
A Survey on Analyzing Encrypted Network Traffic of Mobile Devices

Ashutosh Bhatiaa, Ankit Agrawala Ayush Bahugunaa, Kamlesh Tiwaria, K. Haribabua, Deepak Vishwakarmab

a Dept. of Computer Science and Information Systems, Birla Insitute of Technology and Science Pilani, Pilani Campus, Jhunjhunu 333031, Rajasthan, INDIA
b Center for Artificial Intelligence and Robotics, Defence Research and Development Organisation (DRDO), Bangalore, INDIA

Abstract

Over the years, use of smartphones has come to dominate several areas, improving our lives, offering us convenience, and reshaping
our daily work circumstances. Beyond traditional use for communication, they are used for many peripheral tasks such as gaming,
browsing, and shopping. A significant amount of traffic over the Internet belongs to the applications running over mobile devices.
Applications encrypt their communication to ensure the privacy and security of the user’s data. However, it has been found that
the amount and nature of incoming and outgoing traffic to a mobile device could reveal a significant amount of information that
can be used to identify the activities performed and to profile the user. To that end, researchers are trying to develop techniques to
classify encrypted mobile traffic at different levels of granularity, with the objectives of performing mobile user profiling, network
performance optimization, etc. This paper proposes a framework to categorize the research works on analyzing encrypted network
traffic related to mobile devices. After that, we provide an extensive review of state of the art based on the proposed framework.

1. Introduction

The immense growth in the area of communication technol-
ogy has been noticed in the last decade. In a short span of time,
mobile devices become an integral part of our daily life. Nearly
45.04% of the world population (3.50 billion) use smartphones
[1]. It is predicted by Statista that by the year 2023, this num-
ber will reach near to the present world population. The ways
of accessing the Internet all over the world have been chang-
ing; desktop computers/laptops are no longer the preferred way
to access the Internet, mobile devices own a significant amount
out of total internet traffic. Currently, around 50% of total in-
ternet traffic is being generated only through mobile devices,
and it is expected to grow more as new technologies, e.g., 5G,
will become more and more of a reality. As forecasted by the
Cisco Visual Networking Index, 77 exabytes traffic per month
is expected to be generated worldwide by mobile devices by
2022, and such amount of traffic would be around 20 percent of
global IP traffic [2]. The Ericsson Mobility Report states that
this number nearly doubled between Q1 2018 and Q1 2019, and
predicts mobile traffic to reach 131 exabytes per month by 2025
[3].

There are various user-friendly behavioural mobile applica-
tions such as Facebook and WhatsApp that are frequently used
and generates a significant amount of internet traffic. Accord-
ing to the Statista 2019 report [4], 2 billion users are access-
ing WhatsApp every month, and 1.3 billion users are accessing
Facebook messenger. A large fraction of Internet traffic origi-
nating from smartphone devices carry users’ personal and be-
havioural information. A primary concern regarding these plat-

?This work was supported by Center for Artificial Intelligence and Robotics
Lab. DRDO India.

forms is data privacy since most of the content is personal. Ex-
ternal agents can tap the information flowing through the Inter-
net at various levels by employing suitable data capturing tech-
niques. For example, an attacker can install a malware in the
targeted device and remotely command it to fetch sensitive in-
formation, including network traffic, without the user’s knowl-
edge. Hence, Most of the mobile applications implement en-
cryption mechanism while transmitting the data over the Inter-
net to protect the privacy of the user. Additionally, peer-to-peer
applications such as eMule and BitTorrent have also recently
added encryption capabilities in their transfer mechanisms to
avoid detection of its presence.

Moreover, authorities may want to analyze the mobile traffic
in the interest of citizens’ safety and national security. Further-
more, social media has become one of the popular platforms
for ease communication. Even though social media helps in
connecting with friends and family, the activities performed in
social media have started affecting national security. So there is
a need to have legal agencies/authorities who can keep an eye
on the suspected activities performed by users over social media
platforms. Such agencies are not alone in the desire to analyze
mobile network traffic. Furthermore, Internet service providers
also perform NTA to discover the usage of network resources,
identify the users and application types, and use this informa-
tion for various controlling and monitoring purposes, including
billing, quality of service, security etc. [5]

In general, Network Traffic Analysis (henceforth referred
as NTA) refers to applying various methods for making infer-
ences from the network traces (collected at different points and
different layers in a communication system) about the type of
traffic, users, and type of devices corresponding to the traces.
In literature, the researchers have broadly taken two different
approaches to perform NTA for mobile devices. The first one

Preprint submitted to Computers & Security June 23, 2020

ar
X

iv
:2

00
6.

12
35

2v
1

 [
cs

.C
R

]
 2

2
Ju

n
20

20

is using inferential methods that preexist for classical Internet
traffic, and customizing them to work for Internet traffic per-
tains to mobile devices. The second approach is to design new
techniques specific to mobile Internet traffic, considering the
properties that differentiate it from traditional Internet traffic.

Naive web traffic classification schemes commonly use trans-
port layer port numbers to identify the applications, because
well-known applications run on a specific port number. How-
ever, such schemes are not suitable for classifying mobile traf-
fic, as most mobile applications use the application layer i.e.,
HTTP/ HTTPS, for communication purposes. [6]. Another ap-
proach is Deep Packet Inspection (DPI) [7], which is used to
classify the network traffic based on the payload inspection of
TCP and UDP packet data. In order to do that, DPI searches
for the signatures made up of the characteristics features of the
applications.

NTA is a challenging task to perform over encrypted data
as the payload is encrypted, and it is not easy to extract the in-
formation by just inspecting the payload. However, researchers
have observed that some factual information can be revealed
from the encrypted payload to identify the applications and its
users associated with a particular traffic flow [8]. Machine learn-
ing and deep learning-based traffic analysis techniques are found
more suitable to extract the traffic features and classify the en-
crypted network traffic [9]. Countermeasures against statistical
approaches to traffic analysis are not straightforward. A com-
mon underlying assumption is that padding is an efficient coun-
termeasure against statistical analysis [10]. Although some suc-
cess has been shown in protecting browser generated traffic [11]
and the efficacy of traffic morphing [12], none of these tech-
niques may be effective against robust analysis [13].

Mobile application platforms protect users’ privacy by en-
crypting the data, making analysis hard. It may be crucial,
for many reasons, to analyze such encrypted traffic and make
useful inferences about the nature of the traffic and the mobile
user. The ultimate aim of an organization (enterprise, govern-
ment agency, Internet service provider) to perform encrypted
traffic analysis targeting the mobile device, could be to support,
Intrusion detection system, develop intelligence against cyber
terrorism, profiling of mobile users, forensic analysis for cyber-
crime, quality of service provisioning in the network and net-
work behavioral management [14]. As a consequence, several
researchers have recently started investigating the techniques of
performing NTA explicitly for the traffic of mobile devices.

In this paper, we provide a comprehensive literature review
to investigate state of the art work on analyzing the encrypted
mobile traffic using machine learning techniques. The paper
makes following explicit contributions.

• We categorize each work according to three different cri-
teria:
1) objective of the analysis;
2) methodology adopted for ground truth construction,
i.e., data generation, capturing and tagging techniques
and;
3) technique to perform the classification, i.e., machine
learning algorithm, input to the ML model, and feature

selection.

• We discuss in detail the salient differences between the
traditional web traffic, i.e., traffic generated using desk-
tops/laptops/servers and web traffic targeting mobile de-
vices. Such differences restrict the use of existing analy-
sis techniques available for traditional web traffic without
any modification.

• While discussing each work with one of the identified
objectives, we provide an insight into the dataset used
and the methodology adopted for classification. We also
discuss possible countermeasures to thwart mobile traf-
fic analysis and provide meaningful insights about chal-
lenges and pitfalls related to the topics that have been
investigated and identify possible future research direc-
tions.

We believe that our work will help researchers to explore the
research gaps in this field and stimulate new research trends.

The rest of the paper is organized as follows. In section 2,
we explain the difference between mobile and non-mobile In-
ternet traffic characteristics to justify why many researchers are
working on the NTA of mobile devices explicitly. Section 3 dis-
cusses several potential applications of performing NTA by ad-
versaries, various federal agencies, and network administrators.
In Section 4, we discuss the widely used security protocols, and
the ways of accessing information from encrypted network traf-
fic. In sections 5, we elaborate upon our classification frame-
work to categorize the existing works. After that, in section 6,
we discuss the current situation in the field of NTA targeting
mobile devices based on proposed classification framework. In
section 7, we discuss the potential countermeasures discussed
in the literature to thwart the encrypted traffic analysis. Section
8 concludes the paper by discussing a few potential research
challenges in this field.

2. Mobile vs Non-Mobile Traffic Characteristics

In this work, we refer the Internet traffic in two categories,
1) Mobile traffic: the traffic of mobile devices such as smart-
phones and tabs, and 2) Non-mobile traffic: the traffic asso-
ciated with the traditional way of accessing the Internet such
as using desktops and laptops. In this section, we discuss how
the Internet traffic characteristics vary between mobile and non-
mobile traffic to understand the differences and performing anal-
ysis of the traffic belonging to these categories.

As far as Internet traffic is concerned, we restrict ourselves
to client-server based communication and keep peer-to-peer com-
munication generated by torrent clients or TOR browsers out-
side the scope. Further, the traffic in both the categories is
divided in two sub-categories: browser-based and app-based
traffic. The browser-based traffic refers to when individuals use
their smartphones, tablets, desktops, or laptops to view online
content via thin clients like Internet browsers. Whereas, the
traffic generated by the thick clients, i.e., individual applica-
tions running on the device, is referred to as app-based traffic.

2

The mobile-traffic and non-mobile traffic differ in many ways,
and hence, the NTA techniques and related challenges. In the
following, we highlight salient features of Internet traffic that
differ between mobile traffic and non-mobile traffic and thus
make mobile traffic analytic separate from non-mobile traffic
analytic.

2.1. Protocols (Transport and Application)
While categorizing the network traffic based on the trans-

port layer and application layer protocols, it has been found that
the significant part of the traffic generated by both device types
is either TCP or UDP based. However, the amount of TCP traf-
fic is much more than UDP. In the view of comparing traffic,
the amount of UDP traffic generated by mobile devices is much
less than the non-mobile devices [15].

In consideration of application protocol, most of the traf-
fic generated by both belong to web protocol, i.e., HTTP and
HTTPS. It has been found that HTTP protocol is the most widely
used protocol in the mobile app-based traffic by examining the
HTTP header using user-agent strings for each device. Most
mobile applications take help from some standard libraries for
communication purposes, and these libraries add some fields in
the user-agent-strings, which helps to identify certain mobile
applications [16]. Applications in the Apple devices use some
standard libraries for communication purposes like the Apple
CFNetwork library, which adds its version number and name to
the end of user-agent strings. User-agent strings make it easy
to create some patterns/signatures to identify and classify the
HTTP protocol used in the network. Mobile devices generate
more HTTP traffic than non-mobile devices [16][15]. It has
been observed that 82% of HTTP traffic is generated by non-
browser applications in mobile devices, compared to 10% of
non-mobile [15]. HTTP-based video streaming mobile traffic is
accounted for 42% of total mobile HTTP traffic, whereas it is
around 23% for non-mobile devices.

Another parameter used to compare mobile and non-mobile
traffic is the distribution of HTTP object sizes. On average,
HTTP object size downloaded by mobile devices is larger than
other devices [16]. Browser is the most popular application
in mobile phones. Another observation is that the application
size downloaded by non-mobile devices is larger than mobile
phones.

HTTP protocol usage can be easily identified with the help
of patterns created with the help of the user-agent string. How-
ever, It is not easy to detect non-HTTP traffic as other applica-
tion protocols like POP does not add any required information
in the user-agent string. Another characteristic of network de-
vices is their IP TTL, whose default value is different in popular
mobile devices. For example, the default TTL of the window is
128, and the TTL value for Macs is 64 [16].

2.2. Traffic Flow Characteristics
Another way to compare mobile and non-mobile traffic is to

use the characteristics of the traffic flow generated by them. In
general, traffic flow can be defined as a sequence of packets sent
from source to destination during a specific interval. For exam-
ple, the sequence of packets that are exchanged over a TCP

connection can be considered a flow. For non-TCP traffic, such
as UDP, a flow can be defined as a sequence of packets hav-
ing the same value of specific packet header fields: Source IP
address, Destination IP address, Source port, Destination port,
and the name of the protocol.

We use the number of packets per flow, flow size, flow du-
ration, and the flow rate as flow characteristics to discuss the
difference between mobile and non-mobile traffic.

1. Number of packets per flow: The number of packets in
a traffic flow generated by mobiles is much higher than
non-mobile traffic flow. By considering several differ-
ent types of devices and applications, the authors in their
study [17] found that 70% of the flow in non-mobile traf-
fic contains less than ten packets, whereas 60% of the
flow in mobile traffic contains less than ten packets.

2. Flow Size: Flow size can be defined as the summation
of each packet’s size in a flow. It has been observed that
the flow size is smaller in the traffic generated by mobile
devices than the traffic generated by non-mobile devices
[17][15]. Similarly, the ratio of download and upload
traffic generated by non-mobile users is 2.9:1, whereas
this ratio for mobile users is 5.9:1 [18].

3. Flow Duration: Flow duration can be defined as the du-
ration between the first packet and the last packet in a
flow or the duration between the connection make-up and
break-up time. According to studies, the flow duration is
shorter in the mobile-traffic than the traffic generated by
non-mobile devices [18][17][15]. In less than 50% of the
mobile generated internet traffic flow, the flow duration
is less than 1 second, whereas, in less than 45% of the
non-mobile traffic, it is less than 2 seconds [17]. A large
portion of Internet traffic is attributed to network-based
applications. With the consideration of a few specific ap-
plications, it has been found that the flow duration of mo-
bile traffic is five times shorter than non-mobile traffic.
IMAP and POP protocol based email traffic has shorter
flow duration in non-mobile devices traffic, and SMTP
based email traffic has shorter flow duration in mobile
devices traffic [15].

4. Flow Rate: Flow rate can be computed as the flow size di-
vided by the flow duration. Both mobile and non-mobile
devices have the same median flow rate of 10Kbps, but
only 10% of mobile flows are slower than 1 Kbps com-
pared to 30% of non-mobile flows [15]. The transfer rates
of the different classes of devices vary during the time of
trace periods. The median rates for non-mobile users are
512 B/s and 128B/s for mobile users. On average, the
transfer rate of non-mobile users is higher than mobile
users [18].

2.3. Background Traffic
In addition to interactive traffic generated by users who per-

form particular UI activity in a mobile application, mobile ap-
plications also generate background traffic for various purposes,
such as contacting their corresponding server to receive up-
dates, maintaining their current state, or synchronizing with

3

cloud services. For example, a newsreader app may generate
a lot of background traffic as it periodically polls a server for
the latest news. This situation is not very common in mobile
web traffic where the background traffic generated by the web
browsers is minimal. A study conducted by Time Stober et al.
[16] reveals that 70% of mobile traffic is background traffic,
whereas only 30% of mobile traffic is interactive. The study
also revealed that patterns in this background traffic highly de-
pendent upon the type of applications installed on the mobiles
and also on device configurations. Hence it needs to be consid-
ered distinct from background networking processes on desk-
tops. This variation in traffic patterns across multiple mobile
devices, due to the presence of background traffic, can be ef-
fectively utilized to fingerprint these mobile devices. On the
other hand, different mobile applications sometimes have sim-
ilar background traffic as they may be built upon similar soft-
ware libraries or application program interfaces (APIs that gen-
erate similar traffic irrespective of the mobile application in
which they have been used. This kind of similarity in back-
ground traffic further complicates the analysis of the traffic.

2.4. Services and Application Identification
With the combination of HTTP hostname, one of the fields

in HTTP message format is content-type, which allows identi-
fying the type of services accessed by the clients. After group-
ing the information getting from the content-type field of HTTP
header and analysis of the initial part of the HTTP body, we can
classify the mobile applications, multimedia content i.e., audio
and video, and the images. Octet stream content subtype is used
in 86% of mobile application type data and 51% of non-mobile
application type data [15]. RSS feeds, and MPEG-4 coding is
another common application subtype for mobiles, and shock-
wave and adobe flash are common application subtype for non-
mobiles. There are 185 different application subtypes available
accessed by non-mobiles, whereas 58 application subtypes are
available for mobiles. This massive difference in the availabil-
ity of application subtype shows that non-mobile devices run a
great diversity of applications. The traffic analysis for classi-
fying the application is performed by seeing the first packet of
each flow based on the protocols and port numbers. In order to
do that, they build a mapping between the MAC address and IP
address assigned to a device [18].

2.5. Network Usage
With network usage, we intend how much traffic applica-

tions impose on the network. A client application generates
traffic during active periods. The criteria to consider a client to
be active for a reporting interval is when the client sends at least
one packet per second during the interval. One interesting ob-
servation is that mobile users are active only for a short period
i.e., 40 to 80 seconds in an hour. Network usage also depends
on the weekdays or weekend. It has been observed that mobile
and non-mobile users’ network usage is varying during a whole
day on an hourly basis [18]. A considerable variation is found
in the activities done by mobile users than non-mobile users.
Non-mobile users performed more activities than mobile users
during the late afternoon.

