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Abstract
Malicious websites pose a challenging cybersecurity threat. Traditional tools for detecting malicious
websites rely heavily on industry-speci�c domain knowledge, are maintained by large-scale research
operations, and result in a never-ending attacker-defender dynamic. Malicious websites need to balance
two opposing requirements to successfully function: escaping malware detection tools while attracting
visitors. This fundamental con�ict can be leveraged to create a robust and sustainable detection
approach based on the extraction, analysis and learning of design attributes for malicious website
identi�cation.

In this paper, we propose a next-generation algorithm for extended design attribute learning that learns
and analyzes web page structures, contents, appearances and reputations to detect malicious websites.
A large-scale experiment that was conducted on more than 35,000 websites suggests that the proposed
algorithm effectively detects more than 83% of all malicious websites while maintaining a low false-
positive rate of 2%. In addition, the proposed method can incorporate user feedback and �ag new
suspicious websites and thus can be effective against zero-day attacks.

1 Introduction
Malicious websites form a major cyberattack vector [1]. Detecting malicious websites is a challenging
task, as malicious websites come in different formats and are often bundled with useful content, such as
software, that is downloaded by naive users.

Traditional detection techniques rely on domain expertise and leverage advanced industry knowledge to
detect indications of malicious activity. This approach results in a constant need for the research and
development of detection capabilities, such as signatures and tailor-made features, to detect malicious
activity. Among these techniques, we can �nd Document Object Model (DOM) analysis methods [2–4],
JavaScript scanning techniques [5, 6], analyses of the software properties linked to websites [7–10], URL
analysis approaches [11–14], user navigation path analysis methods [15, 16], Text Mining [17–19] and
process mining strategies [20].

One problematic effect related to the domain expertise approach is the unending arms race that it
creates. The tailor-made features designed as part of the detection method will eventually be bypassed
by the attacker, resulting in a need to create new tailor-made features. In addition, this approach is mainly
relevant for detecting known threats and attack vectors; as a result, it seems to be far less effective in
detecting emerging threats and zero-day attacks.

Another problematic effect of the traditional detection techniques is the symmetry they create — the
attacker can essentially have access to the same data that the defender uses to train their detection
model, reverse engineer it and bypass the model.
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As previously suggested, malicious websites need to balance two opposing requirements to successfully
function: escaping detection tools while attracting visitors [21, 22]. To attract visitors, a website needs to
signal its claimed functionality to potential users by leveraging appearance, content and experience [23].
This fundamental con�ict can be exploited to create a robust and sustainable classi�cation approach. As
suggested in a previous work by Cohen et al. [24] websites can be accurately classi�ed and categorized
by their design attributes.

In this paper, we propose a framework for detecting malicious websites by extensively learning their
design attributes. The suggested approach was tested on a large-scale imbalanced dataset that included
a total of 35,707 website records, 697 of which are malicious. This dataset was assembled to accurately
represent the commercial, real-life scenario of malicious website identi�cation. Much attention was given
to properly representing the malicious website ratio out of the entire population [25] and to ensuring that
the malicious websites were generated from the same initial list and ranking system as the legitimate
website population [26].

Validating the suggested approach on a real-life large-scale dataset poses some key challenges. For
instance, the noise and variance are much greater than those of a carefully selected dataset. In addition,
an extremely imbalanced dataset requires proper measures when analyzing the data and training the
relevant models.

The suggested approach can effectively detect more than 83% of malicious websites while maintaining a
low false-positive rate (FPR) of 2%. In addition, it was proven effective in detecting malicious and
suspicious websites that allegedly slipped under the radar in previous studies. The suggested framework
also offers explainability and can leverage the cybersecurity practitioner’s experience and feedback to
perform better and respond to emerging threats.

Another part of our contribution lies in assembling and sharing this unique and high-quality dataset,
consisting of multiple design attribute features and third-party enrichment, with the research community.

2 Related Work
Malicious website detection techniques can traditionally be divided into 2 main approaches: dynamic
analysis and static analysis [27].

