success rates (and std. deviations) for training
password datasets. Datasets are ordered smallest to largest.

Training Success Rate 1m Success Rate 300m

ClixSense 15.929 (12.634) 33.737 (16.355)

000webhost 8.72 (5.387) 29.602 (11.968)

Mate1 18.337 (13.234) 38.167 (14.799)

RockYou 13.845 (14.037) 30.264 (17.592)

Fling 11.835 (9.158) 35.155 (16.393)

Twitter 20.59 (15.303) 42.815 (17.371)

dataset performs the best, our smallest dataset ClixSense outper-

forms both Webhost and RockYou, which are over six and fifteen

times larger than it respectively. For a formal analysis, we calcu-

lated the statistical correlation between the number of passwords

in the training dataset and the averaged success rate. The resulting

Pearson coefficient of 0.189 (p= 0.315) suggests insignificant corre-

lation between training dataset size and success rate. This result

suggests that a larger dataset size isn’t necessarily a requirement

for an effective training data set.

4.2.2 Similarity between training and target datasets. We next focus

on how the similarity between training and target datasets impacts

the success rate of guessers. We first compute the cosine similarity

and generalized Jaccard index (see Eq. 2 and Eq. 4) between pass-

word datasets, and then explore the relationship of these similarities

with success rates.

Figure 2a shows that that Mate1, Twitter, RockYou and ClixSense

have high structural password similarity (i.e., cosine similarity).

Fling and Webhost are dissimilar to other datasets, but similar

to each other. Figure 2b suggests that the exact overlap between

datasets (i.e., generalized Jaccard similarity) is often low with ex-

ceptions for larger datasets (i.e., Fling, Twitter, RockYou and Mate1),

likely due to their sizes.

The cross-examination of Figures 1, 2a, and 2b suggest the datasets

with higher similarity tend to have mutually higher success rates

(e.g., Mate1 and RockYou share high similarity and mutual success

rates). Thus, we hypothesize that the similarity between training

and testing datasets has a positive effect on success rate. To test this

hypothesis, we ran Pearson statistical tests between the similarity

metric of any ordered pair of datasets and their success rates. Our

cosine similarity and Jaccard metric have correlation coefficients of

0.597 (𝑝 = 0.00049) and 0.596 (𝑝 = 0.00049) respectively. Both are

significant and large by Cohen’s convention. This further confirms

that dataset similarity, structural (cosine) or overlap (Jaccard), is

a key factor in success rate. These results complement previous

findings [30] on the relationship between the similarity of training

and testing datasets and guesser success rates. We note that this is

our only experiment with partial overlap with other work [30] by

computing cosine similarity and Jaccard index between datasets;

however, we use a different set of datasets and guessers, different

features for cosine similarity, and a different application of Jaccard

index (between datasets rather than between their features). We

also go on to show in Section 5.1 how Jaccard Index can be used to

measure similarity even when the target dataset is hashed.

5

RockYou Twitter

Webhost ClixSense

Fling Mate1

0.981

0.451

C
osin

e Sim
ilarity

(a) The cosine similarity.

RockYou Twitter

Webhost ClixSense

Fling Mate1

0.263

0.021

Jaccard In
dex

(b) The generalized Jaccard index.

RockYou Twitter

Webhost ClixSense

Fling Mate1

0.981

0.451

C
osin

e Sim
ilarity

(c) The cosine training similarity.

RockYou Twitter

Webhost ClixSense

Fling Mate1

0.263

0.021

Jaccard In
dex

(d) The Jaccard training similarity.

Figure 2: Plaintext datasets with their pairwise (a) cosine similarity, (b) generalized Jaccard similarity, (c) cosine training simi-
larity, and (d) Jaccard training similarity. The training similarity between datasets is computed by Eq. 7. The edge weights and
colors are based on the corresponding metric value between two datasets. The node color captures the metric average for the
corresponding dataset. The node size is proportional to the dataset size.

4.2.3 Training similarity between datasets. We next explore how

similarly two datasets can train a guesser using our notion of train-

ing similarity (see Eq. 7). This exploration might not have a direct

application in password checking, but offers interesting observa-

tions for password guessing. Our investigation is motivated by the

surprising performance of ClixSense in Table 2. Despite ClixSense’s

small size, its performance raises the question of how similarly

ClixSense and a bigger dataset can train a guesser, as smaller train-

ing datasets may be desirable in some cases to reduce training time.

We exclude the Identity guesser in this analysis due to its simplicity

in learning; also, its results mirror dataset similarity (see 4.2.2).

Figures 2c and 2d demonstrate the cosine and Jaccard training

similarity between our datasets. The cosine training similarity is

relatively high between most pairs of datasets. The cluster of Rock-

You, Twitter, Mate1, and ClixSense share relatively high overlap of

generated passwords (see their pairwise Jaccard training similar-

ity). This means passwords generated from training with ClixSense,

despite its small size, have high overlap with passwords generated

from training with other datasets.

4.3 Individual Guesser Performance
To evaluate the performance of each guesser, we compute its aver-

age success rate and runtime across varied training data, target data,

and password guessing scenarios (i.e., online and offline attacks).

4.3.1 Guessing Success Rate. To gauge the average performance of

each guesser, we train and test every guesser on each possible pair

of non-merged plaintext datasets. Then, each guesser generates

guess lists at cutoffs of 1 million and 300 million guesses to simulate

online [57] and limited offline attacks, respectively. Table 3 shows

the mean success rate of each guesser, computed by Eq. 9. At one

million guesses, PCFGv4 and the Identity guesser outperform others,

while JtR-Markov and OMEN perform the worst. Notably, only

PCFGv4 is able to outperform the Identity guesser at this cutoff

with a negligible margin.

For three-hundred million guesses, PCFGv4 performs the best,

with a 6% lead over the second best guesser Sem. The Identity

guesser performs surprisingly well, with an average of 30.5% (but

a high standard deviation of 14.07%) in at most 21,653,268 guesses

6

Table 3: Guessers’ mean success rates at 1 Million and 300
Million guesses (standard deviations in parenthesis). The
two best and worst are highlighted with green and red, resp.

