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Abstract
Security is a top concern in digital infrastructure and there is a basic need to assess the level of security ensured for any given
application. To accommodate this requirement, we propose a new risk assessment system. Our system identifies threats of
an application workflow, computes the severity weights with the modified Microsoft STRIDE/DREAD model and estimates
the final risk exposure after applying security countermeasures in the available digital infrastructures. This allows potential
customers to rank these infrastructures in terms of security for their own specific use cases. We additionally present a method
to validate the stability and resolution of our ranking system with respect to subjective choices of the DREAD model threat
rating parameters. Our results show that our system is stable against unavoidable subjective choices of the DREAD model
parameters for a specific use case, with a rank correlation higher than 0.93 and normalised mean square error lower than 0.05.

Keywords Risk assessment · STRIDE/DREAD model · Robust · Resolution · Digital data marketplace

1 Introduction

Sharing and utilising others’ data can generate great value
and improve collaborations among parties [1]. Digital data
marketplace (DDM) is a distributed data trading platform
that supports data and/or computes asset sharing and fed-
eration among consortium members to achieve a common
goal [2]. An application area in which this concept is taking
off is aviation. Multiple airline companies may share their
aircraft data to predict the necessity of the air plane mainte-
nance by training a machine learning model. They delegate
their applications to a DDM infrastructure for better secu-
rity and sovereignty. It is obviously a basic necessity for any
DDM customer, such as for example an airline, to estimate
the guaranteed security level of such digital infrastructures.
To solve this problem, we propose a new system to assess
the remaining risk of a specific application after applying
security countermeasures of an existing infrastructure. The
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evaluation results can be used as guidelines to rank available
DDM infrastructures in terms of guaranteed security.

There are studies proposing methodologies to assess the
security levels provided by digital infrastructures, e.g. clouds
[3–5]. These works only estimate the total security strength
provided by the infrastructures according to the applied secu-
rity countermeasures. They do not consider the influence of
concrete applications on the obtained security level. Differ-
ent applications may have different threats and the severity
level of each threat may also change with applications.

The Microsoft STRIDE/DREAD model applies risk
attributes, e.g. Damage and Affected Users, to measure the
likelihood and impact of exploiting a vulnerability. Most
recent work use the STRIDE/DREAD model to rank threats
based on their severities. More recently, this has been pro-
posed in IoT frameworks [6,7], and in cloud environments
[8]. However, we adopt the model to compute the relative
importance of each threat [9]. We also propose the new risk
attributes for the DREADmodel to fit the context of a DDM
use case and define more fine-grained definitions of these
attributes and their corresponding levels in our system to
gain more objective assessment results.

Our system identifies threats semi-automatically by split-
ting the input application into transaction lists, assigns
severity weights of each threat and estimates the final risk
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exposure after applying security countermeasures in the
available digital infrastructures.

We additionally present a method to validate the stability
and resolution of our ranking system with respect to subjec-
tive choices of the DREAD model threat rating parameters.
The numerical values of risk attributes assigned to threats
cannot be constant values during the life span of the system
applying the model. Also, the choice of numeric values is not
sufficiently objective. It is therefore important to analyse the
stability and sensitivity of the STRIDE/DREAD model due
to subjective choices of parameters in a real world use case.

To quantify the robustness of our system for different val-
ues of risk parameters,we use threemetrics: twowell-known,
normalised mean square error (NMSE) and Kendall’s Tau
and one we define ourselves, granularity [10,11]. The met-
ric granularity provides us insights into the resolution. Our
experimental results show that our risk assessmentmethodol-
ogy is stable to subjective choices of the risk parameters and
able to provide sufficient resolution to discriminate the sever-
ity of real-world threats in general. Additionally, we observe
that methodology performance is highly dependent on the
application scenarios and corresponding threat databases.

The main contributions of our work are:

– We propose a threat-oriented risk assessment system that
can quantitatively evaluate the remaining risk for data
exchange applications that can be provided by DDMdig-
ital infrastructures.

– We investigate the robustness and resolution of the
STRIDE/DREAD model in our proposed risk assess-
ment system with respect to subjective choices of the
risk parameters.

– We demonstrate the robustness and suitability of our risk
assessment system for adoption in DDM infrastructures.

2 Related work

Recent research assesses the security provided by digital
infrastructures, e.g. clouds. Zhang et al. propose an approach
to assess the security of a cloud platform, but it only focuses
on individual threats separately and provide only qualitative
evaluation results [12]. Luna et al. propose a methodology in
[3] to assess the security level of a Security Service Level
Agreement (SecSLA) with respect to customers’ require-
ments. The work allows cloud clients to compare SecSLAs
provided by different cloud service providers (CSP) and aims
to provide costumerswith a general viewof security coverage
of the provided infrastructures. The security controls of the
cloud infrastructures are classified based on the cloud control
matrix (CCM) taxonomy, which makes the proposed system
very difficult to migrate to another application context, e.g.
Digital Data Marketplaces. Shaikh and Sasikumar advocate

a similar security evaluation methodology of SLAs in [4]
by using a trust model. Different security countermeasures
are chained according to the taxonomy defined in this trust
model. The system measures the security strength frommul-
tiple dimensions and computes a trust value. Nevertheless,
these authors fail to consider that the vulnerabilities, nor-
mally varying with each application, have a strong influence
on the effectiveness of applied security countermeasures. Sen
and Madria propose an off-line risk assessment framework
in [5] to evaluate the security level of an application for a
specific CSP. They first identify the threats for a given appli-
cation and estimate how much risk can be mitigated with
the CSP’s infrastructures. However, the system treats all the
identified threats with equal severities and this is not what
happens in real-world scenarios.

There aremultiple riskmanagement frameworks for infor-
mation systems. The ISO provides standards with which an
information systemcan gain adequate security. The standards
describe the control objectives, required security controls and
guidelines. The ISO standards are widely used as certifica-
tions for companies to verify the security of their information
systems and promote customer’s trust [13]. The National
Institute for Standards and Technology (NIST) cybersecurity
framework also offers guidance to facilitate risk manage-
mentwithin specific organisations [14]. This framework aims
to keep an information system safe by identifying security
gaps. OCTAVE is also a risk-based assessment and plan-
ning process. It identifies the infrastructure vulnerabilities
and develops protection strategies in design [15]. However,
all the work mentioned above focuses on risk management
while establishing a digital infrastructure. After risk analysis,
the output of those frameworks are implementation require-
ments, e.g. security countermeasures, user action guidance’s,
for a single information system. Our proposed framework
aims to choose the most secure digital infrastructures in
an application-based manner with risk scores. CORAS is
a model-driven risk assessment framework. It identifies the
threats of a use case, assess the risk of each threat and develop
treatments [16]. But it does not consider the relative impor-
tance of each threat and does not provide a total risk score
for ranking different DDM digital infrastructures.

