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Abstract
This paper presents Duenna, an authentication framework for smart home systems (SHSs). When using controlling apps
(e.g., a smartphone app), Duenna makes sure that only legitimate SHS users are allowed to operate their Internet of things
(IoT) devices. Duenna is built upon a behavioral anomaly detection (BAD)-based approach. In particular, we hypothesize that
SHS users usually operate their home IoT devices in typical and distinctive patterns. Therefore, users that attempt to operate
devices differently from such a regular behavior are considered malicious. Technically, Duenna operates in two modes. In
an initialization operation, Duenna first collects and processes the historical cyber and physical activities of an SHS user in
addition to the historical states of the SHS itself to build a set of incremental anomaly detection (AD) models. Then, in an
interactive operation, the trained ADmodels are, then, used as a baseline from which anomalous commands (i.e., outliers) are
detected and rejected, while regular commands (i.e., targets) are considered legitimate and allowed to be executed. Through
an empirical evaluation conducted on real-world data, Duenna exhibits high authentication rates ensuring both security and
user experience. The findings obtained from such evaluation show that a user behavior-based approach is a promising security
scheme that could be integrated into existing SHS platforms.

Keywords Internet of things · Smart home systems · User authentication · Behavioral anomaly detection · Intrusion detection

1 Introduction

The Internet of things (IoT) is becoming increasingly
widespread in home environments. Inhabitants are trans-
forming their homes into smart spaceswith Internet-connected
sensors and actuators such as motion detectors, lights, and
door locks. Due to the growing interest in smart home envi-
ronments, the number of systems designed to support them
has risen considerably and has received significant attention
[1]. Smart home systems (SHSs) provide several intelli-
gent services to consumers such as energy-saving, physical
security and safety, and elderly people assistance. To take
advantage of these services, consumers can operate their
devices in severalways. In particular, SHSsmay provide con-
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sumerswith companion applications andweb portals that can
be run on end-user devices such as tablets and smartphones,
so consumers can operate their devices on their own either
from the inside when connected to the local network, or from
any outside location via the Internet.

While providing a significant convenience to consumers,
unauthorized and unexpected operation of SHS devices
brings new security and safety concerns. Furthermore, these
latter have a great impact compared to the malicious oper-
ation of a classical computer system. In other words, the
maximal damage a computer attacker could inflict is limited
to data loss. With the IoT-based SHSs, attackers can have
physical effects in the world, such as opening doors, caus-
ing fake fire alarms, and disrupting electricity supply [2]. In
particular, several vectors could allow an attacker to oper-
ate SHS devices. To begin with, the latest results show that
IoT devices have been suffering from the open-port problem,
weak encryption, and lack of authentication/authorization to
their web interfaces [3]. Also, end-user control devices can
easily be compromised if they are not secured properly [4].
Finally, the account which an SHS owner uses to access com-
panion applications could be compromised in several ways
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such as reverse engineering, password guessing, andmalware
infection [5].

Preventing malicious operation of SHS devices requires
a robust security scheme. In this perspective, three types of
conventional security mechanisms have gained a particular
attention viz., signature-based intrusion detection systems
(IDSs) [6,7], user authentication [8,9], and access control
models [10–12]. Unfortunately, these approaches suffer from
several limitations. Firstly, although existing signature-based
IDSs assume that legitimate and anomalous traffic signatures
are notably different, operation commands sent via a compro-
mised end-user device will have the same IP addresses and
packets’ signatures [13]. Secondly, although recent works
have been combining authentication factors to identify SHS
users (e.g., passwords, smart-cards, fingerprint, etc.) [14],
these factors remain vulnerable to social engineering attacks
and the overall usability of the SHS decreases since users
are forced to carry around specific authentication tokens [9].
Thirdly, traditional access control models such as capability-
based access control (CapBAC) have not been considered
as an effective security mechanism for emerging technol-
ogy such as SHS [11] since they cannot prevent the misuse
of legitimate privileges by a malicious user [15] and they
are not expressive enough to handle complex access control
needs of an IoT-based system [10].

Recently, the limitations of conventional security mech-
anisms have been warranting researchers to integrate the
behavioral analysis of both SHS and its users to devise new
schemes that are self-learning, personalized for each SHS
configuration, and allow more intelligent authentication and
authorization decisions. Tracing then assessing the behav-
ioral patterns of users and entities to secure cyber systems is
better known as behavioral anomaly detection (BAD) [16]. A
BAD-based security approach attempts to identify security
threats and behaviors that are not known and do not match
the predetermined patterns. Although some works have been
leveragingBAD-based security [13,15,17,18], such approach
is still poorly adopted among the SHS security frameworks.

In this work, we aim to address the lack of relevant
BAD-based techniques to secure SHSs. To reach this goal,
we hypothesize that SHS users usually operate their home
IoT devices in typical and distinctive patterns that can be
described by many behavioral features such as rate (i.e.,
number of devices operated in a time window), sequencing
(i.e., the order of operation). Also, operating SHS devices
is generally related to the daily activities of inhabitants. For
instance, a user usually turns off the heater in the mornings
when nobody is home (i.e., no physical activity). Therefore,
correlating the cyber-operation with the physical-activity is
a strong behavioral pattern. In Fig. 1, we present a moti-
vating example to show how the integration of the user and
SHS behavior can efficiently help in preventing the unau-
thorized/malicious operation of devices. In this example, we

Fig. 1 A scenario of a legitimate/malicious user-driven operated smart
window

consider the scenario (which has been reported in real world
[19]) of a smartwindowopen command performed by a legit-
imate and an adversary. The operation command issued by
the legitimate user is considered as authorized and executed
since he/she frequently opens the window in the morning of
weekends when the home is occupied, and after closing the
door. An adversary, however, did not follow such a legitimate
behavioral pattern and attempts to open the window to break
into the house in a different situation, i.e., when the home
is unoccupied and before opening the door, etc. Thus, the
operation command is considered malicious and rejected.

In contrast to afore discussed conventional techniques,
authenticating users based on their behaviors has many
advantages [20]. Indeed, user behavioral patterns could be
discreetly collected and monitored since they depend on
mental characteristics and do not require user interaction.
Consequently, neither authorized nor unauthorized users are
aware of being forensically monitored, thus they do not inter-
fere with their experience. Additionally, user behavior-based
verification could be continuously performed throughout the
entire user’s operation session.

This paper introduces Duenna, a BAD-based security
framework. Duenna continuously authenticates SHS users
and makes sure that only legitimate ones are allowed to oper-
ate SHS devices. To do so, Duenna operates in two stages.
During an initial operation mode, the historical cyber and
physical activities of the user in addition to the historical
states of SHS itself are first collected. This data is then used
to construct a set of vectors and matrices called probabilistic
models that summarize the behavioral patterns seen in these
historical data in a form of probability values. After that, a
set of incremental anomaly detection (AD) models is trained
on a set of behavioral scores calculated from the constructed
probabilistic models. Later in an interactive operation mode,
the trained baseline AD models are then used to continu-
ously verify the legitimacy of the user requested operation
commands and take security actions accordingly.

During the interactive operation, Duenna ensures an
SA-TRR-ICA: self-adaptive, trust-based, risk-aware, recov-
erable, implicit, and continuous authentication. In particular,
based on a set of behavioral scores that can be discreetly
calculated and assessed, Duenna can continuously evalu-
ate users’ behaviors during the entire SHS operation. Also,
Duenna calculates a confidence score that can be continu-
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Fig. 2 Architecture of a user-driven operated SHS

ously evaluated to ban users that show anomalous behavior.
In addition, Duenna switches to a degraded operation mode
where highly sensitive SHS devices are disabled from being
operated. This functionality makes Duenna aware of the risk
thatmay comewith false executed commandswhen the legit-
imacy of the current user is uncertain. Finally, Duenna can
automatically adapt to the potential change of legitimate user
behavior.

Some of Duenna’s features were firstly introduced in [17].
In the previous work, the ensured features were only lim-
ited to implication and continuity; moreover, the evaluation
experiments were only conducted on artificial datasets. How-
ever, this paper brings new proposed concepts and features
and makes the following contributions:

– Full design and evaluation of an authentication frame-
work for SHS users that is built upon a BAD-based
security approach.

– Performance evaluation experiments have been con-
ducted on real-world SHS datasets. The obtained high
authentication rates successfully validate that such an
approach is a promising security scheme that could be
integrated into existing commercial SHSs.

– To the best of our knowledge, this work is the first to
adapt SHS user’s physical activities history data that is
publicly available to be used as the history data of SHS
devices operation. Such an adaptationwill provide public
benchmark data usable for validating our framework as
well as other similar behavior-based techniques.