Guesser Success Rate@1M Success Rate@300M

Identity 23.238 (11.859) 30.519 (14.079)

JtR-Markov 0.665 (0.993) 27.591 (11.563)

OMEN 5.921 (3.225) 22.121 (10.749)

Sem 18.219 (10.344) 41.343 (13.274)

PCFGv4 23.551 (11.545) 47.397 (12.364)

NN 17.662 (11.585) 40.768 (19.734)

Table 4: Guesser training and generation time. Training
datasets are randomly sampled from the Merged Dataset.
Guessers (except Identity) generated 300M guesses.

Training

Guesser 1 Million 50 Million Generation

JtR-Markov 00h 00m 00.1s 00d 00h 00m 02.2s 00h 00m 33s

Identity 00h 00m 00.3s 00d 00h 00m 24.9s 00h 00m 18s

OMEN 00h 00m 03.0s 00d 00h 00m 23.0s 00h 07m 10s

Sem 00h 01m 38.3s 00d 00h 20m 14.6s 00h 55m 30s

PCFGv4 00h 03m 49.5s 00d 01h 03m 38.4s 00h 30m 58s

NN 01h 18m 08.0s 02d 17h 01m 49.0s 19h 44m 20s

(compared to 300 million guesses for other guessers).
4
In its best

case, the Identity guesser trained on Twitter guesses 56.7% of Rock-

You, only 10.14% lower than the best guesser PCFGv4 on that same

pair. The Identity guesser’s high success rate arises from a rela-

tively large overlap between datasets, observed in Figure 2b. OMEN

under-performs JtR-Markov, performing worst overall at this cutoff.

4.3.2 Average Runtime. To help a system administrator understand

the resource requirements of guessers, we next analyze their run-

times during training and guess list creation. Each guesser is trained

and generates guesses on the same GPU-accelerated server which

ran no other jobs. The server has 2 Intel(R) Xeon(R) Gold 6148 CPUs

with 80 total cores @ 2.40GHz and 4 Nvidia GeForce 1080 Ti GPUs.

We note that only the neural network benefits from multiple GPUs

to parallelize computations.

Table 4 reports guesser training and generation time. For train-

ing, we created two datasets by sampling 1 million and 50 million

passwords from the Merged dataset.
5
For each guesser, the training

time increases with the training dataset size. The Markov-based and

Identity guessers perform the fastest (< 25 sec. for 50 million), with

PCFGs taking longer (about one hour for 50 million) and the neural

network taking the longest (more than 2.5 days for 50 million).

For password generation, we observe that the Identity guesser and

Markov models are again by far the fastest. Note that the Identity

4
The upperbound for number of guesses in the Identity guesser is derived from the

maximum number of unique passwords in our datasets.

5
Our code for training the identity guesser (i.e., computing empirical distribution of

unique passwords) and its guess generation (i.e., sorting passwords based on their

probabilities) is written in Python without any optimization.

Table 5: Guessers’ generalizability, with 300M guess cutoff.
A higher success rate indicates a better ability to generalize.

Identity OMEN JtR-Markov Sem NN PCFGv4

15.378 15.664 30.265 33.099 39.585 43.618

Table 6: The mean guessing success rate (and standard de-
viation in parentheses) for each guesser when trained on
different-sized subset of Twitter with a cutoff of 300M.

Training Size

Guessers 1 Million 10 Million 30 Million
Identity 21.194(10.172) 33.441(13.458) 39.853(14.186)

JtR 27.570(12.853) 27.541(12.846) 27.527(12.828)

OMEN 29.077(11.383) 29.216(10.916) 29.461(10.942)

Sem 41.493(13.669) 46.910(14.432) 48.021(14.832)

PCFGv4 41.517(11.469) 48.719(13.51) 51.178(14.242)

NN 43.688(13.420) 56.500(14.674) 58.259(14.970)

guesser only produced approximately 67M guesses, almost 4.5 times

fewer guesses than produced by others. The NN is considerably

slower than others: 2100 times slower than JTR-Markov, and even

39 times slower than PCFGv4.

4.4 Guesser Behaviors
We investigate the behavior of each guesser (i.e., their generated

guess lists) under various training and target datasets. We also

explore how each guesser complements and substitutes others.

4.4.1 Generalizability. One important characteristic of guessers is

how well they can generalize, i.e., predict and generate previously

unseen passwords. To measure this, we train each guesser on the

Webhost dataset as it is the least similar to the other datasets, both in

terms of structure (see Figure 2a) and actual password overlap (see

Figure 2b). We then test the Webhost trained guessers against every

other dataset and calculate each guesser’s mean success rate. Table

5 shows the mean success rate of each guesser: PCFGv4 and NN

outperform others, demonstrating a relatively high degree of gen-

eralizability compared to others. The Identity guesser and OMEN

perform notably worse. This is expected for the Identity guesser

with its inability to generalize, but surprising for OMEN. There is a

notable amount of variance in the success rates of guessers with

similar approaches: 15% difference between Markov models JtR and

OMEN, and 10% difference between PCFG-based guessers PCFGv4

and Sem. This highlights how even guessers with similar underlying

approaches can display differing generalization behavior.

4.4.2 Sensitivity to Training Size. We intend to learn how each

guesser’s success rate is impacted by the size of training data, drawn

from the same distribution. Sampling from the Twitter dataset
6
, we

create three different datasets of sizes 1 million, 10 million and 30

million. After training guessers on each dataset, we generate guess

6
We train on Twitter for this purpose, as opposed to the Merged dataset, since the

Merged dataset would contain the testing (target) data.

7

NN

OMEN

PCFGv4

JtR-Markov

Sem

Identity

(a) Cosine guessing similarity with 1 million guesses.

NN

OMEN

PCFGv4

JtR-Markov

Sem

Identity

(b) Jaccard guessing similarity with 1 million guesses.

NN

OMEN

PCFGv4

JtR-Markov

Sem

Identity

(c) Cosine guessing similarity with 300 million guesses

NN

OMEN

PCFGv4

JtR-Markov

Sem

Identity

(d) Jaccard guessing similarity with 300 million guesses.

Figure 3: The cosine and Jaccard guessing similarity (see Eq. 5) between guessers at the cutoffs of 1 million or 300 million
guesses. The edge colors represent the similarity value between two guessers. The edge width further highlights the relative
similarities within a figure (thickermeansmore similar). The node size represents the guesser’s average success rate. The node
colors represent their average similarity.

lists at a cutoff of 300M and test them against all other datasets.