The Microsoft STRIDE/DREAD model provides a threat
modelling approach and assesses a single threat risk by
proposing attributes measuring difficulties of exploiting the
vulnerability [9]. Most studies of the STRIDE/DREAD
model focus on risk evaluation of an individual threat and
provide threats ranking regarding their risk [17,18]. In [8],
Anand et al. use the STRIDE/DREAD model to assess and
prioritise threats in a cloud environment. They adapt the orig-
inal risk parameters to the cloud environment and assign
impact factors to each threat category. However, their model
does not fit the context of DDMs, where applications are
modelled as workflows and trust among collaborating parties
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Fig. 1 Architecture of our
application-based risk
assessment system

plays a vital role. Moreover, all the studies in [8,17,18] just
inherit the numeric values of risk attributes from the orig-
inal Microsoft STRIDE/DREAD model without validating
the objectivity of the choices.

From this overview, it is clear that our work covers a cur-
rently unexplored area. Firstly, it specifically caters to DDMs
and their customers. Secondly, it assigns severity weights
for identified threats, with the modified STRIDE/DREAD
model, to achieve more objective risk assessment results.
Thirdly, we investigate the robustness and resolution of our
proposed system against subjective choices of risk parame-
ters in the original STRIDE/DREAD model with real-world
security threats.

3 System architecture

A digital data marketplace (DDM) is a digital infrastruc-
ture that facilitates secure data exchange and federation. For
instance, different DDM parties may want to gather their
local data together and run a machine learning (ML) algo-
rithm on their joint data, so that they can gain benefits from a
more accurate prediction model. In the DDM community,
there might be multiple DDM infrastructures with well-
implemented security countermeasures and devices. DDM
customers delegate their data federation applications to one
of the DDMs for better security governance. Currently, there
are two primary typical DDM applications. One is training
disease diagnosis models in the health-care field; another one
is to predict air plane maintenance necessity for airline com-
panies.

Different data exchange applications suffer from differ-
ent vulnerabilities. Likewise, different DDM infrastructure
providers apply varying sets of security countermeasures.

When deploying an application, these varying threats and
countermeasures contribute to different final risk levels
depending on the DDM it runs in. Our risk assessment sys-
tem is designed collaboratively to increase the transparency
and boost the trust of DDM customers to DDM providers.

The risk assessment is performed by a broker, who is
essentially a trusted third party and closely cooperating with
DDMcustomers and providers. The system estimates the risk
level of all DDMswith respect to an application and provides
a ranking of these DDMs to a DDM customer.

Figure 1 shows the architecture of the system. A collabo-
ration of DDM customers first feed their applications, which
is actually a list of transactions, into the risk assessment sys-
tem. Module I identifies corresponding threats of the input
application automatically by using a pre-constructed Threat
Database. The Threat Database is constructed a priori by
identifying a wide range of threats for typical data exchange
applications in DDMs. The Threat Database can be updated
during run time of the system, because new threatsmay occur
and some existing threats may become obsolete. The list of
identified threats is sent to the DDM customer and each col-
laborating party checks this threat list. They sign the list if
they agree, or go into a negotiation phase if they disagree.
Only with all the signatures from the collaborating parties,
module II of the risk assessment system will process the
approved threat list.

Module II estimates the risk level of each threat in the list
with the modified STRIDE/DREAD model from Microsoft
[9]. This model considers the possibility of an attack occur-
rence using five risk attributes and also the impact of each
threat regarding the concrete application. DDM customers
also provide impact factors and object sensitivity as inputs to
module II. The impact factors reflect how theDDMcustomer
perceives the influence of certain threats for their application.
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Fig. 2 Correspondence between the threat categories in the STRIDE
model (left) and the security features (right)

The object sensitivity reflects the sensitivity of the shared data
of the application perceived by the DDM customer.

Module III matches the threats with corresponding secu-
rity countermeasures provided by individualDDMproviders.
Thismodule determines the risk reduction level of each threat
provided by different DDMs and calculates the total remain-
ing risk to this application. Finally, this module provides the
DDM rankings back to the DDM customers.

4 Module I: application-oriented threat
identification

4.1 Mapping betweenMicrosoft STRIDEmodel and
security features

The STRIDE model is a threat modelling tool developed by
Microsoft for analysing security flaws for cyber-security sys-
tems [9]. It groups threats into six categories: Spoofing (S),
Tampering (T), Repudiation (R), Information disclosure (I),
Denial of service (D), and Elevation of privilege (E) [9]. All
the identified threats for a data-exchange application belong
to at least one of these categories.

We define a mapping of the threat categories in the
STRIDEmodel ontomore generally understood security fea-
tures, see Fig. 2 [19]. So it is more intuitive and comfortable
for theDDMcustomers to consider the impacts of each threat
category for their applications. In this way, the DDM cus-
tomer does not need to have background knowledge of the
STRIDEmodel. A threat may have distinct risks for different
applications because applications may have various security
goals. For example, the threats belonging to the category
of Information Disclosure damage the confidentiality of the
shared data rather than integrity.

4.2 Applications of DDM-governed data exchange

As shown in Fig. 1,DDMcustomers provide their application
to the risk assessment system. In the DDM infrastructure, it
is normal to use transaction lists to represent a data federa-

tion application. In this module, the input DDM application
is split into multiple transactions. An example transaction
list is shown below, with DO, CO, DP, AP representing
data objects, compute objects, data providers, algorithm
providers, respectively.

Transactions of an example DDM application

Trans 1: Third-party accesses DO from DP via remote mounting
Trans 2: Third-party accesses CO from AP via direct transfer
Trans 3: Third-party processes CO on DO with
feature multi-tenancy, generating IRO

Trans 4: AP accesses IRO via direct transfer
Trans 5: AP processes on a third party

We characterise each transaction as an attribute tuple:

〈stage, source, target, object, feature〉

Source and target are consortium parties of a DDM. Feature
describes important aspects for threat identification. Direct
transfer and remote mounting are two features for a transac-
tion with stage transmission. For instance, the attribute tuple
of transaction 1 becomes

〈
transmission, DP, third party,

DO, remote mounting
〉
.

4.2.1 Object sensitivity

The risk assessment system requires object sensitivity. It
determines the potential damage of a threat. The object sensi-
tivity depends on an individual application. For example, data
objects in health-care applications usually are more sensitive
than others because they may contain private information of
patients.