2.6. Different Websites

A mobile phone’s prominent property is its mobility, as it
is smaller in size than a desktop computer. To keep the screen
size in mind, many companies have an option to redirect their
customer to a mobile-specific website or use another approach
called responsive design which adjust the website layout ac-
cording to the screen size. While accessing the internet, some
mobile-specific dimensions, such as device name, device type,
carrier network, and mobile browser, are inserted in traffic in
the form of user-agent strings. In contrast, desktop computers
are only concerned with operating systems and web browsers.

2.7. Identity Association:

Associating identity with non-mobile-traffic is hard as the
Internet could have been accessed from anywhere, like personal
or office computers or cyber cafes. For mobiles, unique users
can be identified via appropriate attributes like IMEI number
or device model number in mobile devices, which are more re-
silient identifiers than cookies, which can be deleted. Further,
due to mobile carrier contracts, people are often locked into us-
ing the same device for multiple years.

2.8. Browser-based vs App-based mobile traffic

Now we discuss salient differences between browser-based
mobile and app-based mobile traffic that makes network traffic
classification and analysis of mobile applications different from
browser-based mobile traffic. Traffic generated through Internet
browsers mostly use standard application layer protocols such
as HTTP and security protocols such as TLS, whereas the traffic
generated by mobile applications depends on the nature of ap-
plications and their implementation. Another critical property
that makes the nature of browser-based mobile traffic different
from app-based mobile is the length of sessions and the level
of activities inside the sessions. In general, the browser-based
mobile traffic is likely to have a more extended session than
app-based mobile traffic as mobile users frequently close the
applications when they are not using it. Session teardowns and
timeouts also impact analysis; session lengths are longer for
websites and short, ranging in seconds, for mobile apps, which
usually focus on a streamlined, service-oriented experience.

3. Applications of Network Traffic Analysis (NTA)

The critical question is, why would someone be interested
to know that a particular user or group of users used which ap-
plication or performed which activities on their mobile phone.
Internet traffic can be tapped anywhere in between the path
from its source to the destination and to perform NTA. Tapping
the traffic could be either a Law Enforcement Agency (LEA)
intending to perform NTA to deal with issues such as inves-
tigating a possible cybercrime, identifying the source of cy-
ber terrorism, building threat intelligence for the country, and
performing cyber forensics to investigate a criminal or non-
criminal case. Furthermore, social media helps connecting with
friends and family, but the activities performed in social media
have started affecting national security. So there is a need to

4

have LEAs who can keep an eye on the suspected activities per-
formed by users over social media platforms. Such agencies are
not alone in the desire to analyze network traffic, Internet ser-
vice providers also perform NTA to find out the usage of net-
work resources and to identify the users and application types,
and use this information for various controlling and monitoring
purposes, including billing in ISPs [19], quality of service, se-
curity, etc [5]. In addition to LEA and ISPs, the network admin-
istrators of an enterprise may also be interested in performing
NTA on incoming and outgoing traffic for a variety of network
management tasks. In the following section, we discuss the ex-
ample applications of NTA.

3.1. Applications for Attackers (Cyber Criminals)
Traffic analysis is considered as a severe threat to the net-

work users and network itself as network traffic is open to ac-
cess for all [20]. Attackers can make use of the information
about a network/device/application in an endless manner. Here,
we discuss a few ways in which an attacker can misuse the pri-
vate information of the victim.

The personalized phishing attacks may be launched by the
attacker if he is aware of the activity recently performed by the
victim over the Internet, such as visiting a job search portal
or using a health application. If a smartphone is being used
for home automation purposes, knowing the actions performed
over the mobile phone can help the attacker to get the infor-
mation about the presence of the owner of the mobile. The
attacker performs an attack using traffic analysis techniques in
order to infer the webpage visited by the user on the users’ mo-
bile phone [20]. Attackers can misuse the traffic features ex-
tracted by traffic monitoring. Attackers can find vulnerabilities
in a network by just analyzing the network traffic and using it
to his/her advantage. Attackers can identify the user’s identity
on a social media website like Facebook through traffic analysis
attacks [21].

Attackers can also use NTA techniques to observe the be-
havior of a social media user and then misuse that information
by making a fake profile. Adversaries monitor the traffic gener-
ated from instant messaging applications like WhatsApp, which
leaks sensitive information about their users [22].

NTA can help the adversary in identifying the operating sys-
tem of a mobile device. This OS identification can be consid-
ered as a starting point for an adversary in order to perform
further attacks on mobile devices [23]. No mobile operating
system provides 100% security. As a result, each one has a list
of vulnerabilities present in Common Vulnerabilities and Expo-
sures (CVE). If an adversary identifies an OS with its version,
then the adversary can exploit the vulnerabilities present in the
operating system to perform more effective and advanced at-
tacks.

Ad providers can be considered as a threat for mobile de-
vices because ad providers perform analysis on the traffic gen-
erated by the ads in order to get the user’s Personally Identifi-
able Information (PII). Ad libraries are being used to leak many
types of PII, i.e., gender, age, etc. However, ad providers are
not able to make a full user profile from the leaked information.
Adversary correlates the information by exploiting the UDIDs

in the ad traffic generated by many ad providers and trying to
build a full user profile [24]. To prevent the leakage of PII,
blocking the number of packets carrying PII or substituting the
personal information with bogus data can be considered as a
countermeasure against NTA.

3.2. Applications for Authorities (LEAs)

Social networking websites like Facebook, Instagram, Twit-
ter, etc. have provided ease of electronic communication and
have become one of the platforms for sharing information. How-
ever, these platforms are also being used to post illegal content,
rumors, spreading fake news, harassment to others by making
fake profiles, and other illegal tasks. The common crimes com-
mitted using social networking websites include cyberbullying,
stalking, hacking, frauds, fake profiles etc. NTA can help gov-
ernment agencies to detect and prevent such threats by identify-
ing the activities performed by people and who are doing such
crimes. NTA can be used to perform network behavior analysis
(NBA) to monitor unusual activities such as spreading rumors,
posting illegal information etc. performed by users over social
media [25]. Thus NTA helps in analyzing the post and reply
information of a user. NTA can also help in finding the Inter-
net usage pattern of a mobile user. The authorities can use the
information retrieved from the usage patterns to profile a user
for his/her gender, age, profession, etc. This information would
further help them to look for any unusual and suspicious behav-
ior [26]. Using more profiles of users, one can try to establish an
association between them by carefully looking at their time-line
of the online activities performed by them over the mobile de-
vice. For example, if we find a similar trend for traffic flow for
two persons, we can suspect them to be talking to each other.
Also, by analyzing their other activities, we can predict their
social conduct, which can help in tracking unsocial people.

3.3. Applications for Network Administrators/ISPs

NTA helps network administrators (NAs) or ISPs in the pro-
cess of network planning and management to improve the qual-
ity of network services, network behavior management, and the
security of the network. In general, we divide the applications
of performing NTA by the network administrators or ISPs into
two dominant categories Network Management and Network
Security.

3.3.1. Network Management
One of the critical goals of NTA is in monitoring the appli-

cation performance [8], utilizing, planning, and managing net-
work resources and allowing them to make application-related
policies within an enterprise network. NTA is used to perform
network behavior analysis (NBA), which is one of the tools for
network monitoring, and used to find abnormal behavior by an-
alyzing the activities performed by users [25]. NBA helps net-
work administrators to acquire users’ requirements, to optimize
internet marketing and network management, etc. There exist
thousands of network applications that run over a network and
consume different amounts of network resources. NTA allows
the network administrator to find out the applications which are

5

eating more resources than defined in their SLA (service level
agreement). Another usage of performing NTA is to find out the
popular websites visited by the users helping network adminis-
trators learn about users’ behavior and other related information
like visited website category, user’s preferences, etc. [25].

Additionally, the NTA may also help discover the unwanted
traffic generated by employees inside an organization such as
playing online games, watching movies, and other prohibited
tasks during the working hours. This information can then be
used to avoid wastage of bandwidth and other resources in the
network. NTA also helps the network administrators in trou-
bleshooting the problems efficiently. For example, it allows
NAs to know the underlying causes of being network slow-
down. One of the reasons is that most of the employees update
their anti-spam software at the same time due to the high uti-
lization of the link. The network administrator can make better
strategies to get rid of such problems.

QoS provisioning in the network uses a priori knowledge
about network characteristics to get the optimal performance
from the network. Traffic reports also help the NA to predict
the future load on the network. This information can be used
by NA for efficient budgeting of the resources to provide better
Quality of Services to the users. Such analysis can be of use for
various ISPs who can identify primary sources for bulk band-
width consumption. For example, a provider whose services
are being swamped by peer-to-peer file sharing might want to
detect and selectively throttle problematic connections. This is
a reasonably realistic example since P2P communications can
be incredibly demanding on a network, and because protocols
for file sharing between peers like BitTorrent are wildly used to
download data in bulk. In general, knowledge of traffic statis-
tics in advance can empower an ISP to accordingly control and
redirect resources to optimize services in a utilitarian manner.

3.3.2. Network Security
The Internet provides several services to users and ensuring

the availability of services is a vital concern. Denial of Ser-
vice (DoS) and Distributed denial of service (DDoS) attacks
are found as severe threats against service accessibility. NTA
is found one of the prominent solutions against such attacks
[8][27]. Attackers may inject trojans (a malicious code) in le-
gitimate software to control the target machine without its user
knowledge and send the user’s personal and valuable informa-
tion remotely to the attackers. Trojans are considered as a threat
to privacy and data security [28]. NTA helps detect the trojans.
NTA gets the answers to hard questions like who did it, how it
happened when it happened, and what are the things lost.

NTA helps NA to assess the behavior of network applica-
tions and even the whole network in order to detect or prevent
the leakage of personal information. Thus it helps in preserving
the privacy of users. NTA is used to perform network behavior
analysis (NBA), which is found as one of the prominent so-
lutions to identify security issues [25]. NBA is used to prevent
security threats by discovering the abnormal user behavior, thus
allowing us to detect anomalies in the network. Hence, Traffic
analysis allows NA to save time and money involved in the re-
covery process of the attack, which is about to occur. Moreover,

It helps in tracking the attackers and detecting the violations in
the security policies. If this situation occurs in the network, then
NAs can block the packets having such information or replace
that information with the bogus information. Another usage of
performing traffic analysis is to detect the malicious behavior of
an application trying to download or install the malicious code
in the victim device.

4. Encrypted Network Traffic Analysis

Due to the inherent properties of encryption in the network
traffic, statistical and frequency spectrum analysis of packet
data can be utilized to identify signatures and extract informa-
tion related to the captured traffic of a targeted user. Before
discussing works on classifying and analyzing the encrypted
network traffic explicitly generated by mobile applications, it is
essential to understand the generic methods of performing the
analysis of encrypted network traffic, irrespective of the plat-
form i.e., web traffic or mobile traffic. After that, we discuss
the differences between encrypted web traffic in general and
encrypted mobile traffic, which deter experts from using simi-
lar methods for both problems.

The information flow through the Internet should be pro-
tected against various types of attacks to protect users’ privacy.
That is why most Internet applications use encryption tech-
niques to secure the data while transmitting over the Internet.
As a result, it becomes challenging to perform NTA over en-
crypted traffic. The Internet is designed as the layered archi-
tecture that allows us to implement different security proto-
cols over different network layers. The most widely used secu-
rity protocols include TLS implemented at the transport layer,
IPSec implemented at the network layer, and other application-
specific security protocols, e.g., SSH protocol for remote login
application, message stream encryption (MSE) and protocol en-
cryption (PE) for BitTorrent etc. Here, we briefly discuss the
two most widely used security protocols: Transport Layer Se-
curity (TLS) and Internet protocol security (IPSec).

TLS is a security protocol that is implemented on top of
TCP protocol at the transport layer and used to provide end-
to-end security. TLS provides security to the application layer
protocols i.e. HTTP, FTP etc., which use TCP. TLS consists
of four protocols: handshake, alert, change-cipher, and record
protocols. However, major functionality is implemented in two
protocols only, handshake and record. TLS begins with the ini-
tial phase called handshake protocol, which is responsible for
the cipher suite (collection of cryptographic algorithms) nego-
tiation, authentication of both parties, and finally, the key estab-
lishment by exchanging certain security parameters. Some un-
encrypted information is exchanged during this phase until key
establishment. These keys with the negotiated cryptographic
algorithms are further used in the record protocol to establish
a secure session between the parties for transmitting the appli-
cation data. TLS encrypts the payload but does not encrypt the
transport layer protocol’s header. Therefore, it does not provide
traffic flow confidentiality as a passive attacker can always see
the TCP ports over which the communication is happening.

6

IPSec is a security protocol that is implemented at the net-
work layer to secure the communication between host-to-host,
network-to-network, gateway, and host. IPSec is mainly used in
the following: virtual private network, application-level secu-
rity, routing security. IPSec consists of mainly three protocols:
Internet Key Exchange (IKE), Authentication Header (AH) and
Encapsulating Security Payload (ESP). IKE protocol is respon-
sible for authenticating both parties, key establishment, and se-
curity association. The key establishment process includes the
negotiation of cryptographic algorithms and required keying
material. The data is securely transferred with the help of the
other two protocols in the light of transport and tunnel mode.
The transport mode does not encrypt the IP header of the orig-
inal packet. Thus the transport mode of operations provides
end-to-end security through a single tunnel. While tunnel mode
encrypts the original packets’ IP header, this mode of operation
provides many tunnels between end devices. This feature of
IPSec provides limited traffic confidentiality in the sense that
an attacker can only get the IP address of tunnel end-points in-
stead of actual source and destination IP addresses.

Most of the security protocols are implemented mainly in
two phases: The first one is the initial phase where both parties
authenticate each other and exchange the security parameters,
other required information without encrypting them. The sec-
ond one is the use of cryptographic primitives in order to secure
the transmission.

After performing traffic analysis, the information extracted
from the initial phase of security protocols helps in distinguish-
ing browsers, applications, and operating systems. The infor-
mation extracted from the initial phase of security protocols
i.e., the TLS handshake phase, helps estimate the user-agent
of HTTPS client [29]. User-agent is a field of HTTP request
header whose value is used for client identification and identi-
fies the operating system and application. Server Name Identi-
fication (SNI) is an extension of the TLS protocol. SNI allows
a client to indicate which hostname it is trying to connect with,
during the TLS handshake process. TLS protocol uses digital
certificates i.e., X.509 certificates, in order to authenticate the
parties. One party request a certificate from the other party and
the other party sends it. One of the fields in the X.509 certificate
format is a unique subject ID that uniquely identifies the peer to
whom the certificate is issued. X.509 certificate helps one party
in determining the other party involved in the communication
[30]. Traffic analysis helps in detecting man-in-the-middle at-
tacks with the help of SNI and certificate both. By perform-
ing traffic analysis, the information extracted from the X.509
certificates determines both parties identifiers, which helps in
uniquely identify the server involved in the communication and
even helps in detecting server changes and malicious software
[8]. Hence even though it is difficult to extract the information
from encrypted traffic, it provides some valuable information.

Another objective of NTA could be recognizing the stan-
dard cryptographic protocol used in the application. Account-
ing for the number of packets exchanged during the initializa-
tion phase, distributions of packet sizes, and their structure the
underlying protocol can be identified easily. PACE [31], Cisco
Network-Based Application Recognition (NBAR) [32], nDPI

Figure 1: Dimensions to classify the research on encrypted mobile traffic anal-
ysis

Figure 2: Objectives for performing encrypted mobile traffic analysis

[33] are some of the open-source classification libraries, writ-
ten in C and primarily based on pattern matching and statistical
analysis, that can recognize standard (TLS, SSH or IPSec) as
well as non-standard security protocols (Bittorrent and Skype)
from captured network traffic (encrypted or unencrypted). Hav-
ing information about the application layer protocols in use can
be constructive in further narrowing specifics of the application
related to the captured network traffic. However, to get granular
information about the captured traffic e.g., identification of the
application protocol or activities on a web site, analysis of the
encrypted transport phase is required.

Most of the internet traffic is encrypted as network appli-
cations use encryption schemes to secure the transmitted data
over the Internet. Two approaches can be found to extract the
information from the encrypted data. The first approach is to
decrypt the encrypted traffic and get the information, but for de-
cryption, the secret key is required, not publicly available. The
second approach is to extract information from encrypted traffic
only. Various NTA techniques can be applied over unencrypted
data packets in order to extract the information. One such tech-
nique is Deep Packet Inspection (DPI), which is used to classify
the network traffic by looking at the headers and payload of the
packets. However, DPI is not suitable for performing packet
inspection over encrypted data [34].

Encryption hides the content, but it does not change the se-
mantics of traffic flow characteristics [35]. As a result, quite
an ample amount of information is left for performing NTA.
Only encryption schemes cannot stop let obtaining information
by performing NTA. So such NTA methods are needed, rely
on the statistical feature of the traffic instead of the actual con-
tent. Statistical-based techniques can perform and classify the
characteristics of encrypted traffic and are less affected by en-
cryption than the DPI [8].

The methods of encrypted network traffic classification can
be broadly classified into two categories payload-based and feature-
based. In payload-based methods, the packet structure is cru-
cial for identifying the application protocol, whereas feature-
based methods leverage protocol flow characteristics for iden-

7

tification purposes. For payload-based classification, the same
open-source tools used for security protocol identification can
be used to identify the application protocol, as many applica-
tions in their initial phase follow a strict structure, just like the
security protocols. Therefore, the same pattern matching ap-
proach can be used.