Table 6 reports the mean success rates by Eq. 11. All guessers (ex-

cept JtR-Markov) improve when trained on the larger dataset, but

to various extents. The Identity guesser has the most drastic im-

provement with training size growth, from 21.2% to 39.85%. OMEN

and JtR-Markov show the least improvement. Sem, PCFGv4, and

NN have more modest, but notable improvements, increasing their

success rates by 6.5%, 9.7%, and 14.6%, respectively.

4.4.3 Guessing Similarity. Using our notion of guessing similarity

(see Eq. 5), we analyze how similar the guess lists of two guessers are

when they are trained on the same training data. Figure 3 shows the

cosine and Jaccard guessing similarity between guessers at cutoffs

of 1 million and 300 million guesses. For both cutoffs, PCFGv4, Sem,

ID and NN share high structural (cosine) similarity when compared

to OMEN and JtR (see Figure 3a and Figure 3c). Interestingly, despite

both deploying a Markov approach, JtR and OMEN are dissimilar.

This is likely because OMEN outputs guesses in probability order,

whereas JtR-Markov does not.

Figures 3b and 3d show Jaccard guessing similarity between

guessers, capturing the overlap of guessers’ guesses, at both cutoffs.

Guessers with higher success rates (see Table 3) seem to have higher

Jaccard guessing similarity (or overlap): At 1 million, the two best

guessers PCFGv4 and ID share the highest overlap whereas PCFGv4,

Sem and NN with the highest success rates at 300 million have

highest overlaps. One can also readily observe that the Jaccard

guessing similarities decrease as the cutoff increases. This change

suggests that by generating more passwords, each guesser has

begun demonstrating their own unique guessing behavior (i.e., the

percentage overlap between guessers’ guess lists decreases).

4.4.4 Successful guessing similarity. Our guessing similarity analy-

ses showed that guessers trained on the same data, generate mostly

unique guesses (see Figures 3b and 3d). However, it is possible

that many of these unique guesses are unsuccessful. In this light,

one might be interested in measuring the uniqueness of successful
guesses between guessers. To achieve this, we use our successful

guessing similarity metric in Eq. 6 with generalized Jaccard index.
7

As shown in Figure 4, there is still a considerable degree of

uniqueness in successful guesses. Even Sem and PCFGv4—with

the highest similarity—have a generalized Jaccard index of 0.86,

implying that 14% of their successful guesses are unique to one

guesser. Similarly, NN and Sem, by sharing 72% of their successful

guesses, owe 28% of their success to unique passwords. Interestingly,

the Identity guesser seems to have moderate Jaccard similarity with

any other guesser (i.e., its similarity values range from 0.529 to 0.725)

7
The generalized Jaccard allows us to weight the successful guesses of each guesser

based on their frequencies in the target dataset.

8

NN

OMEN

PCFGv4

JtR-Markov

Sem

Identity

0.866

0.451

Jaccard In
dex

Figure 4: The generalized Jaccard successful guessing simi-
larity between guessers. The edge weights and colors repre-
sent the similarity of two guessers. The node size represents
the guesser’s average success rate. The node color represents
the guesser’s average similarity with other guessers.

despite its smaller guess lists sizes (i.e., ranging from 2.2 million to

40 million compared to 300 million for all other guessers). These

findings offer two important recommendations: (i) the use of one

guesser does not make another guesser entirely redundant, even

when the underlying approach or achieved success rates are similar;

(ii) The cost-effective Identity guesser can complement any other

guessers as it has a relatively high number of successful guesses.

We explore the gains achieved by combining multiple guessers in

our combination attack discussed below in Section 4.5.2.

4.5 Combining Guessers
We evaluate the ability of password guessers to complement one

another on a previously unseen dataset (i.e., LinkedIn) in an of-

fline attack scenario. We begin in Section 4.5.1 by evaluating each

individual guesser against the LinkedIn dataset. Next we analyze

different combinations of guessers in Section 4.5.2.

4.5.1 Individual Guessers. To compare guessers’ performance, we

train each guesser on the Merged dataset, and allow them to each

make 2 billion guesses against the LinkedIn dataset. As reported in

Table 7, NN outperforms all others, with a 4.3% lead over PCFGv4.

PCFG-based (PCFGv4 and Sem) and Identity guessers outperform

Markov-based guessers (OMEN and JTR-Markov). Figure 5 depicts

the percentage of guessed passwords over the number of guesses.

JtR-Markov surpasses OMEN close to the end of the attack. Notably,

PCFGv4, Identity, and NN traded places for the best guesser before

Identity ran out of guesses. We next apply our findings from our

successful guess similarity experiments to further improve the

results using combination attacks.

4.5.2 Combination Attacks. Our analyses shed light on how guessers

complement each other by generating unique successful guesses.

We also learn that the Identity guesser not only complements every

other guesser, but also often outperforms some advanced guessers.

These findings motivate us to design a combination attack where

the Identity guesser is used to attack a password dataset prior to

the application of a set of other guessers. This hybrid approach is

Table 7: Percentage of LinkedIn passwords successfully
guessed. Guessers are trained on theMerged dataset and cut-
off at 2 billion guesses.

OMEN JtR-Markov Identity Sem PCFGv4 NN

35.641 37.028 47.561 55.159 58.798 63.145

Figure 5: Performance of guessers trained on the Merged
dataset and tested against LinkedIn. The dotted line marks
the Identity guesser’s last guess at 67 million guesses, each
other guesser made 2 billion guesses.

recommended in John the Ripper where a traditional attack follows

wordlist mode. We run many independent combination attacks

on LinkedIn. Each guesser is trained on the Merged Dataset and

produces two billion guesses.

Table 8 reports the result of our combination attacks. When ID

is combined with any individual guesser (e.g., ID+O, ID+J, etc.), the

combination attacks experience a notable degree of improvement

compared to an individual guesser’s performance (compare the

columns of sole guesser vs. ID + guesser). JtR-Markov experiences

the largest improvement of 18.67%. Even guessers with high success

rates (e.g., NN and PCFGv4) realize improvements of 1% to 4%.

By dramatically increasing the success rate of weaker guessers

(e.g., OMEN and JTR-Markov), this combined approach makes less

resource intensive guessers more competitive.