4.2.2 Impact factors

Due to the concrete security goal of an application, the impact
of each threat category in the STRIDE model varies. The
DDM customers are required to assign impact factors for
each threat category based on its corresponding security fea-
ture. According to the work in [8], there are five levels, which
are critical (1), high (0.75), medium (0.5), low (0.25), and
none (0), to scale the impact factor. The impact factor indi-
cates the degree of concern of DDM customers about each
threat category. A DDM customer supplying the impact fac-
tor critical asks for the greatest concern and priority for a
specific threat, and with impact factor none the DDM cus-
tomer has no concern about a given threat.
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4.3 Threat modelling

Here, we introduce a general methodology for identifying
threats for applications in DDMs. Every application can be
split into a sequence of transactions, each of which can be
represented by a 5-tuple. The threats of each transaction can
be identified primarily based on its stage and feature. The
threats of an application are the union set of threats for all
its transactions. In addition, DDMs, as distributed platforms
for data federation applications, are based on virtualisation
technologies for better isolation. We consider common vul-
nerabilities of virtualisation when modelling threats for a
given application. For instance, threats caused by the multi-
tenancy feature [20].

We classify the threats of a DDM application into three
stages. Stage I is data in storage, and the main concern is
confidentiality, availability, privacy of asset objects in stor-
age. Stage II is data in transmission, which is related to issues
such as end-to-end communication security. Stage III is data
in execution, and it focuses on whether the procession by an
algorithm on the data complies with the agreed policies.

There are some threats mainly depending on the attribute
stage of the transaction. For example, the threat of ‘data
object leakage during end-to-end transmission’ exists in
nearly all transactions with stage of transmission. Attacks
like ‘man-in-the-middle’ and ‘eavesdropping’ may exploit
these threats. Similarly, the threat of ‘malicious compute
objects during execution’ is also common for transactions
with stage attribute of execution.

However, some threats are dependent on distinct features
of a transaction. For instance, mounting a local file may give
a third-party sufficient permission to suffer from the threat
of data object tampering. The featuremulti-tenancy indicates
data objects are processed individually in separate containers
on the same physical third-party platform. An example threat
for this feature is the ‘denial-of-service attack’ by one of the
malicious co-tenant containers.

According to the approach introduced before, we conduct
threat modelling for DDM applications semi-automatically
according to a pre-defined dynamic threat database.

Figure 3 shows the screenshot of a pre-constructed SQL
threat database for a DDM use case. Each a priori identified
threat has nine different attributes, namely threatName, stage,
category, archetype, DP, AC, SL, AU, and ID.

The stage describes in which stage this threat occurs. The
category refers to the threat categories in the STRIDEmodel,
as discussed in Sect. 4.1. It indicates to which category this
threat belongs.DP, AC, SL, AU, ID are assigned values for the
risk attributes for the given threat. The archetype describes
the collaborating relationships among DDM members and
each application follows at least one archetype [2]. The

concrete archetypes and the complete version of the threat
database can be found in github. 1

5 Module II: risk assessment of an individual
threat

Once threats have been identified by the methodology
described in Sect. 4 and approved by all collaborating parties,
this module computes the application-dependent risk ratio of
each threat with the modifiedMicrosoft DREADmodel. The
DREAD model is commonly used to rank individual threats
based on their severities. In module II, we adopt the concept
of the DREAD model to compute the relative importance
of each threat according to the estimated risk level. Further-
more, we redefine five risk attributes to fit the context of
DDM applications and increase objectivity in the assessment
procedure.

5.1 Original DREADmodel

The original DREAD part of the STRIDE/DREAD model
proposed by Microsoft is used to assess and rank threats
in terms of their risk [9]. It defines five risk attributes to
estimate the probability of an exploitation of a vulnerabil-
ity from distinct aspects. These attributes are Damage (D),
Reproducibility (R), Exploitability (E), Affected users (A),
and Discoverability (Di) [21].

– Damage (D): How much are the assets affected?
– Reproducibility (R): How easily the attack can be repro-
duced?

– Exploitability (E):Howeasily the attack canbe launched?
– Affected users (A): What’s the number of affected users?
– Discoverability (Di): How easily the vulnerability can be
found?

Each risk attribute is scaled into three qualitative levels
as high, medium, and low. Due to the property of a concrete
threat, one of the three qualitative levels can be assigned for
each risk attribute. All the five aspects need to be considered
to assess the risk of a threat. The threat risk ranges from 0 to
10, and the DREADmodel uses three integers 0, 5, and 10, to
represent the three corresponding levels numerically. In the
STRIDE/DREAD model, we represent a threat by the fol-
lowing five-tuple (Dti , Rti , Eti , Ati , Diti ) with Dti , Rti ,Eti ,
Ati , Diti ∈ {0, 5, 10} of numeric numbers. The risk, repre-
sented as a metric called risk score rs(ti ), is quantified as an
average of the numeric values of those five risk attributes:

1 https://github.com/kelsey-1015/DL4LD.
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rs(ti ) = 1

5
(Dti + Rti + Eti + Ati + Diti ) (1)

According to the risk scores of the threats, the DREAD
model can rank all the threats regarding their risk.

However, the description of each risk parameter is obscure
and there are no concrete definitions of each level for the
original DREAD model. This probably increases the degree
of subjectivity when assessing the risk level of a single threat
with the original DREAD model.

5.2 Modified DREADmodel for DDMs

We redefine five risk attributes and corresponding risk lev-
els to better meet the requirement of the DDM applications.
For example, we address the importance of monitoring
and potential trust among collaborating parties in a DDM
instance. Table 1 shows the defined risk attributes and qual-
itative descriptions of three scaled levels.

Damage Potential (DP) describes the damage caused if
a threat occurs. The assets of DDM applications are data
objects, compute objects and intermediate results objects,
which we have discussed in Sect. 4.2. The object sensitivity
assigned by the DDM customer determines the correspond-
ing level of the risk attribute Damage Potential (DP). For
some threats like encryption key leakage during exchange,
the DP is always set as the highest level regardless of the
objective sensitivity of the application. In Fig. 3, we use
“TOP” to represent such threats for attribute DP.

Accessibility (AC) describes who can perform attacks to
exploit a threat. If collaboratingmembers of a DDMcan only
perform the attacks, the attribute is scaled as low due to the
mutual trust among them. If a third party of an application
can also exploit the threat, i.e. more risk is included, AC is
scaled as medium. The highest risk occurs if one entity can
perform this attack, including malicious parties outside the
DDM.

Skill level (SL) defines what skills are needed to exploit
this threat. The probability is much lower if this exploitation
requires complex programming or hacker skills. The risk is
the highest, scaled as high, if it just requires simple tools or
even a web browser.