– Extraction of new behavioral scores to describe SHS user
behavior when operating his/her IoT devices by drawing
inspiration from other applications such as social net-
works and web applications.

– Proposing new security and design features to reinforce
the conventional authentication schemes used in the-
state-of-art SHS platforms.

– Leveraging incremental anomaly detection to propose a
new self-adaptation feature to cope with the potential
change in the behavior of SHS users.

The remainder of this paper is structured as follows.
Section 2 provides the necessary background, presents the
considered security threats, and situates the paper within the
state-of-the-art. Section 3 gives a detailed description of the
core modules underlying the operation of Duenna. Section 4
presents the empirical evaluation of our proposed framework.
Finally, Sect. 5 draws the main research conclusions and
underlines some future directions.

2 Background, threat model, and
positioning to the state of the art

2.1 Internet of things-based smart home systems

Smart home systems (SHSs), also called Connected Homes
or Domotics, represent a class of the most prevailing IoT-
based systems [21]. The plethora of services and applications
that SHSs can provide (e.g., energy-saving, physical security
and safety, elderly people assistance, etc.) has been promot-
ing the enthusiasm of consumers toward this type of system.
To take advantage of different intelligent services, a con-
sumer can configure or operate an SHS in several ways.
Today’s SHSs are either user-driven, programmable, or self-
learned.

In this paper, we focus on user-driven SHSs. In particu-
lar, users may prefer to have full control of their IoT SHS
devices, in a way similar to his/her full control of conven-
tional home appliances, without reliance on external parties
[22]. Such preference is currently available in today’s SHSs
such as SmartThings [23]. More specifically, such type of
SHS provides consumers with companion applications and
webportals that can be run on end-user devices such as tablets
and smartphones so consumers can operate their devices on
their own either from the inside when connected to the local
network, or from any outside location via the Internet.

A typical architecture of a user-driven SHS is depicted in
Fig. 2 comprising four basic building blocks [24]. The first
block is formed by the IoT devices that could be a sensor
(e.g., motion detector) or an actuator (e.g., door-lock). Since
there is no generic interoperability standard, SHS devices
are connected via a smart hub that works as a coordinator
among them and provides a common access point for all the
entities in the SHS. End-user devices (smartphones, tablets,
etc.) can be either connected to the hub through the local
network or to the cloud backend through the Internet for
local or remote operation, respectively. Moreover, the hub
is also connected to the cloud to offload the big processing
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and data storage, in addition to managing security policy and
end-user permissions.

2.2 Threat model

Even though the market of SHSs has been prospering in the
last few years, their security condition is disappointing [25].
Current designs of SHSs suffer frommany security problems
that may manifest at different levels of an SHS architecture.
Table 1 summarizes the common security threats that may
lead to malicious operation of SHS devices, whereas Table 2
presents someof these types of attacks that have been recently
reported in the real world.

Because the adoption of any new computing technology
is usually hindered by the security challenges it brings, the
success of SHS is no doubt related to the confidence degree
of SHS consumers toward the operation of their devices. This
paper aims to partially contribute to the success of such tech-
nology by proposing aBAD-based security framework called
Duenna. This latter continuously evaluates the legitimacy
of devices’ operation commands to prevent malicious ones.
Specifically, commands analyzed as abnormal are blocked
whatever the threat vector exploited to initiate them.

2.3 Existing behavioral anomaly detection-based
security approaches

ABAD-based security solution could be relevant formultiple
cyber systems and environments such as web applications
and databases [31]. In particular, it is meant to deal with
multiple security threats such as malicious insider and com-
promised user account. As depicted in Fig. 3, a BAD-based
security solution operates in two main stages, namely, profil-
ing and analysis. In the first one, the baseline models are
first constructed over the regular conduct of the profiled
targets (i.e., users or system entities). This stage includes
two main processes: (i) collecting historical data on the pro-
filed target, and (ii) building baseline profiles by training
anomaly detection (AD) models, whereas, in the analysis
stage, the behavior of users/entities is continuously moni-
tored and compared to the established baseline AD models
to detect abnormal behaviors, recognize security threats, and
take security actions according to the output of theADmodel.

In this section, we review some of the state-of-the-art
BAD-based security approaches. We first review approaches
to secure non-IoT-based systems, then, we review those
specifically proposed to secure IoT-based SHSs.

2.3.1 Existing approaches for securing non-IoT-based
systems

To have a broader understanding of the usefulness of a BAD-
based approach,we review existing proposedworks to secure
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Table 2 Recent real-world reported malicious SHS devices operation

Device Example

Smart door The attacker opens a smart door to break into the house [26].

Smart heater An attacker operates the heater to overheat the bedroom [27].

Smart stove An attacker operates the stove to cause fire [28].

Smart window An attacker opens the smart window to break into the house [19].

Philips Hue smart light An attacker uses a drone to turn off smart light to cause a blackout [29].

Smart toilet An attacker remotely operates a smart toilet to cause water overflow [30].

Fig. 3 Basic operational scheme of a BAD-based security approach

non-IoT-based systems. This study allows us to understand
different security threats thwarted, the types of behavioral
analysis features and the data sources used for their extrac-
tion, and the AD techniques leveraged. In the following, we
will discuss some of the works proposed in the context of
web-based applications, databases, and online social net-
works (OSNs), as summarized in Table 3.

Web applications When a web user requests a resource
(e.g., HTML file), the webserver records these requests in
web logs. When making these requests, user behavior can
be described by many features that could be extracted from
the weblogs. By building a baseline over regular requesting
patterns, any anomalous request could be then detected. In
this context, several methods have been proposed to detect
many security threats such as Application layer Distributed
Denial of Service (DDoS) attacks. Liao et al. extracted web
user behavioral features based on the idea that users access
and spend more time on pages of their interests [32]. Exam-
ples of the extracted features include the number of requests
in a time window and the duration between them. The AD
technique used is a hybrid classification algorithm based on
Sparse Vector Decomposition and Rhythm Matching (SVD-
RM) algorithm. Najafabadi et al. applied another anomaly
detection technique based on the Principal Component Anal-
ysis (PCA) to detectDDoSattacks [33]. The idea is to identify
the N-top principal components that better describe the regu-
lar user behavior. Then, the data projection on the remaining
components captures anomalies and noise in the data.

Databases Database servers typically maintain an audit log
in which they record SQL requests on DB resources (i.e.,
Tables). By learning the behavior of clients when requesting
resources, any changes detected in this behavior could be

a sign of abnormal access. In this context, Mathew et al.
proposed a clustering-based AD technique to detect users’
abuse of privileges [34]. To profile the user behavior, the
proposed approach consists of first summarizing the query’s
result tuples in a fixed vector. Then, all user’s past queries can
be thought of as one cluster. When a new query arrives, if it
belongs to the user’s cluster, it will be classified as normal, or
abnormal otherwise.More recently,Mazzawi et al. presented
a novel approach to determine whether a DB user activity
is malicious or not [35]. The idea consists of checking the
user’s self-consistency with its previous actions and global
consistencywith the past actions of similar users. Threemain
behavioral features were used to describe users’ activities:
(1) rarity: represented by the probability of appearance of
the action in a new timeframe, (2) volume: characterized by
the number of occurrences of an action given that it appeared
in the timeframe, and (3) new object: amounts of new objects
being accessed.

Online social networks (OSNs) OSNs provide a variety of
online features for their users to engage in, such as send-
ing messages, commenting, updating a status. OSNs users
can thus be distinguished according to their interaction with
these features to detect anomalous behaviors. In this con-
text, Viswanath et al. proposed three types of features to
characterize the social behaviors of OSN users viz., (1)
temporal: number of Likes per day, (2) spatial: number
of Likes in different categories (e.g., politics, sports), and
spatiotemporal: summary of the distribution of Like cat-
egories using entropy [36]. To detect fake and colluding
Facebook identities, a PCA-based AD technique was used.
Ruan et al. proposed to characterize a user’s social behav-
ior by his/her extroversive activities (e.g., action latency)
and introversive activities (e.g., browsing sequence) [37].
To differentiate between different user profiles, two mea-
sureswere used. Euclidean distance to quantify the difference
between two feature vectors of two users’ profiles and self-
variance to differentiate between each pair in a collection of
profiles.
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2.3.2 Existing approaches for securing user-driven
operation of IoT-based SHSs

The limitations of conventional security mechanisms such
as authentication, access control have been warranting
researchers to integrate the behavioral profiling of both SHS
and its users to make more security intelligent decisions.
Continuous Authentication (CA) is one of the main emer-
gent techniques from the BAD-based security approach.
Also known as permanent authentication, CA is supposed
to increase the level of security by keeping SHS users
authenticated permanently and enhance the users’ quality of
experience by being non-intrusive and minimizing the usage
of credentials during the authentication processes [38].