Machine learning and deep learning-based traffic analysis
techniques are found more suitable to extract the traffic fea-
tures and classify the encrypted network traffic [9]. Over the
last decade, a large amount of research has been conducted
to design feature-based classifiers using supervised or semi-
supervised machine learning techniques as a second category
of methods, especially targeting the security protocols such as
TLS, IPSec, SSH, Bit-Torrent and other similar protocols. This
survey considers only those papers that use learning techniques
to perform NTA with specific objectives. These techniques
mainly focus on the features extracted from the traffic flow, i.e.,
flow characteristics, traffic behavior, and patterns.

In the following, we provide two examples to demonstrate
how performing NTA using statistical techniques can reveal
several critical privacy-related information about the user even
when the traffic is encrypted.

Website fingerprinting is one of the applications of traf-
fic analysis techniques. NTA attacks to the encrypted HTTP
traffic can reveal the website identity accurately. Encryption
schemes provide secure tunnels to hide the browser activities
from eavesdroppers, making it difficult to understand the data.
However, they do not hide the traffic flow characteristics like
packet length, the number of packets, timing, and packet direc-
tions. Such information leads to traffic analysis attacks, which
can reveal the identity of websites [36] [37]. Attackers may
find useful information regarding websites (URL, the content
of the Website) implementing Privacy-enhancing technologies
(PET) by performing traffic analysis. The attacks on Website
fingerprinting exploit the HTML pages’ structures and sizes, in-
cluding the objects of HTML pages. Attackers observe the fol-
lowing properties of an encrypted connection: packet size and
direction, and inter-arrival time to perform website fingerprint-
ing attacks [36], revealing password in SSH logins and many
more.

SSH is considered a secure remote login protocol that pro-
vides confidentiality and authentication. However, it consists
of two weaknesses, the way it uses the padding mechanism and
the sending of a separate IP packet after each keystroke. The
first weakness reveals the original packet size, and the second
weakness leaks the information about the inter-arrival timing of
packets. The first weakness can be exploited by using statistical
techniques to find sensitive information such as the password
length, and the timing information can be used to reveal the
characters what the user typed [38]. These two weaknesses can
lead to other severe attacks. The server sends one or more IP
packets in reply against receiving each packet sent by the client
after each keystroke. In the traffic signature attack, the attacker
can easily find when the user is typing a password if there is no
echo packet.

5. A Taxonomy for Encrypted Mobile Traffic Classification
and Analysis

As described in Fig. 3, we propose a classification frame-
work as the taxonomy to categorize existing works on NTA of
encrypted mobile traffic to have a clear understanding of state-
of-the-art in this area of research. The classification is done on
various levels. At the topmost level of the hierarchy, existing
research works can be distinguished based on their objective
of performing traffic classification and analysis, techniques em-
ployed to gather the data, and finally, the approach or methodol-
ogy applied to achieve these goals. Moreover, we have further
classified the data gathering techniques into a multilevel hierar-
chy, to be able to see a subtle differentiation between the related
works. Finally, we provide three different dimensions that can
be used to classify the approach or the methodology taken by
existing works on performing NTA of encrypted mobile traffic.

5.1. Objectives of performing analysis

Based on the objective of performing the classification and
analysis of encrypted mobile traffic, a particular mechanism can
be classified into the following four categories.

1. Predicting application class: Current mobile applications
can be broadly divided into categories such as instant
messaging, music, videos, gaming, mail, and social me-
dia applications. Besides the encrypted traffic generated
by these applications, statistical artifacts of the commu-
nication (size and inter-arrival time distribution) turn out
to be characteristic and do not change after performing
encryption. This allows traffic analysis through devel-
oping classification models that can identify underlying
implementations by matching temporal features. How-
ever, mechanisms to identify the class of application of
encrypted traffic are generic in the sense that they can be
used for both mobile and non-mobile traffic.

2. Detecting a specific application: Only knowing the cat-
egory or class of the application is not sufficient to get
the relevant details about the mobile users. Additionally,
an adversary might be interested in knowing the mobile
application responsible for the captured traffic. Infer-
ring application usage of mobile users can reveal much
personal information about their interests, hobbies, on-
line shopping traits, and the name of service provided
by obtaining financial, entertainment, and medical ser-
vices [39]. For this, the analysis has to be performed with
higher granularity to predict the application used by the
mobile user. A significant portion of research on analyz-
ing the encrypted mobile traffic falls in this category.

3. Detecting specific activity in an application: The applica-
tions installed on a smartphone can potentially reveal the
traits of its user. However, such information may not be
sufficient to know the specific actions performed by the
user on her mobile. A user may perform different activ-
ities in a mobile application. For example, when using
a social networking application like Facebook, the user
can perform different actions such as sending a message,

8

browsing profiles, and interacting through posts. Infer-
ring the specific activity performed by a mobile user on
their mobile device reveals more information about the
user than only knowing the application. As a result, some
efforts in literature pursue encrypted traffic analysis with
an additional focus on predicting the specific activity or
action performed by a mobile user. Much of this work
is based on the assumption that the time series data pro-
duced by a particular activity of an application are usu-
ally different from those of other activities, where these
time series record flow features like packet sizes and the
transmission or reception time of packets belonging to
that activity.

4. User and device fingerprinting: An critical requirement
with the profiling of mobile users is establishing a map-
ping between the mobile device and its user’s identity.
The works with classification and analysis objectives, as
discussed before, do not explicitly address this issue. They
can only classify traffic but cannot associate it with the
identity of the person to whom this mobile traffic belongs.
The task of establishing a certain identity with the mobile
device to which a captured traffic belongs is called mobile
fingerprinting. The fingerprinting is done at various lev-
els, such as identifying the underlying OS, MAC address
etc. of a user device. Device fingerprinting (aka can-
vas fingerprinting, browser fingerprinting, and machine
fingerprinting) is a process used to identify a device (or
browser) based on its specific and unique configuration.

5. OS Identification: OS identification is a part of device
fingerprinting. However, It is important to consider OS
identification separately as OS identification in several
contexts found valuable. For example, Specific OS is re-
stricted to use in the enterprise network for security rea-
sons. OS identification may help in following the same
restriction. OS fingerprinting is also used to detect tether-
ing. Moreover, adversaries find OS identification, a start-
ing point to perform further advanced attacks. OS finger-
printing is an integral part of penetration testing, which
is used to find the vulnerabilities in the devices and net-
works and design and implement better security controls
mechanisms. OS fingerprinting helps NAs in monitoring
the number of devices and classifying the device roles.
There are following certain traffic features being used in
the literature in order to detect the OS: TTL and Identi-
fication field of IP header, window scale size and times-
tamp option in TCP, and others such as boot time and
clock frequency. OS classification is performed by ex-
tracting the information from the sniffed packets’ header.

5.2. Data Gathering and Tagging Techniques

A large fraction of work on analyzing encrypted mobile net-
work traffic focuses on identifying the type of traffic among
multiple categories, considering it to be a classification problem
to be solved using statistical or machine learning methods. The
ground truth construction is a crucial task to develop a learn-
ing model based on any machine learning algorithm. In the

context of classifying encrypted traffic with various objectives,
it involves multiple tasks such as capturing of network traffic
traces, cleaning of captured traffic to remove the noises, separa-
tion of entities (possibly a particular traffic flow) to be classified
from the cleaned traffic traces and labeling of these entities for
training and testing purpose. In the following section, we dis-
cuss various data gathering techniques and tagging that have
been collectively applied by various research works. After that,
we discuss a few frameworks proposed by some researchers to
generate, capture, and tag the mobile traffic.

The primary requirement, while proposing a method to an-
alyze encrypted mobile traffic, is to have sufficient data to train
and test the proposed models. One approach is to use the datasets
that are already available with cellular network operators. Orig-
inally, these are collected by network operators for billing and
monitoring purposes. Due to the sensitive information that they
hold, network operators have been very cautious about sharing
them with other parties. By applying anonymization and in-
formation aggregation schemes and allowing compliance with
privacy-preserving regulations, operators have shared such datasets
for research and development purposes in the past. However,
after applying anonymity, such datasets are only useful to ex-
tract the trait information about a community instead of a par-
ticular user or to perform user and mobile fingerprinting.

An alternative solution is to generate data ourselves and use
it to develop classification models. A majority of works have
taken this approach. However, the techniques employed to gen-
erate, capture, and tag data vary across these works. It is note-
worthy that some techniques for generating mobile traffic may
be more suitable for particular objectives of performing analy-
sis than others.

5.2.1. Generation of Mobile Traffic
One way to perform user simulation i.e., to generate the

mobile traffic so that it can be captured and further analyzed,
is to take help of volunteers allowing their network traffic to
be captured. The advantage of this approach is the possibility
of capturing the mobile traffic that got generated due to inter-
action of real user with the applications installed on the mo-
bile. However, finding such volunteers in bulk is difficult as
well time-consuming; it could take months to collect data suf-
ficient to build reliable machine learning based classification
models. Secondly, it could be possible that these volunteers
may, consciously or not, defer from the usual realistic actions
they perform on devices by either trying to suppress or exagger-
ate biases and favouritism between applications or action. An-
other challenging issue with this approach is the tagging of the
network traces collected in this manner. Some sort of network
logger application has to be installed in each volunteers device
to identify the application responsible for a particular network
flow present in the captured network traces.

Another technique to generate the mobile network traffic
is to write programs capable of running the applications in-
stalled on a mobile automatically by connecting the mobile to a
workstation or laptop. For instance, the Android development
platform provides a command line tool called Android Debug
Bridge (ADB) that allows a machine to manipulate a mobile

9

Figure 3: A classification of data gathering techniques for encrypted mobile traffic

device to taking various actions such as installing and opening
of an application on the target mobile. This approach is advan-
tageous in many respects against the manual or volunteer-aided
traffic generation approach as experiments can be performed in
more controlled environments. Faster data collection, broader
coverage of mobile applications and ease of labeling data are
some of the benefits of using automated generation of traffic
against manual methods.

A challenge associated with automated generation approach
of mobile network traffic is scripting application-specific ac-
tions on the device that can be used to uniquely identify the
application. The network traffic generated by scripts for a par-
ticular application should ideally cover the entire spectrum of
network flows that can possibly be generated by the application.
This requirement is very much similar to the scenario when a
newly developed application has to be tested. The developers
of the applications try various sequences of user actions (test
cases) either on an emulator or on an actual device to test the ap-
plication thoroughly before releasing consumer-ready versions.
This technique of using a script to elicit responses from mo-
bile applications by simulating user actions within the mobile
application is known as UI fuzzing. These UI events are gener-
ated randomly to generate multiple network flows of the mobile
application. One commonly used tool to perform UI fuzzing
available as part of the standard Android SDK UI automation
toolkit is monkeyrunner [40], which is able to capture traffic
generated by applications once deployed. Frameworks such as
Dynodroid [41], that use advanced UI fuzzing techniques, can
be also used to aim for better results in terms of covering the
number of flows of an application.

It is important to discuss why and when the models, built
on a dataset which are generated in such an automated man-
ner, would work to classify the unlabelled realistic traffic flow -

the flows that have been extracted from mobile network traffic
generated by the applications when a human user have used the
services provided by the application in a legitimate manner. UI
fuzzing tools are useful as classifiers traditionally do not use ex-
plicit behavioural characteristics such as click rates that would
manifest only in human generated application traffic.

5.2.2. Capturing of Mobile Traffic
Various techniques to capture mobile network traffic can be

categorized based on the exact location and device on the net-
work where the eavesdropping of packets takes place.
At Mobile Device A packet sniffing mobile application such as
tPacketCapture [42] are used to capture the mobile generated
traffic. Mobile operating system provides certain services like
Virtual Private Network (VPN) which are used by such traf-
fic capturing mobile applications. These applications use some
standard file formats such as pcap in order to store the cap-
tured traffic. Such files are stored in the secondary storage of
mobile devices or can be uploaded onto the server. Network
traffic analyst can either collect them directly from mobile de-
vices or download from the server for further processing. One
of the advantage of using such packet sniffing applications is
that they can perform packet capturing without using root per-
missions for the mobile. However, this technique fail to capture
the packet traces from many applications as certain applications
do not work with VPNs. Also, it is observed that such packet
sniffing applications capture only those packets that are sent
when the application is running in the foreground. For this issue
other packet capturing software such as tcpdump [43] can be
used which is capable of capturing packets at lower levels, and
hence, is not application dependent. However, such low level
packet analyzers require root access of the mobile device to be
able to intercept mobile traffic. Another issue associated with

10

this technique of having packet sniffers at the mobile device is,
to capture packets on a large scale, the packet sniffing applica-
tion has to be installed on the mobile devices of hundreds of
volunteers, which seems in feasible. This becomes even more
harder when the root permission is required on devices.
Between Mobile Device and Access Point or Base Station
Another way to capture the information being communicated
between mobile device and base station or access point is by
placing the packet capturing devices in the proximity and putting
them in promiscuous mode. However, only a few research works
on analyzing the encrypted mobile traffic have taken this ap-
proach as the frames being communicated between mobile de-
vice and the base station (in 3G or 4G technologies) or the WiFi
access point are usually encrypted. Such captured frames only
expose the MAC addresses of the source/destination by com-
pletely hiding TCP/IP header information. Although the actual
classification performed by most efforts does not directly rely
on TCP/IP header information, this information greatly helps
in building the ground truth of the dataset to be classified. In
particular, TCP/IP header information is required to separate
out various flows from the captured network traffic.
At Access Point or Router The most common approach to
capture network communications, adopted by a majority of re-
search efforts on mobile network traffic classification is to sniff
the packet traces at the intermediate routers which are responsi-
ble to forward the incoming packets in the direction of their cor-
responding destination, or by directly placing the packet sniffer
on the same device in which WiFi access point is located. For
example, if mobile device is connected to WiFi access point
which is then connected to a workstation to extend the Internet
connectivity available at the workstation. In this case, packets
which are coming from or destined to the mobile device can
be easily captured by placing a network sniffer (e.g Wireshark
[44]) at the workstation. However, with this approach, 3G/4G
mobile traffic can not be captured.
At VPN and Proxy Servers Data generated on mobile devices
can be captured at a centralized Virtual Private Network (VPN)
server using IP tunneling. It involves creating a VPN server
and configuring the VPN connection settings on the mobile de-
vices that routes all incoming and outgoing traffic of the device.
VPN server uses a virtual adapter just like a dial-up connec-
tion to facilitate the communication between the source and the
destination. A packet analyzer co-located with the VPN server
can be configured to listen the virtual adapter to capture packets
going through VPN server. One difficulty with this approach is
that certain operating systems like Windows, provide limited
support for capturing the packets from dial-up adapters. This
method for data capture solves the problem of installing packet
analyzers or networks loggers in every mobile device, and also,
the data from both WiFi or 3G/4G interfaces can be captured.
However, the mobile devices need to be configured to use the
VPN service.

A similar way to intercept mobile traffic over the Internet
is by using proxy servers. One such open source proxy server
is Tinyproxy [45]. It is a HTTP based proxy server daemon
for POSIX operating systems. It can be used to intercept net-
work data at a centralized server, much like VPN servers. The

advantage of using Tinyproxy is that intercepted packets are ac-
cessible through packet sniffing utilities like Wireshark.

5.2.3. Labelling Captured Mobile Traffic
After generating and collecting the trace of network traf-

fic, an important requirement is to labelling various traffic flows
present in the captured trace file so that the captured data can
be used to train and test the prediction models. The process
is also known as ground truth generation. Here a flow is con-
sidered as the entity or data point which needs to be classified.
The definition of the flow depends on objective of classifica-
tion. For instance, all the packets transmitted or received by a
mobile device over a TCP connection can be considered as a
flow to be tagged and later to be identified using the developed
model. Another approach is to divide a longer TCP connection
which usually contains multiple data bursts, separated in time
by a fixed threshold duration where no communication has hap-
pened over the TCP connection. One can assume that a single
burst in a TCP connection carries sufficient features to identify
the application associated with the connection, and can also as-
sume different labels and predictions for each burst. It is hence
crucial to remove unwanted traffic such as packets related to
re-transmission due to network error or even the packets be-
longing to other applications running in the background. The
average mobile OS usually runs a number of background pro-
cesses whose communications impose load on bandwidth from
time to time. This unwanted traffic could make the process of
fingerprinting traffic sources difficult. Filtering the packets re-
lated to re-transmission is relatively simple as the re-transmitted
packets contain the same segment number of the original trans-
mission.