As shown in Table 8, when more guessers are combined with

the Identity guesser, the success rate increases, but with diminish-

ing returns. For example, compare J to J+S (+7.562%), J+S to J+S+P

(+3.359%), and J+S+P to J+S+P+N (+1.991%). There seems to be two

factors in determining which additional guesser can improve an

existing combination attack the most: the success rate of the candi-

date guesser, and its successful guessing similarities with each of

the combined guessers. A candidate guesser with higher success

rate has more potential to improve the combined guesser (e.g., com-

pare O+J to O+S). However, a candidate guesser with low successful

guessing similarities can be a more effective addition. This interplay

of success rate and successful guessing similarities might make a

9

Table 8: The percentage of LinkedIn passwords cracked by an offline attack using the Identity guesser followed by a combina-
tion of guessers, each making two billion guesses. The names of guessers are shortened to their first letters: (P)CFG, (O)MEN,
(N)N, (S)em, and (J)tR-Markov. Each combination attack is color-coded by its runtime for training and guess generation: Green
is less than 8 hours (i.e., a workday), yellow is less than 16 hours, and red is over two weeks.

Sole Guesser ID + 1 Guesser ID + 2 Guessers ID + 3 Guessers ID + 4 Guessers

guesser guessed guesser guessed guessers guessed guessers guessed guessers guessed guessers guessed guessers guessed
OMEN 35.641 O 52.272 O+J 57.628 J+P 65.038 O+J+S 63.825 O+P+N 67.336 O+J+S+P 66.931

JtR-M 37.028 J 55.693 O+S 61.536 J+N 65.909 O+J+P 65.466 J+S+P 66.614 O+J+S+N 67.484

Sem 55.159 S 59.773 O+P 62.907 S+P 63.866 O+J+N 66.199 J+S+N 67.247 O+J+P+N 68.060

PCFGv4 58.798 P 61.158 O+N 65.241 S+N 66.411 O+S+P 65.260 J+P+N 67.855 O+S+P+N 68.169

NN 63.145 N 64.876 J+S 63.255 P+N 67.082 O+S+N 66.705 S+P+N 67.943 J+S+P+N 68.605

less successful guesser with lower successful guessing similarities

more attractive. For example, the weaker JtR and stronger Sem have

successful guessing similarities of 0.675 and 0.902 with PCFGv4.

The addition of JtR to the combination attack of ID+P offers more

improvement than the addition of Sem (3.88% vs. 2.71%).

Each additional guesser also incurs higher runtime and resource

requirements. The attacks color-coded green in Table 8 could be

completed within one workday (or 8 hours), whereas the yellow

and red color-coded attacks must be run overnight (within 8-16

hours) and over two weeks, respectively. The neural network is the

largest contributor to runtime in our combinations and also adds

GPU requirements. Interestingly, unlike the sole guesser attacks,

the slower combination attacks don’t always outperform the faster

attacks. For example, the O+J+P attack (65.466%) runs in under 8

hours while S+P (63.866%) and O+S+P (65.250%) take between 8-16

hours, and N (64.875%) and O+N (65.241%) take over 2 weeks. This

result implies that competitive success rates can be achieved by the

combination of computationally-cheap guessers with less resources.

These combination attacks serve as a competitive alternative for

practitioners without access to GPU resources, or with time con-

straints to perform reactive checking (e.g., J+P attack outperforms

N while running within a workday and without GPU resources).

5 DISCUSSION AND RECOMMENDATIONS
We provide further context by presenting use cases of our frame-

work and a set of recommendations based on our empirical results

described in Section 4.1.

5.1 Framework Use Cases
Our framework is useful for both practitioners and researchers in:

(1) Evaluating new guessers and/or settings. As new password

guessers emerge, our framework can be applied to update our

knowledge of how to best combine password guessers, by adding

the new guesser to G and recomputing the formulas in Sec. 3. Our

framework equips practitioners and researchers to assess whether

or not emerging password guessers offer some complementary

power to existing and deployed guessers. This supports a more

informed selection of sets of password guessers for password check-

ing. Using our framework supports evaluation beyond typical prac-

tices of simply benchmarking individual guesser’s success rates.

(2) Identifying effective training data for password checking.
For guessing scenarios where the target passwords are hashed and

salted, our framework can still be applied with the generalized

Jaccard index comparison metric, assuming that the salt of each

hashed password is available to the administrator, as is typically

the case. We describe how this can be accomplished in Proposition

1, the proof for which can be found in the Appendix.

Proposition 1. Assuming a candidate training password list 𝐴
and salted & hashed password list 𝐵ℎ , the generalized Jaccard index
between 𝐴 and 𝐵ℎ can be computed by:

𝐽 (𝐴, 𝐵ℎ) =
𝐹
min

(𝐴, 𝐵ℎ)
|𝐴| + |𝐵ℎ | − 𝐹

min
(𝐴, 𝐵ℎ)

, (12)

where
𝐹
min

(𝐴, 𝐵ℎ) =
∑︁

𝑤∈Ω (𝐴)
𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑔(𝑤, 𝐵ℎ)) .

Here, 𝑔(𝑤, 𝐵ℎ) =
∑

𝑦∈𝐵ℎ
1[𝑦 = 𝐻 (𝑤 + 𝑠𝑦)], 1[.] is the indicator

function, 𝑠𝑦 and 𝐻 (.) are, respectively, the salt and hash function
originally used for computation of the salted & hashed password 𝑦.
Here, |𝐴| and |𝐵ℎ | are the number of passwords in 𝐴 and the number
of salted & hashed passwords in 𝐵ℎ . Also, Ω (𝐴) is the set of unique
passwords in the training dataset 𝐴, and 𝑜 (𝑤,𝐴) is the number of
occurrences of𝑤 in 𝐴.

While the offline Identity attack success rate can be used as a

proxy for measuring the similarity of a candidate training dataset

𝐴 with a salted & hashed password list 𝐵ℎ , the generalized Jaccard

index is more informative. For example, consider two candidate

training datasets:𝑌 with hundreds of millions of entries, and dataset

𝑍 with one million entries. If they each achieve a 50% success rate,

dataset 𝑍 should be considered more similar and selected as the

best training set. However, the pure Identity attack success rate

falls short in distinguishing 𝑍 from 𝑌 as opposed to the generalized

Jaccard index which would assign a higher similarity score to 𝑍 .

(3) Identifying complementary guessers for longer offline
attacks. Guessers might offer different complementary patterns

for short and long guessing sessions (e.g., online vs. offline attacks).