Affected users (AU) is scaled into different levels accord-
ing to how many collaborating parties are affected if a threat
occurs.

Intrusiondetectability (ID) describes howeasymonitoring
tools can detect the exploitation of this threat.A threat ismore
severe if its exploitation is more difficult to detect, which
indicates a higher success rate of attacks and more resulting
damage.

Security experts can determine these risk attributes a pri-
ori and reference information can be found in some public
vulnerability databases, for instance, CAPEC [22]. Damage Ta
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Fig. 3 A screenshot of a SQL threat database for a DDM use case

potential (DP) and affected users (AU) are application-
dependent and subjective in nature. Currently, we use 0, 5,
and 10 to represent the three risk attribute levels numerically.
We further discuss the influence of other numeric represen-
tations on the stability and resolution of our methodology.

Integrating the application-dependent impact factors
described in Sect. 4.2.2, we calculate the risk score rs(ti )
of a threat ti as the product of a likelihood LH and an impact
factor IF:

rs(ti ) = LH(ti ) · IF(ti ) (2)

The likelihood LH(ti ) and the impact factor IF(ti ) are
obtained as follows:

LH(ti ) = 1

5
(DPti + ACti + SLti + AUti + IDti ), (3)

where DPti , ACti , SLti , AUti , IDti denote the numeric val-
ues of the five risk attributes in Table 1 for threat ti , and
IF(ti ) equals to the impact factor of the threat category in
the STRIDE model that threat ti belongs to.

We must observe that the likelihood LH is a linear com-
bination of the five risk attributes. By the choice of a linear
combination, Microsoft treats all attributes equally.

According to Eq. (3), we can compute the risk score of
each threat for the application, which represents the risk of
each threat. A higher risk score indicates a more dangerous
threat for the concrete application.

Todetermine the relative importance,wedefine a risk ratio
rr of each threat ti in the threat list of the application. This is
calculated as follows:

rr(ti ) = rs(ti )∑
ti∈T rs(ti )

, with

∑

ti∈T
rr(ti ) = 1,

(4)

where rs(ti ) denotes the risk score of threat ti , T denotes the
threat list of the application identified by module I.

Fig. 4 Functionality of module III. On the left side, we see the input of
module III, the identified threats of an application with corresponding
risk ratios. On the right side, we see the remaining risk of each threat
after applying security countermeasures by the DDMs. White areas
indicate zero risk, coloured areas indicate the remaining risk

6 Module III: risk mitigation and risk-level
evaluation

Module III of the risk assessment system matches security
countermeasures to identified threats for an application, com-
putes the mitigation level of each threat and calculates the
total remaining risk of the application.

As shown in Fig. 4, the input of module III is a list of
threats with corresponding risk ratios rr(ti ). Those threats
constitute the original 100% risk of the application without
any mitigation from DDMs and the proportion of each threat
is equal to its risk ratio calculated by Eq. (4). According to
information of security countermeasures provided byDDMs,
this module ranks DDMs regarding total remaining risk for
the application.

6.1 Security countermeasures matching and threat
mitigation

As shown in Fig. 1, DDM providers publish the CM
Database, a database of supporting security countermea-
sures.The risk assessment systemaccesses eachCMDatabase
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Fig. 5 Threats mitigation by security countermeasures of each DDM
provider. This results into a mitigation list of original threats for each
DDM

and matches suitable security countermeasures for each
threat of the application. Figure 5 illustrates thematchingpro-
cedure. The module checks both the feasibility and necessity
of applying a security mechanism to an application. Neces-
sity indicateswhether a security countermeasure canmitigate
one or multiple threats identified for the application. Feasi-
bility means whether a security countermeasure can fit the
data type or data volume of the shared objects of the appli-
cation. For instance, the watermarking techniques are only
applicable to data objects of images. In Fig. 5, an arrow from
cm j to ti indicates countermeasure cm j is both feasible and
necessary to apply to the application to mitigate threat ti .
The matching from security countermeasures to threats can
be one-to-one (1–1), one-to-multiple (1–N ) or multiple-to-
one (N–1). A one-to-multiple mapping indicates a security
countermeasure is capable to mitigate multiple threats. A
multiple-to-one mapping means multiple security counter-
measures apply to only one threat.

Every DDMk applies a mitigation factor fm;k : CMk ×
T → [0, 1] by multiplying the rs(ti ) of each ti ∈ T with
fm;k(cm j , ti ) for all cm j ∈ CMk , if cm j does not apply to
threat ti , we define fm;k = 1, i.e. it leaves rs(ti ) unchanged;
if cm j can fully mitigate threat ti , we define fm;k = 0.

Themitigation factor fm;k is ameasurement for the reduc-
tion in likelihood after applying a security countermeasure
to a threat. For instance, it is much more difficult to perform
an eavesdropping attack after end-to-end encryption than on
plaintext. For a single threat, two factors influence the risk
of a threat, likelihood LH and impact factor IF, according
to Eq. (3). The impact stays the same and the likelihood is
reduced by fm;k(cm j , ti ). That’s why fm;k(cm j , ti ) is serv-

ing as a scale factor of original threat risk score, subject to
constraint 0 ≤ fm;k(cm j , ti ) ≤ 1.

Security countermeasures cm j ∈ CMk and identified
threat ti jointly determine the value of fm;k(cm j , ti ). InDDM
applications, monitoring techniques usually play a vital role
to detect policy breaches. Hence, we classify the secu-
rity countermeasures into two categories, namely prevention
countermeasures and detection countermeasures. Prevention
countermeasures are those security mechanisms aiming to
stop an attack fromoccurring andprevent a policy breach, e.g.
data access control and cryptographic mechanisms. Detec-
tion countermeasures are those aiming to detect any attacks
or policy breaches during the data exchange procedures, e.g.
system call monitoring. The mitigation factors in our risk
assessment system for countermeasures that apply to a threat
are defined as:

fm;k(cm j , ti ) =
{
0, if ti is prevented by cm j

Rd , if ti is detected by cm j

Rd denotes the real time detection rate of the appliedmonitor-
ing technologies. Rd is provided in theDDMcountermeasure
database offered by the DDM providers. Normally, DDM
providers can achieve the estimated detection rate from IDS
designers according to experimental evaluations. It is also
possible for DDM providers to adjust Rd of a concrete coun-
termeasure based on the historical data when apply to other
DDMs.

For security countermeasures that prevent a threat, we
assume the threat can be adequately mitigated and set the
value as 0. It is also possible to recalculate risk attributes
after applying the countermeasure according to Table 1
and determine the corresponding fm;k(cm j , ti ). For secu-
rity countermeasures that detect an intrusion, the mitigation
factor is equal to the accuracy rate, denoted as Rd , of the
implemented monitoring detection and algorithm. The value
of Rd is typically gained with the historical data.