User cyber behavior-based authentication is a category of
CA. It provides a safer and more convenient way to iden-
tify users based on their behavioral interaction with cyber
systems. Some recent works have been leveraging such an
approach to secure the operation of SHSs. Rath and Colin
[18] proposed an access control framework to authenticate
the operation of SHS devices in case of user account compro-
mise using association rules as ameans to learn user behavior.
However, the framework does not use any behavioral fea-
tures that may efficiently describe SHS user behavior. Ghosh
et al. [15] proposed SoftAuthZ, a framework for estimating
the confidence associated with a device access request. Sof-
tAuthZ computes the belief of a requester based on his/her
historical request patterns using a linear regression model.
In particular, an access request with low variability is more
likely to be legitimate in contrast to an abnormal request
that should have high variability. However, SoftAuthZ uses
variability in device access requests as the only user behav-
ioral feature besides other non-behavioral attributes such as
environmental context and nature of the requested device.
Moreover, operation commands are not transformed into
feature-based numerical data and only treated with their
original categorical nature. This obliged authors to use a
variability calculation method specifically for categorical
variables.

More recently, Yamauchi et al. [13] proposed a method to
detect the exceptional operation of SHS devices. Themethod
first learns sequences of events performed by the user to con-
struct a tree as a baseline. Then, anomalous event sequences
are detected by checking whether the sequence is included
in the constructed tree. However, the proposed method uses
the operation sequence as the only user behavioral feature,
thus it cannot accurately identify single commands for which
related commands are not observed. Moreover, the proposal
only considers the SHS devices separately and does have a
global view of the SHS.

In light of the previous study on existingBAD-based secu-
rity approaches, Duenna works analogously to prior works
and draws inspiration from the behavioral characteristics
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used by them. Specifically, characteristics such as brows-
ing rate and sequence in Web applications, action latency,
and inter-Like delay in OSN, could also be employed in
the context of SHS to continuously authenticate users when
operating IoT devices. Besides, although there have been
some BAD-based works to secure SHS user-driven opera-
tion, such an approach is still poorly adopted among SHS
security frameworks.

3 Duenna: a user authentication framework
for smart home systems

Built on the assumption that there is distinguishable behav-
ior between users of the same or different SHS’s, Duenna
leverages BAD-based security approach to build probabilis-
tic and anomaly detection (AD) models that summarize the
behavioral patterns of the legitimate SHS user. These models
are then used as a baseline from which a requested opera-
tion command is accepted or rejected based on its deviation
degree from this baseline.

In this section, we first provide an overview of Duenna by
explaining its operational architecture. Then, we concretely
show its operation to secure user-driven SHSs.

3.1 Overview

3.1.1 Operational architecture

Figure 4 depicts the operational architecture of our pro-
posed framework. In particular, Duenna operates on an
enhanced architecture beyond thebasicBAD-based approach
(cf. Fig. 3). More specifically, before Duenna starts securing
SHS devices from themalicious operation, an initiation stage
is first performed on the historical data of both user and SHS
itself including two processes viz., Raw Logs Collection and
Enrollment (cf. Sect. 3.2). The result of the initial stage is
the AD models summarizing the behavioral patterns seen in
the collected logs. Once AD models are built, Duenna starts
analyzing requested operation commands in an interactive
mode since the user is engaged in requesting operation com-
mands and receiving prompts and analysis responses. This
operation includes two modules viz., anomaly analyzer and
action manager (cf. Sect. 3.3).

3.1.2 Instantiation of Duenna on a user-driven SHS
architecture

To show the concrete operation of Duenna, Fig. 5 depicts its
instantiation on a user-driven SHS architecture (cf. Fig. 3):

Fig. 4 Operational architecture of Duenna

Fig. 5 Instantiation of Duenna on a user-driven SHS architecture

1. During the initial operation, the historical cyber andphys-
ical activities of the user in addition to the historical states
of SHS itself are first collected. The collection of the two
types of data is performed by collection modules that
are deployed both on the Hub and end-user controlling
device.

2. This data is then used to enroll the regular behavioral pat-
terns of the SHS user seen in these historical data. The
enrollment process includes the construction of proba-
bilisticmodels and the trainingof incrementalADmodels
on the behavioral scores calculated from the probabilistic
models.

3. Later in an interactive operation mode, the trained base-
line AD models are then used to continuously verify the
legitimacy of the user’s requested operation commands
and take security actions accordingly. This operation
is managed by an anomaly analyzer deployed both in
the hub and the cloud back as well as action manager
deployed on the end-user operating device.

4. Once the data collection is completed, a module called
Sync is responsible for sending the collected sensory and
operation logs to the cloud backend both during the stage
of Enrollment as well as during the interactive operation.
This module is also responsible for migrating AD mod-
els to the hub to be used by the local anomaly analyzer
when the enrollment stage is accomplished. Moreover, to
keep AD models synchronized on both sides after being
updated, the mini-batch used in the update on one side
(e.g., hub) is pushed to the other one, and vice versa. This
synchronization makes sure that recent user behavior is
always known. For instance, if a user has been remotely
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Table 4 Structure of user/SHS raw logs

Log Structure Collector

User operation log Command ID, operated device, operation action, timestamp Operation log collector

User activity log Activity, start time, end time Sensory logs collector

SHS states log timestamp, state of devicei, ..., state of devicen

operating his/her devices (i.e., cloud-stored AD models
have been updated), hub-stored AD models must also be
up to date so the user’s recent behavior is known if he/she
then performs a local operation, later.

3.2 Initial operation

OnceDuenna is instantiated and different modules have been
deployed, the initial operation is the first process Duenna has
to perform to be ready for its interactive operation. The pro-
cesses executed in this stage include raw logs collection and
user regular behavior enrollment as detailed in the following.

3.2.1 Raw logs collection

The first step toward the building of regular user behavioral
patterns is the collection of historical data of both user and
SHS itself.As previously presented, this task is accomplished
through two modules.

Sensory data collector Since the hub is the coordinator of
SHS, this module is deployed on the hub and is responsible
for collecting sensory events of IoT devices to trace both
devices’ states (i.e., only concerns devices of type actuator,
e.g., door-lock) and user physical activities (using devices of
type sensor, e.g., motion sensor).

Operation log collector This module is deployed on the user
controlling app, and is responsible for tracking user operation
commands then sending them back to the Sync module on
the hub or directly to the cloud backend if commands are
requested remotely.

As described in Table 4, the collected data consists of
different types of logs that trace historical information about
both user and devices:

User operation log A log file is a common way to trace
the historyofmanipulation/operationof computing resources
by their authenticated users by saving information such as
who has operated what, and at what time. Analyzing this
data provides a rich understanding of what users have been
doing, and how they have been using resources. In this work,
the Operation Log Collector is responsible for tracking local
and remotely executed commands. Both types of commands

are saved in one User Operation Log file stored in the cloud
backend (cf. Fig. 5), since they concern the same user actions.

User activity log Recent developments in sensing technol-
ogy have led to the development of wireless sensor networks
[39]. These non-intrusive sensors can be used to recognize
and trace different human physical activities (e.g., pressure
mats to measure sitting on a couch or lying on the bed, mer-
cury contacts for movement of objects such as drawers, etc.).
Collected by Sensory Logs Collector, a User Activity Log
saves daily user activities with their start and end timestamps.

SHS states log An SHS state in a given time is the status
of the hub-connected devices Collected by the Sensory Logs
Collector, this log traces the different status of all devices
while being operated at the given timestamp.

3.2.2 User regular behavior enrollment

Once sufficient raw logs collection is gathered, the baseline
models summarizing user patterns seen in the collected raw
logs have to be enrolled. The output of theEnrollment process
is the trained of AD models that are saved to be retrieved in
the interactive operation. The Enrollment process is executed
on the cloud as it is a resource-consuming task.

Figure 6 depicts the workflow of the enrollment process
including four sub-processes: raw logs preparation, proba-
bilistic models construction, behavioral scores extraction,
and AD models training. The subsequent sections explain
each sub-process in detail.

Logs preparation Before being used in the construction of
probabilistic models and the training of AD models, the col-
lected user/SHS raw logs need first to be prepared. This task
allows the extraction of more information about the user pat-
terns from the collected raw logs. The resulting prepared logs
are given in Table 5 and are generated by the four following
sub-processes:

1. Sessions log extraction: in the context of SHS, an oper-
ation session is the set of operated IoT devices within a
time window. In this work, we follow an inactivity-based
identification strategy as it is the most commonly used
[40]. Specifically, this strategy implies that if there is a
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Fig. 6 Workflow of user regular behavior enrollment

Table 5 Structure of user/SHS prepared logs

Log Structure

Sessions log Starting timestamp, period, operation rate, operation sequence

Operation-activity log Command ID, operated device, operation action, user activity, period, timestamp

State-activity log Timestamp, period, user activity, state of devicei, ..., state of devicen

break between the user’s operation commands which is
sufficiently long, it’s likely that the user is no longer active
and a new session is created when the next operation
command is initiated. We use the following information
to describe an SHS user session. Starting Timestamp:
timestamp of the first command of the session, opera-
tion rate: number of operated devices during the session,
and operation sequence: order of operation during the
session.