Here we discuss a number of techniques commonly used
to identify the application responsible for each network flow
coming from the target with the purpose of tagging the flows
accurately.
Network Logging on the Target Device A network logger or
socket logger application in mobile device can generate data
logs containing information about the application associated
with each packet sent or received by the mobile device. By
using these logged data along with customized demultiplexing
scripts one can tag the flows with their associated applications.
One such network logger application is Network Log which is
an open source application that once started on target device
can identify the application responsible for each network flow
coming to the target device. An issue with these applications
is that they require the target mobile device to be rooted which
may not be a feasible all the time. It is to be noted that these
network loggers are slightly different from packet sniffing tools
such as tcpdump which cannot associate the process ID of the
application with a captured packet as they do not understand
the target mobile kernel level information. On the other hand,
these network loggers monitor the target mobile’s kernel and
associates each packet flow with the UID of its controlling ap-
plication. The socket log along with the socket pair information
(four tuple) also includes the user ID and the state of each ac-
tive TCP/UDP session. Each session is mapped with an applica-
tion according to the relationship between UID and application,

11

since each application is assigned a unique UID when installed.
In case the objective of the analysis is to identify the appli-

cation class of the captured mobile traffic, instead of an individ-
ual application, a static mapping between the application and
the class can be used to tag the application class of the flows
present in the captured network trace.
Customized Scripts Tagging of the flows in the above manner
(by use of network loggers and demultiplexing scripts to filter
the traffic) does not work well when the objective is to precisely
fingerprint the activity inside an application performed by the
mobile user. A TCP flow may contain multiple activities and
an application may choose the same TCP connection to send
some backround traffic (a traffic that does not belong to any
user activity) over which an activity is being performed. For
example, the Gmail application may send and receive emails
over the same TCP connection or it can start the process of
syncing with the server using the same TCP connection that
has been established to send an email. No readily available
application or framework is available to generate, capture and
tag the traffic associated with the activities performed by the
use in an application. Scripts can be extended to help the pro-
cess of tagging the captured data, by recording the start and end
time of an activity to a log file. They can record such informa-
tion as they themselves trigger the execution of user activties
of an application on the mobile. Together with logs contain-
ing start and end timestamps of each activity, demultiplexing
scripts, TCP socket information and the Server Name Indica-
tion (SNI) field available in the TLS header, it is possible to
tag the flows with their corresponding user activity with very
high accuracy. SNI provides an optional clear-text indication
of the target server’s address in the opening phase of commu-
nication, and allows TLS servers with credentials for multiple
identities to select and transmit a client-requested identity in-
stead of blindly providing a single identity. As an example,
google uses SNI-enabled HTTPS servers to host multiple se-
cure website certificate identities on the same IP address and
port. Without SNI, HTTPS servers can only effectively serve
one certificate identity per IP address. In practice this results in
wasted IPv4 addresses which have non-trivial costs. SNI sup-
port is commonly enabled in modern web browsers.

These methods often benefit from clustering techniques mak-
ing it possible to label data en masse; as these techniques in-
herently peer into close relationships between datapoints, they
facilitate labeling for a significant bulk of samples based on a
reliably small seed dataset. Hierarchical clustering and similar
algorithms make it easier to manually label data, hence these
scripts can also be used in a semi-automated manner with hu-
man supervision.

5.3. Prevalent systems for generating data
One can simply use present open source methods for the

purpose of constructing labeled databases such as Mobligt [46],
which incorporates a VPN server that maintains TUN inter-
faces with devices having a client application installed. This
application routes all traffic for the device through the inter-
face using network address translation (NAT). Both client and
server services log socket data to correlate application label

with each session captured by the VPN. For each timestamped
traffic trace, a labeling model on the server matches socket data
with tuples of application and socket identifiers, as well as times-
tamps.

DELTA [47] is a proposed framework for mining configu-
ration and event data on Android devices for research and mon-
itoring purposes. A user creates installable ıexperiments on a
desktop GUI in the form of application instances that can be
managed using a core managerial app. Each instance has a log
creation and viewing tool as well as extensions which specialise
in communicating readings from different sources. In this man-
ner, each experiment can be initiated with the needed permis-
sions so that the user does not need to manage them individu-
ally on a single logging tool. A total of 44 status can be logged,
including sensor readings, screen and system states, and also
statistics for network traffic and application events. The frame-
work also has a web service that can be used to store and down-
load logs on demand.

SystemSens [48] proposes a similar system, where a client
app subsumes logging services and data from /proc/net/dev

provide network statistics. A server application is responsible
for collecting data from devices and maintaining a database us-
ing SQLite. An uploading service sends JSON data to an exter-
nal server with storage and visual aids for analysis. The system
however has limited polling options, where a constant polling
rate needs to be hardcoded.

Another option is to build upon programmable logging frame-
works. An example for Android is Phonelab [49], which is a
popular open-source solution with already implemented modi-
fications for network statistics and scan results, and similar op-
tions exist for iOS.

5.4. Methodology
A simple way to identify the application of a network traffic

is to make use of transport layer port numbers assigned by In-
ternet Assigned Number Authority (IANA) to the applications.
In this method, to identify the traffic, a classifier has to sim-
ply look only for the TCP handshake messages (SYN packets)
exchanged between the sender and receiver during the connec-
tion establishment, and therefore, this method can provide a
real-time performance. However, the port based classification
fails when applications are either not registered with IANA i.e.,
port numbers are not well known or port numbers are decided
dynamically. Both the situations are very common for mobile
traffic as most of the mobile applications use some ephemeral
port to communicate with their server or multiple applications
use the same port number. Finally, the port based identification
can only be used to classify the mobile applications, but to iden-
tify the exact activity performed by the user in that application.

A commonly used technique to classify the network traffic
without using the port numbers is to look for patterns or sig-
natures of an application present in the payload of the packet,
also known as “Deep Packet Inspection (DPI)”. For example,
the application header of a packet can be examined to identify
whether it is an HTTP message that is being exchanged between
a web client and a web server by looking for a regular expres-
sion for HTTP signature. Most of the Internet Service Providers

12

(ISPs) use this technique as their packet filtering mechanism to
reroutes or blocks the packets depending upon the payload be-
ing carried by them. However, breaching the privacy of the
user and the limitation to perform payload inspection due to en-
crypted data are a couple of major reasons, due to which DPI
is not a suitable option to perform network classification and
analysis over encrypted mobile network traffic.

Another majorly used technique to identify the network traf-
fic which is also applicable for mobile traffic analysis is to build
the classification models based on the statistical properties of
the captured mobile traffic. This involves, formalization of re-
lationships between the statistical properties of the traffic in
form of mathematical equations. Some of the relevant statis-
tical properties of the network traffic which can work as the
feature to distinguish between the various types of traffic are:
packet size, flow- duration, inter-arrival time of the mobile traf-
fic are considered to develop the classification model by the
formalization of relationships between variables in the form of
mathematical equations. he major issues with the statistical ap-
proach for developing the classification model is its incapabil-
ity to handle large datasets and the human involvement while
building the model. This led the researchers to develop and use
machine learning based classification models for mobile NTA.
Although the core of machine learning is again statistics i.e.,
making sense of data by extracting its statistical features, the
machine learning-based models can handle the classification
problem with humongous dataset having much more complex
boundaries and uncertainties.

In this study, we survey only the works which have used
machine learning, deep learning, and other related techniques
to classify the encrypted mobile traffic with the objectives dis-
cussed earlier.

In recent years, machine learning has challenged already
established methods in several analytic domains in terms of
performance and robustness. The central driving idea behind
such learning approaches to analysis is to replace the trade-
off between accuracy and efficiency with one between training
and testing computational resources. This is done by isolating
data- and resource-heavy computation to training, and generat-
ing minimal data structures that encode the requisite behavior
desired during application. The efficacy of a learning algorithm
is evaluated on it’s ability to both satisfactorily perform such
encoding during training and perform under testing.

Machine learning algorithms prove to be really beneficial
in traffic classification but currently the market for mobile ap-
plications is expanding and evolving very fast. There are innu-
merable sets of apps each with their own unique traffic charac-
teristics. Such speedy growth and development of mobile apps
is making it hard for analysis of network signatures to study
their unique features and perform accurate traffic classification.
For this reason we discuss deep learning, another approach to
the problem that undercuts the importance of isolating optimal
feature sets.

Deep learning aims at designing classifiers capable of deriv-
ing higher-order features from inputs even for complex patterns
which can’t be studied . Unlike classifiers that optimize costs
inferred from handcrafted features, algorithms in this subset of

machine learning converge on features inferred directly from
input data which can offer better, dynamic traffic classification
for any varying and complex mobile traffic pattern. In essence,
deep learning methods employ subsequent non-linear filters to
derive mappings input and output spaces, with the depth of the
model as a hyper-parameter, where increased depth allows the
model to approximate complicated solutions but requires more
training computation. How such approaches handle the trade-
off between training and testing resources is often decisive for
application.

The pre-processing module in such a domain imposes var-
ious restrictions on the model. Once the traffic is captured the
first discriminating factor is how traffic is divided into various
traffic units on the basis of port or protocol parameters. The
type of input data being fed to the traffic classifiers can be, for
example, the initial n bytes of payload in binary, the initial n
bytes of raw data or the informative data fields of first n pack-
ets. One aspect common to all deep learning approaches is that
the input provided to model has to be of fixed dimensions. A
workaround for this is truncation of longer instances or padding
shorter instances with zeros, and the model must appropriately
learn to ignore such variations on underlying patterns.

These restrictions come with significant payoff as deep learn-
ing models achieve high praise for their ability to identify pat-
terns in noisy and dense data while being adaptable with other
existing implementations, making them ripe for computer vi-
sion and signal processing applications [50, 51, 52]. Rezaei &
Liu [19] discuss various implementations under the lens of en-
crypted traffic classification and the restrictions faced in achiev-
ing scalability for data and implementation specifications. They
also discuss the recurrent neural network (RNN) architecture,
where input data are iteratively fed to sequentially connected,
identical neural layer blocks, predicting an output sequence at
each cell step. These blocks, each representing a vector of
non-linear features of both input data as well as prior predic-
tions, functions as a recursive circuit, and hence these networks
take advantage of an effective artificial ”memory”, similar in
essence to how sequential circuits provide computational mem-
ory. RNNs also offer a means to use variable length sequential
inputs with deep learning methods. Such reinterpretations of
the standard feedforward, Restricted Boltzmann Machine [53]
model for non-linear learning will be vital to make such an ap-
proach relevant and versatile enough for traffic analysis.

Though literature on methodologies and results is thriving
and multiplying with the field progressing daily, yet wide-spread
adoption of such methods still faces hesitation. One key reason
for this is the necessity of adequate amounts of filtered data
required by these models, making several such approaches off-
limits to average user without means or expertise to collect and
filter data. Even corporations with well-established database
management systems demur from readily applying machine learn-
ing in public domains due to security issues regarding adversar-
ial learning that have been gaining attention in recent research,
wherein malicious attacks intended to impede learning systems
can hamper accuracy which are difficult to identify and correct.
Hence methodologies in this field require specific scrutiny be-
fore considering adoption.

13

Figure 4: Dimensions to classify the learning based methodologies that are used
to perform NTA for mobile-traffic

A learning approach can differ fundamentally on three facets,
i.e., the data fed to the ML algorithm, how the features are se-
lected from data and the classification algorithm (Fig. 4 In re-
gards to our problem, these aspects are discussed briefly in the
following points.

5.4.1. Input to the classifier
All accumulated data for user traffic instances need to be

pre-processed into formats compatible with the machine learn-
ing module. One way to allow such algorithms to make packet
data legible for data analysis is to divide the network traffic se-
quences into certain discrete units called bursts and flows. The
definition of bursts and flow varies from application to appli-
cation. At a basic level a burst can be defined as sequence or
group of packets only arriving at a certain time. A packet is
said to belong to a different group or different burst when the
arrival time of packet is after the specified burst threshold. So
for a group of network packets in a burst the inter arrival time is
shorter and within a specified burst threshold time t. Packets be-
longing to a single burst can have different destination address
and source address, and hence need to be distinguished as sep-
arate flows - packets with same destination and port address in
a burst are taken as one flow of network packets. Different ap-
plications starting TCP sessions simultaneously may send and
receive packets belonging to the same bursts but will be consid-
ered under different flows. This definition of bursts and flow is
not concrete and might not suffice all applications or user activi-
ties, for which we will need to define flows on a finer level. But
we can conclude by saying that, in general, our classification
framework will process data in the structured form of flows, de-
pendent on network traffic. The only exception to this is in the
case of side-channel data which, as we shall discuss in section
6, can significantly bolster the performance of the algorithm but
inevitably limit it’s applicability due to the selective nature of
data required and challenges in applying such methods at scale.
These methods are especially powerful when applied in con-
trolled environments where authoritative agents can assume or
ensure the availability of build and system variables, but face
difficulties in regards of responsible disclosure of information
by users. Spreitzer et al. [54] describe paradigms for classifica-
tion of algorithms exploiting side-channel information. An in-
depth survey is provided on the basis of passive or active attacks
that respectively expose either logical or physical variables and
operate either remotely or from the vicinity of the target.

5.4.2. Selection of learning Algorithm
Now that we have defined the presentation of data to the al-

gorithm in question, it is important to be clear about two broad
categories of machine learning: unsupervised and supervised.
The unsupervised class of algorithms works on unlabelled data
aiming to identify hidden structure in input based on similar-
ity measures like Euclidean distance either in the feature spaces
of the problem and create clusters, or in conjured higher di-
mensional spaces. Such methods are useful when it is unclear
how to perceive aggregated information, but it can be hard to
evaluate any solution for the very same reason. On the other
hand, supervised machine learning algorithms learn from pre-
viously labeled data to classify unseen instances. Labeled past
instances can be used to increase accuracy of classifying un-
seen instances; for the objective of interest these class labels
need to communicate the nature of the activity a person uses an
application for during a sequence of bursts, to help the model
distinguish between, say, email, IRC services, video streaming
and so on.

Pertaining to how these supervised and unsupervised learn-
ing algorithms can be used for mobile encrypted traffic classifi-
cation, an ensemble of methods can often be quite effective, for
example unsupervised clustering and supervised classification.
In this vein, clustering can be used at a preliminary stage to
group and label similar flows in a burst using statistical param-
eters such as average flow separation time. Hence, clustering
can provide a more legible format for training data that, when
used together with appropriate supervised classifiers, can pro-
vide better results than naı̈vely training either on large blocks
of network packets. Common algorithms used for clustering
in various often follows agglomerative hierarchical clustering
[55, 56, 57] or k-means clustering.

The next module, the classifier, is trained with instances of
mobile encrypted traffic flow labeled with application classes,
from this learning a model can be built by generalizing our de-
rived training dataset. Ideally, this dataset should have a large
amount of instances with adequate variance between different
datapoints for permissible fitting of the model on data. Cross
validation is a prevalent method to test learning algorithms for
performance and repeatability, where the available data are di-
vided into n equal partitions and each partition in turn is used
for testing a learning model trained on the remaining samples.
This process is hence repeated n times for each partition where
usually n ∈ [5, 10] with a tradeoff between a sufficiently large
sample of classifier evaluations and an adequately large testing
dataset size, hence providing a meaningful average of perfor-
mance metrics.

5.4.3. Feature Extraction
For the classifier to eventually to converge to accurate pre-

diction of the classes, it is important to select a specific set
of relevant features and the rest. Using redundant features in-
creased the costs involved in the storage of data and the com-
putational resources required by the classifier. Here, the rele-
vant field of study is dimensionality reduction. It helps in fast
training of model, reduces complexity, improves accuracy and

14

reduces over fitting. Existing feature selection methods are fil-
ter method which uses certain metrics to rate the features and
select the best among those, although the type of ML algorithm
used can itself limit the kind of features that are applicable. A
few features commonly used are send and receive average inter-
packet times, sent and received data size ratios etc.. Moore et
al. [58] elaborate on the subject with 249 possible traffic fea-
tures that can be probed for different problem statements. A
method predominantly used for feature selection is to rerun the
classification experiments by only using selected subsets of fea-
tures, converging on subsets which lead to maximum accuracy.
It has been a common observation in all the works that remov-
ing features of little overall importance can lead to performance
loss; features with misleadingly low variance that are often dis-
carded during dimensionality reduction can be decisive for out-
lier points that are not adequately represented in training data.

6. Literature Survey

In this section, we discuss existing works on performing
NTA of mobile Internet traffic using learning-based techniques.
The works on performing NTA of non-mobile Internet traffic,
or the mobile traffic but with the objective other than objectives
covered under the proposed classification framework, are out
of the scope of this survey. We scrutinize the works under the
study individually according to the proposed taxonomy. We
group the existing works based on their objectives and discuss
them together in this section.

6.1. Application classes
Al-Naymat et al. [59] pursue discriminating between pop-

ular VoIP and non-VoIP applications like Skype, YouTube, and
PayPal that were used to create a realistic dataset. Data were
sniffed using Wireshark and then preprocessed into TCP flows
for feature extraction classifier; packet length, cumulative bytes,
and the times elapsed since the last packet and elapsed since the
first packets of flows were four features deemed useful for clas-
sification. A single node was dedicated to intercepting and la-
beling traffic requests traffic for four nodes on a network moni-
tored using Wireshark. The J48 implementations of meta.AdaBoost
and random forests, as well as multilayer perceptrons classi-
fiers, are used to classify the traffic into VoIP and non-VoIP
classes. Boosting is used to improve the performance of J48, a
binary decision tree classifier implementation of the C4.5 algo-
rithm, while multilayer perceptron networks are a widely used
class of feed-forward artificial neural networks (ANNs). Ran-
dom forests prove to be more accurate and more resilient against
noise. The results exhibit a true positive rate of 98%. The per-
formance was quantified using measures such as accuracy, pre-
cision and recall, and confusion matrix. The area under the Re-
ceiver Operating Characteristic (ROC) curve is used to gauge
the sensitivity and specificity methods. It has been observed
in the paper [60] that in order to classify the VoIP and non-
VoIP traffic, meta.AdaBoost has shown the highest accuracy of
98.3007% with the comparison of random forest and MLP clas-
sifiers having an accuracy of 96.6615% and 84.166%, respec-
tively. All applied methods maintained high precision rates on

all algorithms, save for multilayer perceptrons that lagged be-
hind GTalk and Skype data performance.