Ifmultiple countermeasures arematched to a single threat,
we need to consider interactions and redundancy among
those security countermeasures when determining the joint
mitigation level. The multiple security countermeasures are
chained and the joint mitigation factor is calculated as:

Fm;k(ti ) =
Nk∏

j=1

fm;k(cm j , ti ) (5)

Fm;k(ti ) is the joint mitigation factor of threat ti , Fm;k(ti ) ∈
[0, 1]. Nk denotes the total number of security countermea-
sures for a threat ti in CMk and fm;k(cm j , ti ) denotes the
mitigation factor of countermeasure cm j to threat ti .
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6.2 Total risk level of an application

The remaining risk of a threat after mitigation by DDMk is
computed as:

rrremain;k(ti ) = rr(ti ) · Fm;k(ti ) (6)

rrremain;k(ti ) denotes the remaining risk of threat ti after
applying security countermeasures of DDMk ; rr(ti ) denotes
the original risk ratio of threat ti .

The risk level RL of an application A provided by DDMk

is calculated as the summation of the remaining risk rrremain;k
of all threats:

RL(A,DDMk) =
∑

ti∈T
rrremain;k(ti ) (7)

Module III of the risk assessment systemcomputes the risk
levels for potential DDMproviders and provides the rankings
to DDM customers.

7 System stability due to subjective choices

Most risk assessment systems suffer from the problem of
being too subjective. In this section, we investigate how the
system ranking results fluctuate due to the subjective choices
of the parameters. We call this the stability of the risk assess-
ment system.

The subjective choicesmainly occur inmodule II.Asmen-
tioned in Sect. 5, the STRIDE/DREADmodel maps the three
qualitative levels of each risk attribute, namely low, medium,
and high, into three numeric values [0, 5, 10 ] with a bijec-
tive function. A function f : X → Y is bijective, if for
all y ∈ Y , there is a unique x ∈ X such that f (x) = y.
The numeric combination of [0, 5, 10] indicates an equal
risk increase between adjacent qualitative levels for all risk
attributes, which fits the majority of risk assessment scenar-
ios. However, it is also possible and reasonable to adopt other
numeric values, e.g. [0, 1, 2 ] or even [1, 3, 8] entailing non-
equalised risk increase. In the following, we will explore two
questions: (i) To which degree can numeric values be cho-
sen objectively depending on system physical effects? (ii)
How these chosen numeric values relate to the system out-
put, which is the risk rankings of DDMs.

7.1 Physical effect of value vectors

We put the numeric values in a three-dimensional vector and
name it as a value vector.

Every threat has a tangible effect on the system. With
physical effect, we mean the measurable effects of the threat

risk attribute values on the components in DDMs. Differ-
ent value vectors express different physical effects. A value
vector determines the quantitative risk increase between sub-
sequent qualitative levels of each risk attribute, as explained
in Table 1. For instance, the risk attribute accessibility has
three levels, which are only by consortium parties, by both
consortium parities and third party and by outsiders. If the
system adopts a value vector [0, 5, 10], it means the risk
level increases in equal steps as increasing qualitative levels.
However, a value vector [1, 3, 8] implies that there is a higher
risk increase frommedium to high than from low to medium.
This higher increase is because an attack from outsiders is
considered more serious.

The choice of value vector should, in the first place, be
determined by how the risk is supposed to increase between
subsequent qualitative levels. We can classify those value
vectors into two categories, namely evenly spaced and non-
evenly spaced value vectors. Evenly spaced value vectors
indicate equal steps in risk increase between adjacent levels.
If we represent a value vector as [vi,1, vi,2, vi,3], an evenly
spaced value vector is a three-term arithmetic progression
vi1 = a, vi2 = vi1 + δ, vi3 = vi1 + 2δ. These evenly spaced
value vectors are more interesting for us because they fit
for most scenarios and share the same physical effect of the
original value vector from the Microsoft STRIDE/DREAD
model. Non-evenly spaced value vectors include some dis-
tortion and have different steps between neighbouring risk
attribute levels. If one opts for an evenly spaced value vec-
tor, there are still many choices having the same physical
effect, e.g. [0, 5, 10] versus [0, 1, 2]. The decision of which
one to choose exactly turns to be subjective. So it is impor-
tant to validate the methodology stability with distinct value
vectors of similar physical effect. Particularly, we would like
to investigate the system stability for the DL4LD use case.

We define a metric Spreading Level SL to characterise dif-
ferent value vectors. Those value vectors indicating similar
physical effect should have the same SL. The spreading level
of a value vector vi = [vi,1, vi,2, vi,3] is calculated as:

SL(vi ) = (vi,2 − vi,1) − (vi,3 − vi,2) (8)

7.2 Metrics definition

In this section, we further explore how the subjectively cho-
sen parameters, value vectors, influence the output of the risk
assessment system.

As introduced in Sect. 5, module II computes the appli-
cation dependent risk of each threat with the modified
STRIDE/DREADmodel and calculates the risk ratios all the
threats in the approved threat list. Obviously, both the threat
risk and risk ratios are varying with the chosen value vector.
Those fluctuated risk ratios further flow into module III in
the system for threat mitigation. The security countermea-
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sures and risk ratios jointly determine the DDM rankings. In
the ideal scenario, the risk assessment system would always
generate the same ranking for DDMs for a given applica-
tion regardless of subjective choices. Absolute values of risk
ratios play a vital role.

Also, most users of the DREAD/STRIDE model, or our
modified version, are focused on the rankings of threats in
terms of their risk. We expect stable ranking results for those
value vectors with the same physical effect. Sowe investigate
the variance of threat risk rankings caused by a subjectively
chosen value vector.

Two metrics are adopted to quantify the variance of risk
ratios with various value vectors: Kendall’s Tau and nor-
malised mean square error (NMSE).

7.2.1 Kendall’s Tau

We are able to rank the threats in terms of risk according
to their risk ratios. Kendall’s Tau is one of the commonly
used metrics to measure the similarity of two rankings [11].
We use it to measure the stability between threat rankings of
different adopted value vectors.