2. Operation-activity log extraction: since the operation of a
particular device is generally related to a particular phys-
ical activity (or activities), the mapping of an operation
command captured in the user operation log with the cor-
responding user physical activity (or activities) captured
in the user activity log gives a strong insight about the user
operation-activity patterns. For instance, the inhabitant
always turn-on TV while relaxing, turning-on surveil-
lance camera while leaving the house, etc. If no activity
is performed at the time of operation command, the ’no
activity’ label is added.

3. State-activity log extraction: themapping of an SHS state
captured in SHS States Log with the corresponding user
physical activity (or activities) captured in the activity log
also provides an insight about SHS-user activity patterns
as the status of device (or a set of devices) is the con-
sequence of particular user activity (or activities). For
instance, all doors are locked while the user is not at
home.

4. Logs segmentation: segmenting the logs consists of
adding the corresponding time interval of the day (i.e.,
period) to each row record in the logs. Adding this
information gives another precision to understand the
user’s frequent patterns. Indeed, the behavior of an SHS
inhabitant through the 24 hours of the day is generally
segmented into a set of frequent periods wherein the user
has some specific behavioral routines (e.g., waking up
and going to work in the morning, sleeping at night, etc.).
In recent years, two main time-series segmentation tech-
niques have been used for various purposes (e.g., mobile
user data) viz., equal- and unequal-interval strategies
[41]. In this work, we follow an unequal interval-based
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segmentation strategy in which the 24 hours of a day are
divided into 2 or more periods with unequal lengths. In
the empirical evaluation (cf. Sect. 6.4), the optimal seg-
mentation that most fits user behavior patterns seen in the
logs will be selected among different candidates.

Probabilistic models construction A probabilistic model
consists of a set of vectors and matrices containing differ-
ent probabilities that describe both user and SHS behavioral
patterns seen in the prepared logs. These models are distin-
guished into one related to user behavior viz., User Behavior
Model (User-BM) and another related to SHS behavior viz.,
SHS Behavior Model (SHS-BM) as depicted in Tables 6 and
7, respectively.

Behavioral scores extraction We call the behavioral scores,
the data on which the AD models are trained. Extracting the
SHS user behavioral scores consists of calculating a tuple
of numeric values for each command seen in the operation-
activity log using the constructed probabilistic models (i.e.,
User-BM and SHS-BM) (cf. Fig. 6), in addition to other
scores that can be calculated independently. To this end,
user operation commands are transformed from categorical
data (i.e., a tuple of multiple attributes viz., operated device,
action, timestamp) to feature-based numerical data that is
suitable for an AD model training.

In particular, we distinguish two types of commands each
of which is represented with a specific and common set of
scores. If the time since the last operation command (called
it inactivity time) is bigger than a specific threshold (called it
inactivity threshold), the requested command is considered
as a Starting Command since it represents the beginning of
a new operation session. However, if the inactivity time is
still below the inactivity threshold, the requested command
is considered as an Activity Command since it belongs to the
same operation session.

Thus, starting command scores are used to describe user
behavior when starting an operating session:

– Session starting: probability by which the user starts a
session by requesting to operate the given device with
the given operation action.

– Inter-session latency: delay between the session starting’s
requested commandand the last commandof the previous
session that belongs to the same period of the day.

– Operation-activity: probability bywhich theuser requests
to operate the given device for the given period of the day
while doing the given physical activity.

– State transition: probability by which the SHS transits
to the state resultant from the execution of the requested
command.

– State-activity: probability by which the SHS transits to
the state resultant from the execution of the requested
commandwhile the user is doing the given physical activ-
ity.

– Device frequent state: probability by which the operated
device would be in the state resulting from the requested
operation action for the given period of the day.

Activity command scores allow to describe a user behav-
ior when he/she initiate an operation command preceded by
other commands belonging to the same operating session:

– Intra-session transition: probability by which the previ-
ously operated device would be followed by the device
requested in the given command in the same operation
session.

– Current sequence: probability to see the current operation
sequence.

– Intra-session latency: delay between the requested oper-
ation command and its antecedent in the same session.

– Operation rate: number of current operated devices.
– Operation-activity: probability bywhich theuser requests
to operate the given device for the given period of the day
while doing the given physical activity.

– State transition: probability by which the SHS transits
to the state resulting from the execution of the requested
command.

– State-activity: probability by which the SHS transits to
the state resultant from the execution of the requested
commandwhile the user is doing the given physical activ-
ity.

– Device frequent state: probability by which the operated
device would be in the state resulting from the requested
operation action for the given period of the day.

Anomaly detection models training Training AD models
on the set of extracted regular behavioral scores is the fruit
of all the previous enrollment sub-processes. Again, Duenna
is a BAD-based security framework that discriminates legiti-
mate user’s SHS operation from anomalous one by detecting
abnormal target behaviors. However, in this AD scenario,
anomalous SHS users’ behaviors are often unknown and not
available at the beginning of the behavior enrollment stage,
and only legitimate SHS users’ behaviors are available. This
setup is recognized as semi-supervised or often as an unsu-
pervised AD [42]. Hence, the ADmodels are only trained on
the regular data of legitimate users captured when operating
their SHSs. After that, behaviors deviating from such regular
baseline are considered as non-legitimate.

Furthermore, user operation commands need to be ana-
lyzed as they are issued in real time and the initialized AD
models during the enrollment stage need to be updated. Yet,
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Table 6 User Behavioral Model (User-BM)

Parameter Type Used log Description

Session starting Vector Sessions log Probability values by which a user starts to operate a
device at a given period of the day for all existing
devices. For example, during the evening, a user
frequently starts a session by setting up the
temperature on the thermostat with a 0.39 probability.

Intra-session transition Matrix Probability values by which a user transits between
every two devices. For example, during the morning, a
user frequently opens the garage door-lock after
unlocking the front door-lock with a 0.6 probability.

Operation-activity Vector Operation-activity log Probability values that a user requests to operate a given
device while performing a given physical activity. For
example, the user frequently set up the thermostat
while outside.

Table 7 SHS Behavioral Model (SHS-BM)

Parameter Type Used log Description

States transition Matrix State-activity log Probability values by which SHS transits between every
two states for a given period of the day. For example,
when the camera is off, the door-lock is never opened.

State-activity Vector Probability values for SHS to be in a given state
resultant from executing the requested operation
command, while the user is doing a given activity. For
example, when the inhabitant is sleeping, doors are
locked, lights are off, etc.

Devices frequent state Vector Probability values for each device to be in a specific
state at a specific period of the day. For example, in the
morning, the door lock remains locked 80% of the
time.

re-training an AD model on all new and past data is an
intensive task in terms of time and computational resources
especially when the update is done on resource-constrained
devices (e.g., hub). This setup is recognized as an online
(incremental) AD [43]. Moreover, since two types of opera-
tion commands are distinguished viz., starting and activity
command, two types of AD models are trained each of
which on the corresponding extracted starting and activity
behavioral scores called Starting AD model (S-AD), and the
ActivityADmodel (A-AD). The training of both types ofAD
models is performed on the cloud-backend. Then, the trained
models are migrated to the hub via the Sync module. Once
AD models training and migration are done, the interactive
operation is ready.

3.3 Interactive operation

To handle user-initiated operation commands and only exe-
cute authorized ones, we instantiate the two modules respon-
sible for managing the interactive operation. As previously
shown in Fig. 5, anomaly analyzer (AA) is deployed both
in the cloud backend and on the hub and is responsible for

retrieving the trainedADmodels and applies them to initiated
commands to analyze their anomaly. It is also responsible
for user login verification by interacting with the existing
user policy and permission module. On the other hand,
action manager (AM) is deployed in the end-user device
and is responsible for handling user-requested commands,
triggering AA, and taking security actions according to the
anomaly analysis result. Specifically, if an operation com-
mand is locally initiated, AM triggers A deployed on the
Hub which uses locally stored AD models. However, if an
operation command is remotely initiated, the anomaly anal-
ysis is performed on the cloud backend using cloud-stored
AD models.