Dynamic analysis is usually performed by analyzing a website’s execution dynamics [6, 28–30]. The
basis of this approach involves the idea of looking for a signature of malicious activity such as the
creation of an unusual process, repeated redirection, etc. Dynamic analysis techniques have inherent
risks and are di�cult to implement and generalize. These techniques are often implemented in controlled
or isolated environments [5] using virtual machines [31] or honey client systems [32]. However, this type
of approach provides deeper visibility into website behavior, as features extracted using dynamic analysis
can accurately capture processes and contents that are available only after the website is fully loaded.
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Static analysis focuses on the content and information that are available without executing the website’s
actual source code [11, 33]. The extracted features can typically include lexical features from the URL
string [12, 13, 34, 35], HTML and JavaScript content, information about the host and the domain, and
tra�c and usage intelligence provided by third parties. Static analysis techniques that apply machine
learning have been extensively investigated and have achieved good results.

Static content analysis has been found to be highly effective in detecting phishing websites. Under the
assumption that a phishing website aims to lure the end user to enter their credentials and sensitive
information, a limited set of domain expert features can be extracted from URL strings and HTML
elements to accurately detect phishing websites. HTML elements such as < ifrmae > or < input > tags
accompanied by indicative words such as “password” and “credit card” were previously suggested to be
highly effective in detecting phishing websites [36, 37]. Additional expert-based features, such as the
number of anchors and links, were also investigated [38, 39], and when combined with previous work, the
authors achieved a true-positive rate (TPR) of 95% for the speci�c scenario of phishing website detection.
In an attempt to create a more robust detection technique, Altay suggested a keyword density-based
approach for detecting malicious websites [40].

This technique was tested with a support vector machine (SVM) model that was trained on a large-scale
dataset, and it achieved a high accuracy of 96.7% and a TPR of 94.2%. Similar approaches were
suggested for successfully detecting click hijacking attacks on web pages [41, 42]. These approaches are
well suited for the detection of websites involved in phishing attacks, which limits their ability to detect
other types of malicious websites.

In an attempt to generalize static web page content analysis to detect different types of malicious
websites, Amrutkar proposed the kAYO approach, which combines static analyses of mobile web pages
based on URL, JS, HTML and mobile-speci�c contents [43]. A logistic regression model was trained on a
large-scale imbalanced dataset and achieved a high TPR of 89%. However, the overall accuracy was only
90%, and the FPR was 8%. McGahagan performed a comprehensive evaluation of web page content for
detecting malicious websites via 8 different supervised machine learning models and reported an
accuracy of 89% with an FPR that could reach 10% [44]. This work emphasized both the potential and the
challenge of using static analysis for detection of nonphishing malicious websites and raised concerns
regarding the ability to implement this approach in a real-life commercial scenario due to the high
induced FPR.

To better understand the implications for a real-life commercial scenario, one can examine a mid-market
enterprise in the United States (US). The average US enterprise employs between 1,000 and 2,000 people.
In 2021, the average US internet user was accessing more than 100 unique web pages every day. As a
result, we can estimate that altogether, the employees of one mid-market enterprise are accessing at least
100,000 web pages every day. Under the careful assumption that at least 10,000 of these websites are
unique, an FPR of 8% means that a system will provide alerts regarding more than 800 web pages on a
daily basis.
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Liu suggested that both the lower accuracy and high FPR achieved by static analysis techniques in recent
years are results of the spam techniques used by malicious websites [45]. These techniques cause
meaningful content to be invisible to static analysis tools. As a result, a convolutional neural network
(CNN) model that analyzes captured website images was suggested. This model was trained on a
balanced dataset containing 6K screenshots and reported a TPR of 93.6% and an FPR of 5.3%.

Cohen et al. [24] proposed a website assessment scheme based on the website design features (visual
and nonvisual features) contained on a web page and their related features. The algorithm implemented
by Coen et al. utilized the web page URL, HTML, DOM and CSS for website classi�cation and was able to
achieve a classi�cation accuracy of over 90%. Table 1 presents a comparison of the results yielded by the
existing approaches that aim to detect a wide range of malicious websites.