Our experiments show the complimentary patterns of guessers for

shorter sessions (up to 300 million guesses). To identify comple-

mentary guessers for longer attacks (e.g., approx. 10
14

guesses),

our successful guessing similarity (recall Eq. 6) can be employed,

in combination with Monte Carlo methods [58]), to approximate

10

complementary effects of guessers. Rather than directly computing

𝐿𝑖𝑘 ∪𝐷ℓ in Eq.6 by allowing guesser 𝑔𝑖 (trained on 𝐷𝑘) to generate

the guess list 𝐿𝑖𝑘 , one can approximately determine the elements of

𝐿𝑖𝑘 ∪ 𝐷ℓ (i.e., the passwords that would be successfully guessed in

a leaked plaintext testing dataset 𝐷ℓ) by: (1) setting the threshold

𝜏 for maximum number of guesses (2) for each password𝑤 ∈ 𝐷ℓ ,

estimate its guess number (i.e., the minimum number of required

guesses) using Dell’Amico et al.’s approach [58] (3) if the guess

number is less than the threshold 𝜏 , it belongs to 𝐿𝑖𝑘 ∪ 𝐷ℓ . We

note that to apply this procedure, each guesser 𝑔𝑖 should be able to

assign a probability to a password.

5.2 Recommendations
Our work provides a number of practical recommendations (R1-

R4) for practitioners auditing their passwords. Of course, this set

of recommendations may update as more guessers and training

datasets are analyzed using our framework. While our work can be

directly applied to reactive checking, it has a natural extension to

proactive checking, as guessers that generate probability scores for

a given password can be applied as password meters.

R1: Try publicly-available leaked passwords first. Our results
show that an attacker can be relatively successful by applying the

Identity guesser (i.e., the training data of leaked passwords as a

guess list) before considering any advanced guessers. This might

seem a familiar concept, occasionally applied in practice (e.g., John

the Ripper [59]). However, to the best of our knowledge, the impact

and benefits of using an Identity guesser vs. other guessers has

not been extensively quantified. For the first 1 million guesses (a

number considered feasible for online attacks [57]), the Identity

guesser along with PCFGv4 outperform more advanced guessers.

For offline attacks, the Identity guesser performed surprisingly

well; with only 22 million guesses, on average it achieved 64% of

the success rate of the top offline guesser PCFGv4 with 300 million

guesses (see Table 3). Additionally, in our LinkedIn experiments,

the Identity guesser, with 67 million guesses, had 75% the success

rate of the top guesser NN, with 2 billion guesses (see Table 7).

These experiments strongly suggest that the Identity guesser can

achieve high guessing success rates, comparable to the top guessers,

while using at least an order of magnitude fewer guesses. Thus, we

strongly recommend that leaked password datasets should be the

first priority in password checking.

R2: Apply combinations of guessers. Our results for guessing
similarity show that the majority of guesses produced by each

guesser are unique, even when the underlying approach or suc-

cess rate is similar. Even for successful guesses, each tested guesser

is able to crack passwords that others overlook (e.g., the Identity

guesser found millions of LinkedIn passwords overlooked by other

guessers). Our analysis indicates that no single guesser is able

to completely substitute another, and they can complement each

other when used together. However, some combinations are more

effective than others. Our framework can be used to assist iden-

tification of complementary guesser combinations. We also show

how some combinations of guessers can have comparably high

success rates with lower computing requirements. For example, in

less than 8 hours, Identity + PCFGv4 + JtR-Markov can achieve a

success rate that compares to Identity + NN (which takes about

2 weeks). Considering both success rate and computing require-

ments, our results from targeting LinkedIn passwords suggest that

a reasonable strategy is to apply this ordering of guessers: Identity,

PCFGv4, JtR-Markov, Sem, OMEN, NN. As discussed in Section

5.1, our framework can be used to identify complementary combi-

nations involving additional guessers, and also for long guessing

sessions.

R3: Train with datasets similar to target. Our results show that

when choosing training data, the similarity to the target data is an

important factor.
8
Thus, our dataset similarity metric can be used

to decide on the most effective training dataset. The most effective

dataset can be identified, even when the target dataset is hashed,

as outlined in Section 5.1.

R4: Consider using less training data. Using more training data

takes more computing resources and longer training times. Our

results indicate that training dataset size does not correlate with

guessing success rates. Although when sampling from the same

dataset (Twitter), we observed that data size can increase training

effectiveness, the gains between 1 million and 30 million training

passwords are not as large as one might expect. Therefore, if time

or space constraints exist, a reasonable compromise would be to

use a sample of training data from a dataset with high similarity

(such as Twitter in our experiments).

6 CONCLUSION AND FUTUREWORK
We provide an in-depth analysis of password guessers, revealing

insights regarding when and how to use them (both alone and

in combination). This work demonstrates that combinations of

computationally-cheap guessers can be comparably effective to

more resource-intensive guessers. Our work also points towards a

set of recommendations for practitioners who use password check-

ing tools.

Our framework (i.e., various metrics and statistics) for comparing

password guessers and training datasets can be utilized or extended

by practitioners and researchers for future password studies. While

our present work supports decisions about how to best combine

password guessers, there remains some human interpretation of

the results—i.e., our framework can help identify the guessers that

are most dissimilar and have the highest success rate; however the

final decision of which to combine should be made by the human in-

volved (and consider computational efficiency as well). As such, an

interesting direction is to develop artificial intelligence algorithms

to automate finding combinations of guessers with a maximum

success rate under budgeted time and resource requirements. Our

present work lays the foundations for such future directions. An-

other interesting direction for future work is to explore how to

summarize a large training dataset into a smaller dataset that trains

guessers just as well. Such a smaller training dataset would decrease

training time and aim to maximize success rate.

8
These results confirm and complement previous findings [30] by employing different

features, more and larger datasets, and more password guessers. We also show how

similarity can be measured between a hashed & salted target dataset and a plaintext

candidate training set.

11

REFERENCES
[1] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, “The quest to re-

place passwords: A framework for comparative evaluation of web authentication

schemes,” in Proceedings of the 2012 IEEE Symposium on Security and Privacy
(S&P), 2012, pp. 553–567.

[2] K. Thomas, A. Moscicki, D. Margolis, V. Paxson, E. Bursztein, F. Li, A. Zand,

J. Barrett, J. Ranieri, L. Invernizzi, Y. Markov, O. Comanescu, and V. Eranti, “Data

breaches, phishing, or malware?: Understanding the risks of stolen credentials,” in

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2017, pp. 1421–1434.