As explained in the following, AM and AA may either
operate in a basic mode or in an enhanced mode to secure
SHS devices from unauthorized operation. The two modes
are dependent on the assumption put on the maliciousness of
the SHS adversarial user as well as on the stationarity of the
user behavior.
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Fig. 7 Workflow of ICA-anomaly analyzer (ICA-AA)

3.3.1 ICA: Implicit and continuous authentication

Assuming that an adversarial user may only compromise the
controlling device but not the security credentials, Duenna
ensures an Implicit and Continuous Authentication called
ICA to prevent the assumed adversary from taking control
over the controlling device. In the following, we present the
ICA operation of the anomaly analyzer (ICA-AA) and action
manager (ICA-AM).

ICA-Anomaly Analyzer (ICA-AA) Fig. 7 depicts the workflow
of the ICAAnomaly Analyzer (ICA-AA). Upon receiving an
initiated operation command from the ICA action manager
(ICA-AM), the anomaly analysis sub-process is triggered.

1. The anomaly analyzer first pulls the hub to get current
sensory data and organize it to extract current devices’
states and user physical activity.

2. According to its nature (i.e., starting or activity com-
mand)which depends on the current user’s inactivity time
as explained earlier, ICA-AA calculates the correspond-
ing behavioral scores (BSs) of the command using the
extracted operation commands parameters (e.g., operated
devices, timestamp, etc.).

3. Then, the corresponding ADmodel is used for analyzing
the calculated BSs (i.e., S-AD or A-AD) producing an
anomaly score (AS) in the range of [- 1,1].

4. ICA-AA sends back (BSs and AS) to ICA-AM.

ICA-Action Manager (ICA-AM) Fig. 8 describes the work-
flow of ICA action manager (ICA-AM) and it includes the
following sub-processes:

– User login: as depicted in Fig. 9, by providing the cor-
rect credentials (e.g., e-mail and a password), the user
should be authenticated to the controlling app and autho-
rized to operate the SHS devices. In particular, to verify

user login, ICA-AM sends user credentials to ICA-AA
deployed in the cloud backend which in turn sends them
the existing User policy and permission module to be
verified. However, if the controlling app has been closed
and opened once again, no login is required.

– Re-authentication: backing to Fig. 8, the wait function
means that the continuous analysis is triggered by user-
requested commands. Once a user requests to operate a
device, the action manager handles the requested com-
mand and sends it to the anomaly analyzer which sends
back the command’s behavioral scores (BS) and anomaly
score (AS) to be verified by the action manager. If this
score is below a predefined threshold (we call it anomaly
threshold), the requested command is considered mali-
cious and an explicit re-authentication (i.e., password
verification) is prompted to the user. This is a common
technique used in implicit authentication schemes when
there is uncertainty about the current user identity [39],
whereas, if the credentials provided by the user are not
valid, he/she is directly logged out from the main inter-
face of the controlling app.

– Command execution and models update: If the anomaly
score is above the anomaly threshold (AT), or if the user
succeeds in the re-authentication, the requested com-
mand is sent to the hub to be executed as shown in Fig. 10.
Upon executing the commands analyzed as legitimate,
both probabilistic and AD models should be updated
incrementally without being re-trained from scratch. On
one hand, vectors and matrices of user behavior and
SHS behavior models (i.e., User-BM and SHS-BM) are
both updated from the parameters of the executed com-
mand (i.e., time, device, action, the period of the day).
Updating probabilisticmodels guarantees that behavioral
scores of future requested commands are calculated with
recent user behavior. On the other hand, AD models are
incrementally updated directly with the already calcu-
lated behavioral scores. The update is done after each
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Fig. 8 Workflow of ICA-action manager (ICA-AM)

Fig. 9 Workflow of user login

Fig. 10 Workflow command execution and models update

user session (i.e., a set of consecutive requested com-
mands) considering that the same user never changes
his/her operating way in one single session, i.e., cannot
be in two places at the same time.

3.3.2 TRR-ICA: trust-based, risk-aware, recoverable,
implicit, and continuous authentication

Assuming that an adversarial user may either compromise
the controlling device or the security credentials, Duenna
ensures a Trust-based, Risk-aware, Recoverable, Implicit,
and Continuous Authentication called TRR-ICA to prevent
such adversary from operating SHS devices. In the follow-
ing,we present theTRR-ICAoperation of the actionmanager
and anomaly analyzer.

TRR-ICA-Action Manager (TRR-ICA-AM) Fig. 11 shows the
process of the TRR-ICA action manager (TRR-ICA-AM).
Compared to ICA action manager, in this operation mode,
more security features are employed viz., Trust-based verifi-
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Fig. 11 Workflow of TRR-ICA-action manager (TRR-ICA-AM)

cation, Risk-awareness, and Recoverability, as presented in
the following.

– Trust-based verification (in red): Previously, the ICA-
actionmanagerwas executing a request commanddirectly
if the credentials provided by the user are valid. To pre-
vent a user, that can successfully pass the re-authentication
(i.e., a potential attacker compromising credentials)
while continuously showing an anomalous behavior,
from keep using the controlling app, a trust-based ver-
ification is proposed. The motivation is based on the idea
that the trust value of an SHS user can be reflected by
his/her behavior [44].Basically, if the user succeeds in the
re-authentication, the confidence toward this user is first
verified before executing the requested command. If the
trust value is still above the allowed level of trust (we call
it lockout threshold), the command is executed. However,
if it drops below the threshold, the requested command is
rejected, and the user is logged out. It should be noted that
operation commands executed after re-authentication are
not used to update normal models since they belong to
temporary trust-based verification.
Technically, to follow the confidence level related to user
behavior, we leverage the trust-based verification first
introduced in [45]. In particular, a trust value is calculated
from the anomaly score (AS) outputted from analyzing
the anomaly of the requested command. Hence, the con-

fidence toward the current user may increase or decrease
according to the anomaly result of the command. The
formula (cf. Equation 1) that we adopt to calculate the
change in user trust is the one described in [46], where the
parameter AT represents the predefined anomaly thresh-
old. If the anomaly score of a given command (denoted as
ASi) is equal to this threshold then ΔTrust = 0. If ASi >

AT then ΔTrust > 0 meaning that a reward is given, and
if ASi < AT then ΔTrust < 0 meaning that the trust
decreases because of a penalty. Furthermore, parameter
B is the value of AS in which the maximum value of
penalty/reward is given, whereas the parameters C and D
are the upper bound value of the reward and the penalty,
respectively.

ΔTrust (ASi ) = min

⎛
⎝ D

(
1+ 1

C

)
1
C + exp

(
− ASi−AT

B

) − D,C

⎞
⎠

(1)

The new value of the trust (i.e., Trusti) is calculated in
terms of the current change of trust (i.e., ΔTrusti) and
the last value of the trust (i.e., Trusti− 1) as described in
the following equation (cf. Equation 2). In this equation,
the minimum value is taken after calculating the change
in trust. This choice allows preventing an adversary from
taking advantage of the high system trust obtained by
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the legitimate user before compromising the controlling
device/app. Moreover, whenever a user is locked out, the
trust value is reset to the rewardupper boundC to simulate
a new session starting after the set of actions that lead to
this lockout.

Trusti = min(max(Trusti−1 + ΔTrust(ASi ), 0), 100)

(2)

– Risk-awareness (in green): If the user can re-authenticate
and shows an acceptable level of trust, the requested
commands are executed, but his/her behavior is still
considered suspicious (e.g., potential adversary compro-
mising credentials). To reduce the impact of suspicious
executed commands during the trust-based verification,
we propose a degradation technique to a restricted opera-
tion mode. We inspired this idea from the fault-tolerance
systems that usually downgrade to a specificmode (called
Degraded Mode) in which they continue to operate but
with minimal functionalities when abnormal operating
conditions are detected. Once normal conditions are sat-
isfied, the system switches back to its normal operation
(calledNominalMode) [47]. Since an SHS containsmul-
tiple IoTdeviceswith different sensitivity degree, devices
such as surveillance camera and front door-lock can be
considered highly sensitive since they have a dangerous
impact when are maliciously manipulated (e.g., a burglar
unlocks the front door-lock to enter the house, raises the
heating degree on the thermostat to cause a fire, etc.).
On the other hand, other devices such as lights and TV
can be considered as lowly sensitive since their malicious
manipulation have no dangerous impact (e.g., switching
on/off lights is disturbing but not dangerous). To this end,
when switching to the Degraded Mode, the action man-
ager disables highly sensitive devices and only allows
the current user to operate lowly sensitive devices. This
scheme makes the action manager aware of the risk that
may come with false executed commands, as the legiti-
macy of the current user is not certain. The switch-back
to theNominalMode of operation is donewhen the user’s
trust returns to the upper bound of reward (i.e., parameter
C in Equation 1).