Table 1
Comparison among the results of existing approaches that aim to detect a wide range of malicious

websites.
Related Work Year Problem

Scope
DB
Size

Imbalance
Level

Malicious
Prior
Probability

ACC TPR FPR

Amrutkar - KAYO 2017 Static
analysis
of mobile
web
pages

350K Extremely
Imbalanced

1.5% 90% 89% 8%

Mcgahagan - A
Comprehensive
Evaluation of
Webpage
Content

2019 Malicious
websites
detection

40K Imbalanced 14.5% 89% N/A 10%

Liu and Lee -
CNN Based
Malicious
Website
Detection

2020 Malicious
websites
detection

6K Balanced 38.5% N/A 93% 5.3%

Cohen – Design
attributes
learning

2021 Malicious
websites
detection

15K Highly
Imbalanced

3.5% 98% 66% < 1%

[Table. 1 about here.]

The algorithm developed herein extends Cohen et al. work by enhancing the assessment scheme with the
end-user observation stand point by capturing a complete screenshot of each web page, analyzing its
color coding and performing object detection. In addition, the suggested algorithm parses 3rd-party
metrics regarding web page performance and examines them thoroughly for conducting malicious
website identi�cation on a real-life large-scale dataset.
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3 Methodology
The suggested approach aims to detect malicious websites in general and is not limited to speci�c attack
vectors or techniques. The cornerstone of this work is to leverage the built-in tradeoff that malicious
websites must balance: escaping malware detection tools while attracting visitors. This con�ict
manifests in a considerable way when examining malicious website design attributes and comparing
them to those of a legitimate website.

In terms of design attributes, we refer to all visual and nonvisual elements that a web page consists of
[24]. Among these attributes, we can �nd HTML code and hierarchies, JavaScript, CSS, color tables,
styles, font types, objects, etc. [46–49]. In addition, we also refer to the actual appearance of the website
once its content is loaded and rendered. As a result, the suggested approach is a hybrid technique that
enhances the static analysis method with aspects of dynamic analysis to capture and represent the
actual content and appearance of a website.

By extracting design attributes from both the website’s source code and the end-user observation
standpoint, the suggested approach enables the identi�cation of hidden patterns and mismatches
between what exists behind the scenes and what is actually displayed on the screen.

To propose a robust and sustainable classi�cation approach for malicious websites, any method must be
evaluated on a high-quality large-scale website dataset that accurately demonstrates the high variance in
the internet space and represents the low prior probability of actually being a malicious website based on
the low percentage of malicious websites in the real world [25].

Assembling such a dataset is a complex operation that consists of three main phases: assembling an
appropriately labeled list of websites, extracting relevant features from each website, and enriching the
extracted features with third-party data sources. As part of this study, a dataset with 35,707 website
records was created. As part of the preprocessing stage, each URL was accessed by an automated
scraper to extract the design attributes and enrich the website’s data with 3rd-party data. Feature selection
and dimensionality reduction were then applied according to the relevant trained model. After the model
was effectively tuned and evaluated, a convergence experiment was performed to simulate the
interaction between the model prediction and a security practitioner that accordingly takes action. The
model output includes explainability, which enables better interpretation of the obtained prediction and
allows the user to provide feedback that tunes the model according to his or her preferences. The full �ow
is speci�ed in Fig. 1.

[Fig. 1 about here.]

3.1 Experimental Settings
The operation of assembling a labeled list of websites often starts by creating a large sample of websites
using an external ranking system to capture a list of top-ranked websites. While capturing a nonskewed
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sample that correctly represents the variety of the internet is of great importance, popular ranking
systems are subjected to manipulations in a way that potentially skews the conclusions made in studies
[26].

To prevent such skewness in this study, the Tranco Top Site Ranking system was used as a data source
for creating an initial website list containing 35,707 websites. The Tranco Top Site Ranking system has
evaluated different popular ranking systems to reduce the �uctuations that occur when composing a
ranked list, thereby allowing the research community to work with reliable and reproducible rankings [26].

This initial list of websites was enriched by the “Google Safe Browsing” (GSB) DB to accurately classify
and tag each website. GSB classi�es a malicious URL into one of the following �ve classes: “Malware”,
“Social engineering”, “Unwanted software”, “Potentially harmful application”, and “Threat type
unspeci�ed”.