The objective of Zhang et al. [61] is to investigate the possi-
bilities of information leakage related to user privacy by guess-
ing the online activities performed by the users using inter-
arrival time, packet size, and flow direction features extracted
from data link layer frames. Traffic, which is considered to be
of seven classes of activity from a single source application, is
shown to vary considerably in different environments. Concur-
rent online processes are also considered in the experiment due
to which traffic features of one application may be submerged
by another application, further increasing algorithmic complex-
ity. The model is limited to detect a maximum of two concur-
rent applications. A framework for hierarchical classification is
developed that segregates traffic features using a decision tree of
classifiers. These features are calculated as packet-level statisti-
cal values of flows captured in different network environments.
Two classifiers employing the radial basis function are used in
the decision tree, RBF kernel SVMs and RBF networks, a rein-
terpretation of traditional ANNs where each neuron performs
a radial distance metric around a point whose position vector
converges during learning. The result shows that good accu-
racy is achieved that is robust to noise, where segregation into
seven classes of activities is performed with around 80% accu-
racy and 90% accuracy when traffic is sniffed for five seconds
and one minute, respectively.

Auld et al. [62] uses a deep learning approach with a modi-
fication of standard ANNs called Bayesian neural networks, in
which Bayes theorem is iteratively used to calculate posteriors
for a given prior assigned to weights for a network with hyper-
bolic tangent nonlinearities. The open-source tool tcptrace
was used to generate statistics from TCP flow, and these data
points were labeled semi-automatically. Traffic was reduced to
flows, and content of each flow was used to match packet data
with host knowledge, along with active labeling where the user
generating traffic cooperates with the labeling process, making
manual classification possible for millions of flows. The model
achieves accuracy higher than 90% for seven classes and an av-
erage accuracy of 95.3% over the dataset, where system error
rates were optimized by modulating a rejection rate based on
entropic prediction confidence.

Lopez-Martin et al. [63] makes use of a recurrent neural
network architecture, where they make use of the most popu-
lar archetype of RNNs called long short-term memory (LSTM)
models. Feature vectors generated from incoming packets are
sequentially presented as a matrix to a modular network, with
multiple convolutional and LSTM layers where depths of these
modules were varied. The best-performing model was evalu-
ated on the 15 most popular classes in the dataset, and experi-
mental accuracy was unanimously high; however, precision, re-
call, and hence F-measure were non-uniform between classes.

Bar-Yanai et al. [64] presents an approach to classifying
traffic using a hybrid of k-means and k-nearest neighbours al-
gorithms. A dataset was generated using the Endace tool [65]
and labeled on a per-flow basis by a Cisco SCE 2020, a pro-
fessional hardware service control engine for network traffic
classification and manipulation. During training, improved k-

15

means clustering was used to isolate a list of cluster centers. A
k-nearest neighbor algorithm was then applied on the set using
this list of centers to generate clusters with no overlap, leverag-
ing the low computational complexity of the k-means approach
but greatly increasing the accuracy. The hybrid algorithm thus
consistently recreates the accuracy of the k-nearest neighbors
but boasts quicker learning as dataset dimensions increase.

Park et al. [66] apply a genetic algorithm (GA) to isolate
optimal feature sets for boosting classifiers used to deduce ap-
plication classes responsible for analyzed traffic. GAs are an
evolution-inspired approach to learning that represent a popula-
tion of possible solutions using a ”genetic” encoding and com-
petitively score and compare these solutions with each other
and with ”offspring” solutions generated in preferential iterative
reproduction by mutation functions applied on the digital en-
coding, assuming a form of competitive natural selection. A re-
duced error-pruning decision tree classifier was best boosted by
the approach, and outperformed boosted J48 and naı̈ve Bayes
classifiers.

Lotfollahi et al. [67] present a Deep Packet scheme that
leverages a one-dimensional convolutional neural network ar-
chitecture for the ISCX VPN-nonVPN dataset [68], a data-link
layer traffic repository labeled by application and class of ser-
vice, mainly on VPN or non-VPN nature of the underlying ser-
vice. The model achieved 0.93 F-measure and precision and
0.94 recall for application class identification.

6.2. Application identification
There are examples in the literature of non-learning models

used for the problem, and we explore a few examples to com-
pare with machine learning approaches detailed further.

Yao et al. [69] proposed a framework named SAMPLES to
identify the mobile application for a particular flow by classi-
fying the mobile generated traffic based on application ID and
HTTP header information. It collects data from randomly se-
lected applications from platforms like iOS and Android and
builds a repository of application IDs and names for as many
applications as possible, and this repository is maintained and
queried for lexical matching. SAMPLES individually simu-
late applications that essentially deal in HTTP communication;
flows are grouped as a flow set with each header having an iden-
tifier for parent app paired with an application identifier string.
This string comprises three components, the identifier type, the
payload, and any prefix/suffix of the string occurrence referred
to as lexical context. Rule sets are made by manual conjunc-
tion of the lexical context and fed to the application identifier
engine, which is trained to identify the application for the flow.
This framework was run on 15 million flows generated by 700k
collective Android, iOS or Symbian applications, but is limited
to only unencrypted HTTP traffic and is not a learning model.

Rao et al. [70] present a platform named “Meddle” [83],
which uses a software middlebox and virtual private network
(VPN) in order to improve the transparency and to control the
privacy leaks for the internet traffic generated from mobile de-
vices. Meddle software employs VPN tunnels using the open-
source StrongSwan project [83] to isolate mobile traffic inde-
pendent of device characteristics like operating system or car-

rier. Labeling is done manually by installing the app and then
performing automated interactions with it for ten minutes be-
fore uninstalling it. This automation utilizes the Monkeyrunner
app scripting tool [40] to emulate user actions on the applica-
tions to derive realistic data points. When traffic arrives at the
server, Meddle uses tcpdump to record traffic. SSL bumping
or SSL interception [84] techniques are used for decryption and
accessing the payload of encrypted flows. In SSL interception,
the client and the proxy (here, the VPN server) establish a con-
nection while the proxy independently processes the certificate
received from the target server after a request. Using the On-
line Certificate Status Protocol (OCSP), the VPN can verify the
server certificate, regenerate a proxy certificate signed with the
key for an installed CA certificate, and present it to the client.
The proxy server decrypts outbound traffic, and can process
it for use by applications on any layer. User apps are distin-
guished by matching hostname fields, and devices are identi-
fied using the user agent string contained in the HTTP headers.
The certificates, server name indication, and DNS messages are
also used to map flows, offering 92% accuracy. There are both
large as well as niche VPN networks for which this model can
be applicable, but the approach does not make use of learning
models to utilize better-labeled data flows since hostnames can
offer services of several natures.

Spreitzer et al. [71] presents a client-side-attack able to
guess the browsing behavior by exploiting the data-usage statis-
tics for website fingerprinting even in the presence of TOR and
defense mechanism i.e., SSH. The experiment was performed
on multiple 3G devices with different browsers. tcp snd and
tcp rcv as well as Android /proc files were used for usage
statistics. An intersection-over-union score with the test trace
is used to rank candidate websites based on signatures updated
every 10 seconds with a sampling frequency of 50 kHz. The
framework accurately classifies more than 95% of traffic, both
standard and that routed through Tor, for monitored pages.

Qazi et al. [72] is a learning approach in which network
loggers are employed to fetch about 200 flows per application
for 40 popular applications on devices on a software-defined
network (SDN). The size of the first n packets, the port num-
ber, and IP address ranges are singled out as features for clas-
sification. With the use of the OpenFlow (OF) protocol in the
SDN, network traffic logging and detection of the correspond-
ing application is automated, which simplifies constructing the
test-bed. Traffic traces are communicated to an SDN controller
that utilizes decision trees, the performance of which was then
judged using F-measure. The authors achieved 94% accuracy
on an average for classifying the applications in SDN.

Taylor et al. [73] approach uses side-channel data for iden-
tifying mobile applications. First, they aim at collecting net-
work traffic data and generating a unique fingerprint of each
app, which makes its traffic pattern different than the rest. This
information is further used for the identification of apps of un-
known records. The definition of traffic flow is based on the IP
address of generated traffic. The data in this experiment were
collected between the Wifi access point and the internet. Con-
sumer actions were imitated by fuzz testing of the user interface
to generate a dataset. After traffic is collected, flow separation

16

Table 1: Identifying class of services

S.No Ref. Data Gathering Technique Methodology
Generation Capturing Tagging Input Algorithm Features

1. Al-
Naymat et
al. [59]

Manual VPN Manual TCP Flow Random
forests

Packet length, cu-
mulative bytes, latest
and cumulative time
intervals

2. Zhang et
al. [61]

Manual VPN Manual TCP Flow
with IP fil-
ter

Multi-
classifier
decision tree

Bidirectional MAC-
layer traffic features

3. Auld et al.
[62]

Scripted At access point Semi-
automated

TCP Flow Bayesian
neural
network

Flow and packet met-
rics, effective band-
width

4. Lopez-
Martin et
al. [63]

Scripted At access point Automated UDP &
TCP Flow

Recurrent
convolu-
tional neural
network

Packet size, port
information, timing
and direction, times-
tamps, TCP window
size

5. Bar-Yanai
et al. [64]

Automated
(hardware
tools)

At access point Automated
(hardware
tools)

UDP &
TCP Flow

Hybrid (k-
means and
k-nearest
neighbours)

Packet statistics

6. Park et al.
[66]

Manual VPN Manual TCP Flow Multi-
classifier
decision tree

Genetic algorithms

7. Wright et
al. [12]

Manual VPN Manual TCP Flow Hidden
Markov
models

Inter-arrival time,
consecutive packet
sizes

8. Lotfollahi
et al. [67]

Manual VPN Manual TCP &
UDP Flow

1D CNN Inter-arrival time,
bandwidth

is done based on the IP address. Traffic ambiguity detection is
also performed to tackle traffic generated by third party libraries
to help the classifier tackle noisy data. For each of the flows,
three vectors i.e., size of incoming packets, outgoing packets
and both, were considered. Features were generated using the
statistical properties of each vector and then passed through the
classifier. Ambiguous flows were neglected, and the remain-
ing flows classified using random forests. For evaluation, the
data collected are split into training and testing datasets. Re-
sults were reported over multiple datasets with performance on
each being tested 50 times and then averaged. The accuracy
was between 65.5% to 73.7%. The study suggests that oper-
ating systems and implementation details do not significantly
affect fingerprinting, but the app versions have intense effects.
The effect of noise on classifier performance was also studied,
and ambiguity detection and classifier validation are claimed to
make a sharp improvement in performance.

Taylor et al. [74] also showcase work towards accurately
identify the smart-phone application in use, for which traffic
is captured between the Wifi access point and the Internet us-
ing the tshark library, a terminal-centric implementation of
Wireshark. Generation of tagged data required scripts used to
simulate user action, which is separated into individual flows
using the IP address. A total of 18 distinguishing features from

the flows are used involving statistical properties such as se-
ries length, measures of central tendency, nth moments, and per-
centiles. For classifier design, six machine learning approaches
are used, each approach using either an SVM or random forest
classifier. These approaches considered using different classi-
fiers for different apps or different flow lengths. The results
outline a trade-off between classifying more flows at the cost of
decreased accuracy and only processing flows, which promise
higher accuracy of prediction at the cost of labeling a much
smaller fraction of the data.

Aceto et al. [75] employs an ensemble classifier using fu-
sion techniques in conjunction with multiple base modules pro-
posed for traffic classification. A dataset is initially formed
from global mobile solution providers of actual users on An-
droid and iOS applications. Network traffic is granulated into
service burst, a set of packets within single bursts belonging to
bidirectional flows on the same protocol. The features consid-
ered to be of interest were sizes of incoming packets and out-
going packets. Attention was focused is on isolating combining
methods, which offered the most improvement over the results
achieved instead by just using the best performing classifier.
Classifier fusion techniques employed were Majority Voting,
Weighted Majority Voting, Naı̈ve Bayes, Behavior-Knowledge
Space method, WERnecke’s method. Except for BKS, all the

17

Table 2: Application Identification

S.No Ref.
Data Gathering Technique Methodology

Generation Capturing Tagging Input Algorithm Features
1. Yao et al. [69] Scripted On device Manual HTTP pay-

load and
application
identifiers

Lexical con-
text analysis
(non-learning)

Application
identifiers and
payload

2. Rao et al. [70] Scripted SSL interception
at VPN

Manual Unencrypted
HTTP flow

Host name
matching
(non-learning)

Host name,
user agent
string in http
header

3. Spreitzer et al.
[71]

Manual At Mobile Manual Traffic traces Jaccard simi-
larity

None

4. Qazi et al. [72] Scripted Network loggers
on SDN controller

Automated TCP flow Random
forests

Packet statis-
tics

5. Taylor et al. [73] Scripted b/w Mobile & AP Manual TCP flow Random
forests

Packet length
statistics

6. Taylor et al. [74] Scripted b/w Mobile & AP Manual IP filtered TCP
flow

SVM and ran-
dom forests

Packet length
statistics

7. Aceto et al. [75] Manual Logged by mobile
services provider

Manual Feature Vector Ensemble
classifier

Packet sizes

9. Aceto et al. [76] b/w Mobile & AP Logged by mobile
services provider

Manual Transport
layer biflows

Variations
of CNNs,
LSTMs

Packet size
statistics

10. Mongkolluksamee
et al. [77]

Manual At VPN Automated TCP and UDP
flow

Random
forests

Packet &
Graphlet
statistics

11. Le et al. [78] Manual At mobile device Scripted TCP flow Linear SVM Identifiers in
HTTP flow

12. Wang et al. [79] Scripted b/w Mobile & AP Manual Windowed
traffic samples

Random
forests

Packet statis-
tics

13. Watkins et al.
[80]

Manual b/w Mobile & AP Manual Time-stamped
ICMP replies

Neural fuzzy
classifier

Packet arrival
delay

14. Alan et al. [81] Scripted At access point Automated TCP traffic Multinomial
naı̈ve Bayes
classifier

Packet and
burst lengths

15. Shen et al. [82] Scripted At access point Automated TCP flow Second order
Markov chains

Application at-
tribute pairs

16. Lotfollahi et al.
[61]

Manual VPN Manual TCP & UDP
Flow

1D CNN Inter-arrival
time, band-
width

classifiers had separate benefits, with majority voting offering
the best improvement on precision and F-measure while Naı̈ve
Bayes classifiers showed marked improvements to recall and
overall accuracy. Employing a restricted set of base classi-
fiers is shown to increase the accuracy of the model. The work
makes a strong case for applying ensemble classifiers that can
offer different advantages depending on the scenario of practi-
cal use of the combined framework.

Aceto et al. [76] also explore several deep learning ap-
proaches for the problem, testing variations of 1D and 2D con-
volutional neural networks, LSTM models, and hybrids, on three
manually curated datasets of flows of transport layer communi-
cations of the device. The different classifiers are evaluated us-
ing 10-fold cross-validation and compared, where 16-layer 2D
CNNs and LSTMs exhibit consistent performance. The study
stresses generality. Hence the results focus on classifiers with

unbiased inputs and show that deep learning approaches can
achieve good accuracy without bias. Although they lose gener-
ality in the process, the methods can achieve a significant boost
to accuracy with bias.

Mongkolluksamee et al. [77] tackle the objective to identify
the specific mobile application where traffic is encrypted, but
mobile apps exhibit similar communication patterns and des-
tination hosts. A dataset was constructed using 3G data traf-
fic of apps running in the foreground of smart devices. Traf-
fic for 30 minutes of use of five popular apps was captured in
PCAP format and filtered to leave only TCP and UDP com-
munication traces. To train the classifier, a combined vector of
packet size and features were provided. Traditional packet fea-
tures, which the study claims are not effective alone, are com-
plemented with graphlet analysis, which in network theory is
used to study local structures and communication patterns in

18

networks. To analyze statistical features, the Abacus algorithm
[85] is used, which divides traffic based on packet and burst
size characteristics. The final feature vector provided to a ran-
dom forest classifier comprised 35 shape-based features from
graphlet information, and 24 packet features. When evaluating
the model, the F-measure was found to be 0.95 when randomly
sampling 50 packets in any 3-minute trace of the dataset. 10-
fold cross-validation is used for testing sessions of each appli-
cation’s traffic trace. The work claims better identification of
apps by combining network structure and communication pat-
tern features.