– SHS Recovery (in blue): When a user is logged out
after failing in the trust-based verification, his/her pre-
viously requested commands have been executed since
action manager was uncertain about their maliciousness.
To prevent dangerous consequences of false executed
commands, such as turning off the camera, raising the
temperature, left the door unlocked, a recoverability tech-
nique is proposed wherein SHS devices are reset to their
initial states saved before. In particular, devices’ states
(i.e., on/off, locked/unlocked, etc.) are saved in three
points: 1) after successful login, 2) when the current ses-

sion expires, and 3) after executing a requested command
analyzed as legitimate.

TRR-ICA-AnomalyAnalyzer (TRR-ICA-AA) Toensure the risk-
awareness feature, TRR-ICA-anomaly analyzer (TRR-ICA-
AA) needs to be adapted as shown in Fig. 12. For doing
so, in addition to the conventional Starting AD (S-AD), we
recognize two types of Activity AD models as depicted in
Table 8. TheNominalModeAD (NMA-AD)model is trained
on all eight Activity Command analysis scores. However, for
theDegradedModeADmodel (DMA-AD), three scores viz.,
device transition probability, current sequence probability,
and state transition probability are excluded, and only five
are used for the training.

3.3.3 SA-TRR-ICA: self-adaptive, trust-based, risk-aware,
recoverable, implicit, and continuous authentication

Assuming that the legitimate user may change his/her reg-
ular behavior, Duenna ensures a self-adaptive trust-based,
risk-aware, recoverable, implicit, and continuous authenti-
cation. In our previous work, it has been assumed that the
behavior of an SHS user is static over the lifetime of the sys-
tem and does not change after the enrollment stage [17]. In
practice, however, a user may change his/her behavior for
several reasons. For instance, during the quarantine caused
by Covid-19, people were obliged to stay in their homes.
As a consequence, their habits and daily routines have been
changed; thus, the way they operate their SHS devices has
been also changed. Such drift in the behavior of SHS users
makes action manager unable to recognize legitimate oper-
ation commands since they are deviating from the learned
normal behavior. Consequently, it is important for AA to
quickly adapt to such drift.

To do so, we came up with the idea that when the trust-
based verification starts, the user under such verificationmay
be either a potential adversary or the legitimate user is behav-
ing differently. As depicted in Fig. 13:

1. When a user fails in the trust-based verification, i.e., trust
drops below the allowed threshold, the action manager
displays an alert message to the user saying: “An abnor-
mal behavior has been observed, please confirm your
identity so the system can automatically take this behav-
ior as legitimate in the future.”

2. Since we are also assuming that adversaries may com-
promise the controlling device or the security credentials,
the verification should be performed using multi-factor
authentication.

3. If the user succeeds in such verification, a new AD is
trainedwith the accumulatedoperation commandsduring
the trust-based verification. The choice of keeping the old
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Fig. 12 Workflow of TRR-ICA-anomaly analyzer (TRR-ICA-AA)

Table 8 Types of AD models Model Training scores Number of scores Operation mode

S-AD Starting scores 6 Nominal

NMA-AD Activity scores 8 Nominal

DMA-AD Activity scores 5 Degraded

AD model and training a new one allows preserving the
old behavior of the legitimate user when he/she goes back
to it, e.g., after the end of quarantine caused by covid-19.

4. Otherwise, if the user fails in multi-factor authentication,
the other hand, the SHS recovery feature is performed
(cf. Sect. 3.3.2) and the user is logged out.

4 Empirical performance evaluation

In this section, we conduct an empirical evaluation to show
the efficiency of our proposed framework through differ-
ent anomaly detection and user authentication metrics. The
choice of this validation methodology instead of others, such
as formal verification [48,49], is mainly motivated by the
adopted behavioral anomaly detection-based approach to
detect malicious SHS devices operations. Indeed, anomaly
detection uses a large amount of data collected and processed
during both the enrollment and analysis stages, where AD
models are trained and tested, respectively.

In this regard, we address the following research ques-
tions:

– RQ1: What is/are the best combination(s) of inactivity
threshold for user session identification, and Day Seg-
mentation to get a better authentication performance?
(Sect. 4.3).

Fig. 13 Workflow of SA-TRR-ICA-action manager (SA-TRR-ICA-
AM)

– RQ2: Using the obtained combination(s), what is the
authentication performance of Duenna in different smart
home layouts and devices? (Sect. 4.4).

– RQ3: How Duenna performs compared to similar frame-
works? (Sect. 4.5).

– RQ4: What is the best value for the lockout threshold for
an effective trust-based verification? (Sect. 4.6).

– RQ5: What is the computational complexity of incre-
mental anomaly detection compared to the regular one?
(Sect. 4.7).

4.1 Evaluation datasets

As described in the enrollment stage (Sect. 3.2.2), three types
of data are used to train probabilistic andADmodels viz., user
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Table 9 Description of our
adapted dataset

House A House B House C

# of days 24 27 20

# of physical activities 10 13 16

# of control commands 2126 2580 1396

# of control commands per day (mean) 84 90 68

operation log, SHS states log, and user activity log. Although
several datasets such as KDDCUP99 [50] and CICD2017
[51] have been created over the past two decades for evalu-
ation purposes of BAD-based security systems, they do not
include any specific characteristics of IoT-based systems as
these datasets do not contain sensors’ reading data or IoT
network traffic [52]. Fortunately, to remedy the lack of such
type of data, some IoT-specific datasets have been seen in
the literature recently. In this section, we present the datasets
which we use to evaluate our proposed framework. In partic-
ular, we propose an adaptation of a non-IoT-specific dataset
to generate our SHS-specific dataset. Besides, we use another
IoT-specific dataset that is publicly available.

4.1.1 Our adapted dataset

Since it has been extensively used in many ambient intel-
ligence applications such as SHS recommender systems
[53,54], the history data of user physical activities inside a
smart environment can be easily found in public repositories.
To generate an IoT-specific dataset from non-IoT-specific
ones, we propose to adapt the history data of manual oper-
ation of appliances and objects by inhabitants in real-world
home environments and assume that this data belongs to a
controlling app manipulation.

The data we will be using for this purpose is the one col-
lected by the University of Amsterdam [55] which contains
three datasets (called houses A, B, and C). Each one of the
houses was instrumented with wireless sensors (e.g., con-
tact switches to measure open-close states of doors; pressure
mats to measure lying in bed, etc.) to record the activities
of one single inhabitant during several weeks. The activities
include both manual operation of different house appliances
(e.g., open door-lock, turn-on microwave) as well as daily
living activities (e.g., cooking, sleeping, etc.). Inhabitants of
three houses operate their appliances differently while per-
forming different activities, as depicted in Table 9.

4.1.2 DS2OS dataset

Distributed Smart Space Orchestration System (DS2OS) is
an open-source dataset publicly available on Kaggle [56]. It
has been collected in a virtual IoT environment comprising a
collection of micro-services during 24 hours. The simulated

Table 10 Frequency distribution of considered attacks in DS2OS
dataset

Attack Frequency count % of total data

Denial of service 5780 57.70

Scan 1547 15.44

Malicious control 889 08.87

Malicious operation 805 08.03

Spying 532 05.31

Data type probing 342 03.41

Wrong setup 122 01.21

devices include eight types of devices viz., light controllers
(22 instances), temperature controllers (20 instances), move-
ment sensors (21 instances), washingmachines (3 instances),
battery sensors (6 instances), door lock sensors (5 instances),
4 heating control sensors (4 instances), and smartphones (3
instances). The size of the collected dataset is 357952 sam-
ples including 347935 samples representing normal behavior
and 10017 samples representing anomalous data. Table 10
shows the frequency count and percentage of the considered
attacks.

4.2 Selection of anomaly detectionmodel and
evaluationmethodologies

As explained in Sect. 3.2.2, Duenna considers incremental
unsupervised AD models to be trained in the enrollment
stage. While several models could be found in the litera-
ture [57], our selection is based on practical applications
in the past and the attention in the scientific community. In
particular, we use the One-Class Support Vector Machines
(OCSVM) [58]. The advantages of using the OCSVM tech-
nique for anomaly detection are the theoretical support of
the algorithm, being model-based, and fast in testing future
instances. Besides, it has shown high performances in detect-
ing anomalies in many other application domains compared
to other AD models [59]. One incremental version of such
model (i.e., iOCSVM) has been recently proposed and its
efficiency has been shown compared to contemporary batch
and incremental one-class classifiers [60]. In the following
two sub-section, we present how iOCSVM is evaluated using
each one of the described evaluation datasets.
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4.2.1 Evaluation methodology using our adapted dataset

Our adapted dataset contains the data of three users each in
one home environment; hence, three baselines (i.e., proba-
bilistic models, operation commands’ behavioral scores, and
iOCSVM models) are built over the extracted logs of each
user (i.e., user operation log, user activity log, and SHS states
log).