The definition is as follows:

τ(Tx , Ty) = #conc pairs(Tx , Ty) − #disc pairs(Tx , Ty)
(N
2

) ,

(9)

where Tx represents a threat ranking according to risk ratios
with value vectors vx and Ty represents a threat ranking
according to risk ratios with value vector vy, and N denotes
the total number of threats in the list. This leads to a set of

(N
2

)

pairs. For any pair of value vectors vx and vy, we calculate the
risk ratios for the N threats: (rrx (ti ), rry(ti )), where rrx (ti )
is the risk ratio of threat ti in Tx with vx and rry(ti ) is the risk
ratio of threat ti in Ty with vy. #conc pairs denotes the num-
ber of threat pairs that are concordant in both rankings Tx and
Ty , and #disc pairs denotes the number of threat pairs that
are discordant in both rankings. Threats ti and t j are consid-
ered a concordant pair if rrx (ti ) ≤ rrx (t j ), rry(ti ) ≤ rrx (t j ).
Otherwise, they are considered as a discordant pair.

7.2.2 Normalised mean square error

We choose themetric normalisedmean square error (NMSE)
to quantify the variance of risk ratios due to different value
vectors [10]. The reason we choose NMSE rather than other
metrics are twofold. On the one hand, NMSE is sensitive to
outliers. On the other hand, the results are not influenced by
absolute values after normalisation. The definition of NMSE
is as follows:

RRx = {rr1(x), rr2
(x), rr3

(x), . . . , rrN
(x)} (10)

RRx = 1

N

∑

i

rr(x)i (11)

RRy = 1

N

∑

i

rr(y)i (12)

NMSE(RRx ,RRy) = 1

N

∑

N

(rr(x)i − rr(y)i )2

RRx · RRy
(13)

RRx denotes the risk ratios of N threats using value vector
vx . The risk ratio of the i th threat with value vector vx is
denoted by rri (x). RRx denotes the average of all risk ratios
in RRx .

8 Experimental validation of system stability

In this section, we validate the stability of the risk assess-
ment system. Here, we focus on the stability of risk ratios
because they influence the stability of DDM rankings of the
risk assessment system. We compute and analyse the values
of Kendall’s Tau and NMSE of varying value vectors under
different experimental settings.

8.1 Experimental design

In the experimental validation, we consider value vectors
vi = [vi,1, vi,2, vi,2] with vi, j ∈ {0, 1, . . . , 10}. We con-
struct a set Vtotal of 165 different value vectors. In particular,
the value vector used by the original Microsoft DREAD
model is called the baseline value vector vbase, in our case
vbase = [0, 5, 10].

8.1.1 Experiment A

In this experiment, we aim to explore the sensitivity of the
threat risk rankings to the applied value vectors in a gen-
eral sense. We compute the two metrics, Kendall’s Tau and
NMSE, between risk ratios for any value vector vi in Vtotal
and for vbase, i.e. τ(Tx , Ty) and NMSE(RRx ,RRy) where
vx ∈ Vtotal and vy = vbase. This results in a set of Kendall’s
Tau values and a set of NMSE values. The size of each set is
equal to the size of Vtotal.

8.1.2 Experiment B

In this experiment, we aim to evaluate the fluctuations of
threat risk rankings among value vectors of similar physical
effect. According to the discussion in Sect. 7.1, those value
vectors with similar physical effect should have the same
spreading level. Hence, we partition all the value vectors in
set Vtotal in groups with equal SL. We calculate the two met-
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(a) Cumulative Distribution Function of
              Kendall’s Tau values

(b) Cumulative Distribution
      Function of NMSE values

Fig. 6 CDF of Kendall’s Tau values and NMSE between all value vector and the baseline value vector [0, 5, 10] for both the theoretical and the
DL4LD threat database

rics, Kendall’s Tau and NMSE, for any pair of value vectors
in each equal SL cluster, i.e. τ(Tx , Ty) andNMSE(RRx ,RRy)

for the value vectors vx , vy ∈ Vtotal with vx �= vy and
SL(vx ) = SL(vy). In this way, we can achieve the varia-
tion of system outputs due to the subjective choice of value
vectors.

8.2 Experimental threat database

We need to construct proper threat databases to compute and
analyse risk ratios of a threat set. For simulation purposes,
the assigned values of the five risk attributes described in
Table 1 can uniquely identify each threat. In the current
experiment, we consider two threat databases, namely the
theoretical threat database and the DL4LD threat database.
The goal of the DL4LD project is to help the Dutch logistics
sector with IT tools that promotes digital business processes,
with particular support for the trustworthy sharing of sensi-
tive data. The project DL4LD aims to facilitate secure and
trustworthy data sharing with the concept of digital data mar-
ketplaces (DDM) [23].

For the theoretical threat database,we consider all possible
combinations of five risk attributes, each of which can be
one of the three values in a value vector. The total number of
threats in this database is 35 (243). Obviously, any real-world
threat database, like the DL4LD threat database, is a subset
of the theoretical threat database.

There are seven different archetypes defined for DL4LD
data exchange scenarios [2]. We model the threats for those
archetypes and construct the DL4LD threat database. There
are in total 22 threats for all archetypes in the DL4LD threat
database. For each threat, we read the related literature and
determined the levels of five risk attributes.

8.3 Analysis of Kendall’s Tau values

We compute Kendall’s Tau values between threat risk rank-
ings generated by the baseline value vector [0, 5, 10] and
any arbitrary value vector in set Vtotal for both theoretical
and DL4LD threat database. For each database, we rank all
threats according to their risk ratios computed in Eq. (4).

Figure 6a shows the Cumulative Distribution Function
(CDF) of those Kendall’s Tau values for both theoretical and
DL4LD threat database. For the theoretical threat database,
all of the value vectors contribute to Kendall’s Tau values
higher than 0.95, and 50%of the value vectors haveKendall’s
Tau values higher than 0.99. We conclude that the threat risk
ranking is almost stable for all value vectors in the theoreti-
cal database. For the DL4LD threat database, approximately
50% of the value vectors have Kendall’s Tau values higher
than 0.99, which is similar to the DL4LD use case. But
another half have Kendall’s Tau values between 0.91 and
0.94, which are lower than the minimum value for the the-
oretical threat database. The comparatively larger ranking
variance for the DL4LD use case may be due to the charac-
teristics of the DL4LD threat database. For two threats with
higher diversity of risk attributes levels, their rankings are
likely to flip with different value vectors. For instance, if we
have two threats with risk attributes [L, L, L, L, L] and [H,
H, H, H, H], the ranking will never alter no matter how you
change the adopted value vectors, because [L, L, L, L, L]
will always have the lowest risk ratio and [H, H, H, H, H]
will always have the highest. The rank of threats with risk
attributes [L, H, L, M, L] and [M, L, M, H, M] most likely
will flip after changing the value vectors. A higher proportion
of such sensitive threats exists in the DL4LD threat database
than in the theoretical threat database.
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(a) Box plots of Kendall’s Tau in
     theoretical threat database

(b) Box plots of Kendall’s Tau
   in DL4LD threat database

Fig. 7 All value vectors in set Vtotal are grouped with identical spread-
ing level ranging from −7 to 7. Each value vector indicates a bijective
mapping from qualitative levels of risk attributes to numeric represen-

tations. For each value vector cluster with identical spreading level, we
compute Kendall’s Tau values between any pairs of value vectors and
plot them as a box

Figure 7a, b shows the box plot for Kendall’s Tau values
as a function of SL for the theoretical and the DL4LD threat
database, respectively. The Kendall’s Tau values are com-
puted according to Experimental Design B in Sect. 8.1. All
the value vectors in set Vtotal are groupedwith equal SL. Each
box depicts the Kendall’s Tau values computed between all
possible pairs of value vectors within an equal SL group.