Le et al. [78] the objective is to monitor and analyze large
traffic traces generated by a system named Ant-Monitor. The
analysis aims to identify applications responsible for traffic.
However, the focus is monitoring and analysis of coarse data
collected by ISPs or intermediaries in the network and fine-
grained data captured at the users’ end to facilitate passive mon-
itoring for consumers. The system consists of 3 components
Ant-Client, Log-Server, and Ant-Server. Ant-Client is an An-
droid client application installed in the user’s device that app
implements a VPN service. A virtual interface communicates
all outbound traffic from any Android application, controlled
by Ant-Client running as a background process. The app al-
lows the user to toggle the VPN service and selectively moni-
tor particular apps. A logging module in the client tunnels the
packets or packet headers to Log-Server and maps the packets
to the applications they belong to. Analysis of traffic is done at
the user side completely without privacy concerns. The dataset
collected in the study is from student volunteers at UC Irvine,
who installed Ant Client on their phones for two months. Both
Wifi and 4g traffic for popular applications were captured and
labeled by the application name by the framework. Supervised
classification on TCP traffic flows of about 70 applications was
performed using 84 largely statistical network-level features on
upstream and downstream flows. Tenfold cross-validations are
used to train and test a linear SVM model, which exhibits a 70%
F-measure.

Wang et al. [79] use side-channel attacks for sniffing en-
crypted traffic under the assumption that there is prior knowl-
edge or access to the targeted device’s MAC address. A sig-
nature is generated for each app using five minutes of captured
traffic. Every collected traffic burst is analyzed in a windowed
format for a given sliding window length parameter. Twenty
packet-level statistics are nominated as features, half each for
incoming and outgoing traffic, and used by a random forest
classifier. The work stresses on feature selection as crucial for
the task; experiments were repeated with different input vec-
tors to find the optimal feature set. Sources of noise were also
singled out with considerable monitoring time of the framework
that introduced noise and concurrent applications running in the
phone, limiting classifier accuracy.

Watkins et al. [80] developed a mobile device’s resource
monitoring method which can remotely detect the different type
of currently active mobile applications (I/O intensive, CPU in-
tensive and non-CPU intensive applications) by capturing ICMP
replies, calculating inter-packet spacing and using Neural-Fuzzy
Classifier (NFC). Analysis of network traffic for approximating

computational power of mobile devices is performed to study
the effects of resource throttling on network traffic. Network
traffic is intercepted on a monitoring laptop between a wire-
less AP and targeted mobile devices. tcpdump is used to col-
lect ICMP replies with timestamps. The average delay between
packets is used as the only feature to classify the applications
into CPU intensive, I/O intensive, or passive applications. A
fuzzy neural classifier (NFC) provides the distance metric for
clustering ground truth data into clusters and then using mem-
bership functions to separate future traffic patterns. Results
show that high CPU load leads to responsive nodes, and I/O
processes get bottle-necked by memory constraints leading to
delayed network traffic. The study provides a case for future
work in distinguishing between foreground and background traf-
fic to identify operating system and memory characteristics by
employing more features in classification.

Alan et al. [81] consider application launch time network
traffic, the first n packets, as an application identifier, as they
contain information with minimal user interference that is char-
acteristic of the app. The application traffic is captured us-
ing tcpdump at AP when a USB-Ethernet adapter connects the
smartphone to an AP. 1595 apps on 4 Android devices and
network traffic of 86,109 app launches were captured. ADB
commands were used to install and uninstall the apps from the
device, separately for training and testing datasets. This pro-
cess was repeated for each of the apps all phones. Multinomial
and gaussian na ”ive Bayes classifiers trained on packet lengths
outperform Jaccard similarity on burst length. The classifiers
were trained using the first six sessions, and the 7th session
was used for testing. The practical use of this methodology has
several pain points. The ability of such a framework to dis-
tinguish packet launch information from standard traffic on a
monitored network is decisive for its usability in the absence of
side-channel data. The dataset needs to be updated regularly,
and models need to be retrained with samples from the latest
versions of the apps to keep them accurate over time. Model
accuracy is also affected by the operating system and build con-
figuration statistics.

Shen et al. [82] use second-order Markov chains that output
symbols corresponding to applications with feature bigrams as
input. Application data and certificate packet lengths are used
as features for the bigram, which the model uses to learn tran-
sition probabilities between states corresponding to application
classes. Since Markov processes, like most methods, are prone
to error for input data traces that do not often occur in the train-
ing dataset, the training cases are clustered to limit the range
of values that the model has to learn in between the transitions.
The model is shown to outperform similar Markovian process
models.

Lotfollahi et al. [67] and their previously discussed frame-
work was also applied to the application identification paradigm
of the ISCX dataset and achieved F-measure, precision, and ac-
curacy of 0.98. Performance for both application and class of
service problems fared better in competition with stacked au-
toencoders.

19

Table 3: Activity Identification

S.No Ref. Data Gathering Technique Methodology
Generation Capturing Tagging Input Algorithm Feature

1. Coull & Dyer [86] Automated At VPN Automated TCP packets Lookup table Packet length

2. Conti et al. [56] Manual At server in a moni-
tored network

Manual TCP flow Random
forests, ag-
glomerative
hierarchical
clustering

Packet length,
cluster size

3. Fu et al. [87] Manual At virtual AP Manual TCP flow Hidden
Markov mod-
els, k-means
clustering

Packet length,
time delay

4. Park & Kim [57] Manual Between mobile
and AP

Manual Packet se-
quence

Random
forests, ag-
glomerative
hierarchical
clustering

Cluster statis-
tics

6.3. Detection of activity inside an application

Limited methods are found to identify the actions performed
by the applications or to identify specific feature sets used on
the applications for promoting inferences from the network traf-
fic. The notion of applying techniques from the previous two
sections does not seem so far fetched, like predictive analysis
of the class of services offered to the targeted user can help in-
fer specific activities if application signatures or characteristics
have already been identified. However, it is also natural to take
the position that fine-grained actions will have equally finely
isolated features in traffic at scales where labeling data mean-
ingfully can be difficult, and expecting learning algorithms to
have either good recall or precision is a substantial ask.

Coull & Dyer [86] show that how an eavesdropper can get
the information i.e., user actions, language, and length of the
messages from instant messaging services i.e., WhatsApp, Ap-
ple iMessage by just observing the sizes of encrypted pack-
ets. Scripted actions for iMessage on iOS and OSX devices
are used to generate labeled datasets of traffic on a monitored
VPN. User action identification was among the intrusive ob-
jectives discussed, where learning algorithms were trained for
each by 10-fold cross-validation. However, a hash map lookup
based on packet length is showcased as most capable of identi-
fying actions. This framework can be used very effectively for
further information leakage in conjunction with an application
identifier for iMessage.

Conti et al. [56] investigates that at what extend, an eaves-
dropper can identify the actions performed on a mobile appli-
cation by mobile users, by analyzing the encrypted traffic. Ap-
plication traffic is routed to a back end cluster. The framework
limits itself to a selected sample of apps, for which traffic is fil-
tered against a list of exempted IP addresses using the WHOIS
protocol, and all other information is discarded. Flows are ex-
tracted from packets occurring in packet intervals defined by a
timeout parameter. A supervised learning approach using ran-

dom forests is pursued, and hence, a labeled dataset is required.
Agglomerative hierarchical clustering is performed using dy-
namic time warping as a distance metric for sequences that al-
low matching elements while maintaining temporal order. Us-
ing scripted and timestamped actions on Facebook, Twitter, and
Gmail apps, a dataset mapping flows to actions is thus curated
with 220 sequences of fifty actions each for every application.
For training a random forest classifier, only clusters that max-
imize the average F-measure are considered. Average preci-
sion, recall, and F-measure were above 0.97 for both Twitter
and Facebook actions, and around the 0.85 marks for Gmail
actions, suggesting that SSL/TSL encryption does not statisti-
cally encapsulate semantics of network traffic as efficiently as
the syntax.

Fu et al. [87] detail methodologies probed for identification
of usage of individual services on mobile message applications.
In-app usage can be used to profile user behavior, where data is
collected by establishing a virtual access point to host the tar-
geted smart-phone. Wireshark is used to intercept packets fil-
tered by application layer protocols and to log statistics, where
experiment labels are manually provided on the device. Traffic
is segmented into timestamped sessions, that are further divided
as individual dialogs. Packet-level statistics such as length and
time delays in packets are used as features to create a set of
vectorized dialogs. This feature set is used to predict the us-
age type prediction. Ensemble classifiers are developed, among
which combining Hidden Markov Models and k-means cluster-
ing with either random forests or gradient boosted trees provide
robust performance.

Park & Kim [57] proposes a framework to infer performed
tasks on KaKaoTalk, a mobile IM application. Actions like
sending messages, adding friends, joining a chat group, and
the like are considered. To analyze and capture the network
traffic of the KakaoTalk application, the Android device is con-
nected to a node mimicking a NAT Router and a packet capture

20

application using the libpcap library. To collect data for train-
ing, 11 common activities on the messenger app were scripted,
and 100 instances per activity are recorded. Flows are grouped
using agglomerative hierarchical clustering using a DTW met-
ric and labeled. 10-fold cross-validation was performed during
training a random forest classifier, during which the number of
clusters was optimized as a varying hyper-parameter. Using a
random forest classifier with hierarchical clustering, all actions
except for hiding a friend from the user’s profile were classi-
fied accurately. However, the framework is notably agnostic to
traffic statistics where all users are assumed to occur with equal
probability, and packet features were not considered. Only text
messages were considered, where multimedia messages may
exhibit a very different network footprint.

6.4. User and device fingerprinting
Vanrykel et al. [88] use a non-learning approach to user fin-

gerprinting is described. A PC connected to a mobile device in-
stalls and performs scripted actions on applications and signals
VPN servers to start and stop data capture. The data collected
is parsed and filtered to extract HTTPS headers, packet times-
tamps, IP addresses, port numbers etc. For example, various
suitable identifiers from header bodies and URLs are then ex-
tracted to cluster the data stream belonging to each user. TCP
timestamps and unique identifiers sent in HTTP traffic alone
are shown to accurately cluster 57% of users’users’ mobile app
sessions.

Stöber et al. [89] aim to identify configuration parameters
of targeted smartphones based only on background traffic. The
work assumes a passive agent capable of capturing encrypted
wireless UMTS 3G data, intending to use network footprints of
a target to identify their smartphone build. The attacker can ac-
cess physical layer information and measure side-channel fea-
tures in the 3G Network. Using tcpdump, 3G traffic is collected
from 20 user devices for 8 hours with different combinations of
14 top apps installed with a restricted set of user interactions.
Fingerprinting the specific device is achieved by distinguishing
traffic bursts based on features like timing, size, and distribu-
tion. RMI (relative mutual information) of the features is cal-
culated to measure the effectiveness of a feature in the problem.
Packet size statistics were the most important with timing statis-
tics holding a much smaller share of RMI, but all features were
more informative than a random feature. The classifier used is
a multi-class classifier using multiple binary kNN-SVM classi-
fiers for test traffic data. It decides whether the traffic belongs
to the device or not. Twenty-three features are noted for each
burst for multiple apps on every smartphone, and the classifier
is trained with 70% data from one phone as positive data points
and the rest from other devices to provide negative samples.
The work claims that fingerprinting of all devices for 6 hours
and using the classifier on monitored traffic for 15 minutes can
achieve a classification accuracy of 90%.

Verde et al. [90] explores methods to fingerprint the device
and identify a particular user behind a NAT router based on his
actions. The data used here is through Cisco’s NetFlow proto-
col. The experiment is done on a metropolitan Wi-Fi network
with a NetFlow enabled probe with the ISP. Five distinct users

out of a possible two hundred thousand subscribers to the Net-
work provided an identification test. Feature vectors are gener-
ated out of NetFlow records, which are used to train multiple
hidden Markov models in parallel to model and filter inputs be-
fore performing a final classification. The HMM using which
the model offers maximal F-measure is chosen. The average
area under the ROC curve for the model across all users was
optimal at 0.96 when using random forests as the final classifi-
cation module.

6.5. Operating system fingerprinting

This is similar to the previous problem but presents differ-
ent points of contention: network footprints of the same OS
may vary strongly on different build configurations, and appli-
cations built on cross-platform libraries will colour the footprint
in a similar manner across classes. For particular platforms like
iOS or Chrome OS, effects caused by different configurations
could be manageable because of the stronger coupling of hard-
ware and software in the market.
Malik et al. [91] describe an approach for which data is cap-
tured at a wireless access point using Wireshark. A standard
ping utility or passive analysis of TCP/IP packets exchanged be-
tween the servers techniques is used. Ping flood testing is used
to derive a probability distribution for the inter-packet spacing
(IPS) of the ICMP replies captured from pinging the mobile de-
vices. Similar distributions are also calculated for an active ex-
periment with the mentioned devices connected to a monitored
access point. Random forests are trained by 10-fold cross val-
idation to identify the OS using statistical features of the men-
tioned distributions. Confusion matrix results suggest that the
standard deviation and variance of ICMP replies are important
features in classifying the dataset. Packet loss is also a signif-
icant factor that is characteristic of the OS and strongly affects
the features monitored by the model.

Aksoy et al. [92] undertake OS identification of a target
smartphone from frequency spectrum analysis of encrypted traf-
fic on a wireless network. A dataset was generated using a con-
trolled experimental network, that was used to collect ICMP
replies from the most visited websites at the time using traceroute,
and traffic generated during streaming and video chat on multi-
ple machines for separate operating systems. A third of the data
is isolated for testing, while the rest is used to train a classifier
on feature sets selected by a genetic algorithm optimisted for
feature extraction. Classifiers used for the experiment predom-
inantly showed increased accuracy when boosted by the GA.

Chen et al. [93], traffic is captured in the form of packet
traces from Android, iOS and Windows Phone devices along
with traces from a CRAWDAD dataset. Probabilistic learning
using a naı̈ve Bayes classifier is compared with decision trees
and linear regression. For the Bayesian classifier, the proba-
bility of the device using a specific OS as well as probability
of tethering for different feature vectors is calculated. Selected
features are used and evaluated in the experiment. The prob-
abilistic classifier performs better compared to the other two
classifiers by F-measure and recall, where all classifiers exhibit
similar precision.

21

Table 4: User and Device Fingerprinting

S.No Ref. Data Gathering Technique Methodology
Generation Capturing Tagging Input Algorithm Features

1. Vanrykel et al. [88] Scripted At VPN Automated Application
layer payload

Identifier
matching
(non-learning)

HTTPS identi-
fiers

2. Stöber et al. [89] Manual At device Manual TCP flow Ensemble clas-
sifier (kNN,
SVM)

Packet length
and timing
statistics

3. Verde et al. [90] Manual At ISP using Net-
Flow protocol

Manual Ordered bidi-
rectional flow

Hidden
Markov models
& random
forests

Packet se-
quences

Coull & Dyer [86] also address discerning the operating
system (iOS or OSX) for iMessage traffic, where naı̈ve Bayes
classifiers showcase perfect classification accuracy. The opti-
mal number of required packets was probed, and using just five
packets peak accuracy can be achieved.

6.6. Other prediction objectives

Work by Coull & Dyer [86] has been mentioned before for
discerning operating systems and user actions from iMessage
traffic, and also explores message attribute extraction. It also
shows that message language can be effectively predicted using
a multinomial naı̈ve Bayes classifier, and linear regression can
be used to approximate message length using payload length as
a feature. Rich metadata about a user and their social network
can hence be absorbed from packet statistics with high accu-
racy.

Zhou et al [94] use shared information in Android 4 appli-
cations to make privacy breaches. A malicious application with
no permissions is used to test information leakage in resources
shared between apps that monitors network traffic. The traffic
signatures of all the apps are first learnt by analysis using Shark.
Further, the application reads texttttcp rcv and tcp snd values
and compares the captured traffic with user activity signatures.
Once the application being used is known the identity, location
and even driving route preferences of the target can be known
by further analysis.

7. Countermeasures against NTA

Statistical analysis of network communications seems to be
enough to leak information. However, certain techniques can
protect data privacy against highly efficient learning models to
perform NTA on encrypted data.

A simple mechanism to thwart the encrypted traffic analy-
sis is to make the size of the packets the same by padding them
with some extra information and send the packets at a fixed in-
terval of time. This helps reduce the information leakage about
the traffic but incurs overhead and, consequently, affects the net-
work protocols’ performance and efficiency. However, such a

padding scheme creates an imbalance between the privacy of
the user and the performance of the network protocols. In-
deed, all encrypted packets can be padded with the equal size
of the maximum transmission unit (MTU), but for some net-
working protocols, such padding is not considered a suitable
solution. [95] shows that the per-packet padding mechanism
helps reduce accuracy to 8% while increasing the traffic vol-
ume to achieve the identification of encrypted HTTP streams.
[96] used a padding mechanism to make the packet length mul-
tiple of 128, 256, and 512 bits block, which results in increas-
ing overhead in a sequence but reducing recall and precision
in a sequence. This padding mechanism is used in standard-
ized security protocols, i.e., TLS, IPSec, SSh, etc. Thus TLS,
SSH, IPSec, and other security standards combine encryption
and padding mechanisms. Padding makes it difficult for an at-
tacker to attack based on the packet/message length analysis.
However, it is found that hiding the packet length is not suffi-
cient. TLS protocol is not found suitable for hiding the traffic
patterns [95]. There are some classifiers i.e., naive Bayes and
VNG++ which don’t use the packet length directly, instead,
they use some or all following information; total bandwidth,
burst size and overall time.