[3] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled web

of password reuse,” in Proceedings of the 2014 Network and Distributed System
Security Symposium (NDSS), 2014, pp. 23–26.

[4] M. Weir, S. Aggarwal, B. De Medeiros, and B. Glodek, “Password cracking using

probabilistic context-free grammars,” in Proceedings of the 2009 IEEE Symposium
on Security and Privacy (S&P), 2009, pp. 391–405.

[5] S. Komanduri, R. Shay, P. G. Kelley, M. L. Mazurek, L. Bauer, N. Christin, L. F.

Cranor, and S. Egelman, “Of passwords and people: Measuring the effect of

password-composition policies,” in Proceedings of the 2011 Conference on Human
Factors in Computing Systems (CHI), 2011, pp. 2595–2604.

[6] R. Veras, C. Collins, and J. Thorpe, “On the semantic patterns of passwords and

their security impact,” in Proceedings 2014 Network and Distributed System Security
Symposium (NDSS), 2014, pp. 23–26.

[7] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus of 70

million passwords,” in Proceedings of the 2012 IEEE Symposium on Security and
Privacy (S&P), 2012, pp. 538–552.

[8] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito, and A. Chaabane, “OMEN:

Faster password guessing using an ordered markov enumerator,” in Proceedings
of the International Symposium on Engineering Secure Software and Systems, 2015,
pp. 119–132.

[9] W. Melicher, B. Ur, S. M. Segreti, S. Komanduri, L. Bauer, N. Christin, and L. F.

Cranor, “Fast, lean, and accurate: Modeling password guessability using neural

networks,” in Proceedings of the 25th USENIX Security Symposium, 2016, pp. 175–

191.

[10] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online password

guessing: An underestimated threat,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2016, pp. 1242–1254.

[11] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential stuffing:

Password similarity models using neural networks,” in IEEE Symposium on Secu-
rity and Privacy, 2019, pp. 417–434.

[12] M. Bishop and D. V. Klein, “Improving system security via proactive password

checking,” Computers & Security, vol. 14, no. 3, pp. 233–249, 1995.
[13] D. Malone and K. Maher, “Investigating the distribution of password choices,”

in Proceedings of the 21st International Conference on World Wide Web (WWW),
2012, pp. 301–310.

[14] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-strength meters

from markov models,” in Proceedings of the 2012 Network and Distributed System
Security Symposium (NDSS), 2012.

[15] M. L. Mazurek, S. Komanduri, T. Vidas, L. Bauer, N. Christin, L. F. Cranor, P. G. Kel-

ley, R. Shay, and B. Ur, “Measuring password guessability for an entire university,”

in Proceedings of the 2013 ACM SIGSAC conference on Computer & Communications
Security (CCS), 2013, pp. 173–186.

[16] D. Schweitzer, J. Boleng, C. Hughes, and L. Murphy, “Visualizing keyboard pattern

passwords,” Information Visualization, vol. 10, no. 2, pp. 127–133, 2011.
[17] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing metrics for password

creation policies by attacking large sets of revealed passwords,” in Proceedings
of the 2010 ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2010, pp. 162–175.

[18] M. Jakobsson and M. Dhiman, “The benefits of understanding passwords,” in

Mobile Authentication. Springer, 2013, pp. 5–24.

[19] R. Veras, J. Thorpe, and C. Collins, “Visualizing semantics in passwords: the role

of dates,” in Proceedings of the Ninth International Symposium on Visualization for
Cyber Security, 2012, pp. 88–95.

[20] D. Florencio and C. Herley, “A large-scale study of web password habits,” in

Proceedings of the 16th International Conference on World Wide Web (WWW),
2007, pp. 657–666.

[21] W. C. Summers and E. Bosworth, “Password policy: The good, the bad, and the

ugly,” in Proceedings of the Winter International Synposium on Information and
Communication Technologies, 2004, pp. 1–6.

[22] J. Campbell, W. Ma, and D. Kleeman, “Impact of restrictive composition policy

on user password choices,” Behaviour and Information Technology, vol. 30, no. 3,
pp. 379–388, 2011.

[23] P. G. Inglesant and M. A. Sasse, “The true cost of unusable password policies,” in

Proceedings of the 2010 Conference on Human Factors in Computing Systems (CHI),
2010, pp. 383–392.

[24] D. Florêncio and C. Herley, “Where do security policies come from?” in Proceed-
ings of the Sixth Symposium on Usable Privacy and Security (SOUPS), 2010, pp.

10:1–10:14.

[25] B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L. Mazurek, T. Passaro,

R. Shay, T. Vidas, L. Bauer, N. Christin, and L. F. Cranor, “How does your password

measure up? the effect of strength meters on password creation,” in Proceedings
of the 21st USENIX Security Symposium, 2012, pp. 65–80.

[26] X. de Carné de Carnavalet and M. Mannan, “From very weak to very strong:

Analyzing password-strength meters,” in Proceedings of the 2014 Network and
Distributed System Security Symposium (NDSS), 2014, pp. 23–26.

[27] D. L. Wheeler, “zxcvbn: Low-budget password strength estimation,” in Proceedings
of the 25th USENIX Security Symposium, 2016, pp. 157–173.

[28] B. Ur, H. Habib, N. Johnson, W. Melicher, F. Alfieri, M. Aung, L. Bauer, N. Christin,

J. Colnago, L. F. Cranor, H. Dixon, and P. Emami Naeini, “Design and evaluation

of a data-driven password meter,” in Proceedings of the 2017 Conference on Human
Factors in Computing Systems (CHI), 2017, pp. 3775–3786.

[29] M. Golla and M. Dürmuth, “On the accuracy of password strength meters,” in

Proceedings of ACM CCS, 2018, pp. 1567–1582.
[30] S. Ji, S. Yang, A. Das, X. Hu, and R. Beyah, “Password correlation: Quantification,

evaluation and application,” in Proceedings of the IEEE Conference on Computer
Communications, 2017, pp. 1–9.

[31] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords using time-

space tradeoff,” in Proceedings of the 2005 ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2005, pp. 364–372.

[32] S. Houshmand, S. Aggarwal, and R. Flood, “Next gen pcfg password cracking,”

IEEE Transactions on Information Forensics and Security, vol. 10, no. 8, pp. 1776–
1791, Aug 2015.