Overall, 697 websites that appeared on the Tranco Top Site Ranking system were classi�ed as “Malware”
by GSB. The rest of the websites were not labeled by GSB as risky and were treated as benign websites.
Accordingly, the prior probability of a website in this dataset being malicious was 1.95%. While this value
properly represents the prior probability for a malicious website in a real-life scenario, this probability
produced a signi�cant challenge in the data analysis phase.

This paper extended the study of Cohen et al. [24] by developing an algorithm that automatically extracts
websites’ features, including full screenshots and image analysis capabilities, in a large-scale operation
and enriches each website record with third-party data regarding its operation and metadata. Advanced
machine learning (ML) classi�cation models were then applied to determine whether each website is
malicious. In particular, the proposed algorithm allowed each website to be accessed to properly extract
its design attributes after it has loaded and rendered its content to represent the end-user observation
standpoint. Figure 2 emphasizes such extraction. The algorithm also captured a full screenshot of the
website, identi�ed its color scheme and performed image analysis to identify meaningful objects that
were being used. In addition, direct enrichment with Alexa services was added to extract tra�c-related
features for each website.

[Fig. 2 about here.]

The extracted screenshots were analyzed using the You Only Look Once (YOLO) system [50] together with
the Vision API framework. YOLO-V3 is a real-time object detection algorithm consisting of a CNN. This
framework was selected due to its ability to provide good results for different types of datasets, the fact
that it is far less likely to predict false detection results than another approaches [51] and its proven
ability to perform faster than additional leading frameworks such as Faster region-based CNN (R-CNN)
[52–52]. The vision API was selected based on its ability to represent image contents using structured
labels.
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The screenshots were analyzed from 2 main perspectives to extract meaningful features: object detection
and content classi�cation. Object detection involved detecting meaningful objects in an image and
determining their positions. In addition, whether each object was seen immediately or required scrolling to
become visible was captured. Content classi�cation involved the identi�cation of explicit content such as
adult content or violent content within an image using the Vision API [55, 56]. The output of the
abovementioned feature extraction process was a structured dataset containing the detected images and
labels for each website.

On the infrastructure level, the algorithm was enhanced to support such large-scale operations. The
proposed algorithmic engine was designed to perform a full scan of one website within a few seconds. It
is important to emphasize that built-in waiting times were de�ned as part of the algorithm to ensure that
the website content was loaded and rendered effectively. Due to the use of parallel computing, the
execution of this algorithm for 35,707 websites, including design and schema attribute extraction,
screenshot capturing, color distribution determination, and tra�c data enrichment, took approximately 23
hours (with a mean time of 14.1 seconds per website). Following this stage, a complementary image
analysis operation was performed o�ine. This operation used parallel computing as well and took
approximately 25 hours (with a mean time of 30 seconds per website).

Overall, the algorithm’s output was a structured

tabular dataset containing 35,707 website records, where each record consisted of 2,900 features. It is
important to emphasize that this website dataset consisted of various websites with different
geolocations, languages, and web technologies that face different audiences. This variety was essential
for capturing the real-life complexity of the worldwide web. As a result, the built-in variance and the
“noise” in this dataset were claimed to be signi�cant.

4 Results
Two different ML model types were trained and validated on the collected dataset: an arti�cial neural
network (ANN) and an ensemble classi�er consisting of decision trees. Both classi�ers were trained using
5-fold cross validation to better utilize the collected data, reduce over�tting and generalize the model
predictions [57].

Due to the e�ciency of deep learning models, the suggested approach was tested on an ANN [58] with
multiple hidden layers. Neural networks with different hidden layer architectures were trained using 5-fold
validation. All networks resulted in high accuracy (above 97.8%) and low FPRs (0.2%) but were only able
to correctly identify low rates of malicious websites (2.5-4%). In addition, an analysis of the receiver
operating characteristic (ROC) curves yielded by the different network architectures indicates that the
trained models were affected by over�tting.

This is not surprising, as the effect of class imbalance on neural network classi�cation performance was
previously proven to be detrimental [59, 60]. Two main approaches were previously suggested for
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handling imbalanced classi�cation problems while using ANN models by signi�cantly increasing the
weight of the minority class: supervised oversampling [61] and synthesized data augmentation [62–64].
These approaches share one main disadvantage — active manipulation of the original dataset. Such
manipulation contradicts the intention of accurately representing a commercial, real-life scenario. In
addition, it has been previously suggested that data augmentation techniques do not learn the target
distribution [65].