Traffic morphing technique [12] is a defense mechanism
found suitable to thwart the statistical-based encrypted traffic
analysis by modifying the features of the packets in order to
make the classes of traffic same by padding and truncating the
packets. This technique changes the packet size and increases
the number of packets by inserting some dummy traffic. Au-
thors in [12] use convex optimization techniques to perform
real-time traffic modification with less overhead than padding.
This technique is applicable only for the traffic analysis tech-
niques considered packet size as a feature. Traffic morphing
technique is found suitable to create the balance between then
privacy and network protocols’ performance.

A study done by [10] shows that these countermeasures
against traffic analysis are found vulnerable to exploit the traf-
fic features; hence, these countermeasures are not found effec-
tive. [10] combines the discussed countermeasures and make
a better scheme called as Buffered Fixed-Length Obfuscation

22

Table 5: Operating System Identification

S.No Ref. Data Gathering Technique Methodology
Generation Capturing Tagging Input Algorithm Features

1. Malik et al. [91] Scripted At mobile &
AP

Automated Ping
flood
re-
sponse

Random
forests

Average ICMP
reply IPS

2. Aksoy et al. [92] Manual b/w Mobile and
AP

Manual ICMP
replies

Random
forests, J48,
OneR

Selected by a ge-
netic algorithm

3. Chen et al. [93] Manual lab
trace + CRAW-
DAD datasets

At access point
(for lab trace)

Manual TCP/IP
pack-
ets

Naı̈ve Bayes
classifier

TCP/IP statistics,
machine clock
frequency

4. Coull & Dyer [86] Automated At VPN Automated TCP
pack-
ets

Naı̈ve Bayes
classifier

Packet length

(BuFLO). This scheme helps in reducing the success rate of
information retrieval from attacks and provides better security
but at a high bandwidth cost. Under this scheme, all packets,
including dummy packets, should be of the same size and sent
at a fixed interval. BuFLO helps in preventing the timing at-
tacks as well by fixing the transmission rate of packets. [37]
proposed a better defense mechanism called Tamaraw, which
is an extension of BuFLO. To design a better defense mecha-
nism, it is essential to know which traffic feature is leaking the
most information. Tamaraw uses different parameters to pad the
packets than BuFLO with the consideration of packet direction.
Authors in [37] showed that Tamaraw provides better security
than BuFLO with less wastage of bandwidth. These defense
mechanisms can be applied against the traffic generated by mo-
bile devices and non-mobile devices [13].

A defense mechanism called as Walkie-Talkie [97] is pre-
sented against website fingerprinting with limited time and band-
width overhead. Walkie-Talkie communicates in half-duplex
mode instead of usual full-duplex mode by modifying the client’s
browser molded the traffic into a burst sequence. Similarly, to
protect the attacker from knowing the password length in SSH
(discussed in section 4) server can send some dummy packets if
echo mode is off. However, this solution is not good to prevent
timing attacks. A random amount of delay should be introduced
between each keystroke to prevent timing attacks. Another way
to prevent leakage of timing information is to send the traffic at
a constant rate from both client and server-side [38].

8. Conclusions

Current privacy provisions on the network heavily depend
upon cryptography. However, it has been found that some infor-
mation can still leak. Useful statistical features lie in the traffic
flow that could be suitably explored with NTA. Nevertheless,
merely the information related to the length and the inter-arrival
time of the captured traffic, along with side-channel clues, is
sufficient to extract several critical information about the traffic
and profile the mobile user to whom that traffic belongs.

In this review, we focused on the research works involv-
ing the machine learning techniques for performing analysis of
encrypted data generated by mobile devices. To represent the
state-of-the-art related to the study topic, we proposed a classi-
fication framework to categorize the existing works with respect
to their objectives of performing NTA, the method adopted by
them to generate ground truth to build learning models, and the
specific approach taken by them to achieve their objective. We
also discussed several differences between the mobile and non-
mobile Internet traffic that influence the techniques to perform
NTA of these classes, respectively, and the difficulties and so-
lutions in performing NTA on encrypted data.

Finally, we discussed countermeasures that can be taken by
the applications to thwart NTA. While state-of-the-art research
looks promising on extracting information from encrypted mo-
bile traffic, the challenge is to keep their accuracy intact even
when the statistical noises have been introduced in the traffic
to thwart the NTA. On the other hand, an application applying
some countermeasures against NTA needs to satisfy require-
ments, such as computational efficiency, preservation of seman-
tics, and bandwidth utilization. There is a trade-off between
network efficiency and information hiding when customizing
packet length, which has been a critical feature in the methods
described. A similar trade-off can also be imagined between the
complexity of semantic noising or packet timing customization,
and the corresponding drop in network utilization, as packets
will have to be queued and sent in a manner such that the re-
ceiver can process them with logical coherence and can handle
or minimize packet loss.

9. Acknowledgement

This research was supported by the Center for Artificial In-
telligence and Robotics (CAIR) lab of Defence Research and
Development Organisation (DRDO), India, Bangalore under the
CARS scheme.

23

References

[1] May 2020 Mobile User Statistics: Discover the Number
of Phones in The World and Smartphone Penetration by
Country or Region, https://www.bankmycell.com/blog/

how-many-phones-are-in-the-world, accessed: 2020-05-05.
[2] Cisco Visual Networking Index: Global Mobile Data Traffic Fore-

cast Update, 2017–2z022 White Paper, https://www.cisco.

com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/white-paper-c11-738429.

html, accessed: 2019-11-15.
[3] C. Systems, Mobile Data Traffic Outlook - Mobility Report,

https://www.ericsson.com/en/mobility-report/reports/

june-2019/mobile-data-traffic-outlook, accessed: 2019-11-
15.

[4] Most popular mobile messaging apps worldwide as of Oc-
tober 2019, based on number of monthly active users,
https://www.statista.com/statistics/258749/

most-popular-global-mobile-messenger-apps/, accessed:
2020-05-05.

[5] S. Gai, K. McCloghrie, S. Mohaban, Method and apparatus for identify-
ing network data traffic flows and for applying quality of service treat-
ments to the flows, uS Patent 6,651,101 (Nov. 18 2003).

[6] S. CAIDA, Transport layer identification of p2p traffic.
[7] M. Finsterbusch, C. Richter, E. Rocha, J. Muller, K. Hanssgen, A survey

of payload-based traffic classification approaches, IEEE Communications
Surveys Tutorials 16 (2) (2014) 1135–1156. doi:10.1109/SURV.2013.
100613.00161.

[8] P. Velan, M. Čermák, P. Čeleda, M. Drašar, A survey of methods for en-
crypted traffic classification and analysis, International Journal of Net-
work Management 25 (5) (2015) 355–374.

[9] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapè, Mimetic: Mobile en-
crypted traffic classification using multimodal deep learning, Computer
Networks 165 (2019) 106944.

[10] K. P. Dyer, S. E. Coull, T. Ristenpart, T. Shrimpton, Peek-a-boo, i still see
you: Why efficient traffic analysis countermeasures fail, in: Security and
Privacy (SP), 2012 IEEE Symposium on, IEEE, 2012, pp. 332–346.

[11] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, R. Perdisci, Httpos:
Sealing information leaks with browser-side obfuscation of encrypted
flows., in: NDSS, Vol. 11, Citeseer, 2011.

[12] C. V. Wright, S. E. Coull, F. Monrose, Traffic morphing: An efficient
defense against statistical traffic analysis., in: NDSS, Vol. 9, Citeseer,
2009.

[13] M. Conti, L. V. Mancini, R. Spolaor, N. V. Verde, Analyzing android
encrypted network traffic to identify user actions, IEEE Transactions on
Information Forensics and Security 11 (1) (2016) 114–125.

[14] Z. Cao, G. Xiong, Y. Zhao, Z. Li, L. Guo, A survey on encrypted traf-
fic classification, in: International Conference on Applications and Tech-
niques in Information Security, Springer, 2014, pp. 73–81.

[15] A. Gember, A. Anand, A. Akella, A comparative study of handheld and
non-handheld traffic in campus wi-fi networks, in: International Confer-
ence on Passive and Active Network Measurement, Springer, 2011, pp.
173–183.

[16] G. Maier, F. Schneider, A. Feldmann, A first look at mobile hand-held de-
vice traffic, in: International Conference on Passive and Active Network
Measurement, Springer, 2010, pp. 161–170.

[17] S.-W. Lee, J.-S. Park, H.-S. Lee, M.-S. Kim, A study on smart-phone
traffic analysis, in: 2011 13th Asia-Pacific Network Operations and Man-
agement Symposium, IEEE, 2011, pp. 1–7.

[18] M. Afanasyev, T. Chen, G. M. Voelker, A. C. Snoeren, Usage patterns
in an urban wifi network, IEEE/ACM Transactions on Networking 18 (5)
(2010) 1359–1372.

[19] S. Rezaei, X. Liu, Deep learning for encrypted traffic classification: An
overview, CoRR abs/1810.07906. arXiv:1810.07906.
URL http://arxiv.org/abs/1810.07906

[20] F. Kausar, S. Aljumah, S. Alzaydi, R. Alroba, Traffic analysis attack for
identifying users’ online activities, IT Professional 21 (2) (2019) 50–57.

[21] A. G. S. Trujillo, A. L. S. Orozco, L. J. G. Villalba, T.-H. Kim, A traffic
analysis attack to compute social network measures, Multimedia Tools
and Applications 78 (21) (2019) 29731–29745.

[22] A. Bahramali, R. Soltani, A. Houmansadr, D. Goeckel, D. Towsley,

Practical traffic analysis attacks on secure messaging applications, arXiv
preprint arXiv:2005.00508.

[23] N. Ruffing, Y. Zhu, R. Libertini, Y. Guan, R. Bettati, Smartphone recon-
naissance: Operating system identification, in: 2016 13th IEEE Annual
Consumer Communications & Networking Conference (CCNC), IEEE,
2016, pp. 1086–1091.

[24] R. Stevens, C. Gibler, J. Crussell, J. Erickson, H. Chen, Investigating
user privacy in android ad libraries, in: Workshop on Mobile Security
Technologies (MoST), Vol. 10, Citeseer, 2012.

[25] J. Guan, S. Yao, C. Xu, H. Zhang, Design and implementation of net-
work user behaviors analysis based on hadoop for big data, in: Interna-
tional Conference on Applications and Techniques in Information Secu-
rity, Springer, 2014, pp. 44–55.

[26] M. Naik, A. Bhatia, K. Tiwari, I know who you are: A learning frame-
work to profile smartphone users, in: 2020 International Conference on
COMmunication Systems & NETworkS (COMSNETS), IEEE, 2020, pp.
555–558.

[27] L. B. G. L. W. Niu, M. Warren, Applications and techniques in informa-
tion security.

[28] Z. Chen, Y. Tao, G. Li, A method for detecting trojan based on hidden
network traffic analysis, in: International Conference on Applications and
Techniques in Information Security, Springer, 2014, pp. 65–72.

[29] M. Husák, M. Čermák, T. Jirsı́k, P. Čeleda, Https traffic analysis and client
identification using passive ssl/tls fingerprinting, EURASIP Journal on
Information Security 2016 (1) (2016) 6.

[30] R. Holz, L. Braun, N. Kammenhuber, G. Carle, The ssl landscape: a thor-
ough analysis of the x. 509 pki using active and passive measurements,
in: Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, 2011, pp. 427–444.

[31] ipoque GmbH, PACE 2.0 Web Page, https://www.ipoque.com/

products/dpi-engine-rsrpace-2, accessed: 2018-12-27.
[32] C. Systems, Network Based Application Recognition (NBAR), http:

//www.cisco.com/c/en/us/products/ios-nx-os-software/

network-based-application-recognition-nbar, accessed:
2018-12-27.

[33] L. Deri, M. Martinelli, T. Bujlow, A. Cardigliano, ndpi: Open-source
high-speed deep packet inspection, in: Wireless Communications and
Mobile Computing Conference (IWCMC), 2014 International, IEEE,
2014, pp. 617–622.

[34] J. Sherry, C. Lan, R. A. Popa, S. Ratnasamy, Blindbox: Deep packet in-
spection over encrypted traffic, in: Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication, 2015, pp. 213–
226.

[35] B. Krishnamurthy, Privacy and online social networks: Can colorless
green ideas sleep furiously?, IEEE Security & Privacy 11 (3) (2013) 14–
20.

[36] D. Herrmann, R. Wendolsky, H. Federrath, Website fingerprinting: at-
tacking popular privacy enhancing technologies with the multinomial
naı̈ve-bayes classifier, in: Proceedings of the 2009 ACM workshop on
Cloud computing security, 2009, pp. 31–42.

[37] X. Cai, R. Nithyanand, T. Wang, R. Johnson, I. Goldberg, A systematic
approach to developing and evaluating website fingerprinting defenses,
in: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 227–238.

[38] D. X. Song, D. A. Wagner, X. Tian, Timing analysis of keystrokes and
timing attacks on ssh., in: USENIX Security Symposium, Vol. 2001,
2001.

[39] S. Seneviratne, A. Seneviratne, P. Mohapatra, A. Mahanti, Predicting
user traits from a snapshot of apps installed on a smartphone, SIGMO-
BILE Mob. Comput. Commun. Rev. 18 (2) (2014) 1–8. doi:10.1145/
2636242.2636244.
URL http://doi.acm.org/10.1145/2636242.2636244

[40] MonkeyRunner, https://developer.android.com/studio/test/
monkeyrunner/, accessed: 2019-1-1.

[41] A. Machiry, R. Tahiliani, M. Naik, Dynodroid: An input generation sys-
tem for android apps, in: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ACM, 2013, pp. 224–234.

[42] tPacketCapture, http://www.taosoftware.co.jp/en/android/

packetcapture/, accessed: 2019-1-1.
[43] Tcpdump, https://www.tcpdump.org/, accessed: 2019-1-1.
[44] Wireshark, accessed: 2019-2-2.

24

https://www.bankmycell.com/blog/how-many-phones-are-in- the-world
https://www.bankmycell.com/blog/how-many-phones-are-in- the-world
https://www.cisco.com/c/en/us/solutions /collateral /service-provider/visual-networking-index-vni/ white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions /collateral /service-provider/visual-networking-index-vni/ white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions /collateral /service-provider/visual-networking-index-vni/ white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions /collateral /service-provider/visual-networking-index-vni/ white-paper-c11-738429.html
https://www.ericsson.com/en/mobility-report/reports/june -2019/mobile-data-traffic-outlook
https://www.ericsson.com/en/mobility-report/reports/june -2019/mobile-data-traffic-outlook
https://www.statista.com/statistics/258749/most-popular- global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular- global-mobile-messenger-apps/
http://dx.doi.org/10.1109/SURV.2013.100613.00161
http://dx.doi.org/10.1109/SURV.2013.100613.00161
http://arxiv.org/abs/1810.07906
http://arxiv.org/abs/1810.07906
http://arxiv.org/abs/1810.07906
http://arxiv.org/abs/1810.07906
https://www.ipoque.com/products/dpi-engine-rsrpace-2
https://www.ipoque.com/products/dpi-engine-rsrpace-2
http://www.cisco. com/c/en/us/products/ios-nx-os-software/network-based -application-recognition-nbar
http://www.cisco. com/c/en/us/products/ios-nx-os-software/network-based -application-recognition-nbar
http://www.cisco. com/c/en/us/products/ios-nx-os-software/network-based -application-recognition-nbar
http://doi.acm.org/10.1145/2636242.2636244
http://doi.acm.org/10.1145/2636242.2636244
http://dx.doi.org/10.1145/2636242.2636244
http://dx.doi.org/10.1145/2636242.2636244
http://doi.acm.org/10.1145/2636242.2636244
https://developer.android.com/studio/test/ monkeyrunner/
https://developer.android.com/studio/test/ monkeyrunner/
http://www.taosoftware.co.jp/en/android/ packetcapture/
http://www.taosoftware.co.jp/en/android/ packetcapture/
https://www.tcpdump.org/
https://www.wireshark.org

URL https://www.wireshark.org

[45] tinyproxy, https://tinyproxy.github.io/, accessed: 2019-1-1.
[46] Z. Liu, R. Wang, Mobilegt: A system to collect mobile traffic trace and

build the ground truth, in: 2016 26th International Telecommunication
Networks and Applications Conference (ITNAC), 2016, pp. 142–144.
doi:10.1109/ATNAC.2016.7878798.

[47] R. Spolaor, E. D. Santo, M. Conti, Delta: Data extraction and logging
tool for android, IEEE Transactions on Mobile Computing 17 (6) (2018)
1289–1302.

[48] H. Falaki, R. Mahajan, D. Estrin, Systemsens: A tool for monitoring
usage in smartphone research deployments, mobiarch’11, bethesda,
maryland, usa Edition, ACM, 2011.
URL https://www.microsoft.com/en-us/research/

publication/systemsens-tool-monitoring-usage-smartphone-research-deployments/

[49] A. Nandugudi, A. Maiti, T. Ki, M. F. Bulut, M. Demirbas, T. Kosar,
C. Qiao, S. Y. Ko, G. Challen, Phonelab: A large programmable smart-
phone testbed, in: SENSEMINE@SenSys, 2013.

[50] L. Li, Y. Zhao, D. Jiang, Y. Zhang, F. Wang, I. Gonzalez, E. Valentin,
H. Sahli, Hybrid deep neural network–hidden markov model (dnn-hmm)
based speech emotion recognition, in: 2013 Humaine Association Con-
ference on Affective Computing and Intelligent Interaction, 2013, pp.
312–317. doi:10.1109/ACII.2013.58.