[33] C. M. Weir, “Pretty cool fuzzy guesser (4.0),” 2019, https://github.com/lakiw/pcfg_

cracker.

[34] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer, N. Christin,

L. F. Cranor, and L. Julio, “Guess again (and again and again): Measuring password

strength by simulating password-cracking algorithms,” in Proceedings of the 2012
IEEE Symposium on Security and Privacy (S&P), 2012, pp. 523–537.

[35] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, “Passgan: A deep learning

approach for password guessing,” in Applied Cryptography and Network Security.
Springer International Publishing, 2019, pp. 217–237.

[36] B. Ur, S. M. Segreti, L. Bauer, N. Christin, L. F. Cranor, S. Komanduri, D. Kurilova,

M. L. Mazurek, W. Melicher, and R. Shay, “Measuring real-world accuracies and

biases in modeling password guessability,” in Proceedings of the 24th USENIX
Security Symposium, 2015, pp. 463–481.

[37] S. Ji, S. Yang, X. Hu, W. Han, Z. Li, and R. Beyah, “Zero-sum password cracking

game: A large-scale empirical study on the crackability, correlation, and security

of passwords,” IEEE Transactions on Dependable and Secure Computing, vol. 14,
no. 5, pp. 550–564, 2017.

[38] A. Singhal, “Modern information retrieval: A brief overview,” Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, vol. 24, no. 4, pp.
35–43, 2001.

[39] W. B. Frakes and R. Baeza-Yates, Eds., Information Retrieval: Data Structures and
Algorithms. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1992.

[40] R. A. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[41] P. Berkhin, “Survey of clustering data mining techniques,” in Grouping multidi-
mensional data, 2006, pp. 25–71.

[42] M. H. Dunham, Data Mining: Introductory and Advanced Topics. Upper Saddle

River, NJ, USA: Prentice Hall PTR, 2002.

[43] M. Wei and M. Golla, “The password doesn’t fall far: How service influences

password choice,” in Proceedings of the 2018 Who Are You?! Adventures in Authen-
tication Workshop, 2018.

[44] H. Zhou, Q. Liu, and F. Zhang, “Poster: An analysis of targeted password guessing

using neural networks,” in Proceedings of the 2017 IEEE Symposium on Security
and Privacy (S&P), 2017.

[45] S. Furnell, “Assessing password guidance and enforcement on leading websites,”

Computer Fraud & Security, vol. 2011, no. 12, pp. 10–18, 2011.
[46] D. Goodin, “6.6 million plaintext passwords exposed as site gets

hacked to the bone,” Sep 2016, https://arstechnica.com/information-

technology/2016/09/plaintext-passwords-and-wealth-of-other-data-for-

6-6-million-people-go-public/.

[47] T. Fox-Brewster, “13 million passwords appear to have leaked from this

free web host,” Aug 2017. [Online]. Available: https://www.forbes.com/sites/

thomasbrewster/2015/10/28/000webhost-database-leak/

[48] M.-A. Russon, “Mate1.com hack: 27 million account passwords and emails have

been leaked and sold on dark web,” Mar 2016, https://www.ibtimes.co.uk/mate1-

com-hack-27-million-account-passwords-emails-have-been-leaked-sold-

dark-web-1547166.

[49] N. Cubrilovic, “Rockyou hack: From bad to worse – techcrunch,” Dec 2009,

https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-

passwords/.

[50] S. Das, “40 million fling.com users’ passwords, sexual preferences stolen | hacked:

Hacking finance,” May 2016, https://hacked.com/40-million-fling-com-users-

passwords-sexual-preferences-stolen/.

12

https://github.com/lakiw/pcfg_cracker
https://github.com/lakiw/pcfg_cracker
https://arstechnica.com/information-technology/2016/09/plaintext-passwords-and-wealth-of-other-data-for-6-6-million-people-go-public/
https://arstechnica.com/information-technology/2016/09/plaintext-passwords-and-wealth-of-other-data-for-6-6-million-people-go-public/
https://arstechnica.com/information-technology/2016/09/plaintext-passwords-and-wealth-of-other-data-for-6-6-million-people-go-public/
https://www.forbes.com/sites/thomasbrewster/2015/10/28/000webhost-database-leak/
https://www.forbes.com/sites/thomasbrewster/2015/10/28/000webhost-database-leak/
https://www.ibtimes.co.uk/mate1-com-hack-27-million-account-passwords-emails-have-been-leaked-sold-dark-web-1547166
https://www.ibtimes.co.uk/mate1-com-hack-27-million-account-passwords-emails-have-been-leaked-sold-dark-web-1547166
https://www.ibtimes.co.uk/mate1-com-hack-27-million-account-passwords-emails-have-been-leaked-sold-dark-web-1547166
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://hacked.com/40-million-fling-com-users-passwords-sexual-preferences-stolen/
https://hacked.com/40-million-fling-com-users-passwords-sexual-preferences-stolen/

[51] Databases Today, “twitter.7z,” 2019, https://databases.today/search-nojs.php.

[52] R. Hackett, “Linkedin lost 167 million account credentials in data breach,” May

2016, http://fortune.com/2016/05/18/linkedin-data-breach-email-password/.

[53] A. Peslyak, “John the ripper community build (1.9.0-bleeding-jumbo),” 2019,

https://github.com/magnumripper/JohnTheRipper.

[54] Ruhr University Bochum, RUB-SysSec, “OMEN: Ordered markov enumerator,”

2019, https://github.com/RUB-SysSec/OMEN.

[55] R. Veras, “Semantic password guesser (lite),” 2019, https://github.com/vialab/

semantic-guesser/tree/lite.

[56] W. Melicher, “The neural network password meter,” 2019, https://github.com/

cupslab/neural_network_cracking.

[57] D. Florêncio, C. Herley, and P. C. Van Oorschot, “Pushing on string: The ‘don’t

care’ region of password strength,” Commun. ACM, vol. 59, no. 11, pp. 66–74,

2016.

[58] M. Dell’Amico and M. Filippone, “Monte carlo strength evaluation: Fast and

reliable password checking,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, 2015, pp. 158–169.

[59] S. Designer, “John the ripper password cracker,” 2002, https://www.openwall.

com/john/.