As a proof of concept regarding ANN e�ciency in this problem space and to neutralize the imbalanced
effect induced without adding synthesized data, a more balanced dataset was examined.

This dataset was a subset of the original dataset consisting of 2,788 samples, including all 697 original
malicious samples and 2,901 legitimate samples that were randomly selected. The prior probability of
being a malicious website in this dataset was 13 times greater than that in the previous experiment (25%
vs. 1.95%).

To adapt the ANN model to a smaller dataset and prevent over�tting, the feature space and the network
architecture needed to be reduced. Accordingly, the trained ANN consisted of 2 hidden layers, and
principal component analysis (PCA) was used for dimensionality reduction, resulting in a feature space
consisting of 50 components. As expected, the ANN model functioned signi�cantly better on the more
balanced dataset and yielded better classi�cation results (recall: 0.786; precision; 0.734; accuracy: 0.876).
The balanced model accuracy was inferior to the imbalanced model accuracy, a fact that can be
satisfactorily explained by the signi�cant difference between their minority class prior probabilities.

Another effort to address the crucial effect of class imbalance was made. A sequential NN was trained
with oversampling, and the weight for the minority class of malicious websites was increased. As
presented in Table 2, this model was able to detect 75% of malicious websites and achieved higher
accuracy (94%) and a lower FPR (0.06) than the balanced ANN model (0.09), as presented in Table 2.
This FPR level is similar to those of previously reported methods and is not su�cient for a real-life
scenario.

Table 2
Performance comparison among the neural network models.

ModelDataset characteristics Minority class prior probabilityAccuracy TPRFPR

ANNImbalanced 1.95%0.98 0.040.002

ANNBalanced 25%0.87 0.770.09

RNNImbalanced with oversampling 1.95%0.94 0.750.06

[Table 2 about here.]

Ensemble models achieve high accuracy by combining a number of base estimators and can increase
the reliability of machine learning relative to a single estimator [66].
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Bagging (bootstrap aggregation) is a commonly used ensemble classi�cation method that reduces the
variance of a decision tree and addresses classi�cation noise [67]. In situations with substantial
classi�cation noise, bagging has been found to be superior to boosting and randomization [68]. The
algorithm randomly creates several subsets of the given training set data by sampling with replacement.
Every subset is used to train different decision trees, and each different prediction is aggregated into an
averaged aggregated prediction. As opposed to the random forest classi�er, the bagging classi�er does
not use a subset of the dataset features and, as a result, can leverage the most signi�cant features for all
of its weak classi�ers.

The chosen bagging classi�er consisted of 10 base estimators. Each estimator was a classi�cation and
regression decision tree (CART) with a maximal depth of 4, adjusted to an extremely imbalanced dataset
by enforcing a high penalty for classi�cation mistakes produced on the minority class. The CART
algorithm was selected due to its advantage in identifying the splitting variables based on searching
through all possibilities among the input variables and its ability to leverage its results for explainability
purposes. The model was able to successfully detect 75% of all malicious websites while maintaining a
low FPR rate of 2% and achieving an overall accuracy of 97.5%, as described in Table 3. Allowing a higher
FPR resulted in a higher TPR while maintaining a high accuracy level, as shown in Fig. 3.

Table 3
Performance metrics for the bagging classi�er and the convergence experiment.

  Recall Speci�city Precision NPV FPR FNR Accuracy

Bagging Classi�er 0.75 0.98 0.41 0.99 0.02 0.25 0.97

Convergence Experiment 0.83 0.97 0.44 0.99 0.02 0.25 0.97

[Fig. 3 about here.]

To provide explainability for both ML model results and understand the impact of each feature, an
implementation of Shapley values [69] for explainable AI was made. Shapley values interpret the impact
of having a certain value for a given feature in comparison to the prediction that would have been made
if that feature took some baseline value [70]. This implementation also calculates the aggregated
contribution in a way that provides insights on a model level.