Figure 7a shows Kendall’s Tau values among threats
rankings for the theoretical threat database. We specifi-
cally focus on evenly spaced value vectors because they are
most commonly used in reality. The Kendall’s Tau values
of evenly spaced value vectors (SL = 0) are all equal to
1. A subjectively chosen value vector with SL equals to 0
does not influence the risk ranking of all theoretical threats.
Also, since all the real-world threat databases, e.g. DL4LD
threat database, are a subset of the theoretical database, the
Kendall’s Tau values among evenly spaced value vectors
should always be 1 for any threat database. The results illus-
trated in Fig. 7b confirm this conclusion. More generally,
as shown in Fig. 7a, nine out of 15 boxes have all values
extremely close to 1, whereas four boxes have a slightly
higher degree of dispersion, but the minimums are still larger
than 0.99. Only two outliers around 0.955 occur for boxes
SL = −5 and SL = 2, respectively. Subjective choices of
value vectors having the same spreading level do not cause
the risk rankings to fluctuate. As the theoretical database
includes any real-world threat database, we may expect sim-
ilar high stability achieved in any other threat database, e.g.
DL4LD. Figure 7b shows the box plots for the DL4LD
threat database. Similarly, most value vector clusters have
Kendall’s Tau values very close or all equal to 1. But theworst

case, the two outliers in boxes with SL = −5, 2, have com-
paratively higher variance than for the theoretical database.

For both the theoretical and the DL4LD use case, there
is almost no or neglectable influence due to the subjective
choices of value vectors having the same physical effect
(spreading level).

8.4 Analysis of normalisedmean square error
(NMSE)

The metric NMSE describes the variance of absolute values
of risk ratioswith different value vectors, which have a direct
impact on final DDM exposure rankings. To explore the gen-
eral sensitivity of risk ratio values to varying value vectors,
we compute NMSE values between the baseline value vector
[0, 5, 10] and any value vectors in set Vtotal.

Figure 6b shows the cumulative distribution function
(CDF) ofNMSEvalues computedwith all value vectors in set
Vtotal for both the theoretical and the DL4LD threat database.
For the theoretical threat database, approximately 50% of the
value vectors result in anNMSEvalue smaller than 0.03 com-
pared with the baseline value vector. AnNMSE value of 0.03
means that the average shift between two data sets, risk ratios
with two value vectors, is 3% of the product of mean values
of the two data sets. For some specific value vectors, risk
ratios vary unneglectable comparing to those computed with
the baseline value vector. About 18% of value vectors in set
Vtotal result in an NMSE value higher than 0.06, and themax-
imumvalue is 0.1. This is due to the nonlinearmappings from
qualitative levels to quantitative numbers in module II. How-
ever, the risk ratios are much less sensitive for threats in the
DL4LD use case. Also shown in Fig. 6b, approximately 95%
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(a) Box plots of NMSE in theoretical
           threat database

(b) Box plots of NMSE in DL4LD
             threat database

Fig. 8 All value vectors in set Vtotal are grouped with identical spread-
ing level ranging from −7 to 7. Each value vector indicates a bijective
mapping from qualitative levels of risk attributes to numeric represen-

tations. For each value vector cluster with identical spreading level,
we compute NMSE values between any pairs of value vectors and plot
them as a box

of the value vectors in set Vtotal have NMSE values smaller
than 0.03 for the baseline value vector. The maximum value
of NMSE is only 0.06. One reasonable explanation is that
absolute larger differences of risk ratios normally occur for
threats with a smaller risk attributes level diversity, e.g. [L,
L, L, L, L] and [H, H, H, H, H]. Such threats are not fre-
quently included in the DL4LD threat database or any other
real-world threat database. Hence, we may expect the risk
assessment system is quite robust against subjective choices
of value vectors for the majority of use cases.

Figure 8 shows the box plots ofNMSEvalues as a function
of SL for both the theoretical and the DL4LD threat database.
For value vectors of the same SL, we calculate NMSE values
of risk ratios with every two value vectors in the group.

We first analyse stability for evenly spaced value vectors.
Shown in Fig. 8a, b, the dispersion degrees of boxes for
SL = 0 are very small. The pairwise NMSE values among
evenly spaced value vectors for both threat databases are
concentrated in the medians of the boxes, which are about
0.015, and 0.008 respectively. There are no outliers of rela-
tively higher NMSE values. These NMSE values imply that
the system is highly stable to subjective choices for value
vectors with linear mappings from risk attribute qualitative
levels to numeric representations.

Figure 8a shows the box plots for the theoretical threat
database. Each box has a relatively high degree of dispersion,
and the median value is around 0.01. An NMSE value of
0.01 is quite acceptable and has a relatively small probability
of causing a ranking flip for DDMs in the final output of
our system. The NMSE values in Fig. 8a indicate that the
ranking is stable for about 50% of value vectors for each
equal SL cluster. However, outliers from 0.07 to 0.13 occur in

most value vector clusters, especially for those with negative
SL values. However, the system stability is much higher for
the DL4LD use case shown in Fig. 8b. All the boxes for
the DL4LD threat database have median values of 0.005,
which are much smaller than that of the theoretical threat
database. Furthermore, the outliers aremuch acceptable,with
the maximum value smaller than 0.05. The DL4LD use case
is very robust to value vector variance.

9 Experimental validation of system
resolution

In this section, we aim to validate the achieved resolution
of our methodology provided by the output of module II,
which are risk scores. We define a metric of granularity to
measure resolution quantitatively. We try to investigate how
the chosen value vectors influence the system resolution for
both theoretical and DL4LD threat database. In addition, we
also explore whether the current methodology can provide
sufficient granularity for identified threats in the DL4LD use
case.