13

https://databases.today/search-nojs.php
http://fortune.com/2016/05/18/linkedin-data-breach-email-password/
https://github.com/magnumripper/JohnTheRipper
https://github.com/RUB-SysSec/OMEN
https://github.com/vialab/semantic-guesser/tree/lite
https://github.com/vialab/semantic-guesser/tree/lite
https://github.com/cupslab/neural_network_cracking
https://github.com/cupslab/neural_network_cracking
https://www.openwall.com/john/
https://www.openwall.com/john/

A APPENDIX A: PROOFS
Proof of Proposition 1. By Lemma 1 and Lemma 2, the gen-

eralized Jaccard index between the password list 𝐴 and unhashed

password list 𝐵 (which is not accessible) can be computed by:

𝐽 (𝐴, 𝐵) =

∑
𝑤∈Ω (𝐴)

𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵))

|𝐴| + |𝐵 | −∑
𝑤∈Ω (𝐴)

𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵)) , (13)

Defining 𝑔(𝑤, 𝐵ℎ) =
∑

𝑦∈𝐵ℎ
1[𝑦 = 𝐻 (𝑤 + 𝑠𝑦)] for counting the

number of occurrences of password𝑤 in the salted & hashed pass-

word list 𝐵ℎ , we note that 𝑜 (𝑤, 𝐵) = 𝑔(𝑤, 𝐵ℎ) and |𝐵 | = |𝐵ℎ |. So
Eq. 13 is equivalent to:

𝐽 (𝐴, 𝐵ℎ) =

∑
𝑤∈Ω (𝐴)

𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑔(𝑤, 𝐵ℎ))

|𝐴| + |𝐵ℎ | −
∑

𝑤∈Ω (𝐴)
𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑔(𝑤, 𝐵ℎ))

.

Letting 𝐹
min

(𝐴, 𝐵ℎ) =
∑

𝑤∈Ω (𝐴)
𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑔(𝑤, 𝐵ℎ)), we derive Eq. 12.

□

Lemma 1. Let 𝑜 (𝑤,𝐴) and 𝑜 (𝑤,𝑏) be the number of occurrences
of password𝑤 in password lists 𝐴 and 𝐵 respectively. We have∑︁

𝑤∈(Ω (𝐴)∪Ω (𝐵))
𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵)) =

|𝐴| + |𝐵 | −
∑︁

𝑤∈(Ω (𝐴)∪Ω (𝐵))
𝑚𝑎𝑥 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵)) . (14)

Here, |𝐴| = ∑
𝑤∈Ω (𝐴) 𝑜 (𝑤,𝐴) and |𝐵 | = ∑

𝑤∈Ω (𝐵) 𝑜 (𝑤, 𝐵) are the
number of passwords in 𝐴 and 𝐵 respectively. Also, Ω (𝐴) is the set of
unique passwords in 𝐴.

Proof. One can observe that for any two numbers 𝑎 and 𝑏:

𝑚𝑖𝑛 (𝑎, 𝑏) +𝑚𝑎𝑥 (𝑎, 𝑏) = 𝑎 + 𝑏.
Using this equality, we can derive∑︁

𝑤∈(Ω (𝐴)∪Ω (𝐵))

[
𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵))

+𝑚𝑎𝑥 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵))
]

=
∑︁

𝑤∈(Ω (𝐴)∪Ω (𝐵))
𝑜 (𝑤,𝐴) + 𝑜 (𝑤, 𝐵)

=
∑︁

𝑤∈(Ω (𝐴)∪Ω (𝐵))
𝑜 (𝑤,𝐴) +

∑︁
𝑤∈(Ω (𝐴)∪Ω (𝐵))

𝑜 (𝑤, 𝐵)

=
∑︁

𝑤∈Ω (𝐴)
𝑜 (𝑤,𝐴) +

∑︁
𝑤∈Ω (𝐵)

𝑜 (𝑤, 𝐵) .

The last equality holds as 𝑜 (𝑤,𝐴) = 0 when𝑤 ∉ 𝐴 and 𝑜 (𝑤, 𝐵) = 0

when𝑤 ∉ 𝐵. By decomposing the first summation, we have shown∑︁
𝑤∈(Ω (𝐴)∪Ω (𝐵))

𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵))

+
∑︁

𝑤∈(Ω (𝐴)∪Ω (𝐵))
𝑚𝑎𝑥 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵)) = |𝐴| + |𝐵 |,

where |𝐴| =
∑

𝑤∈Ω (𝐴) 𝑜 (𝑤,𝐴) and |𝐵 | =
∑

𝑤∈Ω (𝐵) 𝑜 (𝑤, 𝐵). By
rearranging the terms of this equality, we derive Eq. 14. □

Lemma 2. Letting 𝑜 (𝑤,𝐴) and 𝑜 (𝑤,𝑏) be the number of occur-
rences of password𝑤 in password lists 𝐴 and 𝐵 respectively,∑︁

𝑤∈Ω (𝐴)∪Ω (𝐵)
𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵))

=
∑︁

𝑤∈Ω (𝐴)
𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵)) , (15)

where Ω (𝐴) is the set of unique passwords in 𝐴.

Proof. Partitioning Ω (𝐴) ∪ Ω (𝐵) to two disjoint sets of Ω (𝐴)
and Ω (𝐵) − Ω (𝐴), we have∑︁

𝑤∈Ω (𝐴)∪Ω (𝐵)
𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵)) =∑︁

𝑤∈Ω (𝐴)
𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵)) +∑︁

𝑤∈Ω (𝐵)−Ω (𝐴)
𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵)) .

As𝑜 (𝑤,𝐴) = 0 for𝑤 ∈ Ω (𝐵)−Ω (𝐴), we have𝑚𝑖𝑛 (𝑜 (𝑤,𝐴), 𝑜 (𝑤, 𝐵)) =
0 for all𝑤 ∈ Ω (𝐵) − Ω (𝐴). So we have derived Eq. 15.

□

14

	Abstract
	1 Introduction
	2 Related Work
	3 Analytical Framework
	3.1 Password Features
	3.2 Pairwise Comparison Metrics
	3.3 Statistics

	4 Experiments
	4.1 Experimental Setup
	4.2 Impact of Training Data Choice
	4.3 Individual Guesser Performance
	4.4 Guesser Behaviors
	4.5 Combining Guessers

	5 Discussion and Recommendations
	5.1 Framework Use Cases
	5.2 Recommendations

	6 Conclusion and Future Work
	References
	A Appendix A: Proofs