When analyzing a speci�c prediction, one can learn what features contributed most and their actual
values, as shown in Fig. 4. In this speci�c example, the model prediction was ‘1’ (‘1’ represents a
malicious website). The biggest impact came from the 3rd-party usage statistics, the high number of
images and the relatively high number of HTML elements compared to the baseline values.

[Fig. 4 about here.]

A deeper dive into the predictions classi�ed as false positives (FPs) revealed that in many cases,
malicious websites were not identi�ed by GSB. Out of the predictions considered FPs, 100 websites were
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randomly selected and manually reviewed. 18% of these websites were identi�ed as malicious, while
additional 21% were identi�ed as suspicious. Among these websites, we could �nd a variety of websites
that contained content proposals that might raise suspicion, from software downloads via prescription
medicine through engagement with human beings, as demonstrated in Fig. 5.

[Fig. 5 about here.]

Accordingly, we conducted a convergence experiment in which the model predictions were reviewed and
relabeled. Each prediction classi�ed as an FP was reviewed by going over the explainable AI results and
by manually accessing the source code and screenshot of the corresponding website. Then, the allegedly
malicious websites were relabeled, and the model was retrained. We learned that the 18% assumption
regarding FP predictions that would actually be malicious websites continued to exist through the
iterations. However, every iteration discovered additional malicious websites that were classi�ed by GSB
as legitimate and as a result the experiment did not converge after 5 iterations.

Taking that into consideration, it is reasonable to claim that the model performance was actually higher
than that indicated by the above performance metrics. Examining the �rst iteration of the convergence
experiment, as demonstrated in Table 3, the results imply that the model performance will actually be
higher in a real-life scenario and that 83% of the malicious websites can be detected by the proposed
approach under the same FPR and accuracy measurements.

[Table 3 about here.]

5 Conclusions
Detecting malicious websites is a challenging and never-ending task. Different techniques and
approaches have been suggested to tackle this problem; however, these approaches tend to suffer from a
built-in problem: an attacker can use the exact same detection technique to enhance his or her attack
vector and evade the defense mechanisms.

The proposed algorithm leverages a fundamental con�ict in malicious website operation and widely
leverages website design attributes to perform classi�cation.

The suggested approach was validated on a real-life, large-scale and extremely imbalanced dataset. This
approach could effectively detect more than 83% of malicious websites while maintaining a low FPR of
2%. In addition, it was proven effective in detecting malicious and suspicious websites that had
previously allegedly slipped under the radar.

The suggested framework offers explainability and can leverage the cybersecurity practitioner’s
experience and feedback to perform better and respond to emerging threats. In this case, a potential lift of
10% can be achieved relative to a model that does not leverage any end-user feedback.
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There are known limitations regarding the use of this approach. First, to implement the proposed
approach as part of a business process, dedicated computing resources should be assigned to host and
run the algorithm. In addition, future model experiments and enhancements require assembling an
additional collection of extracted features from a new set of URLs to accurately represent an up-to-date
commercial real-life malicious website identi�cation scenario.

Additional research can be conducted to extend and enhance the suggested framework to provide a
classi�cation method of malicious websites into categories such as phishing websites, �nancial
malware, keyloggers, trojans and ransomware. The ability to use the developed framework for multiclass
website classi�cation can be generalized to address additional business cases outside the cybersecurity
domain.
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Figure 1

Flow diagram of the proposed framework.

Figure 2

Area and text calculation example.
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Figure 3

ROC curves of the bagging classi�er for the training and validation folds.

Figure 4

Example of interactive explainability based on Shapley values. The feature values that increased the
predictions are shown in pink, and their visual sizes demonstrate the magnitudes of the corresponding
feature effects. The feature values that decreased the predictions are shown in blue. In this example the
model prediction was ‘1’ (‘1’ represents a malicious website).The biggest impact came from the 3rd-party
usage statistics, the high number of images and the relatively high number of HTML elements, compared
to the baseline values.
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Figure 5

Examples of websites that were suggested by the model as malicious . The variety of websites included
various content proposals from software downloads via prescription medicine through engagement with
human beings. None of the above websites were tagged as malicious by GSB. Note however that the fact
that the model predicted these websites as malicious is not evidence that they are indeed malicious.