[51] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking
the inception architecture for computer vision, CoRR abs/1512.00567.
arXiv:1512.00567.
URL http://arxiv.org/abs/1512.00567

[52] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, K. Kavukcuoglu, Wavenet:
A generative model for raw audio, CoRR abs/1609.03499. arXiv:

1609.03499.
URL http://arxiv.org/abs/1609.03499

[53] G. E. Hinton, A Practical Guide to Training Restricted Boltzmann Ma-
chines, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 599–
619.

[54] R. Spreitzer, V. Moonsamy, T. Korak, S. Mangard, Systematic classifica-
tion of side-channel attacks: A case study for mobile devices, IEEE Com-
munications Surveys Tutorials 20 (1) (2018) 465–488. doi:10.1109/

COMST.2017.2779824.
[55] H. Koga, T. Ishibashi, T. Watanabe, Fast agglomerative hierarchi-

cal clustering algorithm using locality-sensitive hashing, Knowledge
and Information Systems 12 (1) (2007) 25–53. doi:10.1007/

s10115-006-0027-5.
URL https://doi.org/10.1007/s10115-006-0027-5

[56] M. Conti, L. V. Mancini, R. Spolaor, N. V. Verde, Can’t you hear me
knocking: Identification of user actions on android apps via traffic analy-
sis, in: Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, CODASPY ’15, ACM, New York, NY, USA, 2015,
pp. 297–304. doi:10.1145/2699026.2699119.
URL http://doi.acm.org/10.1145/2699026.2699119

[57] K. Park, H. Kim, Encryption is not enough: Inferring user activities on
kakaotalk with traffic analysis, in: H.-w. Kim, D. Choi (Eds.), Infor-
mation Security Applications, Springer International Publishing, Cham,
2016, pp. 254–265.

[58] A. Moore, D. Zuev, Discriminators for use in flow-based classification.
[59] G. Al-Naymat, M. Alkasassbeh, N. Abu-Samhadanh, S. Sakr, Classifi-

cation of voip and non-voip traffic using machine learning approaches,
Journal of Theoretical and Applied Information Technology 3192.

[60] G. Al-Naymat, M. Al-Kasassbeh, N. Abu-Samhadanh, S. Sakr, Classifi-
cation of voip and non-voip traffic using machine learning approaches.,
Journal of Theoretical & Applied Information Technology.

[61] F. Zhang, W. He, X. Liu, P. G. Bridges, Inferring users’ online activities
through traffic analysis, in: Proceedings of the Fourth ACM Conference
on Wireless Network Security, WiSec ’11, ACM, New York, NY, USA,
2011, pp. 59–70. doi:10.1145/1998412.1998425.
URL http://doi.acm.org/10.1145/1998412.1998425

[62] T. Auld, A. W. Moore, S. F. Gull, Bayesian neural networks for internet
traffic classification, IEEE Transactions on Neural Networks 18 (1) (2007)
223–239. doi:10.1109/TNN.2006.883010.

[63] M. Lopez-Martin, B. Carro, A. J. Sanchez-Esguevillas, J. R. Lloret, Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things, IEEE Access 5 (2017) 18042–18050.

[64] R. Bar Yanai, M. Langberg, D. Peleg, L. Roditty, Realtime classifica-
tion for encrypted traffic, in: P. Festa (Ed.), Experimental Algorithms,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 373–385.

[65] Endace, accessed: 2019-2-2.
URL https://www.endace.com

[66] J. Park, H. Tyan, C. . J. Kuo, Ga-based internet traffic classification tech-
nique for qos provisioning, in: 2006 International Conference on Intel-
ligent Information Hiding and Multimedia, 2006, pp. 251–254. doi:

10.1109/IIH-MSP.2006.264991.
[67] M. Lotfollahi, R. S. H. Zade, M. J. Siavoshani, M. Saberian, Deep packet:

A novel approach for encrypted traffic classification using deep learning,
CoRR abs/1709.02656. arXiv:1709.02656.
URL http://arxiv.org/abs/1709.02656

[68] A. Habibi Lashkari, G. Draper Gil, M. Mamun, A. Ghorbani, Charac-
terization of encrypted and vpn traffic using time-related features, 2016.
doi:10.5220/0005740704070414.

[69] H. Yao, G. Ranjan, A. Tongaonkar, Y. Liao, Z. M. Mao, Samples: Self
adaptive mining of persistent lexical snippets for classifying mobile ap-
plication traffic, in: Proceedings of the 21st Annual International Confer-
ence on Mobile Computing and Networking, ACM, 2015, pp. 439–451.

[70] A. Rao, A. M. Kakhki, A. Razaghpanah, A. Tang, S. Y. Wang, J. Sherry,
P. Gill, A. Krishnamurthy, A. Legout, A. Mislove, D. Choffnes, Using the
middle to meddle with mobile, 2013.

[71] R. Spreitzer, S. Griesmayr, T. Korak, S. Mangard, Exploiting data-usage
statistics for website fingerprinting attacks on android, in: WISEC, 2016.

[72] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, G. Noubir, Application-
awareness in sdn, in: Proceedings of the ACM SIGCOMM 2013 Confer-
ence on SIGCOMM, SIGCOMM ’13, ACM, New York, NY, USA, 2013,
pp. 487–488. doi:10.1145/2486001.2491700.
URL http://doi.acm.org/10.1145/2486001.2491700

[73] V. F. Taylor, R. Spolaor, M. Conti, I. Martinovic, Robust smartphone app
identification via encrypted network traffic analysis, IEEE Transactions
on Information Forensics and Security 13 (1) (2018) 63–78. doi:10.

1109/TIFS.2017.2737970.
[74] V. F. Taylor, R. Spolaor, M. Conti, I. Martinovic, Appscanner: Auto-

matic fingerprinting of smartphone apps from encrypted network traffic,
in: 2016 IEEE European Symposium on Security and Privacy (EuroS P),
2016, pp. 439–454. doi:10.1109/EuroSP.2016.40.

[75] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapè, Traffic classification
of mobile apps through multi-classification, in: GLOBECOM 2017 -
2017 IEEE Global Communications Conference, 2017, pp. 1–6. doi:

10.1109/GLOCOM.2017.8254059.
[76] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapè, Mobile encrypted traf-

fic classification using deep learning, 2018 Network Traffic Measurement
and Analysis Conference (TMA) (2018) 1–8.

[77] S. Mongkolluksamee, V. Visoottiviseth, K. Fukuda, Enhancing the per-
formance of mobile traffic identification with communication patterns,
in: 2015 IEEE 39th Annual Computer Software and Applications Con-
ference, Vol. 2, 2015, pp. 336–345. doi:10.1109/COMPSAC.2015.50.

[78] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, A. Markopoulou,
Antmonitor: A system for monitoring from mobile devices, in: Proceed-
ings of the 2015 ACM SIGCOMM Workshop on Crowdsourcing and
Crowdsharing of Big (Internet) Data, C2B(1)D ’15, ACM, New York,
NY, USA, 2015, pp. 15–20. doi:10.1145/2787394.2787396.
URL http://doi.acm.org/10.1145/2787394.2787396

[79] Q. Wang, A. Yahyavi, B. Kemme, W. He, I know what you did on your
smartphone: Inferring app usage over encrypted data traffic, in: 2015
IEEE Conference on Communications and Network Security (CNS),
2015, pp. 433–441. doi:10.1109/CNS.2015.7346855.

[80] L. Watkins, C. Corbett, B. Salazar, K. Fairbanks, W. H. Robinson, Using
network traffic to remotely identify the type of applications executing on
mobile devices.

[81] H. F. Alan, J. Kaur, Can android applications be identified using only
tcp/ip headers of their launch time traffic?, in: WISEC, 2016.

[82] M. Shen, M. Wei, L. Zhu, M. Wang, Classification of encrypted traffic
with second-order markov chains and application attribute bigrams, IEEE
Transactions on Information Forensics and Security 12 (8) (2017) 1830–
1843. doi:10.1109/TIFS.2017.2692682.

[83] A. Rao, J. Sherry, A. Legout, A. Krishnamurthy, W. Dabbous,
D. Choffnes, Meddle: middleboxes for increased transparency and con-
trol of mobile traffic, in: Proceedings of the 2012 ACM conference on

25

https://www.wireshark.org
https://tinyproxy.github.io/
http://dx.doi.org/10.1109/ATNAC.2016.7878798
https://www.microsoft.com/en-us/research/publication /systemsens-tool-monitoring-usage-smartphone-research -deployments/
https://www.microsoft.com/en-us/research/publication /systemsens-tool-monitoring-usage-smartphone-research -deployments/
https://www.microsoft.com/en-us/research/publication /systemsens-tool-monitoring-usage-smartphone-research -deployments/
https://www.microsoft.com/en-us/research/publication /systemsens-tool-monitoring-usage-smartphone-research -deployments/
http://dx.doi.org/10.1109/ACII.2013.58
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://dx.doi.org/10.1109/COMST.2017.2779824
http://dx.doi.org/10.1109/COMST.2017.2779824
https://doi.org/10.1007/s10115-006-0027-5
https://doi.org/10.1007/s10115-006-0027-5
http://dx.doi.org/10.1007/s10115-006-0027-5
http://dx.doi.org/10.1007/s10115-006-0027-5
https://doi.org/10.1007/s10115-006-0027-5
http://doi.acm.org/10.1145/2699026.2699119
http://doi.acm.org/10.1145/2699026.2699119
http://doi.acm.org/10.1145/2699026.2699119
http://dx.doi.org/10.1145/2699026.2699119
http://doi.acm.org/10.1145/2699026.2699119
http://doi.acm.org/10.1145/1998412.1998425
http://doi.acm.org/10.1145/1998412.1998425
http://dx.doi.org/10.1145/1998412.1998425
http://doi.acm.org/10.1145/1998412.1998425
http://dx.doi.org/10.1109/TNN.2006.883010
https://www.endace.com
https://www.endace.com
http://dx.doi.org/10.1109/IIH-MSP.2006.264991
http://dx.doi.org/10.1109/IIH-MSP.2006.264991
http://arxiv.org/abs/1709.02656
http://arxiv.org/abs/1709.02656
http://arxiv.org/abs/1709.02656
http://arxiv.org/abs/1709.02656
http://dx.doi.org/10.5220/0005740704070414
http://doi.acm.org/10.1145/2486001.2491700
http://doi.acm.org/10.1145/2486001.2491700
http://dx.doi.org/10.1145/2486001.2491700
http://doi.acm.org/10.1145/2486001.2491700
http://dx.doi.org/10.1109/TIFS.2017.2737970
http://dx.doi.org/10.1109/TIFS.2017.2737970
http://dx.doi.org/10.1109/EuroSP.2016.40
http://dx.doi.org/10.1109/GLOCOM.2017.8254059
http://dx.doi.org/10.1109/GLOCOM.2017.8254059
http://dx.doi.org/10.1109/COMPSAC.2015.50
http://doi.acm.org/10.1145/2787394.2787396
http://dx.doi.org/10.1145/2787394.2787396
http://doi.acm.org/10.1145/2787394.2787396
http://dx.doi.org/10.1109/CNS.2015.7346855
http://dx.doi.org/10.1109/TIFS.2017.2692682

CoNEXT student workshop, ACM, 2012, pp. 65–66.
[84] Citrix, SSL interception, https://docs.citrix.com/en-us/

netscaler-secure-web-gateway/12/ssl-interception.html,
accessed: 2019-1-1.

[85] S. Valenti, D. Rossi, M. Meo, M. Mellia, P. Bermolen, Accurate, fine-
grained classification of p2p-tv applications by simply counting packets,
in: M. Papadopouli, P. Owezarski, A. Pras (Eds.), Traffic Monitoring and
Analysis, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 84–
92.

[86] S. E. Coull, K. P. Dyer, Traffic analysis of encrypted messaging ser-
vices: Apple imessage and beyond, Computer Communication Review
44 (2014) 5–11.

[87] Y. Fu, H. Xiong, X. Lu, J. Yang, C. Chen, Service usage classification
with encrypted internet traffic in mobile messaging apps, IEEE Transac-
tions on Mobile Computing 15 (11) (2016) 2851–2864. doi:10.1109/
TMC.2016.2516020.

[88] E. Vanrykel, G. Acar, M. Herrmann, C. Diaz, Leaky birds: Exploiting
mobile application traffic for surveillance, in: J. Grossklags, B. Preneel
(Eds.), Financial Cryptography and Data Security, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2017, pp. 367–384.

[89] T. Stöber, M. Frank, J. Schmitt, I. Martinovic, Who do you sync you
are?: smartphone fingerprinting via application behaviourdoi:10.1145/
2462096.2462099.

[90] N. V. Verde, G. Ateniese, E. Gabrielli, L. V. Mancini, A. Spognardi,
No nat’d user left behind: Fingerprinting users behind nat from net-
flow records alone, in: 2014 IEEE 34th International Conference on Dis-
tributed Computing Systems, 2014, pp. 218–227. doi:10.1109/ICDCS.
2014.30.

[91] N. Malik, J. Chandramouli, P. Suresh, K. Fairbanks, L. Watkins, W. H.
Robinson, Using network traffic to verify mobile device forensic artifacts,
in: 2017 14th IEEE Annual Consumer Communications Networking
Conference (CCNC), 2017, pp. 114–119. doi:10.1109/CCNC.2017.

7983091.
[92] A. Aksoy, S. Louis, M. H. Gunes, Operating system fingerprinting via

automated network traffic analysis, in: 2017 IEEE Congress on Evolu-
tionary Computation (CEC), 2017, pp. 2502–2509. doi:10.1109/CEC.
2017.7969609.

[93] Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, L. Qiu, Os fingerprinting and
tethering detection in mobile networks, in: Internet Measurement Con-
ference, 2014.

[94] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, K. Nahrstedt, Identity, location, disease and more: Inferring
your secrets from android public resources, in: Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Se-
curity, CCS ’13, ACM, New York, NY, USA, 2013, pp. 1017–1028.
doi:10.1145/2508859.2516661.
URL http://doi.acm.org/10.1145/2508859.2516661

[95] M. Liberatore, B. N. Levine, Inferring the source of encrypted http con-
nections, in: Proceedings of the 13th ACM conference on Computer and
communications security, 2006, pp. 255–263.

[96] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, G. M. Masson, Spot me
if you can: Uncovering spoken phrases in encrypted voip conversations,
in: 2008 IEEE Symposium on Security and Privacy (sp 2008), IEEE,
2008, pp. 35–49.

[97] T. Wang, I. Goldberg, Walkie-talkie: An efficient defense against passive
website fingerprinting attacks, in: 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 1375–1390.

26

https://docs.citrix.com/en-us/ netscaler-secure-web-gateway/12/ssl-interception.html
https://docs.citrix.com/en-us/ netscaler-secure-web-gateway/12/ssl-interception.html
http://dx.doi.org/10.1109/TMC.2016.2516020
http://dx.doi.org/10.1109/TMC.2016.2516020
http://dx.doi.org/10.1145/2462096.2462099
http://dx.doi.org/10.1145/2462096.2462099
http://dx.doi.org/10.1109/ICDCS.2014.30
http://dx.doi.org/10.1109/ICDCS.2014.30
http://dx.doi.org/10.1109/CCNC.2017.7983091
http://dx.doi.org/10.1109/CCNC.2017.7983091
http://dx.doi.org/10.1109/CEC.2017.7969609
http://dx.doi.org/10.1109/CEC.2017.7969609
http://doi.acm.org/10.1145/2508859.2516661
http://doi.acm.org/10.1145/2508859.2516661
http://dx.doi.org/10.1145/2508859.2516661
http://doi.acm.org/10.1145/2508859.2516661

	1 Introduction
	2 Mobile vs Non-Mobile Traffic Characteristics
	2.1 Protocols (Transport and Application)
	2.2 Traffic Flow Characteristics
	2.3 Background Traffic
	2.4 Services and Application Identification
	2.5 Network Usage
	2.6 Different Websites
	2.7 Identity Association:
	2.8 Browser-based vs App-based mobile traffic

	3 Applications of Network Traffic Analysis (NTA)
	3.1 Applications for Attackers (Cyber Criminals)
	3.2 Applications for Authorities (LEAs)
	3.3 Applications for Network Administrators/ISPs
	3.3.1 Network Management
	3.3.2 Network Security

	4 Encrypted Network Traffic Analysis
	5 A Taxonomy for Encrypted Mobile Traffic Classification and Analysis
	5.1 Objectives of performing analysis
	5.2 Data Gathering and Tagging Techniques
	5.2.1 Generation of Mobile Traffic
	5.2.2 Capturing of Mobile Traffic
	5.2.3 Labelling Captured Mobile Traffic

	5.3 Prevalent systems for generating data
	5.4 Methodology
	5.4.1 Input to the classifier
	5.4.2 Selection of learning Algorithm
	5.4.3 Feature Extraction

	6 Literature Survey
	6.1 Application classes
	6.2 Application identification
	6.3 Detection of activity inside an application
	6.4 User and device fingerprinting
	6.5 Operating system fingerprinting
	6.6 Other prediction objectives

	7 Countermeasures against NTA
	8 Conclusions
	9 Acknowledgement