To test the performance of the anomaly analyzer; thus,
testing the iOCSVM, we would normally need labels that
tell whether an operation command is malicious or not. Since
our adapted dataset only contains legitimate users’ data and
does not include malicious operation commands, we pro-
pose to adopt a primary vs adversary strategy. Specifically,
since the evaluation dataset contains the data of three users
each in one home environment, three baselines (i.e., proba-
bilistic models, operation commands behavioral scores and
iOCSVM models) are built over the extracted logs of each
user (i.e., user operation log, user activity log, and SHS states
log). At each time, one inhabitant is designated as the pri-
mary user where his/her iOCSVM models are considered
for the evaluation, whereas the two remaining inhabitants
are considered as adversaries and their operation commands
behavioral scores are considered as the testing data. After
that, a part of the behavioral scores of the primary user is
also included in the behavioral scores of the two adversaries.
This process is then repeated, designating each of the other
inhabitants as the legitimate user in turn.

To make sure that the performance evaluation results will
not be biased or coincidental, cross-validation is employed.
However, since we are dealing with a time-series data, the
chronological order has to be maintained when splitting data
into training and test datasets, i.e., instances included in the
training set should be all earlier than the ones included in the
test set. To do so, we employ a fivefold cross-validation on a
rolling basis as depicted in Fig. 14.

In the first round:

1. We pick up the first 30% from the primary user’s scores to
train the ADmodels. Specifically, the scores are split into
daily timeframes where the number of days equivalent to
the percentage is rounded off. For instance, since the data
of House A is recorded during 24 days, the first 30% of
data denotes 7 days.

2. On one hand, the 30%-part (including starting and
activity scores) is used to train S-iOCSVM and NMA-
iOCSVM models, respectively.

3. On the other hand, the next 20%-part from the primary
user’s scores is picked up and then combined with the
behavioral scores of each adversary to construct the final
testing scores.

Fig. 14 Cross-validation on a rolling basis

However, in each one of the four following rounds:

1. We combine the 20%-part used for testing with the previ-
ous part. For instance, in the second round, we combine
the 20%-part used for testing with the 30%-part used for
training to get 50%-part of all data.

2. Then, we pick up the next 20%-part as the new testing
scores.

In each one of all five rounds:

1. The previously trained AD models are exported to be
tested on the corresponding final scores.

2. The anomaly detection results of both models are com-
bined to be evaluated.

4.2.2 Evaluation methodology using DS2OS dataset

Since the collected DS2OS dataset refers only to one user,
a single regular baseline (i.e., probabilistic models, opera-
tion commands behavioral scores, and iOCSVM models) is
built over the extracted logs of this user (i.e., user operation
log, user activity log, and SHS states log). The advantage
of this dataset is that multiple attack scenarios are consid-
ered in the dataset and thus malicious operation commands
are available. The behavioral malicious of anomalous com-
mands from each considered attack are calculated using the
legitimate user baseline.

To test the performance of the anomaly analyzer; thus,
testing the iOCSVM,we also employ a similar fivefold cross-
validation on a rolling basis (cf. Fig. 14).

4.3 Inactivity threshold and day segmentation
tuning

During the enrollment stage, two variable parameters are
used when preparing the history logs for the construction of
the probabilistic models. Specifically, since we are following
an inactivity-based identification strategy in extracting user
session logs, choosing the best inactivity threshold to identify
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Table 11 Day segmentation
candidates

Candidate # of periods Segmentation

1 2 Night: [’00:00:00’,’07:59:59’],Day: [’08:00:00’,’23:59:59’]

2 3 Night: [’00:00:00’,’07:59:59’], Day: [’08:00:00’,’17:59:59’], Evening:
[’18:00:00’,’23:59:59’]

3 4 Night: [’00:00:00’,’07:59:59’], Morning: [’08:00:00’,’11:59:59’],Afternoon:
[’12:00:00’,’17:59:59’], Evening: [’18:00:00’,’23:59:59’]

a session is challenging. Besides, in log segmentation where
the corresponding period of the day is added to each record
in the logs, choosing the best day division is also challeng-
ing. Since the behavioral scores used to train the iOCSVM
models are calculated from the probabilistic models, differ-
ent combinations of the two parameters would give different
authentication results.

To find the combination (or the set of combinations) that
better fits different history logs of the users from both eval-
uation datasets, different candidates of inactivity threshold
and day segmentation are first applied to calculate behav-
ioral scores. Then, the trained iOCSVM on the set of
scores is evaluated using the Area Under the ROC Curve
(AUC) metric. AUC measures the degree of separability of
the iOCSVM between primary and adversary classes using
various anomaly threshold settings. Finally, the optimal com-
binations are selected for training the final iOCSVMmodels
to be evaluated. For the inactivity threshold, a range of values
varying from 1 minute to 1 hour is employed to extract the
sessions’ logs. While for day segmentation, three candidates
wherein the 24-hours-a-day are divided into two (2) or more
periods with unequal lengths are used for logs segmentation,
as depicted in Table 11.

Figures 15 and 16 show the AUC trend with different day
segmentation and inactivity threshold candidates using our
adapted dataset andDS2OSdatasets, respectively.As one can
see in these figures, manipulating different day segmentation
and inactivity threshold candidates gives different AUC val-
ues. We can see that the AUC value certainly gets improved
with small IT values. In particular, IT values smaller than
900 seconds and smaller than 100 seconds are the best val-
ues that we can use for extracting user sessions log regarding
our adapted dataset and DS2OS datasets, respectively. How-
ever, the three segmentation candidates give almost similar

AUC values for both datasets and do not have a considerable
impact on the user behavioral pattern.

4.4 Authentication performance evaluation

After determining the best values of the two parameters for
both evaluation datasets, we use this combination to train and
test the performance of iOCSVMmodels following the same
training and testing cross-validation process (cf. Fig. 14).
This is called nested cross-validation (CV) as we are using
two CV procedures. Since the goal of anomaly analyzer is to
identify adversaries without incorrectly rejecting the legiti-
mate user, we calculate the fraction of adversary operation
commands that are incorrectly accepted, better known as
False Acceptance Rate (FAR), whereas, to measure the legit-
imate user convenience level, we calculate the fraction of
authorized operation commands that are incorrectly rejected,
better known as False Rejection Rate (FRR). It should be
noted that the chosen anomaly threshold (often called cutoff
in ML terms) is 0 since the anomaly score varies in [-1, 1].

Tables 12 and 13 show the mean value of authentication
metrics among the obtained fivefold values using our adapted
dataset and DS2OS dataset, respectively. In particular, we
have chosen a small value of inactivity threshold equal to
400 seconds and 100 seconds for the former and the latter
dataset, respectively.

We can see that the FRR reaches in the worst case a value
of 4.84% and 3.23% for our adapted dataset and DS2OS
dataset, respectively. Such a low rate ensures a high level of
user convenience since a legitimate user is rarely prompted
to re-authenticate. On the other hand, the FAR successfully
reaches the optimal value with 0.00% for our adapted dataset
while reaching in the worst cases a value of 2.30% for the
DS2OS dataset. Such a low rate makes sure that Duenna is

Table 12 Authentication performance results using our adapted dataset (N/A means that metric could not be calculated for primary vs itself)

Primary
User 1 User 2 User 3

Adversary Accuracy FAR FRR Accuracy FAR FRR Accuracy FAR FRR

User 1 N/A 1.0000 0.0000 0.0206 0.9720 0.0000 0.0206

User 2 0.9831 0.0000 0.0476 N/A 1.0000 0.0000 0.0484

User 3 1.0000 0.0000 0.0452 0.9912 0.0000 0.0452 N/A
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Fig. 15 AUC trend with different day segmentation and inactivity
threshold candidates using our adapted dataset

Fig. 16 AUC trend with different day segmentation and inactivity
threshold candidates using DS2OS dataset

Table 13 Authentication performance results using DS2OS dataset

Attack Accuracy FAR FRR

Denial of service 0.9776 0.0110 0.0074

Scan 0.9896 0.0000 0.0260

Malicious control 0.9926 0.0050 0.0010

Malicious operation 0.9960 0.0000 0.0104

Spying 0.9896 0.0026 0.0000

Data type probing 0.9963 0.0107 0.0007

Wrong setup 0.9995 0.0230 0.0323

Mean 0.9944 0.0074 0.0109

efficiently not accepting any adversary thus ensuring a high-
security level. In particular, the lowFARvalue, obtained from
DS2OS dataset which includes real attacks examples, has
successfully shown that Duenna is resistant to them.