9.1 Definition of granularity and experimental
design

The metric granularity aims to evaluate the resolution of our
methodology in module II. Granularity is defined as the total
number of unique values of risk scores for a given threat
database. This metric describes the capability of distinguish-
ing between threats in terms of assessed risk. It is usually not
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(a) Granularity of threats in the theoretical database
with various values vectors

(b) Granularity of threats in the DL4LD database
           with various values vectors

Fig. 9 Values of granularity with varying value vectors for both the theoretical and the DL4LD threat database. The value vectors are firstly sorted
with increasing spreading level. For those with equal spreading level, the value vectors are in lexicographic sorted order

expectable that many threats result in the same risk level,
which is equal to the value of computed risk score.

We adopt the same value vector set Vtotal as described in
Sect. 8.1. We compute granularity with each value vector in
Vtotal for both theoretical and DL4LD threat database. As
mentioned in Sect. 8.1, the number of threats is 243 in the
theoretical database and 22 in theDL4LD threat database.We
also consider the influence of assigned impact factor, which
has been explained in Sect. 4.2.2, on the resulting system
resolution. Any of the five impact factors scales a threat and
the risk score of that threat is scaled accordingly.

9.2 Analysis of granularity Values

Figure 9a, b shows the values of granularity with vari-
ous value vectors in the theoretical threat database and the
DL4LD threat database, respectively, with the spreading lev-
els depicted in different colours.

Firstly, we investigate the relationship between achieved
granularity and spreading level of value vectors. For both
threat databases shown in Fig. 9, non-evenly spaced value
vectors (SL �= 0) normally gain much better resolution than
evenly spaced ones (SL = 0). Also, the value vectors of dif-
ferent spreading level have a similar range of granularity for
all non-evenly spaced value vectors. Based on the conclusion
drawn in Sect. 8, those evenly spaced value vectors normally
have comparatively higher stability. A higher resolution is
achieved at the sacrifice of system stability.

The values of granularity fluctuate for value vectors of
identical SL. We recommend DDM customers to choose a
value vector with relatively high granularity and to avoid
those with very low resolution. As shown in Fig. 9a, b, the
relative relations of granularity values among same value

vectors for both threat databases are similar. For each group
with equal SL, there is a value vector resulting in a low gran-
ularity value. Those value vectors are sorted in lexicographic
order for an equal-SL cluster. Hence, those value vectorswith
the first element as 0 contribute to relative worse resolution
compared with those of similar physical effect. According to
the above observation and discussion, our system can warn
system users when they use such value vectors.

We further discuss the absolute values of granularity for
both threat databases. As shown in Fig. 9a, evenly spaced
value vectors have granularity between 25 and 45. For a
threat database of 243 threats with five different impact fac-
tors, on average 27 threats may result in the same risk level
even adopting the value vector with the highest resolution.
The performance for non-evenly spaced value vectors is bet-
ter with granularity values between 35 to 80. Nevertheless,
there are still on average 15 different threats that are not dis-
tinguishable for their risk with the current methodology in
the theoretical threat database. As indicated in Fig. 9b, the
DL4LD use case performs very well regarding the small size
of the threat database of only 22 threats, each of which may
have five different impact factors. The granularity values are
around 20 for evenly spaced value vectors and vary from 24
to 45 for non-evenly spaced ones. Compared to the theoret-
ical threat database, the DL4LD threat database can achieve
approximately half of the granularity with only one-tenth of
the threats number. The discussion above indicates the sys-
tem provides sufficient resolution to distinguish threats in the
DL4LD use case.
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10 Conclusions and future works

Customers of DDMs, or other digital infrastructures, need to
know what is the risk level associated with running their
applications in any specific DDM. Hence, we propose a
broker-based risk assessment system to quantitatively assess
the risk level. This system allows customers to rank avail-
able digital infrastructures in terms of guaranteed security
and select the optimal one regarding their applications.

To increase transparency, the system runs on a trusted third
party and collaborates interactively with all involved parties.
It addresses the complexity of DDMs by considering a num-
ber of influencing factors, such as application archetypes,
security requests of DDM customers, potential trust among
collaborating parties, interactions of security countermea-
sures. Our proposed system considers the relative importance
of each threat and is able to capture the dynamic feature of
risk levels in data exchange applications in DDMs.

Furthermore, we validated the stability and resolution of
the Microsoft STRIDE/DREAD model in our risk assess-
ment system with a concrete DDM use case, DL4LD. Our
experimental results show that subjective choices of users
have a very subtle influence on the final DDM rankings of
the system. In addition, the risk assessment system provides
sufficient resolution and works very well in terms of stability
for the DL4LD use case.

In our future work, we will further consider performance
cost and optimise the matching procedure between counter-
measures and threats in module II. We want to improve our
risk assessment system to be adaptive. The applied counter-
measures, monitors, can be distributed accordingly with the
real-time measured risk level.
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Appendix

Appendix A: Threat analysis of digital marketplaces
(DDMs)

The identified threats and the corresponding information for
data exchange applications in DDMs are shown in Table 2.
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Table 2 Threat list of data federation applications in DDMs

Threat name Stage Category Risk attributes
DP AC SL AU D

IP spoofing II S SO H M H M

Identity spoofing: Remote Data Access III S SO H L M H

Insecure data deletion III ID SO M L M H

Malicious compute: Data Disclosure III ID SO L H H M

Unauthorized Disclosure: Eavesdropping II ID SO H H M H

Weak Access Control I ID SO H H L H

Malicious compute: High Correlation of Input and Output Data III ID SO L H H M

Encryption Keys Leakage during Exchange II ID TOP H L H H

Cross-tenant Side Channel Attack III ID SO M L H H

Management Interface Compromise I, III ID, T SO M M M M

Isolation Failure: Poorly Separated Container Traffic III ID SO L L H H

Isolation Failure: Cross Container Attack III ID SO M L H H

Insecure Running Environment III ID SO M L H H

Man-in-the-Middle II T SO H M M L

Malicious compute: Tamper Processed Data III T SO L H H L

Log Files Tampering: illegal members delete or modify log files I, II, III T TOP L L H L

Data Leakage/Loss I T SO H L M L

Not-trustable Computing Environment III T, ID SO M M H L

Denial of Service (DoS) Attack by Co-tenant Containers III DoS SO L H H L

Container Runtime Escape III EP SO L M H M

Repudiation Attacks II R SO M L H L

Insufficient Auditing II R SO L H M H

For each threat, we assign corresponding Stage, Category and Risk Attributes according to literatures. ‘H’, ‘M’, ‘L’ represent ‘High’, ‘Medium’,
‘Low’ respectively. ‘SO’ stands for the ‘sensitivity of the object’. ‘TOP’ stands for the highest level of ‘sensitivity of the object’
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