4.5 Comparison of Duenna with similar frameworks

In addition to the previous versionofDuenna [17], someother
existing frameworks have been also leveraging BAD-based
security approach to secure IoT-based systems. For those
specifically designed to protect SHS devices from unautho-
rized operation, we can find SoftAuthZ [15], [18], and [13]
(cf. Sect. 2.3.2), whereas other frameworks have been gen-
erally designed for IoT-based systems viz., [61], [62], and
[63].
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Table 14 summarizes the AD techniques used by these
frameworks as well as the datasets and the performance
metrics used for their evaluation. In particular, the previ-
ous version of Duenna [17], SoftAuthZ [15], [18], and [13]
has only conducted simulation-driven experiments for per-
formance evaluation, whereas [61], [62], and [63] have been
evaluated using the real-world DS2OS dataset. In contrast,
our proposed framework has been evaluated using both our
real-world adapted dataset as well as DS2OS dataset.

Figures 17 and 18 show the comparison of Duenna with
the presented similar frameworks by anomaly detection accu-
racy and FRR, respectively. In terms of accuracy, evaluated
on our adapted dataset, Duenna outperforms similar works
that are evaluated on their own synthetic datasets but not
those evaluated on DS2OS. However, applied on this latter
dataset, Duenna outperforms similar work evaluated on such
dataset. In particular, in terms of False Rejection Rate (FRR),
it outperforms other frameworks when evaluated on both our
adapted dataset as well as on DS2OS dataset.

We explain this outperforming that Duenna uses a mul-
titude of behavioral scores in contrast to SoftAuthZ [15]
and [13] that only use a single user behavioral feature
viz., variability between operation commands and opera-
tion sequence, respectively. Besides, incremental OCSVM
adopted by Duenna gives higher performance than other
AD techniques such as Linear Regression [15], the batch
OCSVM [17], Clustering [61], and Random Forest [63].

4.6 Lockout threshold tuning

Asdiscussed in theTRR-ICAactionmanager (cf. Sect. 3.3.2),
a user is logged outwhen his/her trust reaches a specific value
called lockout threshold. It is challenging to choose such a
threshold since a value that is near the reward upper bound
(parameter C in Equation 1) is likely to lock the legitimate
user very quickly. This choicemakes iOCSVMvery sensitive
to FRR. On the other hand, a threshold that is distant from the
reward upper bound is likely to let adversaries manipulating

Fig. 17 Comparison of Duenna with similar frameworks by accuracy

Fig. 18 Comparison of Duenna with similar frameworks by false rejec-
tion rate

devices for too long before getting locked making iOCSVM
models very sensitive to FAR. Consequently, it is important
to choose the best threshold assuring that an impostor user
can do as little as possible while not locking legitimate too
quickly. For doing so, we measure two metrics [46] to follow
the impact of different threshold values: 1) Average Number

Table 14 Comparison of Duenna with similar frameworks

Work AD technique Dataset used Performance metrics

[17] OCSVM Own synthetic FRR=0.0412

[15] Linear regression Accuracy=0.80

[18] Association rules Accuracy=0.92

[13] Trees Accuracy=0.79 FRR=0.1447

[61] BIRCH Clustering DS2OS Accuracy=0.99 FRR=0.2

[62] Random Neural Network (RaNN) Accuracy=0.9920

[63] Random Forest Accuracy=0.994

Duenna iOCSVM Our adapted dataset Accuracy=0.9720 FRR=0.0484

DS2OS Accuracy=0.9944 FRR=0.0153
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Fig. 19 ANGA andANIA trendwith different lockout threshold values
using our adapted dataset

Fig. 20 ANGA andANIA trendwith different lockout threshold values
using DS2OS dataset

of Genuine Actions (ANGA) which is the average number
of operation commands requested by the genuine user before
locked by the system, and 2) Average Number of Impostor
Actions (ANIA) which is the average number of operation
commands requested by the adversarial user before locked
by the system. The goal is obviously to have ANGA as high
as possible, while at the same time the ANIA value must be
as low as possible.

Figures 19 and 20 show the trend of ANGA and ANIA
using different values of lockout threshold for our adapted
dataset and DS2OS dataset, respectively. It should be noted
that the values of ANGA andANIA are scaled in the range of
[0, 1] for good visualization. In the beginning of both figures,
we can see that as long as the lockout threshold increases,
ANIA value decreases while ANGA stays steady. This is a
good indicator since our objective is to maximize ANGA
and minimize ANIA as possible. However, ANGA begins
to decrease starting from lockout threshold = 91, 91, 78 for
our adapted dataset and starting from lockout threshold =
90 for DS2OS dataset. Since the decrease in AGNA is; we
pick the minimum threshold among the three values for the
first dataset (i.e., 78) and 90 for the second one. We consider
the chosen values as the best thresholds that gives a good
combination of both ANGA and ANIA values.

Using the selected lockout threshold for our adapted
dataset, Table 15 shows the mean value of AGNA and
ANIA for all possible primary vs adversaries (NA means
that ANGA could not be calculated as it only concerns the
primary user against itself), whereas, for DS2OS datasets,
we have found that the mean value of AGNA and ANIA is
1245 and 11, respectively.
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Table 15 AGNA and ANIA results using our adapted dataset

Primary
User 1 User 2 User 3

Adv. AGNA ANIA AGNA ANIA AGNA ANIA

U1 745 N/A N/A 5.75 N/A 9.08

U2 N/A 5.88 569 N/A N/A 7.18

U3 N/A 5.88 N/A 7.97 860 N/A

From the obtained results from both datasets, we can
see that the big values of ANGA show that the legitimate
user is never locked out, whereas, for ANIA we can see
that an adversary can perform at most nine (9) actions
before getting logged out. We recall that the action manager
recovers devices to their initial states although these nine
operation commands have been executed (cf. SHS Recov-
ery, Sect. 3.3.2).

4.7 Evaluation of computational complexity

In our previous work [17], the regular batch OCSVM has
been adopted as the AD model, whereas, in this paper, we
adopt the iOCSVMwhich can be updated incrementally. Yet,
this interesting feature needs more computational time and
resources. Figure 21 shows the required training time for reg-
ular OCSVM and incremental OCSVM for different sizes of
training data. We can see that iOCSVM exponentially needs
more time to be trained when data size increases compared
to the regular one.

However, we argue that besides the advantage of updating
iOCSVM without being re-trained from scratch in contrast
to regular OCSVM, the added delay in training time does not
pose a problem. On one hand, since the training of iOCSVM
models in the first stage is done offline before user operation
commands are being analyzed, the time needed for the train-
ing does not affect the user experience and can be accepted.
On the other hand, during the interactive operation, iOCSVM
models are only updated with new executed commands (i.e.,
after the user session has finished). Using the optimal values
of inactivity threshold and day segmentation, we have found
that the maximum length of user sessions does not surpass
50 operation commands. As shown in Fig. 22, with such a
small number of training instances, iOCSVM does not need
a remarkable training time compared to the regular OCSVM.

5 Conclusion

Compromising security credentials used to authenticate to
the controlling app, hijacking the controlling device itself
(e.g., smartphone), or being manipulated by informed adver-
saries such as family members are some of the serious

Fig. 21 Logof training time (permodel) in seconds for regularOCSVM
and incremental OCSVM for different sizes of training data

Fig. 22 Log of training time in seconds for regular OCSVM and incre-
mental OCSVM for different length of user sessions

security concerns for smart home systems (SHS) consumers.
Indeed, such concerns are because adversaries may exploit
them to maliciously operate SHS devices. Without integrat-
ing the behavior analysis of both SHS and its users, current
techniques cannot efficiently prevent the unauthorized oper-
ation of SHS devices.

To address this problem, this paper presents a new anoma-
lous behavior detection-based approach. In particular, we
hypothesized that SHS users tend to follow typical and dis-
tinctive behavioral patternswhen operating their IoT devices.
Therefore, users that attempt to operate devices differently
from such a regular behavior are considered malicious. Such
an approach was our basis to build Duenna: an authentication
framework for SHS users. Duenna secures SHS IoT devices
from unauthorized operation by continuously authenticating
operation commands and only allowing those that have been
seen in the previously built behavioral patterns of the legiti-
mate user.
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We have conducted an extensive empirical evaluation on
real-world SHS datasets including our adapted dataset and
DS2OS dataset. Performance results obtained from experi-
ments validate the ability of Duenna to differentiate between
different SHS users as well as its resistance to real attacks.
Specifically, Duenna exhibits high authentication rates in
terms of anomaly detection accuracy, false acceptance rate,
and false rejection rate; thus, ensuring both security and user
experience. These results also show that such a user behavior-
based approach is a promising security scheme that could be
integrated into existing SHSs.

As a part of future work, we aim to investigate how
the anomalous users’ patterns that become available from
rejected commands can be used to enhance authentication
rates. Besides, we also aim to leverage BAD-based security
approach to secure other IoT-based systems.
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